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Abstract

A mathematical dipole is widely used as a model for the primary current source in

electroencephalography (EEG) source analysis. In the governing Poisson-type dif-

ferential equation, the dipole leads to a singularity on the right-hand side, which has

to be treated specifically. In this paper, we will present a full subtraction approach

where the total potential is divided into a singularity and a correction potential.

The singularity potential is due to a dipole in an infinite region of homogeneous

conductivity. The correction potential is computed using the finite element (FE)

method. Special care is taken in order to evaluate the right-hand side integral ap-

propriately with the objective of achieving highest possible convergence order for

linear basis functions. Our new approach allows the construction of transfer matri-

ces for fast computation of the inverse problem for anisotropic volume conductors.
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ACCEPTED MANUSCRIPTA constrained Delaunay tetrahedralisation (CDT) approach is used for the genera-

tion of high-quality FE meshes. We validate the new approach in a four-layer sphere

model with a highly conductive cerebrospinal fluid (CSF) and an anisotropic skull

compartment. For radial and tangential sources with eccentricities up to 1mm below

the CSF compartment, we achieve a maximal relative error of 0.71% in a CDT-FE

model with 360K nodes which is not locally refined around the source singularity

and therefore useful for arbitrary dipole locations. The combination of the full sub-

traction approach with the high quality CDT meshes leads to accuracies that, to

the best of the authors knowledge, have not yet been presented before.

Key words: electroencephalography, source reconstruction, finite element method,

dipole, full subtraction approach, constrained Delaunay tetrahedralisation,

validation in four-layer sphere models, cerebrospinal fluid, conductivity anisotropy,

projected subtraction approach, transfer matrix

1 Introduction

Inverse methods are used to reconstruct current sources in the human brain by

means of electroencephalography (EEG) or magnetoencephalography (MEG)

measurements of, e.g., event related fields or epileptic seizures (Hämäläinen

et al., 1993; Michel et al., 2004; Plummer et al., 2008; Rullmann et al., 2008).

A critical component of the inverse neural source reconstruction is the so-

lution of the forward problem, i.e., the simulation of the fields at the head

surface for a known primary current source in the brain. Because of the avail-

∗ Corresponding author. PD.Dr.rer.nat. Carsten H.Wolters, Tel.: +49/(0)251/83-

56904, Fax: +49/(0)251/83-56874
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ACCEPTED MANUSCRIPTability of quasi-analytical EEG forward problem solution formulas (de Munck

and Peters, 1993), the head volume conductor is still often represented by a

multi-layer sphere model. However, this model is just a rough approximation

to the reality, so that numerical approximation methods are more and more

frequently used such as the boundary element method (BEM) (Hämäläinen

et al., 1993; Kybic et al., 2005), the finite volume method (FVM) (Cook and

Koles, 2006), the finite difference method (FDM) (Hallez et al., 2005) or the

finite element method (FEM). This paper focuses on the FEM which allows

high accuracy for the numerical solution of elliptic partial differential equa-

tions since it is specifically tailored to the corresponding variational formula-

tion (Hackbusch, 1992; Braess, 2007; Dahmen and Reusken, 2008) and since it

allows high flexibility in modelling the forward problem in geometrically com-

plicated inhomogeneous and anisotropic head volume conductors (Bertrand

et al., 1991; Awada et al., 1997; van den Broek, 1997; Marin et al., 1998;

Schimpf et al., 2002; Zhang et al., 2006; Wolters et al., 2007a,b). Advantages

of the FEM are that the underlying weak formulation of the boundary value

problem and its Galerkin-discretisation allow on the one side an appropriate

and accurate modelling of the physics and offers on the other side a mathemat-

ically clean treatment of cases with low regularity (Hackbusch, 1992; Braess,

2007; Dahmen and Reusken, 2008) like the one in EEG source analysis with

the discontinuous tissue conductivities. As will be shown, the FEM discreti-

sation can be adapted to the structure of the solution function by means of

appropriate mesh refinements and coarsenings so that highest accuracy can

be achieved with a reasonable number of nodes.

It was shown in (Sarvas, 1987; de Munck et al., 1988; Hämäläinen et al., 1993;

Murakami and Okada, 2006) that the mathematical dipole is an adequate
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ACCEPTED MANUSCRIPTmodel to represent the primary current which is caused by a synchronous

activity of tens of thousands of densely packed apical dendrites of large pyra-

midal cells oriented in parallel in the human cortex. The dipole model is thus

considered to be the “atomic” structure of the primary current density distri-

bution that has to be reconstructed within the inverse problem. Hence, one of

the key questions for all 3D forward modelling techniques is the appropriate

modelling of the potential singularity introduced into the differential equation

by means of the mathematical dipole.

Direct potential approaches (Yan et al., 1991; Buchner et al., 1997) approxi-

mate the dipole moment through optimally distributed monopolar sources and

sinks on neighbouring FE nodes of the source location. This approach leads

to finite distances between the poles that seem reasonable and it performs

well in validation studies (Buchner et al., 1997; Wolters et al., 2007b). How-

ever, a disadvantage of direct approaches is the absence of a well-understood

mathematical theory. Furthermore, in recent comparison studies of different

direct methods with the subtraction approach (Awada et al., 1997; Schimpf

et al., 2002), it is concluded that the overall best accuracy is achieved using

the latter method.

