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Abstract

Image Registration is one of today’s most challenging tasks in medical imaging. This thesis
develops and investigates tailored registration approaches for two important problems in
real life medicine demanding mass-preserving transformations. A variational approach to
susceptibility correction of echo planar images (EPI) is proposed, validated on phantom
data and applied to functional magnetic resonance images (fMRI) and diffusion tensor
images (DTI). Secondly, gated positron emission tomography (PET) images are corrected
for respiratory motion using a novel non linear mass preserving registration algorithm.
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Introduction

Image registration is one of today’s most challenging tasks in medical imaging. Its main
objective is to make two images that are recorded at different points in time, with dif-
ferent perspectives, by different devices and/or of different subjects more alike, cf. [12].
There is a variety of clinical and scientifical problems that rely on an accurate image reg-
istration. One example is the combination of information from multiple images, acquired
using different modalities, like PET and CT. This procedure is also referred to as image
fusion. One uni-modal example is the evaluation of a medical treatment, where images
taken before and after surgery have to be compared.
From the mathematical point-of-view image registration is also a challenging and inter-
esting problem. According to Hadamard a problem is well posed, if there exists an unique
solution that furthermore depends continuously on the data. Otherwise a problem is
called ill-posed. Note that there are in general many - even trivial - ways to align the two
images. Due to this under-determinedness, image registration is a typical example for an
ill-posed inverse problem, cf. [11].
The under-determinedness in image registration led to the inclusion of more and more
prior knowledge into the registration task.

Similarity vs. Regularity

In image registration one always faces the same trade-off: On the one hand one wants
to render both images as similar as possible while on the other hand a meaningful and
regular transformation is desired. Therefore, it is at least as interesting to study the
transformation as to compare the resulting images. In the current thesis we aim to ensure
the regularity of the transformation by the use of regularisation techniques.

Mass-Preserving Registration

In its very sense registration means finding a geometric transformation y that optimally
aligns the points in the template image T to the corresponding points in the reference
image R. The space in which R is taken is then called the reference frame. Once both
images are in one common frame, their content can be compared or combined.
In general, the transformation may affect the total amount of intensity - that is the
sum over all grey values - of the template image T . For there are registration problems
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implicitly or explicitly demanding such a mass-preservation, an extension of the existing
registration theory is desirable.
Mass preserving registration problems have been studied using techniques of optimal mass
transport by Rehman et al. in [25] and by Zhu et al in [34]. In contrast, this thesis chooses
addresses this problem with image registration tools.

Scope of this thesis

The scope of this thesis is to present two mass-preserving registration problems occurring
in medical imaging. For both problems we will propose and analyse a tailored non-linear
variational registration approach.

Susceptibility correction of EPI

Chapter 2 is devoted to the correction of echo planar images (EPI). This ultra fast mag-
netic resonance imaging sequence is very sensitive to field inhomogeneities caused for
instance by susceptibility differences of the object being imaged. These field inhomo-
geneities affect the spatial reconstruction. The displacement occurs mainly along the
phase encoding direction and altering the gradients sign inverts the displacement. Be-
cause the lost signal can not be regained a mass-preserving transformation along the
phase-encoding direction has to be estimated out of two reference scans with altered gra-
dient signs. An example for this is depicted below in Figure 0.l.
We will study this problem from a variational view point. After providing an existence

(a) EPI image with positive phase encoding
gradient

(b) EPI image with negative phase encoding
gradient

Figure 0.1: Transversal slice of two echo planar images acquired with altered gradient sign. Note, that
the inhomogeneity affects the localization along the phase-encoding direction, which is here
along the anterior-posterior axis - i.e. from bottom to top.
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theory for the minimization problem in the Sobolev space W 1,2, we will implement the al-
gorithm as an extension to the freely available Flexible Algorithms for Image Registration
(FAIR ) toolbox by Jan Modersitzki in Matlab [19]. Finally, we will test the algorithm
on three EPI datasets and explain how it might be used for correcting two commonly
used imaging sequences, namely diffusion tensor imaging (DTI) and functional magnetic
resonance imaging (fMRI).

Motion Correction in Cardiac Gated PET

In Chapter 3 we will try to correct respiratory gated positron emission tomography images
for motion. In order to improve the quality and accuracy, images showing different phases
of the subject’s breathing cycle have to be accurately registered into a common frame. n
this common frame the image can then be averaged, resulting in a much sharper image
than in Figure 0.2 on the left. For the images of the different phases are acquired within
the same time interval, the amount of tracer uptake in each of the images is equal. Hence,
it is important to use a mass-preserving transformation model.

(a) PET reconstruction - without motion correc-
tion

(b) Gated PET image after motion correction

Figure 0.2: PET images of a human heart. Without gating and motion correction the heart is blurred,
due to respiratory and cardiac movement during the acquisition.

The first attempt to register the images with an elastic non-linear registration approach
will lead us to the direct inclusion of the mass-preservation into the registration task. We
will call the proposed algorithm VAMPIRE for VAriational Mass-Preserving Image REgis-
tration. By means of non-linear calculus of variations we will also prove existence in the
Sobolev space W 1,6.
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1 Image Registration

Given two images - the template image T and the reference image R - image registration
means finding a reasonable transformation that - applied to the template image - makes
both images more alike. This chapter will translate this rather vague formulation of the
registration problem into mathematical terms. However, the discussion is restricted to
those elements used later on. The interested reader is referred to [18, 19, 23] for excellent
and more general presentations of image registration.
Mathematically, images can be represented and handled as functions which will be our
starting point in Section 1.1. One way to distinguish registration approaches, is by the
used transformation model. The most important class for this thesis, are non-parametric
approaches where the transformation y is not defined by a set of basis functions and can
move each point into an arbitrary direction.
In order to measure how alike two images are, we need a distance functional D. Since
both registration problems discussed in this thesis are uni modal - i.e. their intensity
values are correlated - the sum-of-squared distance (SSD) and the normalized-cross-
correlation(NCC) are adequate choices and described in Section 1.2.
As mentioned above, we are interested in finding a reasonable transformation. What this
means depends of course on the specific context and deformation model. Solving the reg-
istration problem, we have to trade off the similarity of the images against a meaningful
transformation. We measure the smoothness of our transformation y by a functional S[y]
in order to punish unwanted behaviour. This leads to a bias to a desired solution, and can
furthermore render the problem less under-determined and thus easier to solve. In our
later applications, we will make use of the elastic potential, that is described in Section
1.3.
In the following chapters of this thesis we will include prior knowledge about the shape
and the mass-preserving property of the transformation into the registration problem and
also prove the existence of optimal transformations. This can be handled by means of vari-
ational calculus in an elegant fashion. Therefore, we formulate the registration problem
in a variational formulation

min
y

J [y] := D(T (y),R) + αS[y]. (1.1)

In this formulation the regularization parameter α ∈ R
+ balances between minimizing

the data term D[y] and keeping the deformation meaningful which is judged by S[y].
It remains to describe how to find an optimal transformation. Section 1.4 describes the
Gauss-Newton optimization and the multi-level strategy implemented in the FAIR tool-
box [19] to solve registration problems like (1.1). Following a discretize-then-optimize
strategy, we first discretize the functional before optimizing it. Consequently, each ele-
ment’s discretization is described in the corresponding section.
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1.1 Representation of Images

This section introduces images as functions. We will say an image is continuous if it is
of infinite resolution or more precisely, a function on R

3. However in most applications
the resolution is finite and therefore digital or discrete images/functions are interesting to
study, too. In order to support the distinction between continuous and discrete settings we
use capitalized calligraphic letters for continuous and capitalized Latin letters for discrete
images. Discrete images are typically defined on cell-centred grids. We also explain how to
evaluate a discrete image on non-grid points by interpolation methods and finally describe
rigid and non-parametric transformations.

Definition 1 (Image). Let d ∈ N. A function I : R
3 → R is called a three-dimensional

grey image, if its support Ω ⊂ R
3 is compact and 0 ≤ I(x) < 256 for all x ∈ R

3

The space of all images is denoted by Img(R3).

The image domain will be denoted by Ω in the remainder of this work. By definition we
can treat images as functions. Therefore regularity - e.g. differentiability, measurability -
of images is defined in the same way as for functions.

Definition 2 (L2 norm). Let I be an d-dimensional image. Then the L2-Norm is given
by

||I||2 :=

(∫

R3

I(x)2dx

)
1

2

.

Being finite and compactly supported, all reasonable images are elements of L2 which is
a very weak choice for a function space. When calculating derivatives of an image, one
would want the image to be continuously differentiable. However, interesting images can,
because of their edges, not even be continuous. That is why weaker choices of subspaces
of L2 - for instance I ∈ W j,p, see [10], or I ∈ BV, see [3] - are common in mathematical
image processing.
The discussion of continuous images is especially useful in proofs, however, in image
processing all relevant images are digital images that are of finite resolution. Commonly,
the image data is given on a regular spaced cell-centred grid.

Definition 3 (Grid). Let the image domain Ω :=]0, 1[3, and m1, m2, m3 ∈ N be the
number of discretization points. The points

xj1,j2,j3 = (xj1 , xj2, xj3)
T ∈ Ω ∪ ∂Ω, 1 ≤ jl ≤ ml for l = 1, 2, 3

are called grid points. The array

X := (xj1,j2,j3)1≤jl≤ml, l=1,2,3 ∈ R
m1×m2×m3

is called grid matrix

Implementation 1 (Grids in FAIR ). In the FAIR toolbox grids are stored in column
vectors in lexicographical ordering. Thus, the vector starts by the x1 coordinates of all grid
points. Then the x2 coordinates are stored and finally the x3 coordinates. The coordinate
system is supposed to be right-handed, see [19].
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Figure 1.1: cell centred grid by Papenberg [23]

As pointed out above, discrete images are commonly discretized on cell-centred grids.

Example 1 (Cell-Centred Grid). Let Ω :=]0, 1[3 and m1, m2, m3 ∈ N be some given
numbers. For 1 ≤ jl ≤ ml with l = 1, 2, 3 the grid points

xcc
j =

(

2j1 − 1

2m1

,
2j2 − 1

2m2

,
2j3 − 1

2m3

)

build a cell centred grid or Neumann grid. It is depicted in Figure 1.1.

Definition 4 (Discrete Image). Let nx, ny, nz ∈ R
+ and Ω = [0, nx]×[0, ny]×[0, nz] be the

image domain and mx, my, mz ∈ N be the number of discretization points along the three
dimensions. A digital image I then corresponds mathematically to a three dimensional
real matrix with positive numbers- i.e. I ∈ R

mx×my×mz . The elements of I are then the
grey values at centre of the respective grid cell.

Remark 1 (Digital images as discrete functions). When evaluating a continuous image
on a cell-centred grid, that is

I(j1, j2, j3) = I(xj1,j2,j3) ∀j1, j2, j3,

one can define a projection from the space of all continuous images to the space of all
discrete images.

Implementation 2 (Matrix vs. Vector representation). In Matlab images can either be
stored in a three dimensional matrix of doubles, or in a row vector. We will make use of
both notations. Let R∈ R

m1×m2×m3 be an image array. Then we can get the row vector
representation by

R = R(:);

To regain the matrix representation we can use

R = reshape(R,[m1 m2 m3]);
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Interpolation

In order to evaluate discrete images at non-grid points we have to use an interpolation
scheme. Although there are many possible operators, we restrict the presentation to
the linear interpolation operator I lin and the 3D cubic spline interpolation Ispline. The
interpolation operator defines - based on the discrete image data I - a continuous image
on Ω ⊂ R

3 which we then can evaluate on non-grid points. For a detailed overview on
the different operators and their implementation, see [18, 19, 23].

Definition 5 (Linear 3D Interpolation). Let I be a digital image, given on a cell centred
grid xcc. The linear interpolant I lin is then given by

I lin(x; I) =
∑

k∈{0,1}3

I

(⌊n1x1⌋ + k1

n1
,
⌊n2x2⌋ + k2

n2
+

⌊n3x3⌋ + k3

n3

)

·
3
∏

j=1

(

(−1)kj

nj

(⌊xjnj⌋ + 1 − kj − xjnj)

)

.

The linear interpolant is not differentiable at grid points. However, in order to achieve fast
convergence we want to use a fast optimization scheme with descent directions depending
on derivatives of our functional. Those in turn require derivatives of the template im-
age. Especially when starting the optimization with an undeformed grid an interpolation
scheme with higher regularity is desired. To this end we introduce the 3D cubic spline
interpolation.
The idea is to have a finite set of cubic basis functions, where each function bj is a trans-
lated version of a so-called mother spline b. We will first describe the interpolation in one
dimension. The interpolation in three dimensions can then be composed, easily.

Definition 6 (Cubic spline basis in 1D). Let xcc be a cell-centred grid in one dimension.
Without loss of generality the cell-centred grid points xj are equal to j. The mother spline
b is then defined as

b(x) =































(x+ 2)3 ,−2 ≤ x < −1,

−x3 − 2(x+ 1)3 + 6(x+ 1) ,−1 ≤ x < 0,

x3 + 2(x− 1)3 − 6(x− 1) , 0 ≤ x < 1,

(2 − x)3 , 1 ≤ x < 2,

0 , else .

(1.2)

The cubic spline basis is then given by B := {bj(x) | bj(x) = b(x− j), j = 1, ..., m1}.

In order to obtain a function out of a digital image I given on the cell-centred grid one
expands the interpolant by

Ispline(x) =

m1
∑

j=1

cjb
j(x).
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Where the coefficients cj are chosen such that the interpolation condition holds - cf. [19]
for implementational remarks -

Ij = Ispline(xj), ∀j = 1, ..., m1.

For three dimensional data, the generalisation is now easy to perform.

Definition 7 (Cubic spline interpolation in 3D). Let xcc be a cell-centred grid and I be
a discrete image on xcc. Let the interpolation coefficients cj := cj1,j2,j3 be chosen such
that the interpolation condition is satisfied. Then the interpolant of I is a continuously
differentiable function

Ispline(x) =

m1
∑

j1=1

m2
∑

j2=1

m3
∑

j3=1

cj

3
∏

l=1

bjl(xl).

The i-th partial derivative is then given by

∂iIspline(x) =

m1
∑

j1=1

m2
∑

j2=1

m3
∑

j3=1

cj(b
ji)′(xi)

∏

l 6=i

bjl(xl).

Where each (bji)′(xi) can be computed from equation (1.2).

Even for our high-dimensional data, we will use the cubic B-spline interpolation scheme,
since we are interested in a very accurate registration result. We could of course speed
up the registration by using linear interpolation, but this might cause difficulties in the
optimization algorithm, due to the non-differentiability at grid points. Especially, when
starting the optimization with an undeformed grid, choosing spline interpolation should
pay off and result in an accurate search direction.

Geometric Transformations

In order to complete the discussion about images, we explain how to apply a geomet-
ric transformation y to an image. In continuous setting geometric transformations are
changes of the image’s coordinate system. Thus, the geometric transformation y is a
function from R

3 to R
3.

In discrete setting we can carry out a geometric transformation by interpolating on a
transformed grid ycc that is a discrete version of y - which is referred to as the Eulerian
approach in comparison to the Lagrangian approach, described for instance in [9]. When
visualizing the transformations, we will show the deformed grid at which we interpolate
the template image.
When using elastic regularization in FAIR , the optimization variable ystg is discretized
on a staggered grid and denoted by yc.In contrast to the cell-centred grid, the x1, x2, x3

components are obtained as a one dimensional nodal-grid of the respective interval. This
has the advantage that the divergence of the deformation can be calculated via short
differences. For a more detailed view on the different grid types in FAIR , we refer to
[23].
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Clearly, one can think of many different transformations. The presentation here is limited
to two transformations we will use later on - the rigid and the non-parametric trans-
formation. An overview of the possible transformations can be found for instance in
[18, 19, 23].

Rigid Transformation

When registering two images of the head of the same subject, taken at different points
in time, it is likely that the subject has moved in between. This movement can typically
be described as a rotation and a shift, since the head is supposed to be rigid. In 3D
the transformation can then be described by a parameter θ ∈ R

6. Therefore the rigid
transformation is one example of a parametric transformations.
The first three elements of θ describe the rotations along the respective axes. They can
be expressed as the product of the orthogonal matrices

Rx1
(θ1) =





1 0 0
0 cos(θ1) − sin(θ1)
0 sin(θ1) cos(θ1)





Rx2
(θ2) =





cos(θ2) 0 − sin(θ2)
0 1 0

sin(θ2) 0 cos(θ2)





Rx3
(θ3) =





cos(θ3) − sin(θ3) 0
sin(θ3) cos(θ3) 0

0 0 1





In combination with a translation, that is described by (θ4, θ5, θ6) we end up with the
following transformation

y(x; θ) = (Rx1
· Rx2

· Rx3
)





x1

x2

x3



+





θ4
θ5
θ6





By definition y is then diffeomorphic - i.e. y and its inverse y−1 are continuously differ-
entiable - which is a desired feature in image registration.

