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Abstract
Bioelectric source analysis in the human brain from scalp electroencephalography (EEG) signals is
sensitive to geometry and conductivity properties of the different head tissues. We propose a low
resolution conductivity estimation (LRCE) method using simulated annealing optimization on high
resolution finite element models that individually optimizes a realistically-shaped four-layer volume
conductor with regard to the brain and skull compartment conductivities. As input data, the method
needs T1- and PD-weighted magnetic resonance images for an improved modeling of the skull and
the cerebrospinal fluid compartment and evoked potential data with high signal-to-noise ratio (SNR).
Our simulation studies showed that for EEG data with realistic SNR, the LRCE method was able to
simultaneously reconstruct both the brain and the skull conductivity together with the underlying
dipole source and provided an improved source analysis result. We have also demonstrated the
feasibility and applicability of the new method to simultaneously estimate brain and skull
conductivity and a somatosensory source from measured tactile somatosensory evoked potentials of
a human subject. Our results show the viability of an approach that computes its own conductivity
values and thus reduces the dependence on assigning values from the literature and likely produces
a more robust estimate of current sources. Using the LRCE method, the individually optimized four-
compartment volume conductor model can in a second step be used for the analysis of clinical or
cognitive data acquired from the same subject.

Keywords
EEG; source analysis; realistic four-compartment head modeling; in vivo conductivity estimation;
brain and skull conductivity; cerebrospinal fluid; simulated annealing; finite element method;
somatosensory evoked potentials; T1- and PD-weighted MRI

*Corresponding author. Priv.-Doz. Dr.rer.nat. Carsten H. Wolters, Institut für Biomagnetismus und Biosignalanalyse, Westfȧlische
Wilhelms-Universität Münster, Malmedyweg 15, 48149 Münster, Germany, Tel.: +49/(0)251-83-56904, Fax: +49/(0)251-83-56874,
http://biomag.uni-muenster.de Email addresses: slew@sci.utah.edu (S. Lew+), carsten.wolters@uni-muenster.de (C.H. Wolters+),
anwander@cbs.mpg.de (A. Anwander), smakeig@ucsd.edu (S. Makeig), macleod@cvrti.utah.edu (R. MacLeod).
+both authors contributed equally to this work.

NIH Public Access
Author Manuscript
Hum Brain Mapp. Author manuscript; available in PMC 2010 September 1.

Published in final edited form as:
Hum Brain Mapp. 2009 September ; 30(9): 2862–2878. doi:10.1002/hbm.20714.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://biomag.uni-muenster.de


1 Introduction
The electroencephalographic inverse problem aims at reconstructing the underlying current
distribution in the human brain using potential differences measured non-invasively from the
head surface. A critical component of source reconstruction is the head volume conductor
model used to reach an accurate solution of the associated forward problem, i.e., the simulation
of the electroencephalogram (EEG) for a known current source in the brain. The volume
conductor model contains both the geometry and the electrical conduction properties of the
head tissues and the accuracy of both parameters has direct impact on the accuracy of the source
analysis [Buchner et al., 1997; Huiskamp et al., 1999; Gençer and Acar, 2004; Ramon et al.,
2004; Zhang et al., 2006,2006b,2008; Rullmann et al., 2008]. The practical challenges of
creating patient specific models currently prohibit this degree of customization for each routine
case of clinical source analysis, thus it is essential to identify the parameters that have the
largest impact on solution accuracy and to attempt to customize them to the particular case.

Magnetic Resonance (MR) or Computed Tomography (CT) imaging provides the geometry
information for the brain, the cerebrospinal fluid (CSF), the skull, and the scalp [Huiskamp et
al., 1999; Ramon et al., 2004; Wolters et al., 2006; Zhang et al., 2006b, 2008]. MRI has the
advantage of being a completely safe and noninvasive method for imaging the head, while CT
provides better definition of hard tissues such as bone. However, CT is not justified for routine
physiological studies in healthy human subjects. In this study we used a combination of T1-
weighted MRI, which is well suited for the identification of soft tissues (scalp, brain) and
proton-density (PD) weighted MRI, enabling the segmentation of the inner skull/outer CSF
surface. This approach leads to an improved modeling of the CSF compartment and of the skull
thickness over standard (T1) weighted MRI, important for a successful application of the
proposed low resolution conductivity estimation (LRCE) method. The volume conductor
model used in this study consisted of four individually and accurately shaped compartments,
the scalp, skull, CSF, and brain.

Determining the second component of the head model, the conductivities of the tissues, does
not have the support of a technology as capable as MRI or CT. First attempts to measure the
conductivities of biological tissues were in vitro, often using samples taken from animals
[Geddes and Baker, 1967]. The conductivity of human CSF at body temperature has been
measured by [Baumann et al., 1997] to be 1.79 S/m (average over 7 subjects, ranging in age
from 4.5 months to 70 years, with a standard deviation of less than 1.4% between subjects and
for frequencies between 10 and 10,000Hz). Based on the very low standard deviation
determined in this study, the conductivity of the CSF compartment will be fixed to 1.79S/m
throughout this study. EEG measurements were furthermore shown to be sensitive to a correct
modeling of this highly conducting compartment, which is located between the sources in the
brain and the measurement electrodes on the scalp ([Huang et al., 1990; Ramon et al., 2004;
Wolters et al., 2006; Wendel et al., 2008; Rullmann et al., 2008], see also discussion and further
references in [Baumann et al., 1997]). In contrast, the electric conductivities of skull and brain
tissues were shown to vary much stronger across individuals and within the same individual
due to variations in age, disease state and environmental factors. [Latikka et al., 2001]
investigated the conductivity of living intracranial tissues from nine patients under surgery. As
the skull has considerably higher resistivity than the other head tissues—and thus could be
expected to play an especially big role in the electric currents in the head—much attention has
been focused on determining its conductivity. Rush and Driscoll measured impedances for a
half-skull immersed in fluid [Rush and Driscoll, 1968, 1969] and since then the brain:skull
conductivity ratio (in three-compartment head models) of 80 has been commonly used in
bioelectric source analysis [Homma et al., 1995]. A similar ratio of 72 averaged over six
subjects was reported recently using two different in vivo approaches [Gonçalves et al.,
2003a], one method using the principles of electrical impedance tomography (EIT) and the
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other method based on an estimation through a combined analysis of the evoked somatosensory
potentials/fields (SEP/SEF. However, those results remain controversial because other studies
have reported the following ratios: 15 (based on in vitro and in vivo measurements) [Oostendorp
et al., 2000], 18.7 ± 2.1 (based on in vivo experiments using intracranial electrical stimulation
in two epilepsy patients) [Zhang et al., 2006], 23 (averaged value over nine subjects estimated
from combined SEP/SEF data) [Baysal and Haueisen, 2004], 25 ± 7 (estimated from intra- and
extra-cranial potential measurements) [Lai et al., 2005], and 42 (averaged over six subjects
using EIT measurements) [Gonçalves et al., 2003b]. At this point, there is little hope of a
resolution of these large discrepancies, some of which may originate in inter-patient differences
or natural variations over time (see, e.g. [Haueisen, 1996; Goncalves et al., 2003b]), some
might result from ignoring the high conductivity of the CSF since most of the above studies
used three-compartment (scalp, skull, brain) head models or from ignoring the influence of
realistic geometrical shape when using spherical head models, so that we propose a four-
compartment realistically-shaped head modeling approach that seeks to resolve variation for
each individual case by making skull and brain conductivity an additional parameter to be
solved.