A subtraction approach for the modelling of a mathematical dipole in FE-

based source analysis was widely suggested (Bertrand et al., 1991; Awada

et al., 1997; van den Broek, 1997; Marin et al., 1998; Schimpf et al., 2002;

Wolters et al., 2007a). All proposed approaches have in common that the

total potential is divided into an analytically known singularity potential

and a singularity-free correction potential which can then be approximated

numerically using an FE approach. The subtraction approach is applicable

for arbitrary geometries and the FE discretisation allows for a treatment of
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ACCEPTED MANUSCRIPTgeometric details and tissue inhomogeneities and anisotropies. In (Wolters

et al., 2007a), a theoretical insight was given into the subtraction approach. A

proof was given for existence and uniqueness of a weak solution in the func-

tion space of zero-mean potential functions and convergence properties of the

FE-approach to the correction potential were stated. A projected subtraction

method was proposed where the singularity potential was projected in the

FE space (Wolters et al., 2007a). This approach was shown to perform well

in a three-compartment (skin, skull, brain) sphere model provided that the

so-called source eccentricity was limited to 95%. The eccentricity is generally

defined as the percent ratio of the distance between the source location and

the model midpoint divided by the radius of the inner sphere. When consider-

ing a three-shell model, 95% eccentricity seems reasonable because the dipoles

that are located in the cortex will have an eccentricity even lower than 92%

as reported in (Marin et al., 1998).

However, the three-compartment model of the head, which is still most of-

ten used in source analysis (see, e.g., (Hämäläinen et al., 1993; Michel et al.,

2004; Kybic et al., 2005; Wolters et al., 2007a)), ignores the cerebrospinal fluid

(CSF) compartment between the cortex and the skull. (Baumann et al., 1997)

showed for a group of 7 human subjects (neurosurgical patients, three males,

four females, ranging in age from 4.5 months to 70 years) that the CSF conduc-

tivity at body-temperature can accurately be measured to be 1.79 S/m with a

maximal standard deviation of less than 1.4% between subjects for the large

frequency range between 10Hz and 10,000Hz. Additionally, the CSF compart-

ment was shown to have a significant influence on EEG source analysis (Ramon

et al., 2004; Wendel et al., 2008; Rullmann et al., 2008). In four-compartment

models, this layer is taken into account, but source eccentricity then has to
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ACCEPTED MANUSCRIPTbe determined with regard to the inner CSF surface, i.e., the most eccentric

sources are only 1 or 2mm apart from the next conductivity discontinuity.

Therefore, eccentricities of more than 98% have to be examined. It is well-

known (and in (Wolters et al., 2007a), a theoretical reasoning was given for

this fact), that with increasing eccentricity, the numerical accuracy decreases.

This is not only the case for the subtraction approach (Bertrand et al., 1991;

van den Broek, 1997; Marin et al., 1998; Schimpf et al., 2002; Wolters et al.,

2007a), but also for the direct approaches in FE modelling (Yan et al., 1991;

Buchner et al., 1997; Schimpf et al., 2002; Wolters et al., 2007b). Examining

modelling accuracy at high source eccentricities is thus important and consti-

tutes a major numerical challenge. In this paper, a four-compartment sphere

model is used for validation of the proposed FE approach, the CSF compart-

ment is modelled with the isotropic conductivity value of 1.79 S/m (Baumann

et al., 1997) and sources are considered with eccentricities up to 98.7% (1mm

below the CSF). Furthermore, as (Marin et al., 1998; Wolters et al., 2007a)

have shown, modelling skull conductivity anisotropy is a further numerical

challenge and generally leads to higher numerical errors than modelling the

skull as an isotropic compartment. Following (Marin et al., 1998), we will

model the skull compartment with a conductivity anisotropy of 1:10.

The numerical accuracy of a subtraction approach is determined by means of

the following two important criteria: i) FE approach for the numerical com-

putation of the correction potential and ii) FE mesh generation procedure.

Until now, in 4 layer sphere model validation studies with realistic source ec-

centricities up to 98%, none of the presented FE approaches were shown to

achieve satisfying numerical accuracy in combination with being practically

feasible in an inverse source analysis scenario. The projected subtraction ap-
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ACCEPTED MANUSCRIPTproach presented in (Wolters et al., 2007a) only performed well up to 95%

eccentricity. (Schimpf et al., 2002) investigated an FE subtraction approach

in a regular 1mm hexahedral model of a four layer sphere volume conduc-

tor with isotropic skull and sources up to 1mm below the CSF compartment.

For the most eccentric source, a topography error of 7% and a magnitude

error of 25% were reported. It is well-known also from other studies that the

abrupt transitions and right angles of regular hexahedral models at material

interfaces negatively influence especially the magnitude error (Wolters et al.,

2007b). Even if a geometry-adaptation of the hexahedra can alleviate this

problem (Wolters et al., 2007b), a well-chosen tetrahedralisation will still bet-

ter represent smooth tissue boundaries and can furthermore be adapted to the

specific structure of the solution function. However, until now, only ordinary

Delaunay tetrahedralisation as defined in (Si and Gärtner, 2005; Si, 2008)

was proposed for FE-based source analysis (Bertrand et al., 1991; van den

Broek, 1997; Buchner et al., 1997; Marin et al., 1998; Wolters et al., 2007a).

In (Bertrand et al., 1991; van den Broek, 1997; Marin et al., 1998), coarse

ordinary tetrahedral meshes were considered yielding unacceptably large nu-

merical errors already at eccentricities above 90%. In (Bertrand et al., 1991;

van den Broek, 1997), local mesh refinement around the source was used to

achieve better results. However, with regard to the inverse problem, the setup

of source-location dependent locally refined meshes is difficult to implement

and time-consuming to compute and thus might not be practicable for an

inverse source analysis.