Non-Parametric Transformation

In contrast to the rigid registration that can be completely described by 6 parameters, we
will mainly use non-parametric transformations. For each voxel can be moved arbitrarily,
they are also called free form transformations. Clearly, non-parametric transformations
are, in general, not diffeomorphic. Furthermore, the use of non-parametric transforma-
tions renders the registration problem under-determined. In order to obtain a transforma-
tion that fits to the physical model and to treat the under-determinedness, we introduce
similarity measures that penalize certain features of the transformations in Section 1.3.
Thereby we can sort out deformations that are not reasonable in the specific context.
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1.2 Distance measure

As a second component of our registration problem (1.1) this section defines the distance
D of two images. Generally stated, the distance between the two images can be defined
as

D(T ,R) =

∫

Ω

w(x)ψ(r(T ,R))dx. (1.3)

Here r : Img2(Ω) → Img(Ω) is the residual or difference function, w : R → R
+ is a

weighting function and ψ ∈ C2(R,R). There are many specifications of r,w and ψ that
are sensitive to different image features. As Modersitzki points out in [19, p. 115] there
is no universal rule which distance measure to choose. He suggests, however, that the
distance measure should be as restrictive as possible in the specific context.
In the applications discussed later the images show the same subject and are of the same
modality. Thus, the intensities can be assumed to be correlated and we can compare them
by intensity-based measures. We will make use of the sum of squared differences (SSD)
or their normalized cross-correlation (NCC) that are described below.

Sum of Squared Distances

The sum of squared differences (SSD) can be derived as a weighted L2 measure as fol-
lows.

Definition 8 (SSD Distance). Let T ,R be images. Then by choosing

r := T −R and ψ(x) :=
1

2
x2

we obtain the sum of squared differences (SSD) measure

DSSD(T ,R) =
1

2

∫

Ω

w(x)(T (x) −R(x))2dx.

When registering the template image T ∈ Img(Ω) to the reference image R ∈ Img(Ω),
we can define a functional on the space of the geometric transformations by

DSSD(y) =
1

2

∫

Ω

w(x)(T (y(x)) −R(x))2dx. (1.4)

When minimizing DSSD we want to apply a fast optimization scheme using derivatives. In
the non-parametric case, we need its first variation with respect to y in order to calculate
the direction of steepest descent.

Theorem 1 (First variation). Let T ∈ C1(Ω, [0, 256]) and R ∈ Img(Ω) be images. Then
the first variation of DSSD (1.4) is given by

D′(y) = w(x)(T (y) −R)∇T (y). (1.5)
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Proof. Let v be a transformation. We calculate the Gateaux derivative of the functional
DSSD at point y.

dD(y, v) = lim
ǫ→0

1

ǫ
(D(y + ǫv) −D(y))

= lim
ǫ→0

1

2ǫ

∫

Ω

w(x)(T (y + ǫv) −R)2 − (T (y) −R)2dx

With a first order Taylor expansion we obtain

= lim
ǫ→0

1

2ǫ

∫

Ω

2w(x)(T (y) −R)(ǫ∇T (y)v) +O(ǫ2)dx

=

∫

Ω

w(x)(T (y) −R)∇T (y)vdx.

Then
−D′(y) = −w(x)(T (y) −R)∇T (y)

is also called the force field - see [19] - of DSSD.

Implementation 3 (SSD Distance). The discretization in FAIR is broken down into
two steps. First the occurring integrals are discretized by a simple midpoint quadrature.
Therefore the volume of a voxel is defined by hd = h(1) * h(2) * h(3). The distance
between the two digital images in vector shape I1 and I2 is then given by

D = 0.5 * hd * (I1-I2)’ * (I1-I2);

The first order derivative can be computed as

dD = hd * (I1-I2)’ * gradI1;

Here gradI1 is provided by the chosen interpolation scheme.

Normalized Cross Correlation

In Chapter 3 we will evaluate the registration result by means of the normalized cross-
correlation (NCC) of the transformed template and the reference to be conform to previous
approaches. However, there is a strong link between the minimization of the SSD and the
maximization of the normalized cross-correlation.

Definition 9 (Normalized Cross Correlation). Let T ,R ∈ Img(R3) be two three dimen-
sional images. The r(T,R) ∈ Img(R3) is then given by

r(T ,R) =
T − µ(T )

σ(T )
· R − µ(R)

σ(R)
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With µ(I) :=
∫

R3 I(x)dx, σ2(I) := µ((I − µ(I))2) and the following choices in (1.3)

ψ(x) = x2 and w(x) = 1

we obtain the normalized cross correlation distance measure by

NCC :=

∫

R3

(T − µ(T )

σ(T )
· R − µ(R)

σ(R)

)2

dx

Remark 2. Since

2DSSD[T ,R] = ||T ||2L2
+ |R||2L2

− (T ,R)L2

and

σ(T )σ(R) · NCC = (T − µ(T ),R− µ(R))L2

= (T ,R)L2
− µ(T )µ(R)

there is a link between minimizing the SSD and maximizing the NCC. For a rigid trans-
formation we have det(Dy) = 1 and therefore ||T ||2L2

,||R||2L2
,σ(T ), σ(R), µ(T ) and µ(R)

are constants. Then the minimization of DSSD is equivalent to the maximization of NCC
[18].

1.3 Regularization

In order to render the non-parametric image registration problem less ill-posed and favour
physically meaningful transformations, we define the similarity functional S. Apart from
rendering the problem more convex, we can also incorporate prior knowledge about the
transformation that happened between both images. In the following applications we
make use of the linear elastic potential. The assumption then is, that the image is painted
on an elastic domain. As most parts of the body are deformed elastically the elastic
potential is a common choice in medical image registration.
In general, a continuous L2 based regularizer is defined as

S[y − yRef] =
1

2

∫

Ω

|B[y − yRef]|2dx (1.6)

Here B is a differential operator. In this way we can favour transformations that are
similar to yRef, which is typically chosen as the identity - then we penalize updates - or
the resulting transformation of a parametric preregistration.

Definition 10 (Elastic potential). With the so-called Lamé constants µ, λ ∈ R
+, the

elastic differential operator is defined as

B =









√
µ∇ 0 0
0

√
µ∇ 0

0 0
√
µ∇√

λ+ µ∂1

√
λ+ µ∂2

√
λ+ µ∂3








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Inserting the differential operator into (1.6) leads to the elastic potential

S[u] =
1

2

∫

Ω

||B[u]||2dx =
1

2

∫

Ω

µ(∇u,∇u) + (λ+ µ)(∇ · u)2dx

While the component wise gradient terms penalize oscillations in the transformation, the
divergence is used to indicate volume changes. The derivative of the elastic potential can
be computed as

dS[u] = (Bu)TB.
And the second order derivative is given by

d2S[u] = BTB.

Implementation 4 (Elastic potential). Similar to the discretization of the SSD distance
FAIR approximates the integral by a simple midpoint quadrature on a cell-centred grid.
The discretization of the differential operator B is done in two steps. First, the partial
differential operators ∂ku

j are discretized individually as sparse matrices and then concate-
nated in order to build up B. Especially for high-dimensional data, building the operator
is quite slow. That is why the operator is stored as a persistent variable in the FAIR
function regularizer.The matrix is updated only if its size does not correspond to the
grid size any more. This happens in a multi-level approach, when changing from a coarser
level to a finer one.
In FAIR one can reduce the memory consumption by using a matrix free implementation
of the finite difference operators.

1.4 Optimization

So far, we stated image registration as a minimization problem and described all occurring
elements. For we follow a discretize-then-optimize strategy each element’s discretization
is already explained leading to a function f(y) : R

3·m1·m2·m3 → R, which is the discrete
version of the functional J in (1.1). We will now go on in developing an optimization
scheme for finding a minimizer y∗ of the function f(y). Then y∗ is the transformation
grid that - by interpolation of the template image at y∗ - leads to an optimal alignment
with respect to the chosen distance and regularization term. A very broad and detailed
presentation of numerical optimization can be found in [21]. More information about the
implementation in the context of image registration can be found in [19]. In order to find
y∗ we use a Gauss-Newton method that iteratively minimizes the real-valued function

f(y) = ψ(r(y)) + α(By)TBy.

Here, the residual r and ψ are defined as described in Section 1.2 and B is the differential
operator chosen for regularization.
As a starting guess we will either choose y0 as the identity or equal to the result of a
previous parametric registration. In the following, the iterates will be denoted by sub-
indices, for instance fk := f(yk).
The Gauss-Newton method belongs to the class of line search methods. That means that
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in the k-th iteration step one has to choose a search direction pk first and then to solve
the one-dimensional minimization problem

min
βk

f(yk + βkpk).

Then the (k + 1)-th iterate is given as

yk+1 = yk + βkpk.

The remainder of this section therefore describes the computation of the search direction
pk, explains the line search solvers and finally, the stopping criteria that are used in the
following chapters.

Search Direction

We will determine the search direction by a Gauss-Newton method. In contrast to New-
ton’s method, the goal is to use a numerically cheap approximation of the Hessian ∇2f
in order to determine the search direction given by

pk = −(∇2f)−1∇f.

In our case, where in the distance functional ψ(x) := 1
2
xTx, the gradient of our function

f is given by

∇f(yk) = r(yk)
T∇r(yk) + α(B(yk − yRef))

TB.

The second derivative becomes

∇2f(yk) = ∇r(yk)
T∇r(yk) + r(yk)

T∇2r(yk) + αBTB.

We will avoid computing the Hessian ∇2r(yk) and approximate the second derivative by

∇2f(yk) ≈ ∇r(yk)
T∇r(yk) + α(B(yk − yRef))

TB.

The error due to the approximation of the Hessian is relatively small whenever r(yk) is
small - that is close to a solution - and whenever ∇2r(yk) is small. The latter is the case
in regions where r is relatively affine. A special advantage in image registration is, that
the gradient of the residual usually contains image derivatives. By approximating the
Hessian as shown above, we avoid computing second derivatives which might be affected
by the noise present in the data.
For the computation of the search direction pk we solve the following linear equation
system

∇r(yk)
T∇r(yk)pk = −∇r(yk).

This will be done iteratively by the preconditioned conjugate gradient method.
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Determining the step length

For a given search direction pk, we now want to choose βk a minimizer of the one-
dimensional problem

min
βk

φ(βk) = f(yk + βkpk).

In solving this sub-problem we face the trade off that we want to find an βk that leads
to a significant reduction of our objective function f , but on the other hand we do not
want to spend too much time searching for it. In general, it is too expensive to identify
the global minimizer of φ and even finding a local minimizer of moderate precision would
require too many evaluations of our objective function. Note that especially for three
dimensional data, evaluating the objective function is computationally expensive.
Therefore we content ourselves with trying a sequence of candidates for βk and stopping
when a specified condition is satisfied. Here, we will describe three conditions. We will
start by the Armijo condition and then present two extensions: the Wolfe and the strong
Wolfe condition.

Definition 11 (Armijo condition). Let f, yk, pk be defined as above. Furthermore let
c1 ∈ (0, 1) be a small constant. Then a reasonable step lengths should lead to a sufficient
decrease of the objective function, that is

f(yk + αpk) ≤ f(yk) + c1α∇fT
k pk. (1.7)

As proposed in Nocedal and Wright [21] a typical choice for c1 is 10−4. The Armijo
condition alone is not enough to ensure a reasonable progress, because it is satisfied for
all sufficiently small values of βk. To rule out unacceptable short step length we introduce
the curvature condition.

Definition 12 (Curvature condition). Let c1 be the constant in Definition 11 and c2 ∈
(c1, 1). The curvature condition requires βk to satisfy

∇f(yk + βkpk)
Tpk ≥ c2∇fkpk.

The Wolfe condition then is the combination of the Armijo condition and the curvature
condition. Satisfying the Wolfe condition, however, does not necessarily mean that βk is
particularly close to a minimizer of φ.

Definition 13 (Strong Wolfe condition). Let c1 and c2 be chosen as above. Then the
Strong Wolfe condition requires βk to satisfy the Armijo condition and furthermore a
modified curvature condition, that is

|∇f(yk + βkpk)
Tpk| ≥ c2|∇fkpk|.

The advantage of the strong Wolfe condition is that the derivative φ′(βk) can not be too
positive any more. Therefore we exclude step length that are far away from a stationary
point of φ.
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Stopping Criteria

For ρ1, ρ2, ρ3 ∈ R
+ a tolerance level, ǫ ∈ R

+ the machine precision and kmax the maximum
iterations the stopping criteria consists of five conditions. One indicator for a minimum
is, that the update of the objective function f becomes very small

||f(yk+1) − fk|| ≤ ρ1(1 + |f(y0)|). (1.8)

Furthermore the k+ 1-th iterate of the optimization variable will be close to k-th iterate.
This is controlled by the second condition

||yk+1 − yk|| ≤ ρ2(1 + ||y0||). (1.9)

Because of the necessary condition the derivative of the objective function disappears
close to a local minimum

||∇f(yk)|| ≤ ρ3(1 + |f(y0)|). (1.10)

We will also stop the iteration, when the value of the gradient becomes smaller than the
machine precision

||∇f(yk)|| ≤ ǫ (1.11)

or when the maximum number of iterations is exceeded

k ≥ kmax (1.12)

To sum up, we have reached a local minimum when

((1.8) and (1.9) and (1.10)) (1.13)

is true. Including (1.11) and (1.12) we end up with the stopping criterion

((1.8) and (1.9) and (1.10)) or (1.11) or (1.12) (1.14)

Multi-Level Strategy

In order to obtain a fast and robust algorithm we make use of a multi-level strategy.
This means that we solve the problem on a coarser grid first. Clearly, calculations on
coarser levels are cheaper compared to fine levels. Additionally, details are neglected on
coarser levels and the images are smoothed by a Gaussian kernel before interpolation.
This improves the stability against local minima. After obtaining a transformation on a
coarser level, we prolongate it and use it as a starting point on the next higher level. By
these means we will take less risk to end up in a local minimum.
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(a) Level 1 (b) Level 2 (c) Level 3 - Full Resolution

Figure 1.2: A typical multi-resolution strategy is depicted. From left to right, the resolution is each
time doubled until we reach the full resolution.

Algorithm 1 Multi Level Image Registration with Gauss-Newton

Require: Template T , Reference R, start value y0

Ensure: Transformation y∗
1: for l = minLevel to maxLevel do

2: yl
0 = PROLONGATE(yl−1

end)
3: while NOT STOP do

4: fk = f(yk, T l,Rl)
5: ∇fk = ∇f(yk, T l,Rl)
6: ∇2fk ≈ (∇fk)

T∇fk + αBTB
7: pk = −(∇2fk)

−1∇fk

8: βk = LINESEARCH(pk);
9: yk+1 = yk + βkpk

10: k → k + 1
11: end while

12: end for

1.5 Summary

In the present chapter we presented image registration in its variational setting, i.e.

min
y

J [y] := D(T (y),R) + αS[y].

After explaining the different elements and their respective discretization we presented
a tailored optimization scheme for image registration. Understanding of the presented
framework will give us a perfect starting point for solving two real-life problems in medi-
cal imaging in the following two chapters.
In both chapters we will develop customized non-parametric registration approaches by
incorporating prior knowledge about the specific shape of the transformation into the
registration problem. In Chapter 2, that deals with the susceptibility correction of echo-
planar magnetic resonance images, there a physical distortion model restricts the trans-
formation to be along one axis. In Chapter 3 which is entitled Motion Correction in gated



1.5 Summary 27

PET we are searching for a non-linear transformation capable of aligning two images
showing different phases of the human respiratory cycle.
In addition to the geometric shape of the distortions, we assume that in both cases no
signal is lost due to the geometric deformations. This fact is something not yet accounted
for by the framework presented in this chapter. In general, the deformed template will
not have the same amount of signal or mass, i.e.

∫

R3

T (y(x))dx 6=
∫

R3

T (x)dx.

As a matter of course, we want to modify the image registration problem to a minimal
extent, such that we will still be able to use most of the tools presented in the above
chapter.
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2 Correction of Echo Planar Images

With our toolbox of mathematical image registration at hand, we will now address the
problem of susceptibility distortions in echo-planar images (EPI). Since this ultra-fast
MRI sequence is widely used in both medical research and clinical applications and the
distortions heavily affect the spatial accuracy of those studies, there are already many
approaches to this problem. Those approaches can mainly be divided into two classes:

• The fieldmap approaches measure the field-inhomogeneity directly by a reference
scan and subsequently correct the acquired EPI image [15, 14, 1].