The growing body of evidence suggesting that the quality and fidelity of the volume conductor
model of the head plays a key role in solution accuracy [Cuffin, 1996; Huiskamp et al.,
1999; Ramon et al., 2004; Rullmann et al., 2008] also drives the choice of numerical methods.
There is a wide range of approaches including multi-layer sphere models [de Munck and Peters,
1993], the boundary element method (BEM) [Sarvas, 1987; Hämäläinen and Sarvas, 1989; de
Munck, 1992; Fuchs et al., 1998; Huiskamp et al., 1999; Kybic et al., 2005], the finite difference
method (FDM) [Hallez et al., 2005] and the finite element method (FEM) [Bertrand et al.,
1991; Haueisen, 1996; Marin et al., 1998; Weinstein et al., 2000; Ramon et al., 2004; Wolters
et al., 2006; Zhang et al., 2006, 2006b, 2008]. The FEM offers the most flexibility in assigning
both accurate geometry and detailed conductivity attributes to the model at the cost of both
creating and computing on the resulting geometric model. The use of recently developed FEM
transfer matrix (or lead field bases) approaches [Weinstein et al., 2000; Gençer and Acar,
2004; Wolters et al., 2004] and advances in efficient FEM solver techniques for source analysis
[Wolters et al., 2004] drastically reduce the complexity of the computations so that the main
disadvantage of FEM modeling no longer exists. [Lanfer, 2007] compared run-time and
numerical accuracy of a FEM source analysis approach (the FEM is based on a Galerkin
approach applied to the weak formulation of the differential equation) using the Venant dipole
model [Buchner et al., 1997] and the fast FE transfer matrix approach [Wolters et al., 2004]
with a BE approach of [Zanow, 1997] (a double layer vertex collocation BE method [de Munck,
1992] using the isolated skull approach [Hämäläinen and Sarvas, 1989] and linear basis
functions with analytically integrated elements [de Munck, 1992]) in combination with BE
transfer matrices in an isotropic three layer sphere model. The reported numerical errors of the
FE approach for realistic eccentricities in an isotropic three compartment sphere model were
in the same range than those of the BEM approach, while, at the same time, the FE forward
computation was faster than the BE forward computation. Additionally, similar errors and run-
times were achieved with the FE approach in anisotropic four compartment sphere models,
showing the large flexibility of this approach.

In this paper, we propose a low resolution conductivity estimation (LRCE) method using
simulated annealing optimization in a realistically-shaped four compartment (scalp, skull, CSF
and brain) finite element volume conductor model that individually optimizes the brain and
the skull conductivity parameters while keeping the CSF conductivity fixed to the measurement
of [Baumann et al., 1997] and the scalp conductivity to the value that is commonly used in
source analysis [Buchner et al., 1997; Fuchs et al., 1998; Zanow, 1997; Waberski et al.,
1998; Huiskamp et al., 1999]. The LRCE method uses a geometric model, in this case based
on T1-/PD-MRI, and evoked potential data with high signal-to-noise ratio (SNR) as input. The
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method then determines the best combination of sources within a predefined source space
together with the two individually optimized brain and skull conductivity values over a discrete
parameter space, i.e., for each source and for each tissue conductivity the user has to define a
reasonable set of a priori values. We evaluate the accuracy of the LRCE method in simulation
studies before applying it to tactile somatosensory evoked potentials (SEP) with the focus on
establishing the best values for the individual brain and skull conductivity. Besides using our
new method for an improved source analysis of, e.g., SEP or auditory evoked potentials (AEP)
(i.e., EEG data with a rather simple underlying source structure and a well-controlled and high
SNR), the major future perspective for the LRCE is to provide an individually optimized
volume conductor model (by means of exploiting the SEP/AEP data) that can then be used in
a second step for the analysis of clinical or cognitive EEG data of the same subject/patient.

2 Theory
2.1 Finite element method based forward problem

In the considered low frequency band (frequencies below 1000 Hz), the capacitive component
of tissue impedance, the inductive effect and the electromagnetic propagation effect can be
neglected so that the relationship between bioelectric fields and the underlying current sources
in the brain can be represented by the quasi-static Maxwell equation

(1)

with homogeneous Neumann boundary conditions at the head surface

(2)

and a reference electrode with given potential, i.e., φ (x⃗ref) = 0, where σ is the conductivity
distribution, φ is the scalar electric potential, j⃗0 is the primary (impressed) current, Ω the head
domain, Γ its surface and n⃗ the surface normal at Γ [Plonsey and Heppner, 1967; Sarvas,
1987]. The primary current is generally modeled by a mathematical dipole at position x⃗0 with
the moment M ⃗0, j⃗0 = M ⃗0 δ(x⃗−x⃗0) [Sarvas, 1987]. For a given primary current and conductivity
distribution, the potential can be uniquely determined for what is known as the bioelectric
forward problem.

For the numerical approximation of equations (1) and (2) in combination with the reference
electrode, we use the finite element (FE) method. Different FE approaches for modeling the
source singularity are known from the literature: a subtraction approach [Bertrand et al.,
1991], a partial integration direct method [Weinstein et al., 2000], and a Venant direct method
[Buchner et al., 1997]. In this study we used the Venant approach based on comparison of the
performance of all three in multilayer sphere models, which suggested that for sufficiently
regular meshes, it yields suitable accuracy over all realistic source locations [Wolters et al.,
2007a, 2007b; Lanfer, 2007]. This approach has the additional advantage of high computational
efficiency when used in combination with the FE transfer matrix approach [Wolters et al.,
2004]. We used standard piecewise linear basis functions ϕi(x⃗) =1 for x⃗ = ξ ⃗i, where ξ ⃗i is the i-
th FE node, and ϕj(x⃗) = 0 for all j ≠ i. The potential is projected into the FE space, i.e.,
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, where N is the number of FE nodes. Standard variational and FE
techniques for equations (1) and (2) yield the linear system

where A is the stiffness matrix with dimension N × N,u the coefficient vector for φh(N ×1),
JVen the Venant approach right-hand-side vector (N ×1) [Buchner et al., 1997; Wolters et al.,
2007a], and <·,·> the scalar product. A key feature of this study was to pursue solutions that
achieve high computational efficiency. Let us assume that the S electrodes directly correspond
to FE nodes at the surface of the head model (otherwise, interpolation is needed). It is then
easy to determine a restriction matrix B ∈ℜ(S−1)×N, which has only one non-zero entry with
the value 1 in each row and which maps the potential vector u onto the potential vector

 at the (S−1) non-reference EEG electrodes, . With the following definition
of the (S−1)×N transfer matrix for the EEG, T:= B A−1, a direct mapping of an FE right-hand

side vector JVen onto the unknown electrode potentials  is given. It was shown in [Wolters
et al., 2004] how the transfer matrix T can efficiently be computed using an algebraic multigrid
preconditioned conjugate gradient (AMG-CG) method. Note that JVen has only C non-zero
entries (with C being the number of neighbors of the closest FE node to the source) so that
TJVen only amounts in 2·(S−1)·C operations. Thus the resulting combination of the transfer
matrix approach with the Venant method leads to implementations that are especially efficient
[Lanfer, 2007], an essential feature for our study as will become clear in Section 2.3.