In this paper, we propose a so-called full subtraction FE approach which ap-

propriately evaluates the right-hand side integral for the correction potential

with the objective of achieving highest possible convergence order for linear

7
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will be presented and used for the generation of high-quality FE meshes. Even

if we will also propose to adapt the tetrahedralisation by means of an appro-

priate refinement and coarsening to the correction potential solution function,

our new approach does not need local mesh refinement around the source.

As we will show, it therefore allows the construction of transfer matrices for

fast computation of the inverse problem. We validate the new approach in

a four-layer sphere model with highly-conductive CSF and anisotropic skull

compartment and sources up to 1mm below the CSF compartment. We com-

pare the accuracy of our new method with the projected subtraction approach

from (Wolters et al., 2007a) and the literature. It will be shown that the com-

bination of the full subtraction approach with the CDT-FE meshes leads to

very low numerical errors for the computed EEG potentials. Note that since

the magnetoencephalography (MEG) forward problem is also based on the

computed electric potential (see, e.g., Hämäläinen et al. (1993); Wolters et al.

(2004)), our method is directly applicable to MEG source analysis, too.

2 Methods

2.1 The Continuous Forward Problem

The mathematical model for the numerical simulation of electric and mag-

netic fields in the human head is based on the quasistatic approximation of

Maxwell’s equations (Plonsey and Heppner, 1967; Sarvas, 1987; Hämäläinen

et al., 1993). Following (Sarvas, 1987; de Munck et al., 1988; Hämäläinen et al.,

1993; Murakami and Okada, 2006), the primary current density function is de-
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Jp = Jy, Jy(x) = div M(y)δ(x − y), y ∈ Y ⊂ Ω, M(y) ∈ R
3 (1)

with M(y) being the current dipolar moment at position y, Ω ⊂ R
3 the head

domain, Y the central surface of the gray matter compartment where the

dipole sources are located (Y is thus the source space) and δ the Dirac delta

distribution. The forward problem in source analysis is then to find a solution

for the electric potential u (in an appropriate function space) such that

div σ(x) ∇u(x) =Jp(x) for a.e. x ∈ Ω, (2)

〈σ(x)∇u(x), n(x)〉=0 for a.e. x ∈ Γ,
∫

Ω

u(x)dx =0.

with σ(x) (σ : R
3 → R

3×3) being the symmetric positive definite conductivity

tensor at position x, n(x) the outer unit normal at a scalp surface point x ∈ Γ

and 〈·, ·〉 the inner product (a.e. is an abbreviation for almost every). In order

to understand the difficulties of a discretisation of the forward problem we

consider a simple example where the solution is known analytically. For an

unbounded volume conductor Ω = R
3 and a constant homogeneous conduc-

tivity σ(x) ≡ σ(y) for all x ∈ Ω, the solution u∞,y for the right-hand side

Jp = Jy of (2) is given by

u∞,y(x) :=
1

4π
√

det σ(y)

〈M(y), σ(y)−1(x − y)〉

〈σ(y)−1(x − y), x − y〉3/2
. (3)

Later, we will also need the gradient of this function, which can be expressed

as

∇u∞,y(x) =
1

4π
√

det σ(y)
·

σ(y)−1M(y)

〈σ(y)−1(x − y), x − y〉3/2
(4)

9
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−

1

4π
√

det σ(y)
·
3〈M(y), σ(y)−1(x − y)〉σ(y)−1(x − y)

〈σ(y)−1(x − y), x − y〉5/2
.

Further properties of this so-called singularity potential function u∞,y are given

in Appendix A.1. In order to resolve the singularity of u∞,y at x = y in

the discretisation, one would have to include special singular basis functions

or use a locally refined grid. In the following, we will derive a continuous

formulation where the singularity in the right-hand side is removed so that

standard discretisation techniques are applicable.

2.2 Subtraction forward problem

In order to apply a finite element discretisation, we have to reformulate the

problem, because neither the right-hand side Jp nor the solution u allow for

a good approximation by standard finite elements. Moreover, the variational

formulation would require an integration by parts (Gauß integral theorem,

resp. Green’s identity), which might not be applicable for singular functions

such as the solution for the total potential u and the right-hand side J p from

equation (2). Therefore, with u∞,y being the singularity potential from (3), the

subtraction forward problem is to find a solution for the correction potential,

ucorr,y, (in an appropriate function space) such that

div σ(x) ∇(ucorr,y(x) + u∞,y(x)) =Jp(x) for a.e. x ∈ Ω, (5)

〈σ(x)∇(ucorr,y(x) + u∞,y(x)), n(x)〉=0 for a.e. x ∈ Γ,
∫

Ω

(ucorr,y(x) + u∞,y(x))dx =0.

Equation (5) can be written in the form

div σ(x) ∇ucorr,y(x) = f(x) for a.e. x ∈ Ω, (6)

10
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ACCEPTED MANUSCRIPT〈σ(x)∇ucorr,y(x), n(x)〉= g(x) for a.e. x ∈ Γ, (7)
∫

Ω

ucorr,y(x)dx =−
∫

Ω

u∞,y(x)dx,

with the right-hand side functions

f(x) :=div (σ(y) − σ(x)) ∇u∞,y(x) for x ∈ Ω, (8)

g(x) :=−〈σ(x)∇u∞,y(x), n(x)〉 for x ∈ Γ. (9)

In source analysis, the human cortex is most often assumed to be

isotropic (Bertrand et al., 1991; van den Broek, 1997; Schimpf et al., 2002; Ky-

bic et al., 2005). This assumption was recently confirmed by (Shimony et al.,

1999), who measured water diffusion anisotropy in 12 regions of interest in the

human brain and found the cortex to be an isotropic compartment 1 . We will

therefore in the following assume isotropic conductivity for the cortical layer.