• In contrast to that, the image-based approaches make use of the reversed-gradient
method [5, 26, 30, 2, 1, 20]. Here one compares the obtained echo planar image
to an - apart from reversed gradients - identical reference scan. Some image based
proposals also aim to register the EPI image to an undistorted structural - e.g. T2
image - of the subject, but taking the physical EPI distortion model - that will be
derived later on - into account [28, 33].

Both types of correction approaches are deeply linked, since one can think of the image-
based approaches as an inverse formulation of the fieldmap approaches. In [33] Wu et al.
compared both kind of approaches and came to the conclusion that fieldmap approaches
were superior in infratentorial regions including brainstem and cerebellum, as well as in
ventral areas of the temporal lobes. Their image based approach led to superior results
in all rostral brain regions.
In the present chapter, we will first explain the physical distortion model for echo-planar
images and then derive a new variational image-based approach that is also sketched in
[22].
To understand the physical deformation model we will shed some light on the basics
of magnetic resonance imaging in Section 2.1. In Subsection 2.1 we will then discuss
the effect of field inhomogeneities on spatial encoding in greater detail and formulate a
forward model and the experimental setting for our inverse problem. Section 2.2 will enter
knowledge about the shape of the deformation into a new functional. This functional will
be minimized using the image registration techniques presented in chapter 1. In Section
2.3 we will apply our approach to three problems. After validating our algorithm on a
phantom scan, we will give two examples how to apply it to real life problems occurring in
diffusion tensor imaging and functional magnetic resonance imaging. We will also develop
a complete correction pipeline for those two imaging techniques.
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2.1 Basics on Magnetic Resonance Imaging

This section derives and explains the physical deformation model for echo planar imaging
and motivates the reversed gradient method used later on.
Subsection 2.1 will introduce to MRI by explaining the components of an MRI system and
some basic but important terms. Although there are many different imaging sequences
we will tailor the presentation to understand echo planar imaging sequences.
Afterwards, Subsection 2.1 will explain how the spatial encoding methods used in our
EPI sequences work in a perfectly homogeneous magnetic field. To understand how we
determine the origin of a signal is of great importance, since the accurate mapping onto
the image is desired.
In Subsection 2.1 the assumption of a homogeneous field will be dropped. We will explain
the effect of a non-homogeneous field to the spatial encoding in EPI. Afterwards we will
describe the mathematical forward model that simulates the distortion of an image mea-
sured with a given field-inhomogeneity. Finally, we will present the experimental set-up
for our inverse correction algorithm.

Introduction to Magnetic Resonance Imaging

MRI, or Nuclear Magnetic Resonance Imaging (NMRI), is a non-invasive imaging tech-
nique. As a tomography technique MRI examines the subject slice wise using the magnetic
resonance phenomenon of the protons e.g. the hydrogen nuclei which make up 10% of
the body-weight [32]. Each proton has a spin which results in a microscopic magnetic
moment µ that points in a random direction when the proton is situated in the earth’s
magnetic field. In this case, the macroscopic, or bulk magnetization M - i.e. the sum over
all microscopic magnetic moments in a small volume - equals zero.
We will now briefly discuss the components of an MRI system and the principle of signal
and echo generation. Since we will only focus on those aspects that are important for
our forward distortion model, the interested reader is referred to [29] and [17] for a more
detailed presentation.
To simplify our presentation below, we will assume the patient is placed within the scan-
ner with the following alignment: The left-right axis equals exactly the x1 axis. The
posterior-anterior - i.e. from the back of the head to the brow - axis equals the x2 axis
and the inferior-superior - i.e. from foot to head- axis is equal to the x3 axis. Sometimes
we will also use the abbreviation x = (x1, x2, x3). Without loss of generality we assume
that the slices are then oriented perpendicular to the x3 axis (i.e. axial slices).
The voxel size will be denoted in millimetre by h = (h1, h2, h3).

Main Magnet

The main magnet produces a very strong homogeneous magnetic field B0 pointing along
the x3-axis. Because of the non-zero spin the protons then precess around the x3 axis. In
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thermal equilibrium, their microscopic magnetic moments can align either parallel to B0 or
anti-parallel. Since the parallel state is the lower energy state slightly more protons align
parallel by Boltzmann’s law. Their amount is among other things positively dependent
on the strength of B0. The excess of protons in the lower energy state causes the bulk
magnetization M of one small volume to point along the x3-direction. In this case M
equals its projection to the x3-axis, denoted by Mx3

.
The Larmor frequency - the frequency at which the protons precess - is proportional to
the strength of the magnetic field

ω0 = γB0. (2.1)

Here, γ is the gyromagnetic ratio in [MHz/T] and B0 is measured in Tesla (T). In our
experiments the B0 strength is 3.0T which is about 50.000 times the strength of the earth
magnetic field.
The resonance condition states that the frequency at which a precessing magnet resonates
to a RF-pulse equals its Larmor frequency.

RF-System

The second important component of an MR system is the radio frequency system. Its
transmitter coil generates a rotating magnetic field B1 orthogonal to B0 with frequency
ωrf . The RF pulse enters a forced precession to all magnets that satisfy the resonance
condition - i.e. precess at ωrf . All other magnets remain untouched. Therefore, the bulk
magnetizationM is tipped away from the x3-axis and gains a transverse componentMx1,x2

.
The RF-system also contains a receiver coil that detects the precessing magnetization and
converts it into a complex electric signal S(t). This signal is called Free Induction Decay
(FID) - that is the induced signal caused by free precession that shows a characteristic
decay - and is the mother signal in MRI sequences. Let ρ(x) be the density of the
excited protons, whose accurate mapping is desired. For a not further specified field-
inhomogeneity ∆B(x) the echo signal is given by

S(t) =

∫

object

ρ(x)e−iγ∆B(x)(t−TE )dx. (2.2)

By varying the field-inhomogeneity in a controlled fashion - i.e. producing an inhomo-
geneity ∆B(x), we are able to spatially encode the signal.
The smaller angle between the x3-axis and M is called flip angle and denoted by α. The
flip angle depends on the magnitude of B1 and the duration of the pulse. We use a 90◦

pulse that projects Mx3
completely into the x1x2-plane.

After the pulse, the system returns to its thermal equilibrium state. This rather slow
effect, is called T1- or longitudual relaxation and is accomplished by the much faster
transverse (or T2) relaxation. Different choices of the repetition time TR - the time be-
tween two RF-pulses - and the echo time TE - the time between excitation and signal
detection - lead to different signal intensities in specific voxels.
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Gradient System

Three orthogonal coils and their amplifier produce a linearly varying magnetic field
B(x) := Gx, with G being a constant field. Its strength is much smaller than the main
magnets and in the order of 30-80 mT/m in clinical scanners [17], i.e. a difference of 7.5
to 20 mT on the edge of a ±25 cm field-of view.
To simplify notation, we will define a xi-gradient to be a gradient that points into the
xi-direction, for i = 1, 2, 3.
As shown above, the varying strength of the resulting field B0 +Gx will change the pro-
tons Larmor frequency. Thus a gradient system enables spatial encoding of the received
RF resonance signal.

Phase

A phase is defined as an angle between the magnetic moments of two precessing magnets.
If, for instance, the magnetic moments point into the same direction, their phase is 0◦.
One also says, the protons are in-phase and calls the state when the two protons have a
stable phase difference phase coherence.
Dephasing means that a phase shift - a phase difference between two magnets - is intro-
duced by for instance using a gradient. We already know that, for instance, a positive
x2 - or phase encoding -gradient will increase the Larmor frequency along the posterior-
anterior axis. Thus, during a short time the anterior and the posterior magnets dephase
and obtain a fixed phase difference after switching off the phase encoding gradient.

Echo generation

As mentioned above, the receiver coil measures the FID signal after the RF-pulse. Because
of T2 relaxation and dephasing due to field inhomogeneities this signal decays with time.
In contrast to the signal loss due to relaxation, the signal loss due to dephasing can be
recovered. In order to rephase the spins and thereby generate an echo, there are two
approaches. On the one hand spin echoes used for the DTI acquisition in Subsection
2.3.3 and on the other hand gradient echoes used in the Phantom scan in Subsection 2.3.1
and the fMRI data in Subsection 2.3.2.
In spin echo sequences a 180◦ refocusing pulse at resonance frequency is used at time T to
invert the magnetization vectors of the spins. While the phase differences are inverted as
well the spins retain their precession frequency. Consequently, after 2T the spins rephase
and the echo signal reaches its maximum.
In order to generate a gradient echo one notes that for instance, by using positive x1-
gradient after the RF-pulse we can dephase the signal in a controlled fashion. The spins
on the right get a phase lead compared to the left ones. After excitation a x1-gradient
with negative sign is used to dephase the spins. While recording the signal, we change
the sign of the x1- or readout gradient. This makes the spins, that precessed at a lower
frequency before catch up the formerly faster ones. Thus the signal rephases and the FID
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signal increases again.
One important difference between spin- and gradient-echo sequences is that in the former
no signal is lost due to field inhomogeneities. The readout gradient in gradient echo
sequences can only rephase the spins that were dephased by its negative gradient before.
In contrast to that the refocusing pulse inverts any phase difference, i.e. also those due
to field imperfections.

Echo-Planar Imaging

In the following, we are interested in Echo Planar Images (EPI). Literally, EPI means
that by one echo one planar slice is imaged. EPI is the first ultra high-speed imaging
technique proposed by Mansfield in 1977 [17]. EPI is typically implemented as single shot
imaging. However, multi-shot EPI are commonly used as well.
In Section 2.3 we will correct EPI images coming from two different applications. One
will be from a functional MRI (fMRI) experiment in which the brain of a proband is
observed over a time interval. The speed of echo planar imaging is used to generate a
time series of high temporal resolution. Functional MRI is of great importance in modern
neurocognitive sciences.
In the second case, we will improve the quality of diffusion weighted images(DTI). Here,
one measures the water diffusion in the head along many directions to accurately estimate
a diffusion tensor. To make this feasible, one needs a fast imaging technique. There is a
wide range of applications of DTI in research and clinics, see for example [7].

Spatial Encoding

Our goal is to accurately map the density of the excited protons to our continuous image
- i.e. I(x) = ρ(x). However, since ρ is not directly observable, it has to be reconstructed
from the received signal S(t). We will now present the spatial encoding methods, we will
use later on in our examples. In contrast to the preceding subsection we assume the B0

field to be perfectly homogeneous.

Slice selection

We start by selectively exciting one specific slice, see Figure 2.1. This can be done by
using a x3-gradient while the RF pulse takes place. Due to the linear field inhomogeneity,
the Lamor-frequency increases linearly along x3 as given by equation (2.1). Because of
the resonance condition, the RF-frequency ωrf(x̃3) that will selectively excite the slice
(x1, x2, x̃3) is given by

ωrf(x̃3) = ω0 + γGzx̃3. (2.3)

In the following, we assume that we are able to excite exactly one slice which is then
infinitesimally thin. We model this by the Dirac-delta distribution δ(x3 − x̃3) which
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Figure 2.1: Slice selection using the x3 gradient taken from Weishaupt [29]. A specific frequency selec-
tively excites the shaded slice. The adjacent slices have other resonance frequencies and are
therefore not influenced.

changes the representation of our signal in equation (2.2) to

S(t, x̃3) =

∫

I(x)δ(x3 − x̃3)e
−iγ∆B(x)(t−TE )dx (2.4)

Frequency Encoding

To determine from which image column of the excited slice the electric signal originates,
we use frequency encoding. This time we use a x1-gradient - i.e. the frequency encoding
direction is the x1-axis, i.e. from left to right. Consequently, the magnetic field linearly
increases along the x1-axis which is from right to left , see Figure 2.2. This means that
protons on the right precess slower around the x3-axis than protons on the left hand side.
Moreover each column (x̃1, x2, x̃3) now has a characteristic precession frequency which is
given by

ω(x̃1, x2, x̃3) = ω0 + γGx1
x̃1.

We can now enter this field inhomogeneity into equation (2.4)

S(t, x̃3) =

∫

I(x)δ(x3 − x̃3)e
−iγGx1

x(t−TE)dx. (2.5)

Phase Encoding

Finally, we want to determine the origin of the signal within a given column.The idea
of phase encoding is to use a x2 gradient for a short time interval Tpe - the preparatory
period - directly after the RF-pulse. Note, that the system is already excited and the bulk
magnetization of the selected slice precesses in the x1x2-plane. Tfhe linearly increasing
magnetic field strength along the phase encoding direction - that is the x2-axis, i.e. poste-
rior to anterior - makes the anterior protons precess faster than the posterior ones. This
leads to an advance - the so called phase shift - of the anterior protons compared to the
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Figure 2.2: Frequency encoding by the x1-gradient tzaken from Weishaupt [29]: without gradient (left)
the only frequency we receive is the Larmor frequency ω0. Using the gradient (right) we
receive a frequency spectrum in which each frequency can be mapped to a specific column.

posterior ones. The extent of the advance depends on both the strength of Gx2
and the

length of the preparatory period.
Therefore the x2-component of the protons location can be determined by the phase shift

Figure 2.3: Phase encoding using the x2-gradient by Weishaupt [29]. Each horizontal line gains a
specific phase lead, that unambiguously identifies it.

φ(x1, x2, x3) = −γGx2
x2TPe.

When including this into the equation of the frequency encoded signal (2.5) to obtain

S(t, Gx2
, x̃3) =

∫

I(x)δ(x3 − x̃3)e
−iγ(Gx1

x1(t−TE)−x2Gx2
Tpe)dx. (2.6)
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To sum it up, phase encoding is done by pre-frequency encoding the signal for a short
time interval. Note, that Gx2

and Tpe have to be chosen such that the dephasing is not
more than 180◦.

K-Space

We are now able to establish a connection between spatial encoding and the Fourier
transform. We define

kx1
:= Gx1

(t− TE) and kx2
:= −Gx2

Tpe.

Our spatially encoded signal (2.6) then reads

S(kx1
, kx2

, x̃3) =

∫

I(x)δ(x3 − x̃3)e
−iγ(kx1

x1+kx2
x2)dx. (2.7)

Thus, kx1
and kx2

build up the two dimensional k-space for each given slice x̃3. Whereas
kx1

increases linearly in time, kx2
depends just on the strength and the length of the phase

encoding. Thus, when recording the signal for a given time interval and given dephasing
one covers one line in the k-space. In equation (2.7) one can see that S(kx1

, kx2
) is the

Fourier transform of our slice image I(x1, x2). The idea then is to sample the k-space
by many excitations with different preparatory periods and calculate the image by the
inverse Fourier transform. In EPI however, one aims to sample the k-space with only one
echo by additional dephasing and inverting the readout-gradient during the echo.

Effects of Field Inhomogeneities

After explaining spatial encoding in the absence of field imperfection, we can take the
final step to our forward distortion model: We examine the effect of a non-linear field-
inhomogeneity Be on the resulting images.
There are two causes for those inhomogeneities. First, the B1 field produced by the head
coil may not be perfectly homogeneous. Secondly, varying magnetic susceptibility - the
ability of an object to be magnetized - of different tissue types leads to imperfections that
are correlated to the strength of the main magnet [5]. Note, that the latter part of the
inhomogeneity varies from subject to subject and furthermore depends on their positions
in the scanner.

Slice Selection

As can be seen in the slice selection equation (2.3) the excitation of a specific slice is based
on the assumption of linear inhomogeneities. If, for one of the reasons above, the field
is perturbed and we excite the system by an RF-pulse of frequency ωrf given by (2.3)
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instead of exciting the planar slice (x1, x2, x̃3) we would now excite the slice (x1, x2, z
′(x))

where

z′(x) = x3 +
Be(x)

Gx3

.

With ωslice denoting the bandwidth of the slice gradient in [Hz] and h3 the voxel size in
x3 direction in mm the distortion reads

z′(x) = x3 +
h3

ωslice
Be(x).

The RF pulse is then in general not able to selectively excite protons of one planar slice.
Since the reconstruction algorithm is unable to account for non-linear inhomogeneities
this leads to a shift in x3-direction.
In our EPI sequences the bandwidth in slice selection is relatively high. This leads only
to subvoxel movements.

Frequency Encoding

In the presence of Be, the mapping of signal frequency to a specific column is not accurate
any more. The field inhomogeneity adds a spurious component to the frequency spectrum,
given by

ω(x) = γB0 + γGx1
x1 + γBe(x).

This changes the signal (2.7) to

S(kx1
, kx2

, x̃3) =

∫

I(x)δ(x3 − z′(x))e−iγ(kx1
x1+kx2

x2+Be(x)t)dx.