2.2 The inverse problem
2.2.1 Dipole fit in a discrete influence space—The non-uniqueness of the EEG inverse
problem requires a combination of a viable forward problem, anatomical information, and a
priori constraints on some aspect(s) of the solution. Here, we followed a dipole fit procedure
that restricted the number of active sources to an application dependent number, K, of some
few dipoles [Scherg and von Cramon, 1985; Mosher et al., 1992]. In addition, we defined an
influence space with R discrete permissable source locations that was constrained to lay within
the cortical gray matter. Given this influence space, the S scalp electrode locations, and a fixed
volume conductor, we used the fast FE forward computation methods from Section 2.1 to
compute a lead field matrix, L, which mapped sources directly to electrode potentials:

where J is a current source vector of dimension 3R×1 because we do not use the normal
constraint, i.e., sources at the discrete source space nodes can have orientations in any direction.
Φsim is the simulated potential vector of dimension S ×1 and L has dimension S×3R.

Since the potential depends linearly on the source moment (dipole orientation and strength)
and nonlinearly on the source location, we use a two phase approach for source analysis
[Buchner et al., 1997; Wolters et al., 1999]. We start with K initial source locations that are
proposed by the non-linear optimization procedure simulated annealing (SA, see Section 2.2.2)
and apply a linear least squares fit to the EEG data that determines uniquely the linear source
orientation and strengths parameters, Jr(3K×1). The numerical solver for the linear least
squares procedure employed a truncated singular value decomposition for the minimization

Lew et al. Page 5

Hum Brain Mapp. Author manuscript; available in PMC 2010 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



[Wolters et al., 1999], based on a cost function, gf, that is the L2 norm of the difference between
the simulated potential, Φsim(S×1), and the measured EEG potential, ΦEEG(S×1):

In this equation, Lr(S×3K) indicates the reduced lead field matrix for the current choice of
source locations r = (r ⃗1,···, r ⃗K) with r ⃗k the k-th source location (1 ≤ k ≤ K).

2.2.2 Globally minimizing the cost function—Since the volume conduction properties
are incorporated in the lead field matrix Lr, the free nonlinear optimization parameters in this
case are only the source locations. There is the choice between local optimization methods
such as the Nelder-Mead simplex approach [Nelder and Mead, 1965] or the Levenberg-
Marquardt algorithm [Marquardt, 1963] and global optimization approaches such as simulated
annealing (SA) from combinatorial optimization [Kirkpatrick et al., 1983] or genetic
algorithms [Kjellström, 1996]. In our paper, we decided for SA optimization because the
challenge of local optimizers lies in determining the initial estimation of multiple parameters
in the presence of local minima, and the global SA optimizer, often used when the search space
is discrete as in our study, is generally more effective in localizing multiple parameters because
it eliminates the need for high quality initial estimates [Haneishi et al., 1994; Gerson et al.,
1994; Buchner et al., 1997; Uutela et al., 1998; Wolters et al., 1999]. A stochastic Metropolis
acceptance test prevents the SA search from getting trapped in local minima as long as the
cooling schedule is slow enough [Metropolis et al., 1953; Geman and Geman, 1984; Hütten,
1993]. For the cooling schedule, a so-called temperature t regulates the acceptance probability.
Throughout the optimization process, t decreases according to a cooling rate ft. Initially, t is
set to a high value, resulting in the acceptance of most new parameters (with even larger gf)
and as the temperature decreases by means of ft, it is less likely for new parameters (with larger
gf) to be accepted. This enables the search to focus on the vicinity of the minima at the later
stages of the optimization process.

2.3 Low resolution conductivity estimation
The proposed LRCE method adds electrical tissue conductivities as additional optimization
parameters to the cost function to the already parameterized source locations. Here the set of
optimization parameters including the conductivities was

where L is the number of tissue compartments and σl is the conductivity parameter for the l-th
tissue compartment (1 ≤ l ≤ L). Each source location r ⃗k was allowed to vary within the defined
discrete influence space as described in Section 2.2. The conductivity σl of tissue compartment
l was allowed to have its value from a predefined discrete set of possible conductivity values

Here, Hl is the number of possible conductivity values for tissue compartment l. We could
choose Hl to be a large number (high resolution) for tissue l, but this would strongly increase
computational costs and might be rather unrealistic given the limited SNR in measured EEG
data. Therefore, we confined it to a rather small set of conductivity values (e.g., the different
measured and estimated values for the considered head tissue that can be found in the literature).
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Given the influence source space and the electrode locations, we precomputed a set of lead
field matrices and collected them in Λ, which corresponded to all possible combinations of

conductivity values for all tissue compartments of interest. This resulted in the number 
of lead field matrices in Λ.

(3)

with L(σh1, ···, σhL) being the (S× 3R) lead field matrix for the specific choice of conductivities.
During each iteration of the SA method, the set of optimization parameters includes not just a
new estimate of the bioelectric source, but a new configuration of both sources and
conductivities in which we allow changing the value of only one parameter chosen randomly
per iteration. By limiting the choice of conductivities to a discrete set of values, we maintain
computational efficiency by applying the associated precomputed lead field matrix from the
set Λ. The total number of possible configurations for sources and conductivities is

(4)

The SA optimizer searches for an optimal configuration of dipole source locations r = (r ⃗1, ···,
r ⃗K) and tissue conductivities σ = (σ1, ···, σL) that ensure the best fit to the measured data:

The following summarizes the general procedure of the LRCE:

• Define the discrete influence space with R nodes.

• Fix the number K of sources to be fitted.

• For all L tissue compartments, define a discrete set of conductivity values, i.e., fix all
σhl,1 ≤ hl ≤ Hl, 1 ≤ l ≤ L

• Precompute Λ corresponding to each of the possible conductivity combinations using
the fast FE transfer matrix approach in combination with the AMG-CG from Section
2.1.