However, even in case of cortical anisotropy, a so-called homogeneity assump-

tion, needed for the subtraction approach, is very reasonable. It assumes that a

small subdomain Ωy
ε can be found around any source position y ∈ Y such that

the tensor σ(x) is homogeneous (isotropic or anisotropic) for all x ∈ Ωy
ε (see

Assumption 1 in Appendix A.2). In case of cortical anisotropy, Ωy
ε might, e.g.,

be a voxel (at least a subdomain of a voxel) for which a conductivity tensor

was determined indirectly from measured diffusion tensor magnetic resonance

imaging (Tuch et al., 2001; Wang et al., 2008). Because of the homogeneity

assumption, we find σ(y) − σ(x) = 0 for all x ∈ Ωy
ε , so that in subdomain

Ωy
ε , where u∞ is singular, the right-hand side function f(x) in equation (6) is

1 This assumption was furthermore approved by world experts in DTI on the

2nd International Summer School about Diffusion Tensor Magnetic Resonance

Imaging, Institute for Biomedical Engineering, University of Ilmenau, Germany,

http://www.tu-ilmenau.de/fakia/Summerschool-2007.7753.0.html?&no cache=1.

11



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPTidentical to zero. The singularity on the right-hand side of equation (5) was

thus successfully eliminated by means of the subtraction approach and the

right-hand side function f(x) in equation (6) is now square-integrable over

the whole domain Ω and thus appropriate for a finite element approach. Addi-

tionally, for existence and uniqueness of a solution for the elliptic differential

equation (6) with inhomogeneous Neumann boundary condition (7) and right-

hand side functions (8) and (9), a compatibility condition has to be fulfilled,

which will be proved in Lemma 2 (see Appendix A.2). Therefore, the problem

is well defined and appropriate for a variational formulation (Hackbusch, 1992;

Braess, 2007), which will be derived in Appendix A.3.

2.3 Finite element approach

For the subtraction forward problem, the variational formulation and the

Galerkin finite element approach using standard conforming linear basis func-

tions ϕi at nodal positions ξi (i = 1, . . . , N) is presented in Appendix A.3.

2.3.1 Numerics of the full subtraction approach

The finite element approach leads to the following linear system for the full

subtraction approach:

Ku = by, K ∈ R
N×N , u, by ∈ R

N (10)

with the stiffness matrix

Ki,j :=
∫

Ω

〈σ(x)∇ϕj,∇ϕi〉dx, i, j = 1, . . . , N (11)

12
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by
i :=

∫

Ω

〈(σ(y) − σ(x))∇u∞,y(x),∇ϕi(x)〉dx (12)

−
∫

Γ

ϕi(x)〈n(x), σ(y)∇u∞,y(x)〉dx, i = 1, . . . , N. (13)

The term ∇ϕi is constant for linear elements, so that entries of K in (11) can

be computed easily. The entries of the right-hand side by need to be accurate

enough in order to preserve the finite element convergence. The gradient of

u∞,y can be computed analytically following equation (4). Since we project the

correction potential into the space of piecewise linear elements, it is sufficient to

have a perturbation of an order of the square of the step size which is achieved

by a second order accurate quadrature formula. In Section 3.1 we will verify

that this order is necessary and sufficient to produce a negligible quadrature

error. We assemble the first term (12) of by
i element-wise. For x → y, the

integral even vanishes because of the homogeneity assumption. The second

term (13) involves the normal vector and the basis function itself. Thus, we

need a quadrature formula that resolves ∇u∞,y at the boundary (where it is

very smooth) and that is accurate for linear functions. Again, a second order

quadrature formula for the surface triangles is necessary and sufficient, as will

be verified in Section 3.1.

Please put Table 1 here.

For the numerical integration of the right-hand side (12), (13), we use quadra-

ture formulas of (Stroud, 1971). As shown in Table 1, the overall numerical

accuracy of the full subtraction approach will be evaluated for quadrature

orders of 1, 2 and 7. Our notation in Table 1 closely follows the one of the

13
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Chapter 7.8) (in our case: n = 3).

2.3.2 Numerics of the projected subtraction approach

In (Wolters et al., 2007a), a projected subtraction approach was presented

where the function u∞,y is projected in the finite element space by

u∞(x) ≈ u∞

N (x) =
N

∑

j=1

ϕj(x)u∞

j , u∞

j = u∞(ξj). (14)

Introducing the coefficient vector u∞ := (u∞

1 , . . . , u∞

N ), the system of equations

Ku = −Kcorru∞ − Su∞ (15)

was obtained where K was defined in (11) and the matrices Kcorr and S are

defined by

Kcorr
i,j := −

∫

Ω

〈(σ(y) − σ(x))∇ϕj(x),∇ϕi(x)〉dx (16)

and

Si,j :=
∫

∂Ω

〈σ(y)∇ϕj(x), n(x)〉ϕi(x)dx. (17)

Even if the projected subtraction approach is computationally less expensive

because for each source, only the coefficient vector u∞ has to be computed, the

drawback of the approach is the additional approximation error by (14). We

will see in the numerical validation section that the presented full subtraction

approach in which u∞ is not approximated in the FE space has a much higher

degree of accuracy.

14
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Fast transfer matrices are needed to strongly reduce computational complexity

with regard to FE based inverse EEG and MEG source analysis (Gencer and

Acar, 2004; Wolters et al., 2004; Pursiainen, 2007, 2008; Calvetti et al., 2008).

In Appendix A.4 we will show that only for the full subtraction approach,

a fast transfer matrix approach can be derived for both cortical conductivity

isotropy as well as anisotropy, whereas for the projected subtraction approach,

a fast transfer matrix approach implies an isotropic cortical compartment. In

Appendix A.5, we will furthermore present efficient concepts for precomputing

lead field matrices that are needed for a large class of inverse source analysis

methods.