We end up with

S(kx1
, kx2

, x̃3) =

∫

I(x)δ(x3 − z′(x))e−iγ(kx1
x1+kx2

x′

2
)dx. (2.8)

When denoting the receiver bandwidth in [Hz] by ωrec, the distortion along the frequency
encoding direction is given as

y′(x) = x1 +
h1

ωrec
Be(x).

However, distortions in readout-direction are not the major problem in EPI, because the
acquisition time between adjacent points in k-space is very short - note, that kx increases
linearly in time [14].

Phase Encoding

The presence of Be affects the precession frequency of the protons. Clearly, protons with
a higher Be will precess faster relative to other protons at a position where Be is lower
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or even negative. As pointed out above, phase encoding assumes that the position of the
magnets can be determined by their phase difference. In the absence of Be this initial
phase shift remains after turning the x2-gradient off. The presence of Be now adds a
spurious component to the controlled dephasing given by

φ(x) = γBe(x)t.

We define the shift along the phase-encoding direction as

y′(x) := x2 +
Be(x)

Gx2

t. (2.9)

Alternatively, when denoting the excitation bandwidth in [Hz] by ωexc, the shift along the
phase encoding direction is given as

y′(x) := x2 +
h2

ωexc
Be(x).

Here it is important to note that the sign of the shift is altered when the phase encoding
gradient is reversed.
Because the time between the acquisition of two adjacent points in the x2-direction of the
k-space is rather high, this effect is more pronounced in EPI. In contrast to the band-
width in frequency encoding or slice selection direction, the bandwidth is of more than
one order smaller. Therefore the field inhomogeneity leads to displacements of several
voxels in phase encoding direction.

Forward Model

After describing how a non-linear field-inhomogeneity Be affects the spatial localization
we formulate our forward distortion model.
In order to do so, we will assume that the non-linear field-inhomogeneity Be : R

3 → R

is known and in C1(R3,R). Furthermore, we know from the MRI protocol the values for
ωrec, ωexc, ωslice ∈ R and for h ∈ R

3.
Then, we examine the relationship between the exact image - measured in the absence
of any non-linear inhomogeneity - and the distorted image. As we found out, the field-
inhomogeneity causes distortions along the slice selection and phase-encoding direction.
The amount of the shifts in those directions both depend on the strength of Be. Thus,
shifts can only occur along one direction - the distortion direction v.

Definition 14 (Coordinate change). The distortion direction in I1 is defined by

v = (
h1

ωrec

,
h2

ωexc

,
h3

ωslice

)T .

The coordinate change is then given by

y : R
3 → R

3, y(x) = x+Be(x) v.
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Remark 3 (Distortion direction in I2). Following the reversed gradient method usually
assumes to alter the sign of all gradients when acquiring I2. Then the distortions will
occur exactly along the same axis just in opposite directions. In practice, however, only
the phase encoding gradient is altered. In such cases the distortions in I2 will occur along

v2 := −Qv

where Q is an orthogonal matrix that inverts the sign of the readout- and slice-selection
gradient. This notation can simply be adjusted in cases when also the readout gradient is
altered but not the slice encoding gradient.

Remark 4. As we have seen, the amount of the geometric deformation can be reduced by
increasing the bandwidth. This, however, decreases the signal to noise ratio (SNR) and
increases artefacts due to eddy currents in diffusion tensor imaging.
As pointed out above, the bandwidth in phase encoding direction is of more than one
order smaller compared to the other two directions. Therefore v is almost parallel to the
anterior-posterior axis and the phase encoding bandwidth has a big impact on the occurring
distortions. If, for instance, the phase encoding gradient is not steep enough, y might not
be diffeomorphic. Then intensities from different voxels will sum up and both be localized
in the same voxel. In those cases the Jacobian determinant will either be zero or not
finite.
That is why the proper choice of the phase encoding bandwidth is a necessary condition
for the success of a later correction.

Because of integration by substitution the integral of our signal (2.8) changes to

S(kx1
, kx2

, x̃3) =

∫

I(y(x))| det(Dy(x))|δ(z1 − φ(x))e−iγ(kx1
x′

1
+kx2

x′

2
)dx.

By the use of the Fourier transformation we can now obtain the very important rela-
tionship between our undistorted image i and the deformed and modulated version Ĩ
measured in the presence of the field inhomogeneity Be. This is the final step to our
forward distortion model.

Definition 15 (Forward Model). With the notation of Definition (14) and under the
assumption that the coordinate change in Definition 14 y is diffeomorphic we can define
the operator S : Img(R3) → Img(R3)

Ĩ(x) = S(I;Be, v)(x) = I(y(x)) det(Dy(x))

that applies the distortion caused by the field inhomogeneity Be on the exact image I.
Given the distorted image Ĩ, one can also get the exact one back by

I(x) = S−1(Ĩ;Be, v))(x) = Ĩ(y−1(x))/ det(Dy(x)).

Theorem 2. Let d : R
3 → R be continuously differentiable and y(x) := x + dv be

diffeomorphic. Then the determinant of Dy simplifies to

det(Dy(x)) = 1 + (∇d, v).
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Proof. In this special case, the transformation becomes

y(x) = x+ d(x)v =





x1 + d(x)v1

x2 + d(x)v2

x3 + d(x)v3



 .

The Jacobian then reads

Dy =





1 + ∂1dv1 ∂2dv1 ∂3dv1

∂1dv2 1 + ∂2dv2 ∂3dv2

∂1dv3 ∂2dv3 1 + ∂3dv3



 .

With Sarrus’ rule the functional determinant can then be calculated as

det(Dy) = (1 + ∂1v1) (1 + ∂2dv2) (1 + ∂3dv3) + ∂2dv1∂3dv2∂1dv3

+ ∂3dv1∂1dv2∂2dv3 − (1 + ∂1v1) ∂3dv2∂2dv3

− ∂2dv1∂1dv2 (1 + ∂3dv3) − ∂3dv1 (1 + ∂2dv2) ∂1dv3

When expanding, all products of derivatives cancel each other out and we get

= 1 + ∂1dv1 + ∂2dv2 + ∂3dv3

= 1 + ∇d v.

Experimental Setting: The Inverse Problem

By definition of our physically motivated forward model, gradients with altered sign lead
to deformation in opposite directions and resulting intensity modulation, because the sign
of the bandwidth is altered as well. This motivates the acquisition of two images with
altered gradients in order to estimate Be as proposed in [5, 26, 20]. After the acquisitions,
we are interested in solving the following inverse problem:

Theorem 3 (Inverse Model). Given two images I1 and I2 that are identical except from
the altered gradient. Especially it is assumed that the non-linear field-inhomogeneity Be

is identical in both images and the position and orientation of the subject in the scanner
is unchanged.
We then want to find a suitable inhomogeneity Be that renders the corrected images as
similar as possible, i.e.

S−1(I1;Be, v) = S−1(I2;Be,−Qv).
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2.2 Variational Approach for Susceptibility Correction of

EPI

Bearing the physical model in mind and having the image registration tools of Chapter 1
at hand, we will now develop a variational approach to the EPI correction problem. To
this end we start by translating the inverse model derived in the previous section into
an image registration problem. For the field inhomogeneity Be is scalar and non-linear,
we model it by a scalar function d : R

3 → R. Combining - i.e. multiplying - d and the
distortion direction v and −Qv we obtain a non-parametric transformation y : R

3 → R
3,

that is restricted along v and −Qv, respectively. Clearly, d(x) is the amount the voxel x
is shifted along the distortion direction.
In addition to the coordinate change, the presence of Be and the mass-preservation leads
also to a change in intensity. To account for this, we have to multiply the images’ grey
values by the determinant of the transformation’s Jacobian, as described in the section
above. This will incorporate the mass preserving property of the EPI distortions directly
in our model.
In comparison to the typical image registration setting, it is noticeable, that there is no
reference/template relationship. Out of the two deformed images we want to estimate the
field inhomogeneity d in order to obtain the undistorted image. Therefore both images
are transformed and modulated in opposite directions. On the other hand our problem
is not that different from our standard formulation as well. Given two images, we want
to estimate a suitable - in our case elastically regularized - transformation y, that makes
the transformed images as similar as possible.
This motivates our advance in the remainder of this section. After addressing the problem
of rigid body movements between the acquisition of I1 and I2 we will derive a new
functional that models the EPI correction. Then the variations of our new functional are
calculated and the existence of a minimizer in the function space W 1,2(Ω) is shown. Also
some notes about the discretization and implementation of our functional are given.

Rigid Body Movement

The physical model assumes that the images are identically except for their altered gra-
dient sign. However, the patient might move between the acquisition of I1 and I2. Con-
sequently, we could correct for those movements by a rigid registration estimating the
rotation Qrot ∈ O(3) and the voxel shift (θ4, θ5, θ6)

′. Consequently, the distortion direc-
tion in the rigidly registered image v has to be rotated by Qrot · Q when resampling the
image volume.
On the one hand, taking the head movement into consideration should increase the accu-
racy of the correction result.
On the other hand it might be argued that whenever significant head movements occur
between both acquisitions, the assumptions of our inverse problem are not satisfied. Note
particularly, that the field-inhomogeneity caused by susceptibility differences depends on
the subjects position inside the scanner. Thus the two reference scans are taken in dif-
ferent magnetic fields. Additionally, even if there was no head movement at all the huge
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susceptibility artefacts might give rise to a spurious head movement. In such cases one
might be better off disregarding the motion between both acquisitions.
Since accounting for a possible head movement is rather a notational challenge than a
mathematical, we will not neglect it apart from some proofs. Our code is capable of han-
dling head movements by using a rigid registration before performing the susceptibility
correction. This also gives us the chance to study the impact of head movements to our
correction in future projects.
For notational convenience we will assume that Q already incorporates the possible rota-
tion of the distortion direction.

Deriving the Distance Functional

We incorporate our prior knowledge about the intensity change caused by the transfor-
mation in the distance term. More precisely, we change the residual function r in the
general distance measure, cf. equation (1.3). For the grey values can be assumed to be
correlated, we use the SSD distance to compare the images. We transform the images by
interpolating them at

I1(x+ d(x)v) · (1 + ∇dv) and I2(x− d(x)Qv) · (1 −∇d(Qv)).
Note, that usually it is assumed that the subject did not move between both acquisitions
- i.e. Q is the identity matrix. In this special case both transformations are performed
exactly in opposite directions. Furthermore it should be mentioned that although our two
transformations are vector fields, they both just depend on one scalar field - namely d.
Later on, this will simplify our optimization problem. The new residual is defined as

r(I1, I2; d) = I1(x+ d(x)v) · (1 + ∇dv) − I2(x− d(x) Qv) · (1 −∇d(Qv)).
our distance functional then reads

DEPI(d) =

∫

Ω

ψ(r(I1, I2; d))dx

=
1

2

∫

Ω

(I1(x+ d(x)v)(1 + ∇dv) − I2(x− d(x)Qv)(1 −∇d(Qv)))2dx.

Definition 16 (Lagrangian). Let v ∈ R
3. The associated Lagrangian to our distance

functional, is a smooth function

L(p(x), z(x), x) : R
3 × R × Ω → R,

where p will be substituted by ∇d and z is the placeholder for d. In our simplified case -
v = e2 and Q the identity - L does not depend on p1, p2

L(p, z, x) =
1

2
(I1(x+ zv)(1 + pv) − I2(x− zQv)(1 − p(Qv)))2

:=
1

2
r(I1, I2; p, z, x)

2.

With this notation we observe that

DEPI =

∫

Ω

L(p(x), z(x), x)dx.
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Using the Lagrangian, makes the computations of the derivatives easier and help us con-
cerning the proof of the existence of a minimizer. Thereby, one can also switch to an
Euler framework by observing, that a minimizer of our functional fulfils the optimality
condition - i.e. a non-linear partial differential equation. This is shown in Evans [10] by
the following Lemma.

Lemma 1 (Euler-Lagrange equation). Let L(p(x), z(x), x) : R
3×R×Ω → R be a smooth

Lagrangian. Then any smooth minimizer u of the associated functional

I[w] =

∫

Ω

L(Dw,w, x)

solves the Euler-Lagrange equation, i.e.

−
3
∑

i=1

(Lpi
(Du, u, x))

xi
+ Lz(Du, u, x) = 0 in Ω. (2.10)

Proof. Let v ∈ C∞
0 (Ω) be a test function. Then we define the real-valued function

i(ǫ) := I[u+ ǫv].

Since u is a minimizer of I[·], we observe that i(·) has a minimum at ǫ = 0. The necessary
condition then gives us

i′(0) = 0. (2.11)

We compute this first variation by writing out

i(ǫ) =

∫

Ω

L(Du+ ǫDv, u+ ǫv, x).

The first derivative of i then reads

i′(ǫ) =

∫

Ω

3
∑

i=1

Lpi
(Du+ ǫDv, u+ ǫv, x)vxi

+ Lz(Du+ ǫDv, u+ ǫv, x)vdx.

By setting ǫ = 0 we obtain with (2.11)

0 = i′(0) =

∫

Ω

3
∑

i=1

Lpi
(Du, u, x)vxi

+ Lz(Du, u, x)vdx.

For v has compact support integration by parts gives us

0 =

∫

Ω

[

−
3
∑

i=1

(Lpi
(Du, u, x))xi

+ Lz(Du, u, x)

]

vdx

which then leads to the desired non-linear partial differential (2.10), by applying the
fundamental theorem of variational calculus.
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Theorem 4 (First variation). Let I1, I2 ∈ C1(Ω,R) be continously differentiable. To
simplify notation we assume v = e2, Q = id and denote the resampled images by Ĩ1 :=
I1(x+ d(x)e2) and Ĩ2 := I2(x− d(x)e2). Then the first variation of our distance term in
divergence form reads

dDEPI(d) = − ∂2

(

r(I1, I2, d) (Ĩ1 + Ĩ2)
)

+ r(I1, I2, d)
(

∂2Ĩ1(1 + ∂2d) + ∂2Ĩ2(1 − ∂2d)
)

.
(2.12)

This can further be simplified to

dDEPI(d) = [Ĩ1 + Ĩ2]
(

−∂2[Ĩ1 − Ĩ2] − ∂2[(Ĩ1 + Ĩ2)∂2d]
)

. (2.13)

Proof. In Definition 16 the Lagrangian of our distance functional is defined as

L(p, z, x) =
1

2
r(I1, I2; p, z, x)

2

Because of the choice of v and Q, L depends only on p2. As shown in Lemma 1, we can
obtain the first variation by

dDEPI = −(Lp2
(p, z, x))x2

+ Lz(p, z, x). (2.14)

Calculating the derivatives individually, one gets

Lz =Lz(p, z, x)

=r(I1, I2; p2, z, x) ∂zr(I1, I2; p2, z, x)

=r(I1, I2; p2, z, x)
(

(1 + p2) ∂2Ĩ1 + (1 − p2) ∂2Ĩ2

)

.

Since Lp1
= Lp3

= 0, we just need to calculate

Lp2
= r(I1, I2; p2, z, x)

(

Ĩ1 + Ĩ2

)

. (2.15)

Inserting Lp2
and Lz into equation (2.14) yields the first variation in its divergence form

(2.12). In order to further simplify the expression we explicitly compute the derivative
with respect to x2.

(Lp2
)x2

=∂2r(I1, I2; p2, z, x)
(

Ĩ1 + Ĩ2

)

+ r(I1, I2; p2, z, x)
(

(1 + p2) ∂2Ĩ1 + (1 − p2) ∂2Ĩ2

)

We compute the derivative of the residuum r with respect to x2

∂2r =∂2r(I1, I2; p2, z, x)

=∂2

(

(1 + p2) Ĩ1 − (1 − p2) Ĩ2

)
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With product rule, we get

=∂2p2 Ĩ1 + (1 + p2)∂2Ĩ1 + ∂2p2 Ĩ2 − (1 − p2)∂2Ĩ2

=(1 + p2)∂2Ĩ1 − (1 − p2)∂2Ĩ2 + ∂2p2 Ĩ1 + ∂2p2Ĩ2

=∂2(Ĩ1 − Ĩ2) + p2(∂2(Ĩ1 + Ĩ2)) + ∂2p2(Ĩ1 + Ĩ2).

Using product rule again, yields

=∂2

(

Ĩ1 − Ĩ2

)

+ ∂2

(

(Ĩ1 + Ĩ2)p2

)

.

This finally gives us the first derivative of our functional

dDEPI = [Ĩ1 + Ĩ2]
(

−∂2[Ĩ1 − Ĩ2] − ∂2[Ĩ1 + Ĩ2)∂2p2]
)

.