• Repeat:

– Allow SA optimizer to choose a configuration of source locations r = (r ⃗1, ···,
r ⃗K) and conductivities σ = (σ1, ···, σL)

– Get lead field matrix Lr(σ) for the chosen source and conductivity
configuration.

– Compute  with respect to source moments Jr.

• Until cost function value meets a tolerance criterion or the number of iterations
exceeds a limit.
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3 Methods and materials
3.1 Registration and segmentation of MR images

To carry out the LRCE analysis requires the construction of detailed realistic head models, in
this case from MR image data. Here we outline the steps for constructing such a model. Our
approach emphasizes accurate modeling of the CSF and skull compartments [Cuffin, 1996;
Huiskamp et al., 1999; Ramon et al., 2004; Wolters et al., 2006; Wendel et al., 2008; Rullmann
et al., 2008]. The influence of the skull thickness is closely related to the influence of skull
conductivity and therefore especially important for a successful application of the presented
LRCE algorithm [Cuffin, 1996; Huiskamp et al., 1999; Ramon et al., 2004]. To achieve the
required accuracy of the head models, we made use of a combination of two different MRI
modalities applied to a single subject. T1-weighted MRI is well suited for the segmentation of
tissue boundaries like gray matter, outer skull and scalp. In contrast, the identification of the
inner skull surface (defining thicknesses of skull and CSF compartment) is more successful
from a Proton density MRI (PD-MRI) sequence because the difference in the quantity of water
protons between intra-cranial and bone tissues is large. T1- and PD-MR imaging of a healthy
32 year-old male subject was performed, the images were aligned and segmented in a realistic
four compartment (scalp, skull, CSF, brain) volume conductor model with special attention to
the poorly conducting human skull and the highly conductive CSF following the procedures
described in [Wolters et al., 2006]. The T1 images provided the information on soft tissues
while the registered PD image enabled the segmentation of the inner skull surface and thus a
correct modeling of skull and CSF compartmental thickness. In source reconstruction, it is
generally accepted that the weak volume currents outside the skull and far away from the EEG
sensors have a negligible influence on the measured fields [Buchner et al., 1997; Fuchs et al.,
1998]. We therefore did not make any effort to segment the face and used instead a cutting
procedure typical in source analysis based on realistically-shaped volume conductor modeling
[Buchner et al., 1997; Fuchs et al., 1998].

Figure 1 shows the results of this approach for the segmentation of the inner skull/outer CSF
surface compared with results from an estimation procedure that used exclusively the T1-MRI.
The estimation procedure started from a segmented brain surface and estimated the inner skull
by means of closing and inflating the brain surface.

3.2 Mesh generation
A prerequisite for FE modeling is the generation of a mesh that represents the geometric and
electric properties of the head volume conductor. To generate the mesh, we used the CURRY
software [CURRY, 2000] to create a surface-based tetrahedral tessellation of the four
segmented compartments. The procedure exploited the Delaunay-criterion, enabling the
generation of compact and regular tetrahedra [Buchner et al., 1997; Wagner et al., 2000] and
resulted in a finite element model with N= 245,257 nodes and 1,503,357 tetrahedra elements.

The FE mesh is shown in Figure 2.

An influence source space that represented the brain gray matter in which dipolar source
activities occur was extracted from a surface 2 mm beneath the outer cortical boundary. The
influence space was tessellated with a 2 mm mesh resulting in R = 21,383 influence nodes
(shown in Figure 2). Since the influence mesh is only a rough approximation of the real folded
surface and does not appropriately model the cortical convolutions and deep sulci, no normal-
constraint was used, i.e., the dipole sources were not restricted to be oriented perpendicular to
the source space. Instead, dipole sources in the three Cartesian directions were allowed.
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3.3 Setup of the LRCE simulation studies
Simulation studies were carried out to validate the new LRCE approach. For the reference FE
volume conductor, isotropic conductivity values of 0.33 (see [Haueisen, 1996] and references
therein), 0.0132 [Lai et al., 2005], 1.79 [Baumann et al., 1997], and 0.33 S/m (see [Haueisen,
1996] and references therein) were assigned to the scalp, skull, CSF, and brain compartment
of the FE model from Section 3.2, respectively. This led to a brain:skull conductivity ratio
(four-compartment head model) of 25 for the reference volume conductor. For the modeling
of the EEG, 71 electrodes were placed on the reference volume conductor surface according
to the international 10/10 EEG system. Two reference dipole sources were positioned on
influence nodes in area 3b of the primary somatosensory cortex (SI) in both hemispheres, as
shown in Figure 2 (right). Two source orientation scenarios were considered, in which both
sources were either oriented quasi-tangentially or quasi-radially with regard to the inner skull
surface. In both scenarios, the two sources were simultaneously activated using current
densities of 100 nAm. Another experiment consisted of just a single source in the left SI with
quasi-tangential or quasi-radial direction and a source strength of 100 nAm. Forward potential
computations were carried out for the different scenarios using the direct FE approach as
described in Section 2.1. Noncorrelated Gaussian noise was then added with SNR’s of 40, 25,

20, and 15 dB (SNR(dB):= 20 log10(SNR) with , where  is the noisy signal
and ε[i] the noise at electrode i).

Figure 3 shows the potential maps for the two-sources experiment for both orientation
scenarios, the quasi-tangential (top row) and the quasi-radial orientations (bottom row) for
different SNR values.

For the SA optimization, the source space from Section 3.2 was used as the influence space.
A very slow cooling schedule with the cooling rate ft of 0.99 was applied in order to make sure
that the search reached the global minimum of the cost function. The localization error was
defined as the Euclidian distance between the somatosensory reference source locations and
the inversely fitted ones resulting from the LRCE. The residual variance ν of the goal function
was calculated as the percentile misfit between the noisy reference potential and the fitted
potential that was computed from the fitted source parameters and conductivities. The
explained variance shown in the result tables is 100% −ν.

3.4 SEP measurement
We measured somatosensory evoked potential (SEP) data in order to apply our LRCE approach
to real empirical EEG data. Tactile somatosensory stimuli were presented to the right index
finger of the subject from Section 3.1 using a balloon diaphragm driven by bursts of compressed
air. We compensated for the delay between the electrical trigger and the arrival of the pressure
pulse at the balloon diaphragm as well as the delay caused by the inertia of the pneumatic
stimulation device (half-way displacement of the membrane), together 52 ms in our
measurements. Following standard practice [Mertens and Lütkenhöner, 2000], the stimuli were
presented at 1 Hz (±10% variation to avoid habituation effects). A 63 channel EEG (10%
system) recorded the raw time signals for the SEP study. Two electrooculography (EOG)
electrodes were furthermore used for horizontal and vertical eye movement control. The
collection protocol consisted of three runs of 10 minutes each EEG data with a sampling rate
of 1200 samples/sec using a real time low pass filter of 0–300 Hz. The BESA software [BESA,
2007] was then used for a rejection of noise-contaminated epochs (e.g., epochs containing eye
movements detected by means of the EOG channels) and for averaging the non-contaminated
epochs within each run (83% of 601 epochs for run 1, 90% of 605 epochs for run 2 and 89%
of 602 epochs for run 3). In order to optimize the SNR, the SEP data were furthermore averaged
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over the 1579 non-contaminated epochs of the three runs. The data was measured with FCz as
reference electrode. The baseline-corrected (from −35 ms to 0 ms pre-stimulus) averaged EEG
dataset was filtered using a 4th order butterfly digital filter with a bandwidth of 0.1 to 45 Hz.
When using the prestimulus interval between −20 ms and 0 ms for the determination of the
noise level and the peak of the first tactile component at 35.3ms as the signal, we achieved a
SNR of 24dB. Finally, by means of a channel-selection procedure (exclusion of 20 ipsilateral
electrodes with poor SNR), we were able to even increase the SNR to 26.4 dB.