2.5 Validation platform

2.5.1 Analytical solution in an anisotropic multilayer sphere model

De Munck and Peters (de Munck and Peters, 1993) derived series expansion

formulas for a mathematical dipole in a multilayer sphere model, denoted here

as the ”analytical solution”. A rough overview of the formulas will be given in

this section. The model consists of S shells with radii rS < rS−1 < . . . < r1 and

constant radial, σrad(r) = σrad
j ∈ R

+, and constant tangential conductivity,

σtang(r) = σtang
j ∈ R

+, within each layer rj+1 < r < rj. It is assumed that the

source at position x0 with radial coordinate r0 ∈ R is in a more interior layer

than the measurement electrode at position xe ∈ R
3 with radial coordinate

re = r1 ∈ R. The spherical harmonics expansion for the mathematical dipole

(1) is expressed in terms of the gradient of the monopole potential to the
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method to speed up the series convergence yields

u
ana

(x0, xe) =
1

4π
〈M, S0

xe

re
+ (S1 − cos ω0eS0)

x0

r0
〉

with ω0e being the angular distance between source and electrode, and with

S0 =
F0

r0

Λ

(1 − 2Λ cosω0e + Λ2)3/2
(18)

+
1

r0

∞
∑

n=1

{(2n + 1)Rn(r0, re) − F0Λ
n}P ′

n(cos ω0e)

and

S1 = F1
Λ cos ω0e − Λ2

(1 − 2Λ cosω0e + Λ2)3/2
(19)

+
∞
∑

n=1

{(2n + 1)R′

n(r0, re) − F1nΛn}Pn(cos ω0e).

The coefficients Rn and their derivatives, R′

n, are computed analytically and

the derivative of the Legendre polynomials, Pn, are determined by means of a

recursion formula. We refer to (de Munck and Peters, 1993) for the derivation

of the above series of differences 2 and for the definition of F0, F1 and Λ.

Here, it is only important that the latter terms are independent of n and

that they can be computed from the given radii and conductivities of layers

between source and electrode and of the radial coordinate of the source. The

computations of the series (18) and (19) are stopped after the k-th term, if

2 The following is a result of a discussion with J.C. de Munck: While constants in

formulas (71) and (72) in the original paper (de Munck and Peters, 1993) have to

be flipped, our versions of S0 and S1 in Equations (18) and (19) are correct.
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tk
t0

≤ υ, tk := (2k + 1)R′

k − F1kΛk. (20)

In the following simulations, a value of 10−6 is chosen for υ in (20). Using

the asymptotic expansion, no more than 30 terms are needed for the series

computation at each electrode.

2.5.2 Error criteria

We will compare numerical solutions with analytical solutions using three

error criteria that are commonly evaluated in source analysis (Meijs et al.,

1989; Bertrand et al., 1991; van den Broek, 1997; Marin et al., 1998; Schimpf

et al., 2002; Wolters et al., 2007a). The relative (Euclidean) error (RE) is

defined as

RE = ||unum − uana||2/||u
ana||2,

where uana, unum ∈ R
m denote the analytical and the numerical solution vector,

resp., at m measurement electrodes. In order to better distinguish between the

topography (driven primarily by changes in dipole location and orientation)

and the magnitude error (indicating changes in source strength), (Meijs et al.,

1989) introduced the relative difference measure (RDM)

RDM =

√

√

√

√

m
∑

i=1

(uana

i /||uana||2 − unum

i /||unum||2)
2

(for zero-mean data holds 0 ≤ RDM ≤ 2 (Schimpf et al., 2002)) and the

magnification factor (MAG)

MAG = ||unum||2/||u
ana||2
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2.5.3 Four compartment anisotropic sphere model

Please put Table 2 here.

The validation of the presented full subtraction approach will be carried out in

a four compartment sphere model with anisotropic skull compartment, whose

parameterisation is shown in Table 2.

The numerical forward solution is validated by means of the corresponding

analytic solution for dipoles located on the y-axis at depths of 0% to 98.7%

(in 1mm steps) of the brain compartment (78mm radius) using both radial

and tangential dipole orientations. Eccentricity is defined here as the percent

ratio of the distance between the source location and the model midpoint

divided by the radius of the inner sphere (78mm radius). The most eccentric

source considered is thus only 1mm below the CSF compartment. Tangential

sources are oriented in the +z-axis and radial dipoles in the +y-axis. The

dipole amplitudes are chosen to be 1nAm.

To achieve error measures which are independent of the specific choice of the

sensor configuration, we distributed electrodes in a most-regular way over a

given sphere surface. In this way we generated a 748 electrode configuration

on the surface of the outer sphere.
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The FE meshes of the four layer sphere model were generated by the software

TetGen (Si, 2004) which uses a constrained Delaunay tetrahedralisation (CDT)

approach (Si and Gärtner, 2005; Si, 2008). The meshing procedure started with

the preparation of a suitable boundary discretisation of the model. To begin

with, for each of the four layers and for a given triangle edge length, nodes

were distributed in a most-regular way and connected through triangles. This

yielded a valid triangular surface mesh for each of the four layers. Meshes of

different layers were not intersecting each other. The CDT approach was then

used to construct a tetrahedralisation conforming to the surface meshes. It first

built a Delaunay tetrahedralisation of the vertices of the surface meshes. It

then used a local degeneracy removal algorithm combining vertex perturbation

and vertex insertion to construct a new set of vertices which included the input

set of vertices. In the last step, a fast facet recovery algorithm was used to

construct the CDT (Si and Gärtner, 2005; Si, 2008).