Remark 5. The associated Euler-Lagrange equation of our distance measure DEPI is
given by

[Ĩ1 + Ĩ2]
(

−∂2[Ĩ1 − Ĩ2] − ∂2[(Ĩ1 + Ĩ2)∂2z]
)

= 0. (2.16)

Consequently, a minimizer of DEPI solves this non-linear partial differential equation.

Notation 1 (Directional derivative). Let v ∈ R
3. To simplify the following notation, we

introduce the directional derivative operator

∇v : C1(R3,R) → C(R3,R) (2.17)

f 7→ v1∂1f + v2∂2f + v3∂3f. (2.18)

Corollary 1. Under the same assumption on I1 and I2 the theorem can be generalized for
arbitrary distortion directions v ∈ R

3 and rotations Q ∈ O(3). With the same techniques
as in the proof above, one obtains the first variation in its divergence form as

dDEPI(d) = −
3
∑

i=1

∂i

(

r(d) [viĨ1 + (Qv)iĨ2]
)

+r(d)
(

∇vĨ1 (1 + ∇vd) + ∇QvĨ2 (1 −∇Qvd)
)

.

(2.19)

Implementation 5 (First variation). The implementation of the first variation is not
trivial. Directly implementing the continuous form (2.13) turns out to be not stable
enough. This is due to the fact that the partial differential operators in

dDEPI(d) = −
3
∑

i=1

∂i (Lpi
(p, z, x)) + Lz(p, z, x)

stem from a partial integration argument as we have seen in Lemma 1. Therefore, in
a discrete setting, the outer partial derivative operator has to be chosen as the adjoint
operator of ∇d. That is why we implement the first variation in its divergence form
(2.19). For computing the gradient of d we choose explicit finite differences denoted by

∇d ≈ ∇+d.

Thus, when computing the divergence, we have to use implicit finite differences by ∂−i for
i = 1, 2, 3.
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Theorem 5 (Second variation). Under the same assumptions as in Theorem 4 the second
variation of the functional DEPI can be approximated by

d2DEPI(d) ≈ ∇r(d)T∇r(d),

where the derivative of the residual is given by

∇r(d) = ∇vI1 (1 + ∇vd) + ∇QvI2 (1 −∇Qvd) + I1∇v + I2∇Qv.

Simplifying the Elastic Potential

Theorem 6 (Elastic Potential). Let d ∈ C1(R3,R) be continuously differentiable and
v ∈ R

3. Let y(x) := x+d(x)v and yRef(x) = x. Let |v|2 = 1. Then with B being the linear
elastic potential operator B presented in Chapter 1 and

BEPI =

( √
µ∇√

λ+ µ(v1∂1 + v2∂2 + v3∂3)

)

.

the following equation holds

|B[y − yRef]|2 = |BEPI[d]|2.

The linear elastic potential for the EPI correction then reads

SEPI(d) =
1

2

∫

Ω

µ |v|2 |∇d|2 + (µ+ λ)(∇vd)
2dx.

Proof. The elastic differential operator for a transformation y : R
3 → R

3 is defined in
Chapter 1 as

B =









√
µ∇ 0 0
0

√
µ∇ 0

0 0
√
µ∇√

λ+ µ∂1

√
λ + µ∂2

√
λ+ µ∂3









.

Our transformation has a specific form - namely

y(x) = x+ d(x)v =





x1 + d(x)v1

x2 + d(x)v2

x3 + d(x)v3



 .

Inserting this into the differential operator, one gets

B[y − yRef] =









v1
√
µ∇d

v2
√
µ∇d

v3
√
µ∇d√

λ+ µv1∂1d+
√
λ+ µv2∂2d+

√
λ+ µv3∂3d









.

This gives us the desired equality

|B[y − yRef]|2 = |BEPI[d]|2.
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Finally, we compute

|BEPI[d]|2 =|v1
√
µ∇d|2 + |v2

√
µ∇d|2 + |v3

√
µ∇d|2 + (µ+ λ)(

3
∑

i=1

vi ∂id)
2

=µ(v2
1 + v2

2 + v2
3)|∇d|2 + (µ+ λ)(∇vd)

2.

Theorem 7 (First Variation). Under the same assumptions and using the same notation
as in the Theorem before, the first variation of our functional simplifies to

dSEPI(d) = (BEPId)
TBEPI.

Theorem 8 (Second Variation). Under the same assumptions and using the same nota-
tion as in the Theorem before, the second variation of our functional simplifies to

d2SEPI(d) = BT
EPIBEPI.

Definition 17 (EPI correction functional). Let I1, I2 ∈ Img(Ω) be EPI acquired with
reversed gradients. Let v ∈ R

3 denote the distortion direction and Q ∈ O(3) the or-
thogonal matrix such that I2 is distorted along −Qv. Then EPI correction results in the
minimization of

min
d

J EPI(d) := ||I1(x+d(x)v)(1+∇vd(x))−I2(x−d(x)Qv)(1−∇Qvd(x))||2 +αSEPI(d).

(2.20)

Existence of a Minimizer

Using methods of non-linear functional analysis, we aim to prove the existence of a min-
imizer for our EPI functional J EPI from Definition 17 in the Sobolev space W 1,2(Ω,R)
which is also referred to as H1(Ω,R), see e.g. Evans [10] Section 5.2. One way to do
this is to show that our functional is coercive and weakly lower semicontinuous. In order
to deduct these properties from properties of the Lagrangian we will make use of the
following theorem.

Theorem 9 (Weak lower semicontinuity). Assume that the Lagrangian L : R
3 × R × Ω

is smooth, bounded below and in addition the mapping

p 7→ L(p, z, x)

is convex for each z ∈ R, x ∈ Ω. Then the associated functional I :=
∫

Ω
L(p(x), z(x), x)dx

is weakly lower semicontinuous on W 1,2(Ω,R).

Proof. see Evans [10], p. 446f.

With this result at hand, we can show the existence of a minimizer for our functional, by
examining its Lagrangian. We want to apply the following theorem.
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Theorem 10 (Existence of minimizer). Assume that the admissible set A is non empty.Let
the Lagrangian L satisfy the coercivity inequality, i.e. there are constants δ > 0, γ ≥ 0
such that

L(p, z, x) ≥ δ|p|2 − β , ∀p ∈ R
3, z ∈ R, x ∈ Ω.

Furthermore the mapping

p 7→ L(p, z, x), is convex , ∀z ∈ R, x ∈ Ω

Then there exists at least one function u ∈ A solving

I[u] = min
w∈A

I[w].

Proof. see Evans [10], p. 448f.

Remark 6. Because we did not specify any boundary condition, the admissible set A is
the whole function space, i.e.

A = {w ∈W 1,2(Ω,R)}.

We start by defining the Lagrangian of our joint functional.

Definition 18 (Lagrangian). Let α > 0, v ∈ R
3 be the distortion direction and Q ∈ O(3)

the rotation of the subject between the scans. Then the Lagrangian of our EPI problem

L(p, z, x) : R
3 × R × Ω → R

is given by

L(p, z, x) =
1

2
(I1(x+ zv)(1 + (p, v)) − I2(x− zQv)(1 − (p,Qv)))2

+
α

2

(

µ |v|2 |p|2 + (µ+ λ)(p, v)2
)

.

Lemma 2 (Coercivity). For α > 0 the EPI correction functional J EPI is coercive on
W 1,2(Ω,R).

Proof. We are interested in an inequality of the form

L(p, z, x) ≥ δ|p|2 − β , ∀p ∈ R
3, z ∈ R, x ∈ Ω

with constants δ > 0 and β ≥ 0.

L(p, z, x) =
1

2
(I1(x+ zv)(1 + (p, v)) − I2(x− zQv)(1 − (p,Qv)))2

+
α

2

(

µ |v|2 |p|2 + (µ+ λ)(p, v)2
)

≥α
2

(

µ |v|2 |p|2 + (µ+ λ)(p, v)2
)

≥α
2
µ |v|2 |p|2.
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By choosing β = 0 and δ = α
2
µ |v|2 we have the desired inequality and see that

J EPI(d) =

∫

Ω

L(∇d, d, x)dx ≥ δ||Dd||2L2.

This completes our proof.

Lemma 3 (Convexity). For α > 0 the Lagrangian of the EPI correction functional J EPI

is convex in the first variable.

Proof. We want to show that for fixed I1, I2, v, Q, z, x the mapping

p 7→1

2
(I1(x+ zv)(1 + (p, v)) − I2(x− zQv)(1 − (p,Qv)))2

+
α

2

(

µ |v|2 |p|2 + (µ+ λ)(p, v)2
)

.

is convex. Clearly, the linear elastic potential is convex in the gradient. It remains to show
that the mapping is convex in pi for i = 1, 2, 3. We calculate this for the first summand

pi 7→
1

2
(I1(x+ zv)(1 + pivi) − I2(x− zQv)(1 − pivi))

2 .

In order to simplify notation we define the scalars i1 := I1(x+ zv) and i2 := I2(x− zQv).
Then we show for given t ∈ [0, 1] and fixed p, q ∈ R

(i1(1 + tp+ (1 − t)q) − i2(1 − tp− (1 − t)q))2

≤t (i1(1 + p) − i2(1 − p))2 + (1 − t) (i1(1 + q) − i2(1 − q))2 .

For the left hand side we compute

(i1(1 + tp + (1 − t)q) − i2(1 − tp− (1 − t)q))2

=i21 (1 + tp + (1 − t)q)2 − 2i1i2 (1 + tp+ (1 − t)q) (1 − tp− (1 − t)q)

+ i22 (1 − tp− (1 − t)q)2

=i21
(

t2p2 + 2t(1 − t)pq + (1 − t)2q2 + 1 + 2tp + 2(1 − t)q
)

− 2i1i2
(

1 − t2p2 + 2t(1 − t)pq + (1 − t)2q2
)

+ i22
(

t2p2 + 2t(1 − t)pq + (1 − t)2q2 + 1 − 2tp− 2(1 − t)q
)

=i1
(

(tp + (1 − t)q)2 + 1 + 2tp + 2(1 − t)q
)

− 2i1i2
(

1 − (tp+ (1 − t)q)2
)

+ i22
(

(tp + (1 − t)q)2 + 1 − 2tp− 2(1 − t)q
)

.

For the right hand side we obtain

t (i1(1 + p) − i2(1 − p))2 + (1 − t) (i1(1 + q) − i2(1 − q))2

=i21
(

t(1 + p)2 + (1 − t)(1 + q)2
)

− 2i1i2
(

t(1 − p2) + (1 − t)(1 − q2)
)

+ i22
(

t(1 − p)2 + (1 − t)(1 − q)2
)

=i21
(

tp2 + (1 − t)q2 + 1 + 2tp+ 2(1 − t)q
)

− 2i1i2(1 − tp2 − (1 − t)q2)

+ i22
(

tp2 + (1 − t)q2 + 1 − 2tp− 2(1 − t)q
)

.
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Now we drop the expressions on both sides of the inequality. Our left hand side then
becomes

i21(tp+ (1 − t)q)2 + 2i1i2(tp+ (1 − t)q)2 + i22(tp+ (1 − t)q)2

=(i1 + i2)
2(tp+ (1 − t)q)2

≤(i1 + i2)
2(tp2 + (1 − t)q2).

Therefore the distance term is convex in pi. As already pointed out, due to the convexity
of the elastic potential in p this gives us the convexity of the whole Lagrangian in p.

Theorem 11. Let α > 0. The EPI correction functional J EPI has at least one minimizer
in W 1,2(Ω,R).

Proof. As shown above, the joint functional is coercive. Furthermore its Lagrangian is
convex in p and bounded below. Therefore, by Theorem 10 we have shown the existence
of a solution.

Remarks on the Implementation

Including the intensity modulation in our distance measure and the restriction of our
transformation along one axis leads will be done by introducing a new objective function
with the notation:

function [Jc,para,dJ,H] = JTK_symEPIobjFctnV3(I1,I2,omega,m,xc,Q,d,discScheme)

Here, I1 and I2 are the interpolation coefficients of the respective images. This notation
is chosen to be more consistent with the FAIR toolbox especially to be able to use the
optimization and visualization techniques. Furthermore we make use of the following
notation:

dim = numel(m) %dimension of Omega

m = [m(1:dim)] % number of discretization points

n = prod(m);

yRef %reference grid;

vI1 % distortion direction in I1

vI2 = Q*v; % adjusted distortion direction in I2

Instead of interpolating the template image on the deformed grid yc, as implemented for
the native non-parametric elastic registration algorithm in NPIRobjFctn.m we transform
both images only along one axis in opposite directions. Our new objective function thus
has the deformation d as input argument instead of yc, where d is discretized on a cell-
centred grid.
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[I1c dI1] = inter(I1,xc + kron(vI1,d),omega,m);

[I1c dI2] = inter(I2,xc - kron(vI2,d),omega,m);

size(dI1) = [n 3*n]; sparse matrix

Since only directional derivatives of the images occur we compute

dI1 = dI1 * vI1;

dI2 = dI2 * vI2;

We start by calculating the intensity modulations, that are given by 1 + (∇d, v) and
1 − (∇d,Qv). This will be done by using forward finite differences and is implemented
matrix-free. Because the second derivative stems from an integration by parts argument,
it is evident to choose an adjoint differential operator. The optional argument discScheme
chooses consistent discretization schemes.

dd = computeGradient(d,omega,m);

size(dd) = [n dim];

Later, we need the directional derivatives along v and v2 and the directional derivative of
those directional derivatives. Therefore we compute

ddvI1 = dd * v;

ddvI2 = dd * v2;

Next we modulate the intensities in both images

modI2 = I1c .* (1+ddvI1);

modI3 = I2c .* (1-ddvI2);

The interpolated and intensity modulated images can then be compared by means of
the chosen distance function. We also call the adjusted regularizer to benefit from the
restricted transformation as shown in Theorem 6.

[Dc,res,~,~,d2psi] = distance(modI1c,modI2c,omega,m,’doDerivative’,doDerivative);

[Sc,dS,d2S] = regularizer2(d(:), omega,m,’doDerivative’,doDerivative,’v’,v);

The value of our functional then becomes
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Jc = Dc + alpha * Sc;

If we need to compute derivatives, we do the following

Lz = res.*(dI1.*(1+ddvI1)+dI2.*(1-ddvI2));

Lp = [res.*(v(1)*I1c +v2(1)*I2c) res.*(v(2)*I1c +v2(2)*I2c)

res.*(v(3)*I1c +v2(3)*I2c)];

Lpx = divergence(Lp);

Then the first variation of the distance term becomes

dD = Lz - Lpx;

The first variation of our functional reads

dJ = dD’ + alpha * dS;

for the first variation of the distance term we need to compute the derivative of the residual
with respect to d

dOp1 = compDirectionalDerivative([],omega,m,v); %returns operator

dOp2 = compDirectionalDerivative([],omega,m,v2); %returns operator

dr = spdiags(dI1.*(1+modI1)+dI2.*(1-modI2),0,n,n)+...

spdiags((I1c),0,n,n)*dOp1 + spdiags((I2c),0,n,n)*dOp2;

The Hessian of our functional is then estimated by

H = d2psi * (dr’*dr) + alpha * d2S;

2.3 Numerical Experiments

In this section we will apply the derived algorithm to three different EPI measurements.
The first dataset contains EPI scans of a water-filled bottle. For this dataset a measured
fieldmap is also available. Afterwards we will deal with the correction of EPI that occur in
functional magnetic resonance imaging(fMRI). Finally, a diffusion tensor imaging (DTI)
sequence is corrected. For the latter two problems are of great importance in clinical
application and research, we will also suggest how to optimally incorporate our correction
approach into the image processing pipeline.
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Data

The images were acquired on a 3.0 T Philips Intera Achiever (Release 2.5) scanner.
All computations are performed using Matlab 2009b on a 64-Bit Linux system with 7
kernels at 2.5 GhZ each in 3D. The amount of memory was 16 GB.

Optimization

We configure our optimizer with the stopping criteria set to (ρ1, ρ2, ρ3) = (10−4, 10−3, 10−3)
and we use an Armijo condition for the line search, to increase speed and since stronger
conditions on the step length, did not improve the results in previous tests. The maximum
number of iterations was set to 30.

Determining the regularization parameters

In order to find values for α, µ and λ we use an automatic test protocol. First we set
µ = 1 fixed and then try to find optimal values for λ and α. We recall the augmented
regularization term from Theorem 6 for the simple case v = e2 and Q = I

SEPI(d) =
1

2

∫

Ω

µ |∇d|2 + (µ+ λ)(∂2d)
2dx.

We note that by choosing λ we have the opportunity to balance the weights of the two
summands. While the first summand punishes oscillations in all directions, the last one
only penalizes the directional derivative along the distortion direction. In this case, we
showed above that this partial derivative is directly linked to the functional determinant,
via

det(D(x+ e2d)) = 1 + ∂2d and det(D(x− e2d)) = 1 − ∂2d.