A butterfly- and a position-plot of the SEP data is shown in Figure 4.

3.5 Computing platform
All simulations and evaluations ran on a Linux-PC with an Intel Pentium 4 processor (3.2GHz)
using the SimBio software environment (SimBio, 2008).

4 Results
4.1 LRCE simulation studies

4.1.1 Simultaneous reconstruction of brain and skull conductivity and a pair of
somatosensory sources—We performed the LRCE procedure as described in Section 2.3
with an inverse two-dipole fit on the discrete influence space, while additionally allowing skull
and brain conductivity to vary as free discrete optimization parameters. The permitted brain
conductivities (σbrain) were 0.12, 0.33 [Haueisen, 1996], and 0.48 S/m. For each brain
conductivity, the skull conductivity (σskull) was allowed to vary so as to achieve brain:skull
ratios (four-compartment head model) of 80, 40, 25, 15, 10, 8, and 5. The CSF conductivity
remained fixed at 1.79 S/m [Baumann et al., 1997] and the scalp conductivity at 0.33 S/m
[Haueisen et al., 1996; Fuchs et al., 1998; Huiskamp et al., 1999]. Because of the fixed
conductivities, possible problems are avoided that are due to the ambiguity between source
strength and overall conductivity. This resulted in a total of 21 conductivity configurations.

Following equation (4), the total number of possible source and conductivity configurations
in this simulation was thus approximately 4.8 billion.

Table 1 contains the LRCE source localization and conductivity estimation results for the
simulated reference EEG data and Table 2 the LRCE reconstruction errors in the corresponding
dipole moments. As the tables show, besides appropriately reconstructing both sources, the
LRCE was able to accurately select the reference conductivity values of the brain and the skull
compartment in the cases of no noise (max.errors: 0mm loc., 0 degree orientation, 0%
magnitude) and low noise (40 dB, max.errors: 3mm loc., 6 degree orientation, 18% magnitude).
However, for the noisier data with an SNR of 25 or lower, neither the somatosensory sources
nor the brain and the skull conductivity values could be reconstructed correctly. The wall clock
time for setting up the global leadfield matrix Λ was 199 minutes. When averaging over all
noise configurations and source orientation scenarios, the SA needed about 17 hours of
computation time for finding the global optimum (results indicated in Tables 1 and 2). Much
of it was access-time to the global leadfield matrix within the LRCE procedure.
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4.1.2 Simultaneous reconstruction of brain and skull conductivity and a single
source in the left somatosensory cortex—In the second simulation, we first generated
noise-free and noisy reference data for a single dipole source in the left somatosensory cortex
and then performed a single dipole fit with skull and brain conductivity as two additional free
optimization parameters in the LRCE. We used the same scalp, skull, CSF, and brain
conductivity values as in the previous simulation:

The number of possible source and conductivity configurations was 449K (equation (4)).

As shown in Tables 3 and 4, the conductivities were accurately estimated for reference data
with 40dB and 25dB SNR and the source reconstruction errors were very low (max.errors for
40dB: 0mm loc., 1 degree orientation, 1% magnitude; max.errors for 25dB: 2mm loc., 4 degree
orientation, 2% magnitude). For 20dB, the skull to brain conductivity ratio was still correct
and the source reconstruction was still acceptable (max.errors: 4mm loc., 9 degree orientation,
12% magnitude), but the brain conductivity was no longer correctly reconstructed. Still higher
noise levels led to unacceptable results. Like in Section 4.1.1, the wall clock time for setting
up the global leadfield matrix Λ was 199 minutes. When averaging over all noise configurations
and source orientation scenarios, the LRCE procedure took about 1.3 minutes of computation
time for finding the global optimum (results indicated in Tables 3 and 4).

4.1.3 Simultaneous reconstruction of the brain:skull conductivity ratio and a
pair of somatosensory sources—We carried out a third simulation, in which only skull
conductivity was allowed to vary with fixed conductivity values for brain (0.33 S/m), scalp
(0.33 S/m), and CSF (1.79 S/m). The brain:skull conductivity ratio (four-compartment model)
was chosen as follows.

The total number of possible source and conductivity configurations for this scenario was 1.6
billion (equation (4)).

As shown in Tables 5 and 6, for both source orientation scenarios, the LRCE estimated the
skull conductivity correctly down to a 20 dB SNR, while reasonable source reconstructions
were only achieved down to 25 dB (<8mm loc., <16degree orientation, <15% magnitude). The
LRCE reconstruction failed to give acceptable results for both the brain:skull conductivity ratio
(four-compartment model) and the source reconstructions only at an SNR of 15dB or lower.
The wall clock time for setting up the global leadfield matrix Λ was 66 minutes. When
averaging over all noise configurations and source orientation scenarios, the LRCE procedure
took about 451 minutes of computation time for finding the global optimum (results indicated
in Tables 5 and 6). Again, much of it was access-time to the global leadfield matrix within the
LRCE procedure.

4.1.4 Simulation with a fixed conductivity and a pair of somatosensory sources
—In a last simulation, volume conductors with fixed skull conductivity values from the set of
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σskull from Section 4.1.3 were used. For these fixed volume conductors, only the two
somatosensory sources were reconstructed on the discrete influence space using the simulated
annealing optimizer with reference EEG data at an SNR of 25dB.

The results in Table 7 show the effects of an erroneous choice of the brain:skull conductivity
ratio (four-compartment model) (80, 40, 15, 10, 8, 5) on the localization accuracy in comparison
to the localization errors caused just by the addition of noise when using the correct brain:skull
ratio (four-compartment model) of 1:25. Incorrect skull conductivity within the source
localization caused large localization errors. As expected, the correct skull conductivity
(σbrain/σskull = 25) gave the smallest localization errors and the highest explained variance for
both source orientation scenarios.