This approach is combined with two further constraints to the size and shape

of the tetrahedra. The first constraint can be used to restrict the volume

of the generated tetrahedra in a certain compartment, the so-called volume

constraint. The second constraint is important for the generation of quality

tetrahedra. If R denotes the radius of the unique circumsphere of a tetra-

hedron and L its shortest edge length, the so-called radius-edge ratio of the

tetrahedron can be defined as

Q =
R

L
.

The radius-edge ratio can detect almost all badly-shaped tetrahedra except
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which has no small edges, but can have arbitrarily large dihedral angles (close

to π). For this reason, an additional mesh smoothing and optimization step

was used to remove the slivers and improve the overall mesh quality.

Please put Table 3 here.

In Table 3, the number of nodes and elements of the three tetrahedral meshes

are shown which will be used for numerical accuracy tests.

Please put Figure 1 here.

The tetrahedral mesh tet360K of the four compartment sphere model is shown

in Figure 1. For this model, we distributed 31,680 nodes on each of the four

surfaces for the CDT procedure. We allowed for a maximal radius-edge ratio

of Q = 1.2. The volumes of the tetrahedra in the compartments skin, skull and

CSF were furthermore restricted correspondingly to the chosen surface triangle

edge length. As it can be observed in Figure 1, no volume constraint was

used for the brain layer since for this compartment, the entries of the volume

integral (12) are zero ((σ(y) − σ(x)) = 0 for all x in the brain compartment)

so that a coarse resolution will not spoil the overall numerical accuracy, but

reduce the computational amount of work.

2.5.5 FE solver method.

We employ an algebraic multigrid preconditioned conjugate gradient (AMG-

CG) method for solving the linear systems (10) and (15). We solve up to
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being one V-cycle of the AMG) (Wolters et al., 2002; Haase et al., 2002).

3 Results

3.1 Evaluation with regard to right-hand side quadrature order

Please put Figure 2 here.

In the first study, we compared the numerical accuracy of the presented full

subtraction approach for quadrature formulas with different integration order

for the right-hand side (12), (13). The goal of this study was to verify that

second order integration formulas are necessary and sufficient as stated in

Section 2.3. Figure 2 shows the relative errors between the numerical and

the quasi-analytical solutions for tangential (left column) and radial sources

(right column) for the models tet39K (top row), tet287K (middle row) and

tet360K (bottom row) from Table 3. The different quadrature orders of 1, 2

and 7 are represented with different colors and labels in the figure. Especially

for eccentric sources, the integration order 1 performed worse than order 2.

This shows the necessity of second order integration. Second order integration

was also sufficient since the difference between order 2 and 7 in Figure 2 is

not visible (models tet287K and tet360K) or very small (model tet39K) and,

in any case, not worth the much larger computational amount of work for the

higher quadrature order.
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Please put Figure 3 here.

Please put Figure 4 here.

In the second study, we evaluated the numerical errors with regard to the

resolution of the FE discretisation. Following the results of Section 3.1, a

quadrature order of 2 was used for the integration of the right-hand side.

Figure 3 shows the RE for the three models of Table 3 for tangentially (left)

and radially oriented dipoles (right). A clear convergence can be observed, i.e.,

the RE decreases over all eccentricities with increasing mesh resolution. The

accuracy increase is especially distinct for eccentric sources. With the finest

model tet360K, we were able to decrease the maximal RE over all eccentricities

and source orientations to a value of 0.71% for the most eccentric radial source

1mm below the CSF compartment. Figure 4 shows the corresponding RDM

and MAG errors for the finest model tet360K. The largest topography error

is an RDM of 0.34% and the largest magnitude error a MAG of 0.3%.

3.3 Comparison of projected and full subtraction approach

Please put Figure 5 here.

In a last study, we compared the presented full subtraction approach with the

projected subtraction method from (Wolters et al., 2007a). Figure 5 shows
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models tet39K (top row), tet287K (middle row) and tet360K (bottom row)

from Table 3. It can be summarized that the presented full subtraction ap-

proach is a major step forward with regard to accuracy for all examined mesh

resolutions, which is especially prominent for eccentric sources. For the finest

model tet360K (bottom row), the largest RE of 5% for the projected subtrac-

tion approach was reduced by more than a factor of 7 to a maximal RE of

0.71% for the presented full subtraction approach.

4 Discussion and conclusion

We presented theory and numerical experiments of a full subtraction approach

to model a mathematical dipole in finite element (FE) method based elec-

troencephalography (EEG) source reconstruction using constrained Delau-

nay tetrahedral (CDT) meshes. Since the magnetoencephalography (MEG)

forward problem is also based on the computed electric potential (see,

e.g., (Hämäläinen et al., 1993; Wolters et al., 2004)), our method is directly

applicable to MEG source analysis. We embedded the approach for the com-

putation of the correction potential in the general FE convergence theory and

found that under the assumption of higher regularity, it is important to inte-

grate the right-hand side of the FE approach for the correction potential with

a quadrature order of 2 for achieving highest possible accuracy.