For we are only interested in diffeomorphic and orientation preserving transformations we
will require both functional determinants to be positive and greater than 0. This is true
if and only if

−1 < ∂2d(x) < 1 ∀x ∈ Ω.

This is equivalent to
(∂2d(x))

2 < 1 ∀x ∈ Ω.

These simple considerations will drive our testing procedure, as we see that - in order
to get a folding free grid - it is of great importance to punish the partial derivative
along the distortion direction. We will therefore successively increase λ and then aim to
find the smallest α that leads to a successful regularization, i.e. a folding free grid. At
some point, we will, however, stop to increase λ when the gradients begin to oscillate
too much along the other directions. Because of the huge deformations in our images
the distortions caused by the field inhomogeneity cannot be expected to be very smooth
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along the readout and slice selection direction though. In our tests, λ = 30 was found to
lead to good results. Choosing λ << 30 did not correct the huge deformations , while
the resulting transformations achieved by choosing λ >> 30 oscillated heavily along the
undistorted directions.

Visualization

For λ = 30 we vary α between 0 and 500 and visualize the results of this α-test in four
plots. First of all, we plot the l-curve that is often used in inverse problems. The l-curve
is a log-log plot with the value for the regularization term on the x-axis and the distance
measure on the y-axis. One usually expects the plot to be of “L” form. In theory, one
should then pick an alpha close to the bend of the L. In order to choose an α we will,
however, follow a different strategy. As pointed out, we are interested in obtaining a
diffeomorphic transformation. Thus we will use the first α that leads to a folding-free
transformation. In order to examine whether the elastic regularization is able to lead to
such a transformation we will plot α against the number of foldings in the second plot.
Complementary to the l-curve we will also have a look at the dependence of the distance
and regularization terms on alpha.
To demonstrate the obtained transformation, we show the initial images with superim-
posed interpolation lines. Those lines are a feasible visualization, because displacements
only occur in one direction. Consequently, instead of showing the whole grid, we omit for
clarity the direction along with no displacements occur. The transformation can then be
interpreted as straighten the lines and adjusting the intensities for volume changes.

2.3.1 Phantom scan

In our first experiment we evaluate our inverse approach using data from a phantom
scan. This dataset might be used in later studies to compare our image-based approach
to fieldmap approaches, because we acquired a fieldmap as well.
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Data

(a) I1 - saggital
 

 

0 100 200

(b) Difference - saggital (c) I2 - saggital

Figure 2.4: Initial data. The apa (left), app (right) images and their initial difference are shown.
Phase encoding was altered along the posterior-anterior axis. This leads to displacements
in opposite directions from left to right in the slices shown. Note, that intensities sum up,
when voxels are edged together and that intensity decreases when the tissue is stretched vice
versa. More slices, transversal views and one further choice for phase encoding is illustrated
in the Appendix A.1.

For the validation of our derived algorithm, we use a 1 litre water-filled plastic bottle as a
phantom. The susceptibility differences on the water-air interface will lead to significant
distortions along the phase-encoding direction.
We obtain a phase encoded T2 magnitude image with 100 slices and a in plane resolution
of 256 × 256. Note, that there is only water in the bottle and thus there is only one
relaxation time. That is why, the weighting has no impact on the image contrast.
Furthermore, we measure four EPI magnitude images with 80 slices, in plane resolution of
64× 64. The field of view is Ω = [0, 230]× [0, 230]× [0, 288] which corresponds to a voxel
size of about 3.6 mm3. The phase encoding direction varies from left/right, right/left,
bottom/top and top/bottom. Figure A.1 in the Appendix shows how the choice of the
phase encoding direction affects the distortions due to the field inhomogeneity. As our
physical model predicts the main distortion occurs along the phase encoding direction.
In the other directions the effects are less pronounced which is also indicated by the
bandwidth parameters of the scan protocol.
In addition to the huge deformations in both images the Lebesgue L1 measure varies for
instance between the apa and app images, with 507 to 578, respectively. Therefore, being
mass-preserving, our algorithm can not reduce the difference of both images to zero.
Finally we measure images that enable us to determine the field inhomogeneity. Once
we do it with TE1 = 10 ms and TE2 = 12 ms and once with a shorter offset - namely
TE1 = 5.7 ms and TE2 = 9.1 ms. At each echo time we acquire the magnitude, the real
and imaginary part and the phase.
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Correction results
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Figure 2.5: Results of α-Test. According to the explanation in 2.3 77 possible α values between 0 and
500 were tested for the correction of the apa and app images of the water bottle. The top-
left plot shows the l-curve. As to be expected the more we reduce the distance term, the
less elastic the deformation becomes.The top right plot, gives the number of grid foldings
in dependence on α. Here we can see that our regularization is capable of supplying a grid
free of foldings for sufficiently large α (here,≥ 250). In the bottom row, α is plotted against
the distance term and the regularization term, respectively.

In our inverse approach we try to correct apa and app - i.e. the images with phase encod-
ing along the anterior-posterior axis. By choosing v = (0, 1, 0)T and Q = id distortions
are only corrected along the phase encoding direction, where the water-fat shift is with
18.636 pix / Hz almost of two orders higher than along the other directions(e.g. readout
direction 23.3 pix/Hz). To avoid noise induced deformations at the boundary, we pad the
image with zeros in each direction. We make use of the multi-level strategy from Chapter
1. The first multi-level step uses a resolution of 9× 9× 8. After 4 steps we end up at the
full resolution of 72 × 72 × 88.
The procedure described in Subsection 2.3 above showed us that µ = 1 and λ = 30 were
the best choices. Furthermore α = 260 was the first value, that led to a folding-free grid.
Using spline interpolation each correction was done in about 5 minutes. For α = 260
the functional was reduced by 64.6 % whereas the distance term itself was even reduced
by 69.8%. The number of iterations was (6,3,3,3) and resulted in each level in a local
minimum. The correction was able to increase the normalized cross-correlation of both
images from 90.3 % to 97.5%. The biggest deformation was 17.5 mm and the range of
the functional determinant of I1 modulation was from 0.12 to 1.57. Results are depicted
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in Figure 2.3.1.

(a) I1 interpolation grid - saggital (b) I1 interpolation grid - saggital

(c) I1 interpolated - saggi-
tal

 

 

0 100 200

(d) final difference - saggital (e) I2 interpolated - saggi-
tal

Figure 2.6: Correction result. The top row depicts the saggital image slices of the initial volume images
with a superimposed folding-free interpolation lines. Since deformations only occur along
the phase-encoding direction which is from left-right, only the deformed top-down-lines are
depicted. Underneath, the resulting undistorted images are shown. Although the difference
between the two images could be decreased significantly compared to Figure 2.3.1 the dif-
ference image does not disappear. However, the contours in the distance image disappeared
more or less. What remains could be a systematic intensity difference due to the initially
different L1 measure. More results are depicted in the Appendix A.1.

2.3.2 Functional MR Imaging

One major application of EPI is functional Magnetic Resonance Imaging (fMRI). Here
changes in blood oxygenation and flow are imaged and related to neural activity, because
active parts in the brain have a higher oxygen demand. fMRI can then be used to produce
activation maps showing which parts of the brain are involved in a particular mental
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process. One example for a clinical application is the localisation of brain functions in
pre-surgical planning. As a relatively young technique fMRI plays a small but growing
role in neuroimaging, today [8]. In this subsection we will try to apply our correction
algorithm to data that come from a neurocognitive experiment. We will also develop a
complete correction pipeline for this data.

Experiment

Two important functions of cognitive control are conflict detection and inhibition. Using
functional MRI, their neurophysiological correlates were studied in a modified Flanker
paradigm. As task, subjects had to press a button. According to the direction of a
visually presented pair of arrows, they had to use their right or left hand. In a minor case
of the trials, subjects had to withhold their responses and change their response hand.
For conflict detection and inhibition, the activation of especially the right inferior frontal
cortex and the midcingulate cortex are crucially important.

Initial Data

(a) I1 - transversal
 

 

0 100 200

(b) Difference - transversal (c) I2 - transversal

(d) I1 - saggital
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(e) Difference - saggital (f) I2 - saggital

Figure 2.7: Initial data. Transversal and saggital slices of fMRI images before the EPI correction are
shown. Left and right rows show apa and app, respectively. In between the difference is
depicted. Note the opposite effect of the field-inhomogeneity along the posterior-anterior
axis in the two acquisitions. Furthermore the mass-preserving kind of the transformation
can be seen, since intensity values sum up, wherever edgings occur and intensity decreases
where the tissue is stretched. More slices and views are shown in the Appendix A.2.
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The experiment was performed with a healthy male subject on a Philips 3.0 T scanner.
The dataset consists of one time series of 170 EPI that show only the subjects brain before
the experiment. Afterwards two full head EPI with a resolution of 64×64×80 - but with
the same voxel size of 3.6×3.6×3.6 millimetres as the 170 EPI before - are recorded with
phase encoding in altered directions along the anterior-posterior axis. Then the actual
experiment is performed and the subjects brain is imaged meanwhile. This results in
1.135 detail images with positive phase encoding gradients, that have to be corrected.
Therefore we aim to estimate the distortions from the two full-head scans.
The initial images is shown in Figure 2.3.2 and in the Appendix in A.2. It can be seen
that the field-inhomogeneity leads to altered displacements along the anterior-posterior
axis with large magnitude. This clearly illustrates the importance of the correction, since
all images have to be registered to a standard space for later comparison. This latter
registration will of course be much easier, using images that are undeformed by a mass-
preserving transformation. Like in the phantom scan the L1 measure differs in the two
scans with 236.77 and 191.09 for apa and app, respectively. We aim to estimate the EPI
distortions using the two full head EPI that are acquired before the actual experiment
took place. Thus, we choose I1 as the app image and I2 as the apa image.
In order to avoid deformations due to noise at the boundary, we pad the images with
zeros.
Our α-test - that is performed using spline interpolation - gives us that α = 50, µ = 1
and λ = 30 lead to a folding-free deformation.
The multilevel strategy for the minimization of our functional is to start at level 4 with a
resolution of 9×9×9 and run the optimization until level 7 where the complete resolution
of 72 × 72 × 68 is reached.

Correction Results

For α = 50 the optimization led to a reduction of the functional by 69.6%. The distance
term decreased by 67.4 %. This corresponds to an increase of the normalized cross-
correlation from 88.6% to 97.8%.
Using the accurate spline interpolation the computational time for the optimization was
about 12 minutes and took 5, 7 and 2 iterations on the respective levels.
The largest corrected deformation was 16 mm and the functional determinant of I1 had
a range between 0.114 and 1.887 which means, that no foldings occurred.
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Figure 2.8: Results of α-Test. According to the explanation in 2.3 77 possible α values between 0 and
500 were tested for the correction of the apa and app fMRI images of one healthy subject
using linear interpolation. The top-left plot shows the l-curve that is more linearly falling
on the log-log scale than “L” shaped and has an increase for weakly regularized problems.
This might indicate that the correction is more likely to end up in a local minimum for
small choices of α. The top right plot, gives the number of grid foldings in dependence of α.
Here we can see that our regularization is capable of supplying a grid that is free of foldings
for α sufficiently large (here, ≥ 50). In the bottom row, α is plotted against the distance
term and the regularization term, respectively.
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(a) Initial I1 and interpolation lines -
transversal

(b) Initial I2 and interpolation lines -
transversal

(c) Transformed I1 -
transversal
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(d) Difference - transversal (e) Transformed I2 -
transversal

Figure 2.9: Correction result. Transversal slices after EPI correction are shown. Compared to the initial
data in Figure 2.3.2 the severe non-linear deformations of the images could be reduced
significantly. However some distance remains even after the correction, which had to be
expected because of the images initial L1 difference. More results are shown in the Appendix
A.2.
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(a) Initial I1 and interpolation lines -
saggital

(b) Initial I2 and interpolation lines -
saggital

(c) Transformed I1 - saggi-
tal
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(d) Difference - saggital (e) Transformed I2 - saggi-
tal

Figure 2.10: Correction result. Saggital slices after the EPI correction are shown. Compared to the
initial data in Figure 2.3.2 the corrected images became much more alike although some
difference remains. More results are shown in the Appendix A.2.

Pipeline for fMRI Correction

In order to use our algorithm for the correction of fMRI experiments we implement the
following pipeline. From the two full head EPI that are acquired right before the exper-
iment, we estimate the field inhomogeneity. Afterwards we rigidly register all images of
the experiment session to the full head image. Once they are all in this reference frame
we are able to correct all images with our estimated inhomogeneity. Since the statistical
evaluation is not affected by multiplying constants, the Jacobian modulation is optional.
For theories sake we, however, decided to apply it.

2.3.3 Diffusion Tensor Imaging

Another important MRI sequence that is based on spin-echo echo planar images is diffu-
sion tensor imaging (DTI). In contrast to other imaging techniques, with DTI, one aims
to acquire a tensor valued image of the human brain that give information about the water
diffusion. In order to measure the diffusion one uses n additional diffusion gradients and
acquires n+1 echo-planar images to measure the diffusivity along the gradient directions.
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The first image is measured without any diffusion gradient and therefore called unweighted
or b=0 weighted image. Those images show an image contrast similar to T2 images. Be-
ing echo-planar images, the single DTI images are exposed to the typical distortions. This
makes an accurate registration onto a T2 or a T1 image, required for fusion, very hard.
Since there are situations where the tensors have to be aligned to a T1 or T2 image, we
aim to correct the images for their non-linear deformations first. That is why we have
to estimate the distortions out of two reference scans like in the two previous examples.
Therefore we will use the information contained in the unweighted DTI images.

Initial Data

In our case we measured the water diffusion coefficients along 20 directions. Additionally
we acquired one EPI image without diffusion weighting - commonly denoted by b = 0
image. This resulted in 21 three dimensional images each having a resolution of 256 ×
256×36 and a voxel size of 0.93×0.93×3.60 mm. In order to improve the signal-to-noise
ratio, we acquired one whole dataset for both gradient signs instead of just acquiring a
second b = 0 image with altered phase-encoding direction. The time to acquire one DTI
series was about 7 minutes.

(a) Initial I1

 

 

0 50 100 150 200 250

(b) Initial difference (c) Initial I2

Figure 2.11: Initial Images. The same slice of I1 and I2 - that are identically except their altered
phase encoding gradients - are shown. One can clearly observe huge displacements along
the phase-encoding direction - which is altered along anterior to posterior. Secondly, one
notices that the displacement direction is altered in both images. Therefore regions that
are edged in I1 happen to be stretched in I2. We will exploit this fact in our correction
algorithm.

Registration Results

For µ = 1 and λ = 30 our test script stopped at α = 16 with a folding-free grid. For
smaller values of α foldings occurred. Using the accurate 3D spline interpolation the
optimization of the high dimensional functional took about 80 minutes. On the coarsest
level the iteration was stopped after 30 iterations. On the two finer levels, the iteration
resulted in a local minimum after 13 and 6 iterations, respectively. The functional could
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be minimized by 87.4 % which corresponds to a decrease in the SSD distance by 94.8 %.
The cross-correlation rose from 63.3 % to 97.9 %. The range of the functional determinant
for I1 is from 0.13 to 1.89 and distortions up to 31.85 mm are corrected.
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Figure 2.12: Results of α-Test. According to the explanation in 2.3 77 possible α values between 0 and
500 were tested for the correction of the apa and app b=0 weighted DTI images of one
healthy subject using linear interpolation. The l-curve is again linearly falling on this log-
log scale. Furthermore the correction tends to be more likely end up in a local minimum
whenever the problem is weakly regularized indicated by the curve’s small increase on
the right end. The top right plot, gives the number of grid foldings subject to α. Here
we can see that our regularization is capable of supplying a grid free of foldings for α

sufficiently large. The bottom row shows the distance term and the regularization term
plotted against α, respectively.
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(a) Initial I1 and interpolation lines (b) Initial I2 and interpolation lines

(c) Final I1
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(d) Final difference (e) Final I2

Figure 2.13: Correction result for α = 16, µ = 1 and λ = 30. The same transversal slice of I1 and I2 as
in Figure 2.3.3 is shown. The top row shows the initial images with the interpolation lines
superimposed. The bottom row shows the interpolated and intensity modulated images
and their difference. Compared to the initial data, the difference is decreased. However, the
huge displacements in the frontal regions of several centimetres did not vanish completely.
More views are shown in the Appendix, cf. A.3.