4.2 Application of LRCE to the SEP data
In a last examination, the new LRCE algorithm was applied to the post stimulus P35 component
of the averaged SEP data at the peak latency of 35.3ms as indicated in Figure 4. The detailed
four compartment (scalp, skull, CSF, and brain) finite element model with improved
segmentation of skull and CSF geometry described in Section 3.2 was used as the volume
conductor. Because of the limiting SNR of 26.4 dB for the SEP data and based on our simulation
results from Section 4.1, we focused on the simultaneous reconstruction of the contralateral
somatosensory P35 source in combination with the estimation of both the brain and the skull
conductivities. Accordingly, we assigned fixed isotropic conductivities to CSF (1.79 S/m)
[Baumann et al., 1997] and scalp (0.33 S/m) [Haueisen et al., 1996;Fuchs et al., 1998;Huiskamp
et al., 1999]. Again, the source space from Section 3.2 was used as the influence space for
simulated annealing optimization together with brain:skull conductivity ratios (four-
compartment head model) of 140, 120, 100, 80, 72, 60, 42, 25, 23, 15, 10, 8 and 5 ([Hoekema
et al., 2003], who claimed ratios of 10 up to only 4).

The total number of possible source and conductivity configurations was 1,026K.

Applying the LRCE approach resulted in the contralateral somatosensory source shown in
Figure 5, in the brain conductivity of 0.48S/m and in a skull conductivity of 0.004 S/m, with
an explained variance of 99%. While the value of skull conductivity is close to what is generally
used in three-compartment head model based source analysis, with 0.48S/m, the value of brain
conductivity is higher than the commonly used (in three-compartment approaches) value of
0.33S/m (e.g., [de Munck and Peters, 1993;Buchner et al., 1997;Fuchs et al., 1998;Zanow,
1997;Waberski et al., 1998;Huiskamp et al., 1999]). The estimated brain conductivity is
however still in the range of brain conductivity values that were determined by others (e.g.,
the value of 0.57S/m for subject 1 in [Goncalves et al., 2003a], 0.43S/m for subject 5 in
[Goncalves et al., 2003b], 0.42S/m for subject S2 in [Baysal and Haueisen, 2004]). The wall
clock time for setting up the global leadfield matrix Λ was about 315 minutes and the LRCE
procedure took about 10 minutes of computation time.

5 Discussion and conclusion
We developed a low resolution conductivity estimation (LRCE) procedure to individually
optimize a volume conductor model from a human head with regard to both geometry and
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tissue conductivities. We only exploited somatosensory evoked potential (SEP) data and a
combined T1-/PD-MRI dataset for the construction of a four-tissue (scalp, skull, cerebrospinal
fluid (CSF), brain) volume conductor FE model. The proposed procedure is safe and
noninvasive, and EEG laboratories should most often have access to such datasets, so that no
additional hard- and software is needed, in contrast to, e.g., approaches based on Electrical
Impedance Tomography (EIT) [Gonçalves et al., 2003b]. For the FE model, a special focus
was on an improved modeling of the skull shape and thickness and on the highly conducting
CSF compartment [Baumann et al., 1997; Huiskamp et al., 1999; Ramon et al., 2004; Wolters
et al., 2006; Wendel et al., 2008; Rullmann et al., 2008]. Obtaining accurate skull geometry is
important because changes in skull conductivity are known to be closely related to changes in
its compartmental thickness. The correction for geometry errors in modeling the skull
compartment were furthermore shown to be essential for the measurement of skull conductivity
[Gonçalves et al., 2003b]. While other authors have used parameter estimation in continuous
parameter space with local optimization algorithms [Fuchs et al., 1998; Gutiérrez et al.,
2004; Vallaghe et al., 2007, Zhang et al., 2006], we propose the combination of a discrete low
resolution parameter estimation with a global optimization method applied to realistic four-
compartment geometry to better take into account the limited signal-to-noise (SNR) of real
SEP or auditory evoked potential (AEP) measurement data. Because the cost function is
shallow [Gonçalves et al., 2003a], the proposed procedure using realistic FE volume conductor
modeling and simulated annealing (SA) optimization for approximating the global minimum
in acceptable computation time is important. While other authors used three compartment
boundary element (BE) [Fuchs et al., 1998; Gonçalves et al., 2003a;Plis et al., 2007; Vallaghe
et al., 2007] or finite element models [Zhang et al., 2006] (in the latter, additionally to the three
layers scalp, skull and brain, a low conducting silastic ECoG grid was modeled) for
conductivity estimation, we additionally model the CSF with a fixed conductivity of 1.79S/m
[Baumann et al., 1997], not only because its modeling was shown to have a large impact on
forward and inverse source analysis [Huang et al., 1990; Baumann et al., 1997; Ramon et al.,
2004; Wolters et al., 2006; Wendel et al., 2008; Rullmann et al., 2008], but also to avoid the
problem of the ambiguity between source strength and overall conductivity. In [Rullmann et
al., 2008], non-invasive EEG source analysis was validated by means of intra-cranial EEG
measurements and it was shown that ignoring the CSF by means of the commonly used three-
compartment realistically-shaped volume conductor led to spurious reconstruction results.
[Plis et al., 2007] derived a lower Cramer-Rao bound for the simultaneous estimation of source
and skull conductivity parameters in a sphere model for dipoles whose locations were not
constraint within the inner sphere volume. Since source depth and skull conductivity are closely
related, their final result was that it is impossible to simultaneously reconstruct both source
and skull conductivity parameters from measured surface EEG data in the sphere model. This
is an important theoretical result, however, there are strong differences to our study. Our study,
as well as the symmetric BEM study of [Vallaghe et al., 2007], used a cortex constraint, i.e.,
sources were only allowed on a surface. We furthermore used a realistic four-compartment FE
model of the head instead of the spherical volume conductor model that was used for the
derivation of the Cramer-Rao bounds in [Plis et al., 2007] and we fixed the conductivity of the
CSF compartment in our analysis to the value measured by [Baumann et al., 1997]. We only
allowed a user-given discrete set of some few (“low resolution”) possible conductivity values
for those tissues where conductivity measurements or other methods resulted in different
estimates. We propose to only apply the presented LRCE algorithm to EEG data where the
underlying sources are rather simple and where very good SNR ratios can be achieved like,
e.g., SEP and/or AEP data.

In the first simulation studies, we evaluated the LRCE algorithm in EEG simulations for its
ability to determine both the brain and the skull tissue conductivities together with the
reconstruction of one and two reference sources. At relatively low noise levels (down to 25 dB
SNR in the single source scenario and down to 40 dB SNR in the two source scenario), the
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LRCE resulted in acceptable reconstruction errors for the reference sources and correctly
estimated reference tissue conductivities, while results became unstable when further
increasing the noise. We also set up a simulation for the reconstruction of the skull to brain
conductivity ratio (four-compartment model) together with two sources in which results were
reasonable (correct skull:brain conductivity ratio, max. source reconstruction errors: <8mm
loc., < 16degree orientation, <15% magnitude) down to noise levels of 25 dB. We found in
our simulations that the most accurate source reconstructions were associated with the correctly
estimated conductivities (or conductivity ratio) and, moreover, that assuming an incorrect
conductivity ratio had a profoundly negative effect on the source reconstruction accuracy.