We validated our implementation of the method in a four-compartment sphere

model. We used the conductivity value of 1.79 S/m for the cerebrospinal fluid

(CSF) compartment as measured for human CSF at body-temperature by

(Baumann et al., 1997). The importance of modelling the CSF with regard to
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mann et al., 2008). Modelling the CSF necessitates the examination of numer-

ical accuracies for sources with very high eccentricities, because the sources

in the grey matter compartment are then only 1 or 2mm apart from the next

conductivity discontinuity. This constitutes a major numerical challenge. Fol-

lowing (Marin et al., 1998), we furthermore modelled the skull compartment

as a 1:10 anisotropic conductor. It is also well-known that modelling skull

anisotropy is a further numerical challenge and generally leads to higher nu-

merical errors than modelling the skull as an isotropic compartment (Marin

et al., 1998; Wolters et al., 2007a). In the numerical experiments, we found

that second order integration is necessary and sufficient, as the theory also

predicts. Our new approach was shown to converge, i.e., with increasing mesh

size, numerical errors decreased. The evaluation of the convergence order is a

difficult task because the convergence constant is strongly depending on the

distance of the source to the next conductivity discontinuity (a theoretical

reasoning for this fact is given in (Wolters et al., 2007a)). With regard to

the EEG inverse problem, an evaluation of the numerical accuracy at the sur-

face electrodes seems to be sufficient, as also done by others (Bertrand et al.,

1991; van den Broek, 1997; Awada et al., 1997; Marin et al., 1998; Schimpf

et al., 2002; Kybic et al., 2005; Hallez et al., 2005). We therefore evaluated the

numerical accuracy of the new approach at 748 surface points over all source

eccentricities for sources up to 1mm below the CSF compartment. We consider

it to be very progressive that, for the finest of the examined high-quality CDT

FE meshes with 360K nodes which was not locally refined around the source

singularity (the meshing approach can thus be used for inverse source analysis

scenarios) and for the maximal examined source eccentricity of 98.7%, the full
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• a maximal relative error (maxRE) of 0.71%,

• a maximal relative difference measure (maxRDM) of 0.34%,

• and a maximal magnification factor (maxMAG) of 0.3%.

In a direct comparison with the projected subtraction approach from (Wolters

et al., 2007a), we found that the new method is by an order of magnitude more

accurate for dipole sources close to the next conductivity discontinuity. The

fact that, in a realistic head model, most sources of interest have eccentricities

between 50% and 98% shows the importance of our results. A direct compar-

ison of our approach with other studies from the literature is difficult since

the setups are never identical. We however in the following collect the major

results of similar studies. (Schimpf et al., 2002) investigated an FE subtraction

approach in a four layer sphere model with isotropic skull and sources up to

1mm below the CSF compartment. In their article, a regular 1mm cube model

was used (thus a much higher FE resolution) and a maxRDM of 7% and a

maxMAG of 25% was achieved. Especially because of limited computational

power, older studies generally use much coarser models. In a locally refined

(around the source singularity) tetrahedral mesh with 12,500 nodes of a four

layer sphere model with anisotropic skull and first order FE basis functions,

(Bertrand et al., 1991) reported numerical accuracies up to a maximal eccen-

tricity of 97.6%. A maximal RDM of above 20% and a maximal MAG up to

70% were documented for the most eccentric source. (van den Broek, 1997)

also used a locally refined (around the source singularity) tetrahedral mesh

with 3,073 nodes of a three layer sphere model with anisotropic skull. For the

maximal examined eccentricity of 94.2%, an RDM of up to 50% was given. It

was mentioned in the conclusion that in some cases the accuracy could not
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matrix equation that had to be solved was reduced. (Marin et al., 1998) used

second order FE basis functions, but their finest tetrahedral mesh of 87,907

nodes was restricted to eccentricities of 81% in order to reach a sufficient accu-

racy for radial dipole forward solutions in a three compartment sphere model

with anisotropic skull. (Awada et al., 1997) implemented a 2D subtraction ap-

proach and compared its numerical accuracy with a direct potential method

in a 2D sphere model. A direct comparison with our results is therefore es-

pecially difficult, but the authors concluded that the subtraction method was

generally more accurate than the direct approach.

Besides its higher accuracy, the possibility of also modelling cortical anisotropy

in combination with the efficient FE transfer matrix approach might be a fur-

ther advantage of the full subtraction approach when compared to the pro-

jected subtraction approach from (Wolters et al., 2007a). The infant grey mat-

ter is sometimes referred to be a slightly anisotropic conductor because of yet

less developed synaptic connections to the cortical pyramidal cells. However,

DTI measurements show that the grey matter in adults is isotropic (Shimony

et al., 1999), being one reason for our study (besides the possibility to better

embed our results into the literature) to evaluate numerical errors for isotropic

cortical compartments.

As a final note, instead of trying to reduce numerical errors for the probably

“over-singular” mathematical point dipole that is most often used in source

analysis, it is important to reconsider other and especially smoother source

models, taking into account the fact that the primary current sources are

continuous throughout the cortical tissue (Tanzer et al., 2005; Pursiainen,

2007; Wolters et al., 2007b; Pursiainen, 2008; Calvetti et al., 2008). This is

26



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPTwhere the FE-based subtraction method might provide a further important

contribution to EEG and MEG source analyses.

A Detailed mathematics

A.1 The Continuous Forward Problem

Function u∞,y from equation (3) fulfils the Neumann boundary conditions at

infinity (x → ∞). The singularity of u∞,y at x = y is of order 2, so that u∞,y

does not belong to the Sobolev-space H1(Ω) (this function space only con-

tains functions which are square-integrable and whose first weak derivative

is also square-integrable), not even to L2(Ω) (the space of square-integrable

functions). However, u∞,y belongs to L1(Ω), i.e., it is integrable. Refer, e.g.,

to (Hackbusch, 1992; Braess, 2007) for a more detailed definition of the func-

tion spaces.

A.2 Subtraction forward problem

In order to remove the singularities in the right-hand side of (6), the following

assumption is needed for the subtraction approach:

Assumption 1 (Homogeneity assumption) Let ε > 0 such that for every

y ∈ Y , the tensor σ(x) is homogeneous (isotropic or anisotropic) in a small

subdomain

Ωy
ε := {x ∈ Ω | ‖x − y‖2 < ε} ⊂ Ω (A.1)
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As described in Section 2.2, the homogeneity assumption is valid for every

y ∈ Y , i.e., for every possible source in the human cortex compartment.