Pipeline for DTI Correction

In order to use our algorithm for the correction of DTI datasets we implement the following
pipeline. We acquire one dataset for each gradient sign. That is, we obtained 2 × 21 3D
images. In the first post-processing step we estimate the displacement field by using the
b = 0 weighted images. Afterwards we use the FSL software package [27] to correct for
eddy currents. This is done by linearly registering all 3D images to the reference frame
that is given by the b = 0 image. We are using the affine transformation matrices to
combine the affine transformation with our deformation. By these means we interpolate
each image only once. Finally, the intensities were modulated and both datasets were
averaged. After linearly registering the datasets to the T1 image and interpolating, we
estimate the diffusion tensors again by using the FSL software package.
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2.4 Discussion

In the present chapter we motivated and modelled a mass-preserving variational approach
for the correction of echo-planar images. We showed the existence of a minimizer in the
function space W 1,2(Ω,R). Afterwards we implemented the approach and applied it to
measured data of three different types.
The algorithm was able to significantly correct the huge distortions in the measured data.
This should be an important pre-processing step that should positively affect the accuracy
of the respective applications.

2.5 Outlook

Because of the tricky determination of the proper regularization parameters and the fact
that the choice is not physically motivated the usefulness of other regularization terms
is an interesting questions. For the actual deformations are not very smooth, the regu-
larization by using the elastic potential might negatively affect the correction. It has to
be mentioned that not the material properties of the human brain, but the shape of the
distortions caused by the field inhomogeneity have to be decisive.
For foldings in the grid can easily be identified by their partial derivatives one might guar-
antee displacement regularity by using a constrained non-linear optimization technique.
This would result in 2 linear constraints for each voxel. Although this might decrease the
speed of one single correction the time is easily recaptured because one omits to search
for a folding free grid.
Once the deformed coordinate system is estimated, a reconstruction of the raw data in
this distorted space might also be an option worth considering.
In future studies a comparison to previous approaches and an application to broader
dataset is desired. Especially the evaluation of the effect on the BOLD contrast in fMRI
and the reliability on the computed diffusion tensors would be interesting.
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3 Motion Correction in Gated PET

In the following chapter we will develop and discuss a novel non-linear mass-preserving
registration approach and apply it to the problem of motion correction in gated Positron
Emission Tomography (PET). After a brief description of the imaging and gating tech-
nique, we will try to correct the gates for motion with standard elastic registration meth-
ods. Because of a mass-preserving property of gated PET images, however, this will not
lead to optimal results and will motivate us to incorporate this knowledge directly into
the registration functional.

3.1 Imaging Technique

This section briefly describes the imaging technique used later. For a more detailed view
we refer to the book Emission Tomography by Wernick and Aarsvold [31].

Emission Tomography

Emission tomography (ET) techniques, such as single-photon emission computed tomog-
raphy (SPECT) or positron emission tomography (PET) techniques use radioactive mate-
rials to image physiological properties of the body. Literally, using gamma-ray emission -
or tracer principle - a volumetric image of the body’s interior (called tomography) is pro-
duced. Depending on the choice of the radioactive tracer that is induced into the body, an
ET image can for instance represent the spatial distribution of the glucose metabolism,
as it will be the case later on.
Emission tomography techniques can be distinguished mainly by the type of radioiso-
tope incorporated in the tracer. SPECT studies use radiopharmaceuticals labelled with
a single-photon emitter, whereas PET requires the labelling isotope to be a positron (i.e.
anti-electron) emitter.

Positron Emission Tomography

In PET the decay of a positron-emitting isotope leads to the emission of two gamma-
rays that travel nearly in opposite directions. The patient is surrounded by a collection
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of gamma-ray detectors which are connected to circuity that senses the timing of the
gamma-ray detections. When two gamma-rays are detected almost simultaneously it is
inferred that these two rays must have resulted from the same decay event. Thus, it is
assumed that the origin of the decay event lies on the line segment connecting the two
participating detectors.
In order to be flexible about the image reconstruction we will use a list mode acquisition.
In list mode, the time of detection of every gamma-ray event is recorded into a list in
addition to its spatial coordinates and other parameters such as photon energy. Further-
more the acquisition is gated with respect to the patients breathing cycle - we say it is
respiratory gated.

Gating

In a gated study the data acquisition is synchronized to the rhythm of the patients cardiac
or breathing cycles. For instance, in cardiac studies, one acquires a short sequence of, say
10 frames, that depicts the motion taking place during one cardiac cycle of the patient.
This single heartbeat is actually a composite representation formed by averaging over the
imaging data collected during a very large number of cardiac cycles. The purpose of this
compositing operation is to reduce the effect of noise. Each cardiac cycle is much too short
to acquire sufficient gamma-ray counts to produce a useful image, but the composite image
has acceptable quality because it is reconstructed from all the counts acquired during the
study.
In respiratory gated imaging, a camera is used to detect and divide the breathing cycles
into the desired number of gates. A detailed examination and comparison of cardiac and
respiratory gating techniques can be found for instance in [4].

Motion Correction

The main objective for gating the images is to avoid image blurring due to the motion that
takes place during the long acquisition of PET images. That is why we aim to reconstruct
the image in one common reference frame. This step clearly requires an accurate image
registration of the gated images in order to detect the motion. In this present chapter
we will - under the assumption that the human heart behaves elastically - try to use the
non-linear registration techniques presented in Chapter 1. As it turns out, the standard
registration approach does not lead to the desired result, because it disregards the as-
sumptions, that no tracer uptake is lost between the different phases of breathing cycle
and uses an inappropriate assumption of conserved local intensities. This will motivate us
to develop a new mass-preserving non-linear registration algorithm in order to estimate
the respiratory motion.
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Data

Respiratory gated heart images of a human patient are acquired on a PET/CT scanner.
After respiratory gating ten images are reconstructed individually each corresponding to
one phase of the breathing cycle. The grey scale images are of a resolution of 64×64×40.
One slice of the data is shown in Figure 3.1.

(a) Gate 1 (b) Gate 2 (c) Gate 3 (d) Gate 4 (e) Gate 5

(f) Gate 6 (g) Gate 7 (h) Gate 8 (i) Gate 9 (j) Gate 10

Figure 3.1: Initial data: Same slice of all ten gates of one subjects heart. The respiratory motion causes
an upward movement of the heart from gate one to gate ten.

3.2 Elastic Registration

In order to map all different gates into the reference gate - in our case gate ten - we use
non-parametric elastic registration techniques. As described in Chapter 1 this results in
the minimization of the following functional:

J (y) = ||T (y) −R||22 + αS[y],

where S measures the elastic potential of the non-parametric transformation y and α ∈ R
+

is a regularization parameter.

Numerical Set up

Exemplarily, we choose gate one as the template image T and gate ten to be the reference
image R. Those two frames show the most movement and are thus the most challenging
to register of the nine possible pairs. We choose α = 150 and pad the images with zeros
at the boundaries. We perform three multi level steps - 18 × 18 × 12 , 36 × 36 × 24
and 72 × 72 × 48 - ending up at full resolution. The maximum number of optimization
iterations is chosen to be 30.
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Registration Results

(a) Initial Template (b) Reference (c) Final Template

(d) Transformation grid

Figure 3.2: Registration results for standard non-parametric 3D elastic registration of gate four (a) to
gate ten (b). At first glance, the transformed template (c) resembles the reference image very
well. However, the transformation shows many foldings, because the registration algorithm
has to avoid the evaluation of the template image in very bright regions.

After 311 seconds and 10, 8 and 4 iterations the registration stopped in a local minimum.
On the one hand the functional was minimized by 97.7% and the distance between the
two gates was reduced by 98.3%. Furthermore the normalised cross-correlation increased
from 66.4% to 99.4%. On the other hand the transformation grid shows many foldings.
The obtained deformation does not resemble the respiratory motion. Clearly, the number
of foldings could be decreased - or even avoided - for α sufficiently large, but this would
presumably result in a larger remaining distance. The registration result is depicted in
Figure 3.2.

Discussion

After registration, the transformed template is very similar to the reference image. Addi-
tionally the decrease of the distance and the accompanied increase in the cross-correlation
are very promising. However, we were searching for a reasonable transformation providing
such similarity. From the deformation grid we observe, that the transformation does not
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resemble the breathing movement very well. This is due to the fact that the transfor-
mation model is not appropriate for this problem. As mentioned above - in contrast to
respiration - the non-parametric transformation model is in general not mass-preserving,
since it only interpolates the template image on a deformed grid without accounting for
volume changes. With regard to the very bright regions in the template image, which do
not occur in the reference image, the behaviour is quite reasonable. The optimizer avoids
as good as possible the evaluation of the template image in such regions. Thus, intensity
is lost in those regions. That is one reason why the standard registration algorithm does
not lead to a satisfying registration result in this case. Since the gated images are ac-
quired in the same time period, no significant difference in activity is to be expected. Our
transformation model does on the other hand not account for this preservation because
in general

∫

Ω

T (x)dx 6=
∫

Ω

T (y(x))dx. (3.1)

To sum up, the registration result was two-sided. On the one hand we were able to signif-
icantly reduce the distance measure and make the two images very alike with respect to
their SSD difference and their normalized cross-correlation. However, the transformation
is far from being one-to-one as can be seen in Figure 3.2(d). In addition, we did not ac-
count for one given assumption, namely the conservation of signal. In the following, this
prior knowledge about the images is incorporated directly into the registration problem.

3.3 Elastic Mass-Preserving Registration

As mentioned above, all gates contain almost the same amount of activity. In order to
find a reasonable - i.e. one-to-one - and mass-preserving transformation we include this
prior knowledge into our functional.

Developing the functional

We will now assume that our transformation y : R
3 → R

3 is diffeomorphic. Then we
know by the integration by substitution theorem

∫

y(Ω)

T (x)dx =

∫

Ω

T (y(x)) |det(Dy(x))| dx. (3.2)

Where Dy is the Jacobian of our transformation, i.e.

Dy =









∂1

∂2

∂3



 (y1, y2, y3)





T

=





∂1y1 ∂2y1 ∂3y1

∂1y2 ∂2y2 ∂3y2

∂1y3 ∂2y3 ∂3y3



 . (3.3)

Therefore, when transforming the template image, we will not only apply the geometric
transformation y, but also change the intensity by multiplication with the functional
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determinant | det(Dy(x))|. Thereby, we account for changes in the images intensity due
to the volume change of the transformation. Whenever the transformation enlarges the
volume of one voxel, the voxels intensity is distributed over a larger domain and thus has
to be decreased. By these means we account for mass preservation. Our functional then
reads

J MP(y) = ||T (y) · | det(Dy)| − R||22 + αS[y]. (3.4)

In addition we are interested in diffeomorphic and orientation preserving transformations.
Therefore the functional determinant should be positive and we can drop the absolute
value

J MP(y) = ||T (y) · det(Dy) −R||22 + αS[y]. (3.5)

As in the standard elastic registration algorithm above, we make use of a Gauss-Newton
optimization scheme. Therefore we need to compute the first variation of our distance
functional.

Definition 19 (Lagrangian). The associated Lagrangian to the distance term in (3.5) is
a smooth function

L(P, z, x) : R
3×3 : R

3 × Ω → R

that is specified for given images T ,R ∈ Img(Ω) as

L(P, z, x) =
1

2
(T (z(x)) det(P (x)) −R(x))2

=
1

2
(r(T ,R;P, z, x))2 .

Since P is the placeholder for the Jacobian of y we introduce the following notation in
analogy to (3.3)

P :=





p1
1 p1

2 p1
3

p2
1 p2

2 p2
3

p3
1 p3

2 p3
3



 .

Furthermore LP and Lz denote the derivative of L with respect to P and z respectively,
i.e.

LP =





Lp1

1
Lp1

2
Lp1

3

Lp2

1
Lp2

2
Lp2

3

Lp3

1
Lp3

2
Lp3

3



 and Lz =





Lz1

Lz2

Lz3



 .

Notation 2 (Matrix divergence). Let F : R
3 → R

3×3 be a matrix valued differentiable
function on R

3. Then we define its divergence as

∇ · F (x) =





∇ · F 1

∇ · F 2

∇ · F 3



 =





∂1f
1
1 + ∂2f

1
2 + ∂3f

1
3

∂1f
2
1 + ∂2f

2
2 + ∂3f

2
3

∂1f
3
1 + ∂2f

3
2 + ∂3f

3
3



 .

Lemma 4 (First variation in divergence form). Let L : R
3×3 × R

3 × R → R be a smooth
Lagrangian function. For any smooth function w : Ω → R

3 we define the associated
functional as

I[w] :=

∫

Ω

L(Dw(x), w(x), x)dx.

A smooth minimizer u = (u1, u2, u3) of I[·] must then solve the following system of non
linear partial differential equations.

−∇ · Lp(Du, u, x) + Lz(Du, u, x) = 0 in Ω.
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Proof. Let v = (v1, v2, v3) ∈ C∞
0 (Ω,R3) be a fixed test function. Then we can define a

scalar function
i(ǫ) := I[u+ ǫv].

The necessary condition for u being a minimizer is then

i′(0) = 0.

Let us now calculate i′(0)

i′(0) =

∫

Ω

3
∑

i=1

3
∑

k=1

Lpk
i
(Du, u, x)vk

xi
+

3
∑

k=1

Lzk(Du, u, x)vkdx.

Because of the compact support of v, integration by parts in the first summand leads to

=

∫

Ω

3
∑

i=1

3
∑

k=1

−
(

Lpk
i
(Du, u, x)

)

xi

vk +
3
∑

k=1

Lzk(Du, u, x)vkdx.

And since this identity is valid for all choices of v1, v2, v3 we can conclude

−
n
∑

i=1

(

Lpk
i
(Du, u, x)

)

xi

+ Lzk(Du, u, x) = 0 in Ω for k = 1, 2, 3.

This can compactly be written as

−∇ · LP (Du, u, x) + Lz(Du, u, x) = 0 in Ω.

Lemma 5 (Derivative of the determinant). The determinant det : R
3×3 → R is a con-

tinuously differentiable scalar function. Its derivative at a matrix A is given by

∇ det(A) =





detA1
1 − detA1

2 detA1
3

− detA2
1 detA2

2 − detA2
3

detA3
1 − detA3

2 detA3
3



 .

Where Aj
i stands for the 2×2 matrix one obtains by deleting the i-th column and the j-th

row.

Proof. By Laplace’s rule we can develop the determinant to its j-th row by

detA =
3
∑

i=1

(−1)i+jaj
i detAj

i .

Thereby we can compute the elements of ∇ det as

∂ det

∂aj
i

= (−1)i+j detAj
i .
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In order to obtain the first variation of our distance term, we will now use the Lagrangian
framework.

Theorem 12 (First variation). Let T ,R ∈ C1(Ω,R) and y ∈ C2(Ω,R3) be continuously
differentiable. The first variation of the distance term (3.5) is then given by

dD(y) = r(y) det(Dy)∇T −∇ · (r(y)T ∇ det(Dy)).

where r(y) := r(T ,R; y) and ∇· is the matrix divergence defined in Notation 2.

Proof. As we know from Lemma 4 the first variation in its divergence form is given as

−∇ · LP (P, z, x) + Lz(P, z, x) = 0 in Ω. (3.6)

We compute the parts individually. Because of

Lzk(P, z, x) = r(T ,R;P, z, x) det(P ) ∂kT (z) , k = 1, 2, 3

Lz becomes

Lz(P, z, x) = r(T ,R;P, z, x) det(P ) ∇T (z).

For i = 1, 2, 3, we have

Lpk
i

= Lpk
i
(P, z, x)

= r(T ,R;P, z, x) T (z)
∂

∂pk
i

det(P ).

Consequently LP becomes

LP = r(T ,R;P, z, x) T (z) ∇ det(P ).

Inserting Lz and LP into (3.6) gives the assertion.

Implementation 6 (Derivative of the residual). Following a discretize-then-optimize
strategy we need to calculate the gradient of the residual function r : R

9 → R
3 defined by

r(y) = T (y) det(Dy) −R.
By chain rule we note that

∇yi
r = ∂iT (y) det(Dy) + T (y)

3
∑

j=1

(∇A det(Dy))i
j · ∇(∂+

j yi) , i = 1, 2, 3.

Since ∂+
j is a linear differential operator that is implemented as a sparse matrix

∇(∂x
j yi) = δi,j∂

+
j i = 1, 2, 3.

In Matlab this operation can be implemented as a matrix-matrix multiplication via

dOp = [d1Op 0 0; 0 d1Op 0; 0 0 d1Op;

d2Op 0 0; 0 d2Op 0; 0 0 d2Op;

d3Op 0 0; 0 d3Op 0; 0 0 d3Op];

%diOp is the sparse i-th partial differential operator as a sparse matrix

gradDetDydiag = spdiags(reshape(gradDetDy,[],9), 0:n:9*(n-1), n, 9*n);

dr = gradDetDydiag * dOp;
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Existence of a minimizer

We examine whether our functional actually has one minimum in a suitable function
space. We restrict this discussion to the case α > 0. In the current formulation we can
not expect the existence of a minimizer. Therefore we change the functional to

JMP(y) =
1

2

∫

Ω

(T (y) det(Dy) −R(x))2dx+
α

6

∫

Ω

|B[y − yRef]|6dx.