In a last examination, we applied the LRCE to measured tactile SEP data with the focus on
estimating both the brain and the skull conductivity. With an SNR of 26.4 dB, the data were
in the noise range of the second simulation study, which was based on a single equivalent
current dipole model. As shown in numerous studies [Mertens and Lütkenhöner, 2000; Hari
and Forss, 1999], this source model is adequate because the early SEP component arises from
area 3b of the primary somatosensory cortex (SI) contralateral to the side of stimulation. Our
explained variance to the measured data of about 99% for this source model further supports
our choice. The results from the LRCE analysis were a brain conductivity of 0.48 S/m and a
skull conductivity of 0.004 S/m. While this skull conductivity corresponds to the traditional
value in the literature [de Munck and Peters, 1993; Buchner et al., 1997; Fuchs et al., 1998],
we found the brain to have a lower resistance than generally assumed in three-compartment
head modeling approaches (e.g., [de Munck and Peters, 1993; Buchner et al., 1997; Fuchs et
al., 1998; Zanow, 1997; Waberski et al., 1998; Huiskamp et al., 1999]), but it is however still
in the range of brain conductivity values that were determined by others (e.g., the value of
0.57S/m for subject 1 in [Goncalves et al., 2003a], 0.43S/m for subject 5 in [Goncalves et al.,
2003b], 0.42S/m for subject S2 in [Baysal and Haueisen, 2004]).. Many recent papers have
focused on the brain:skull conductivity ratio and a large variability of results have been reported
for this value including 80 [Homma et al., 1995], 72 [Gonçalves et al., 2003a], 42 [Gonçalves
et al., 2003b], 25 ± 7 [Lai et al., 2005], 23 [Baysal and Haueisen, 2004], 18.7 ± 2.1 [Zhang et
al., 2006], 15 [Oostendorp et al., 2000] and 8 [Hoekema et al., 2003]. Because of the higher
conductivity of the brain, with an estimated brain to skull conductivity ratio of 120 (in a four-
compartment head model), our LRCE result is larger than the commonly used ratio of 80 [Rush
and Driscoll, 1968,1969; Homma et al., 1995]. Note that, in contrast to the studies using three-
compartment modeling [Homma et al., 1995; Oostendorp et al., 2000; Gonçalves et al.,
2003a; Gonçalves et al., 2003b; Baysal and Haueisen, 2004; Lai et al., 2005; Vallaghe et al.,
2007], our approach took the highly conducting CSF compartment into account. It is well
known that an increased conductivity of the brain compartment leads to a decreased potential
magnitude at the head surface while an increased conductivity of the CSF leads to an increased
potential magnitude. Since we modeled the CSF with the value of 1.79S/m as measured by
[Baumann et al., 1997] (i.e., a more than a factor of 5.4 higher value than the commonly used
0.33S/m in the three-compartment models), an increased conductivity value for the brain
compartment has to be expected in the four-compartment model. Our brain-to-skull
conductivity ratio (in a four-compartment model) of 120 thus has to be interpreted in light of
the above considerations.

With regard to computational complexity (or feasibility in daily routine), former FE
approaches, which were not based on the presented transfer matrix approach and on algebraic
multigrid FE solver methods would have needed weeks or even months for the computation
of a single leadfield matrix for a single conductivity configuration so that the proposed FE-
based LRCE approach would not have been feasible in practice. In [Buchner et al., 1997], the
computation of a single leadfield matrix for an FE mesh with 18,322 nodes and an influence
space with 2,914 nodes took roughly a week of computation time. [Waberski et al., 1998] used
an FE model with 10,713 nodes and concluded that improved headmodeling by finer
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discretization and more accurate representation of the conductivities are necessary and parallel
computing is needed to speed up the computation. The FE head model of [Zhang et al.,
2006] for the estimation of the in-vivo brain-to-skull conductivity ratio had 29,858 nodes. For
our presented LRCE approach, the underlying FE mesh had a resolution of 245,257 FE nodes,
which was necessary not only to appropriately model the CSF compartment, and our influence
space had 21,383 nodes. Furthermore, our LRCE algorithm does not only need to precompute
a single leadfield matrix, but as many leadfield matrices as we have combinations of user-given
conductivity values for the different tissue compartments as indicated by the global leadfield
matrix in equation (3). Still the presented LRCE approach, as indicated by means of the
computation times in Section 4 (measured on a single processor machine, see Section 3.5), is
practically feasible in daily routine with a computational amount of work in the range of some
few hours.

The following limitations of our study are important: The data of a single subject is not
representative for other subjects since we have to be aware of larger inter- and intra-subject
variability. The variability can be related to age, diseases, environmental factors, and personal
constitution as shown in animal studies [Crile et al., 1922] and as shown for humans by means
of the large discrepancy in the estimated brain-to-skull conductivity ratios (in three-
compartment models) between 80 [Rush and Driscoll, 1968, 1969; Homma et al., 1995] and
15 [Oostendorp et al., 2000]. Further simulation studies should be carried out that consider
noise from, e.g., the pre-stimulus interval of evoked potential measurements. The presented
LRCE procedure has to be automatized in order to allow a statistical evaluation of possible
errors and instabilities at different noise levels. We are currently working on such investigations
for a combined SEP/SEF-LRCE approach. The influence of a realistic extent of an active
cortical patch on our focal-source based LRCE method should be evaluated and its sensitivity
to biological noise (non-modeled “noise” current sources in the brain) has to be examined. The
performance of other global optimization approaches such as genetic algorithms [Kjellström,
1996] should be compared with the approach chosen here and higher FE resolutions have to
be used in order to avoid geometry representation problems in areas where, e.g., the CSF or
the skull compartments are very thin using, e.g., 1mm hexahedra FE modeling as described in
[Rullmann et al., 2008].

The current results illustrate the feasibility of building an optimized volume conductor model
with regard to both geometry and conductivity. As we have formulated it, such a study requires
accurate head geometry, in this case from both T1- and PD-weighted MRI (or T2-MRI) and
cortical constraints on the sources. The highly conducting CSF should not be neglected in the
headmodel [Huang et al., 1990; Baumann et al., 1997; Ramon et al., 2004; Wolters et al.,
2006; Wendel et al., 2008; Rullmann et al., 2008] and our procedure takes this compartment
into account. By obtaining SEP data, which allows independent reconstruction of the
underlying bioelectric source, it is then possible to estimate the optimal conductivities for the
individual subject using the proposed LRCE approach in highly realistic finite element models,
provided that the data has a sufficient SNR ratio. Note that one might also think of
simultaneously evaluating SEP data of different finger or toes ([Vallaghe et al., 2007], e.g.,
used left and right hand index finger SEP data). A related finding from this study is, there is a
trade off between the number of independent parameters that can be determined and the
complexity of the assumed source model. The specific trade off point is also strongly influenced
by the quality of the measured electric potentials. Thus the number of parameters that can be
dependably estimated is a function of both the signal quality and the number and quality of a
priori knowledge about, for example, the source location or orientation through a combination
with fMRI or anatomical and/or functional arguments (e.g., a strong restriction of the source
location to anatomically and physiologically reasonable areas close to the somatosensory SI
area). In this context, others have suggested that by including MEG data in the scheme [Fuchs
et al., 1998; Huang et al., 2007], it will be possible to improve stability considerably. We note
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that our approach differs from their procedures with regard to both head modeling and
conductivity optimization.