Note that the exponent of the elastic regularizer is changed which affects the derivatives
of our functional and thereby the optimization.
This adjustment, however, allows us to show the existence of a minimizer in the Sobolev
space W 1,6(Ω,R3). In order to do so, we use the framework of polyconvex Lagrangians to
show the lower semi continuity of J MP. Then the fundamental theorem of Optimization
gives us the desired existence.

Definition 20 (Lagrangian). The Lagrangian of our joint functional is a smooth function

L(P, z, x) : R
3×3 × R

3 × Ω → R,

given by

L(P, z, x) =
1

2
(T (z) detP −R(x))2 +

α

2

(

µ

3
∑

i,j=1

|pj
i |4 + (µ+ λ)

3
∑

i=1

|pi
i|4
)

.

Lemma 6 (Coercivity). The functional for the mass-preserving elastic registration JMP

is coercive on W 1,6(Ω,R3), i.e. there are constants δ > 0, γ ≥ 0 such that

JMP(y) ≥ δ||Dy||4L4 − γ.

Proof. As in Chapter 2, we try to show that there exist constants ω > 0, β ≥ 0 such that

L(P, z, x) ≥ ω|P |6 − β , ∀P ∈ R
3×3, z ∈ R

3, x ∈ Ω.

By definition

L(P, z, x) =
1

2
(T (z) detP −R(x))2 +

α

6

(

µ
3
∑

i,j=1

|pj
i |6 + (µ+ λ)

3
∑

i=1

|pi
i|6
)

≥ α

6

(

µ

3
∑

i,j=1

|pj
i |6 + (µ+ λ)

3
∑

i=1

|pi
i|6
)

≥ α

6
µ

3
∑

i,j=1

|pj
i |6

=
α

6
µ|P |6.

By defining now β := 0 and ω := α
6
µ the proof is complete
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Because of the functional determinant in the distance term our Lagrangian is not convex
in P . Fortunately, there is the framework of polyconvexity, described for instance by Evans
in [10], that allows us to use methods of non linear functional analysis in order to show
the weak lower semicontinuity of J MP in W 1,6.

Definition 21 (Polyconvexity). Let L be the Lagrangian of a functional, not necessarily
convex in P . Let L be of the shape

L(P, z, x) = F (P, detP, z, x)

where F : R
3×3 × R × R

3 × Ω → R is smooth. If the joint mapping

(P, r) 7→ F (P, r, z, x) is convex for each fixed z ∈ R
3, x ∈ Ω

we say L is polyconvex.

Lemma 7. The Lagrangian of our joint functional is polyconvex.

Proof. First of all, L is of the form (21) in the previous definition.

F (P, r, z, x) =
1

2
(T (z)r −R(x))2 +

α

6

(

µ

3
∑

i,j=1

|pj
i |6 + (µ+ λ)

3
∑

i=1

|pi
i|6
)

.

Since F is smooth, only the convexity in P and r remains to be shown. If α = 0, the
convexity in P is trivial, since it does not occur in the distance term. For α > 0, it can
be deduced directly from the convexity of the Lagrangian of the elastic potential. The
convexity in r can be seen by the following computations restricted to the distance term.
Let i1 := T (z), i2 := R(x) ∈ R be fixed and t ∈ [0, 1] and r1, r2 ∈ R. We then have to
show

F (tr1 + (1 − t)r2) ≤ t F (r1) + (1 − t)F (r2)

(i1(tr1 + (1 − t)r2) − i2)
2 ≤ t(i1r1 − i2)

2 + (1 − t)(i1r2 − i2)
2.

The left hand side is

(i1(tr1 + (1 − t)r2) − i2)
2 =t2(i1r1)

2 + 2t(1 − t)i21r1r2 − 2ti2i1r1

+(1 − t)2(i1r2)
2 − 2(1 − t)i2i1r2 + i22

whereas the right hand side reads

t(i1r1 − i2)
2 + (1 − t)(i1r2 − i2)

2 =t(i1r1)
2 − 2ti2i1r1 + ti22 + (1 − r)2(i1r2)

2

−2(1 − t)i2i1r2 + (1 − t)i22.

After eliminating all terms occurring on both sides one ends up with

(ti1r1 + (1 − t)i1r2)
2 ≤ t(i1r1)

2 + (1 − t)(i1r2)
2.
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The advantage of the concept of polyconvexity lies in the fact that determinants are weak
continuous.

Lemma 8 (Weak continuity of determinants). Assume 3 < q <∞ and

uk ⇀ u weakly in W 1,q(Ω,R3).

Then
detDuk ⇀ detDu weakly in L

q

3 (Ω).

Proof. Evans [10], page 454.

The lemma above motivates the change of the exponent of the elastic differential operator.
It would be straight forward to choose q = 4 in order to show existence. However, due to
the L2 data term we need weak convergence of the determinant in L2 and consequently
we need q := 6.

Lemma 9. Suppose 3 < q < ∞ and large enough so that all integrals exist. Assume
also that L is bounded below and polyconvex. Then F is weakly lower semicontinuous on
W 1,q(Ω,R3).

Proof. Evans [10], page 456 ff

Now we can combine our findings and obtain

Theorem 13. Our functional JMP has at least one minimizer in W 1,6(Ω,R3).

Proof. As we have seen above, J MP is coercive on W 1,6(Ω,R3) and also lower semicon-
tinuous. This proves the existence via the fundamental theorem of optimization.

Implementation

In order to integrate our new VAriational Mass-Preserving Image REgistration approach
into the freely available FAIR package by Jan Modersitzki [19] we create a new objective
function

function [Jc,para,dJ,H] = VAMPIREobjFctn3(T,Rc,omega,m,yRef,yc)

Here, T are the template images interpolation coefficients, Rc is the reference image, omega
the image domain, m the number of discretization points, yRef a staggered reference
grid and yc the current transformation. The output values Jc, dJ and H stand for the
value of the objective function and its first and second derivative. Information about
the optimization progress is stored in para. The grid change operator from staggered to
cell-centred grids P and the differential operator ∇D are stored as persistent variables
and only updated on a new level.
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persistent P dOp

The first step in transforming the template image is the interpolation at the deformed
grid yc.

yc = center(yc, m);

% compute interpolated image and derivative

[Tc,dT] = inter(T,omega, yc,’doDerivative’,doDerivative);

We then compute the intensity modulation detDy and its derivative gradDetDy in the
new function detFunctions. The intensity modulation is then applied to the deformed
template image.

[detDy, ~, ~, gradDetDy] = detFunctions(yc, omega, m, doDerivative);

Tcold = Tc;

Tc = Tc .* detDy;

Afterwards the SSD distance, the value of the regularization term and if necessary its
derivatives are computed.

% compute distance measure

[Dc,rc,~,~,d2psi] = distance(Tc,Rc,omega,m,’doDerivative’,doDerivative);

% compute regularizer

alpha = regularizer2(’get’,’alpha’);

[Sc,dS,d2S] = regularizer2(ys,omega,m,’doDerivative’,doDerivative);

% evaluate joint function and return if no derivatives need to be computed

Jc = Dc + alpha * Sc;

If derivatives are required we calculate the first variation in its divergence form. Here div
implements the matrix divergence defined in Notation 2. Because of the partial integration
argument in Lemma 4 it is of great importance to compute div using the adjoint finite
difference operator of the one chosen in detFunctions .

Lz = rc’ * (spdiags(detDy,0,n,n) * dT);

Lp = repmat(rc .* Tcold, [dim dim]) .* gradDetDy;

divLp = div(Lp, omega, m);

dD = Lz - divLp’;

dD = hd * dD; % hd = voxel volume

dJ = dD * P + alpha * dS;

In order to approximate the Hessian for the Gauss-Newton scheme, the residuals derivative
is needed. Here we use the differential operator stored in dOp as described in Implemen-
tation 6.
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gradDetDydiag = spdiags(reshape(gradDetDy,[],dim^2), 0:n:dim^2*(n-1), n, dim^2*n);

dr = spdiags(detDy,0,n,n) * dT + spdiags(Tcold,0,n,n) * gradDetDydiag * dOp;

dr = dr * P;

H = d2psi * (dr’ * dr) + alpha * d2S;

We then minimise the objective function by the methods supplied by FAIR using a multi-
level strategy.

Registration Results

Using the same dataset, parameters and image pair as in the standard non-linear registra-
tion we were able to reduce the new functional by 98.1%. The cross correlation increased
to 99.95% and the range of the Jacobian modulation is [0.33, 2.80]. Although we can
ensure the existence of a solution only in case of a L6 regularization, we use the same
L2 based elastic potential as in Section 3.2. For our low dimensional data, this led to a
smooth and folding-free deformation depicted in Figure(3.3(d)). Most importantly, the
transformation does resemble the respiratory motion very accurate.

(a) Initial template (b) Reference (c) Final template

(d) Transformation grid

Figure 3.3: Registration results for mass-preserving registration. The deformed template resembles
the reference image very well. Compared to Figure (3.2(d)) the grid has got no foldings.
Additionally the deformation seems to reasonably resemble the respiratory motion that
occurred between the different gates.
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Motivated by this positive result we start registering the other gates onto gate 10 as well.
For each gate mass-preserving registration finds smooth and folding-free deformation fields
that are able to make the images very similar to the reference gate.

(a) final gate 1 (b) final gate 2 (c) final gate 3 (d) final gate 4 (e) final gate 5

(f) final gate 6 (g) final gate 7 (h) final gate 8 (i) final gate 9 (j) Reference - Gate
10

Figure 3.4: Registration result: Same slice of the mass-preserving registered nine gates and the reference
gate. The new non-linear registration approach was able to render the images almost
identical, which is also indicated by the cross-correlation in Table 3.3. Furthermore the
transformation grids were free of foldings and resembled the actual motion.

Gate 1 Gate 2 Gate 3 Gate 4 Gate 5 Gate 6 Gate 7 Gate 8 Gate 9

cc 0.98976 0.99019 0.99067 0.99116 0.99248 0.99336 0.99415 0.9953 0.99632

ccold 0.50346 0.5216 0.53894 0.56461 0.61275 0.66193 0.73016 0.80629 0.90132

maxvec 7.437 7.3044 6.9075 6.5197 5.9571 5.2871 4.502 3.5268 2.3524

Table 3.1: Registration results. From this table we can infer, that our mass-preserving registration leads
in our case to a accurate registration. The normalised cross-correlation could be increased
nearly to 100% in each of the nine registration problems. This is especially remarkable for
gates that show very different respiratory phases compared to the reference gate, for instance
gate 1. Furthermore we like to point out that the deformation grid shows no folding, which
can be deducted from the range of the functional determinant.

Sensitivity to alpha

Now the choice of parameters is examined. In our case, the functional 3.4 depends just
on the regularization parameter α and on the Lamé constants µ and λ which are set to
their default values, i.e. 1 and 0 respectively. In order to examine the sensitivity to alpha,
we performed the registration of gate one onto gate ten above for 116 possible values of α
between 0 and 5000. In order to save computation time, we will use a linear interpolation
scheme.
It turns out that even for α = 0 the transformation grid is free of foldings.
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Figure 3.5: Results of α-test with 116 choices for α between 0 and 5000. Plot (a) shows the final values
of the distance measure and similarity measure for different choices of α on a log-scale. The
remaining plots (b) - (d) demonstrate the impact of α on the regularizer S, the distance term
D and the normalised cross-correlation. As expected, the more the distance is reduced, the
less elastic the solution becomes indicated by large values of the regularization functional.
Furthermore it can be seen that the SSD and NCC behave exactly the same as it should be
the case for mass-preserving transformations.

Effect on Image Quality

Finally we return to our initial motivation to correct the respiratory gated PET images
for motion in order to enforce the image analogy. Hence, the non-linear registration
was a necessary first step in order to estimate the respiratory motion between the gates.
The inclusion of the mass-preservation proved to be crucial in order to find reasonable
transformations. After applying the transformations to the images of gate one to nine
and thereby mapping them to the reference gate ten we can average the samples. As can
be seen in the right image in Figure 3.3 the motion corrected image is sharper than the
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not corrected and contains less noise than the reference gate.

(a) Reconstruction - with-
out motion correction

(b) Reference gate (c) Reconstruction - with
motion correction

Figure 3.6: Effect on image quality. Compared to the reconstruction without motion correction (left),
we could increase the sharpness of the image. Furthermore the averaging reduced the
background noise compared to the reference gate.

3.4 Discussion and Outlook

In order to approach the problem of motion correction in gated PET, we developed a new
non-linear mass-preserving registration algorithm. The simple extension of the non lin-
ear registration functional strongly affected the existence theory and the implementation.
However, we can prove the existence of a minimizer in the function space W 1,6(Ω,R3).
Our example indicates that - at least for gated PET images - it is important to include the
mass-preservation constraint into the registration problem in order to obtain reasonable
deformation fields. Mass-preserving registration leads to very smooth and folding-free de-
formations. Our new algorithm was even capable of accurately registering images showing
very different phases of the breathing cycle.
In contrast to non mass-preserving registration, even weak regularization resulted in dif-
feomorphic transformations. Furthermore the transformations resembled the respiratory
motion.
The accurate registration also leads to a much sharper averaged image and is therefore
well-suited to increase the image quality in gated PET images.
First tests with multiple subject indicate that our algorithm can robustly improve the
image quality of both cardiac and respiratory gated PET. In future studies a comparison
to optical flow based correction approaches like the one proposed by Dawood et al. in [6]
is asired.
In order to avoid resampling, one could also reconstruct the template gates one to nine
in the deformed coordinate system as described in [16].
For PET images are more and more used in combination with structural images for in-
stance CT or MRI, a multi-modal enhancement to the presented approach is desirable to
enforce the accuracy of image fusion.



A Appendix

In this chapter more image slices of the experiments with the EPI correction algorithm
described in Chapter 2 are shown. It is divided into three sections. In section A.1 the
effect of different phase encoding directions on the deformations is shown in Figure A.1.
In the preceding Sections and a deeper insight in the correction result of functional MR
images and diffusion tensor images is provided, respectively.
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A.1 Phantom scan iii

A.1 Phantom scan

(a) app z (b) app y (c) app x

(d) apa z (e) apa y (f) apa x

(g) rll z (h) rll y (i) rll x

(j) rlr z (k) rlr y (l) rlr x

Figure A.1: Acquired echo-planar images of a water-filled bottle. The different phase encoding direc-
tions are ordered column wise where different views of the three dimensional volume are
given. The first two rows are acquired with phase encoding from anterior/posterior (app)
and posterior/anterior (apa), respectively. The distortions in (c) and (f) and in (a) and (d)
are reversed. The latter two columns represent the results of left/right (rlr) and right/left
(rll) phase encoding. Here the amount left/right shift in (h) and (f) and in (g) and (j) are
reversed. Note, that the differences of (b) and (c) and of (i) and (l) might be due to the
fact that we show one slice only
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(c) I2 slice 22 initial - saggital
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Figure A.2: Initial saggital slices. Left Column shows the app images, right the apa images and the
middle the difference images.
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Figure A.3: Final saggital slices for α = 260, µ = 1 and λ = 30. Left Column shows the app images,
right the apa images and the middle the difference images.
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Figure A.4: Initial transversal slices. Left Column shows the app images, right the apa images and the
middle the difference images.
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Figure A.5: Final transversal slices for α = 260, µ = 1 and λ = 30. Left Column shows the app images,
right the apa images and the middle the difference images.
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A.2 fMRI
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Figure A.6: Initial saggital slices. Left Column shows the app images, right the apa images and the
middle the difference images.
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Figure A.7: Final saggital slices for α = 50, µ = 1 and λ = 30. Left Column shows the app images,
right the apa images and the middle the difference images.
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Figure A.8: Initial transversal slices. Left Column shows the app images, right the apa images and the
middle the difference images.
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Figure A.9: Final transversal slices α = 50, µ = 1 and λ = 30. Left Column shows the app images,
right the apa images and the middle the difference images.
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Figure A.10: Initial saggital slices. Left Column shows the app images, right the apa images and the
middle the difference images.
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Figure A.11: Final saggital slices for α = 16, µ = 1 and λ = 30. Left Column shows the app imagess,
right the apa images and the middle the difference images.
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Figure A.12: Initial transversal slices. Left Column shows the app images, right the apa images and
the middle the difference images.
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Figure A.13: Final transversal slices. Left Column shows the app images, right the apa images and the
middle the difference images.
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