The success of the conductivity optimization approach and the more general advantages of
customized geometric models suggest a procedure for clinical applications. First of all, one
could use SEP and/or AEP data with high SNR together with T1- and PD-MR (or T2-MR)
images from the patient to construct a model that would be optimized for both geometric
accuracy and individual conductivity values. With this volume conductor model in place,
recorded potentials from more complex and clinically interesting sources could drive the
inverse solution and source analysis.

A better approximation to the real volume conductor using the proposed LRCE method is an
important step towards simultaneous EEG/MEG source analysis. Combining EEG and MEG
modalities compensates each others disadvantages, i.e., poor sensitivity of MEG to radial
sources and the much stronger conductivity dependency of EEG [Fuchs et al., 1998; Huang et
al., 2007]. Using combined somatosensory evoked potentials and fields (SEP/SEF) in
combination with T1-and PD-MRI (or T2-MRI) should further stabilize the application of the
presented LRCE method for the estimation of tissue conductivities. For the quasi-tangentially
oriented P35 somatosensory source, MEG-SEF data can be exploited to strongly restrict the
source location and especially its depth as shown, e.g., in [Fuchs et al., 1998; Huang et al.,
2007], so that the resolution of the proposed LRCE method with regard to the conductivities
of the different compartments could be increased. With such data in hand, the presented LRCE
method using FE volume conductor modeling might also contribute to the estimation of
conductivity values for further compartments like the scalp or of anisotropy ratios in the skull
and brain compartments [Marin et al., 1998; Haueisen et al., 2002; Wolters et al., 2006;
Rullmann et al., 2008].
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Figure 2.
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Figure 3.

Lew et al. Page 22

Hum Brain Mapp. Author manuscript; available in PMC 2010 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
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Figure 5.
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Table 2
Results of the LRCE algorithm for a simultaneous reconstruction of the brain and the skull conductivity together with
two dipole sources. Part II: Error (rounded to integer numbers) in dipole (a) orientation (in degree) and (b) magnitude
(in %).

(a) Orientation error (in degree)

Reference SEP Tangential Radial

Right dipole Left dipole Right dipole Left dipole

noise free 0 0 0 0

40dB 6 3 2 5

25dB 16 30 10 16

20dB 17 12 9 14

(b) Magnitude error (in %)

Reference SEP Tangential Radial

Right dipole Left dipole Right dipole Left dipole

noise free 0 0 0 0

40dB 15 18 17 12

25dB 54 1 10 25

20dB 102 34 19 54
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Table 3
Results of the LRCE algorithm for a simultaneous reconstruction of the brain and the skull conductivity together with
a single dipole source. The underlying reference source in the somatosensory cortex had (a) tangential and (b) radial
orientation. Part I: Estimated conductivity and, rounded to 1 digit after the decimal point, localization error (mm) and
explained variance to the data (%).

(a) Tangential reference source

Reference SEP

Localization error (mm)

Estimated conductivity

Goal function
Expl. var. (%)σbrain(S/m) σbrain/σskull

Noise free 0 0.33 25 100

40dB 0 0.33 25 99.9

25dB 2.2 0.33 25 96.7

20dB 4.1 0.48 25 95.8

15dB 9.4 0.12 25 83.4

(b) Radial reference source

Reference SEP Localization error (mm) Estimated conductivity Goal function
Expl. var. (%)

σbrain(S/m) σbrain/σskull

Noise free 0 0.33 25 100

40dB 0 0.33 25 99.9

25dB 2,2 0.33 25 98.4

20dB 4.1 0.12 25 90.0

15dB 10.8 0.48 10 79.0
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Table 4
Results of the LRCE algorithm for a simultaneous reconstruction of the brain and the skull conductivity together with
a single dipole source. Part II: Error (rounded to integer numbers) in dipole (a) orientation (in degree) and (b) magnitude
(in %).

(a) Orientation error (in degree)

Reference SEP Tangential Radial

noise free 0 0

40dB 1 0

25dB 3 4

20dB 9 1

15dB 6 25

(b) Magnitude error (in %)

Reference SEP Tangential Radial

noise free 0 0

40dB 0 1

25dB 2 1

20dB 7 12

15dB 40 9

Hum Brain Mapp. Author manuscript; available in PMC 2010 September 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Lew et al. Page 29

Table 5
Results of the LRCE algorithm for a simultaneous reconstruction of the brain:skull conductivity ratio together with
two dipole sources. Underlying reference sources in the somatosensory cortex had (a) tangential and (b) radial
orientations. Part I: Estimated conductivity and, rounded to 1 digit after the decimal point, localization error (mm) and
explained variance to the data (%).

(a) Tangential reference sources

Reference SEP
Localization error(mm)

Estimated
σbrain/σskull

Goal function
Expl. var.(%)Right dipole Left dipole

Noise free 0 0 25 100

40dB 2.2 2.2 25 99.8

25dB 2.0 3.3 25 99.0

20dB 6.0 5.9 25 97.4

15dB 17.6 41.1 15 64.3

(b) Radial reference sources

Reference SEP Localization error(mm) Estimated
σbrain/σskull

Goal function Expl.
var.(%)

Right dipole Left dipole

Noise free 0 0 25 100

40dB 3.0 3.0 25 99.4

25dB 7.4 7.5 25 96.6

20dB 5.2 10.7 25 92.7

15dB 24.6 13.2 5 89.1
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Table 6
Results of the LRCE algorithm for a simultaneous reconstruction of the brain:skull conductivity ratio together with
two dipole sources. Part II: Error (rounded to integer numbers) in dipole (a) orientation (in degree) and (b) magnitude
(in %).

(a) Orientation error (in degree)

Reference SEP Tangential Radial

Right dipole Left dipole Right dipole Left dipole

Noise free 0 0 0 0

40dB 6 3 2 5

25dB 2 6 11 16

20dB 10 10 7 15

15dB 9 24 8 6

(b) Magnitude error (in %)

Reference SEP Tangential Radial

Right dipole Left dipole Right dipole Left dipole

Noise free 0 0 0 0

40dB 15 18 17 12

25dB 8 8 15 7

20dB 26 1 6 40

15dB 21 14 41 68
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