Additionally, for existence and uniqueness of a solution for the elliptic differ-

ential equation (6) with inhomogeneous Neumann boundary conditions (7),

the compatibility condition

∫

Ω

fdΩ −
∫

Γ

gdΓ = 0 (A.2)

has to be fulfilled. This condition results from Gauß’ theorem, since it is

∫

Ω

fdΩ
(6)
=

∫

Ω

div (σ∇ucorr,y) dΩ
Gauß

=
∫

Γ

〈σ∇ucorr,y, n〉dΓ
(7)
=

∫

Γ

gdΓ.

The next Lemma will prove the compatibility condition.

Lemma 2 (Compatibility) The differential equation (6) with inhomoge-

neous Neumann boundary condition (7) fulfils the compatibility condition

(A.2).

Proof: Let us define Ω′ := Ω \ Ωy
ε and let Γy

ε = ∂Ωy
ε be the surface of the

spherical domain Ωy
ε that was defined in (A.1). We then get

∫

Ω

f(x) −
∫

Γ

g(x)

(8,9)
=

∫

Ω

div (σ(y) − σ(x)) ∇u∞,y(x) +
∫

Γ

〈σ(x)∇u∞,y(x), n(x)〉

Gauß
=

∫

Γ

〈(σ(y) − σ(x))∇u∞,y(x), n(x)〉 +
∫

Γ

〈σ(x)∇u∞,y(x), n(x)〉

=
∫

Γ

〈σ(y)∇u∞,y(x), n(x)〉
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=

∫

Ω′

div (σ(y)∇u∞,y(x)) −
∫

Γy
ε

〈σ(y)∇u∞,y(x), n(x)〉

= 0.

In the last step, both integrals are zero: The volume integral is zero, because

u∞,y is a solution of the homogeneous problem (2) and Jp(x) = 0 for all x ∈ Ω′.

The surface integral is zero, since u∞,y is the potential for a dipole in the

midpoint of the spherical integration domain Ωy
ε and, if we divide the surface

Γy
ε into the upper part (Γy

ε )
+ and the lower part (Γy

ε )
−, it can be seen that the

surface integral over (Γy
ε )

− is exactly the negative of the surface integral over

(Γy
ε )

+. To show this, let x− ∈ (Γy
ε )

− and let x+ ∈ (Γy
ε )

+ be the corresponding

mirror point such that x− − y = −(x+ − y). We then have n(x−) = −n(x+).

From formula (4), we see that ∇u∞,y(x−) = ∇u∞,y(x+). Therefore, we find

∫

(Γy
ε)

−

〈σ(y)∇u∞,y(x−), n(x−)〉=−
∫

(Γy
ε)

+

〈σ(y)∇u∞,y(x+), n(x+)〉.

A.3 Variational formulation and finite element approach

Assumption 3 Let V ⊂ H1(Ω) be an infinite space and let VN ⊂ V be an

N-dimensional subspace of V .

The role of VN is that of a finite element space, e.g. piecewise polynomials

up to a certain degree. However, the space V might, due to higher regularity

assumptions, be H1+ε(Ω) with ε ∈]0, 1[, which is a subspace of H1(Ω), i.e.,

H1+ε(Ω) ⊂ H1(Ω).
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now apply the Gauß integral theorem

∫

Ω

v(x)divσ(x)∇u(x)dx =−
∫

Ω

〈∇v(x), σ(x)∇u(x)〉dx

+
∫

Γ

v(x)〈n(x), σ(x)∇u(x)〉dx

and arrive at the variational formulation that is suitable for a finite element

discretisation.

Definition 4 (Analytical forward problem) For an arbitrary mapping

α : Ω → R
3×3 we define the bilinear form

aα : V × V → R, aα(u, v) :=
∫

Ω

〈α(x)∇u(x),∇v(x)〉dx.

The weak formulation of the analytical forward problem (Equations (6) and

(7)) is to find ucorr,y ∈ V s.t. for all v ∈ V

aσ(ucorr,y, v)= aσ(y)−σ(u∞,y, v) −
∫

∂Ω

v(x)〈n(x), σ(y)∇u∞,y(x)〉dx,

∫

Ω

ucorr,y(x)dx =−
∫

Ω

u∞,y(x)dx.

In (Wolters et al., 2007a, Section 3.5), it is shown that a unique solution of the

analytical forward problem exists and the solution ucorr,y belongs to H1(Ω).

Let τ = {τ1, . . . , τT} be a triangulation of the polygonal domain Ω into tetra-

hedra τi. For the finite element space VN we use standard conforming linear

elements, i.e. VN = {v ∈ V | v|τi
affine , i = 1, . . . , T}. Let span {ϕi | i ∈ I}

denote the standard Lagrange basis of VN using local basis functions ϕi,

i ∈ I, #I = N . By ξi we denote the Lagrange point of the FE basis function
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Definition 5 (Finite element forward problem) The finite element for-

ward problem is to find uN ∈ VN s.t. for all v ∈ VN

aσ(uN , v)= aσ(y)−σ(u∞,y, v) −
∫

Γ

v(x)〈n(x), σ(y)∇u∞,y(x)〉dx,

∫

Ω

uN(x)dx =−
∫

Ω

u∞,y(x)dx.

This leads to the large sparse linear equation system (10).

A.4 Transfer matrix

For the inverse problem in EEG and MEG source analysis, the forward prob-

lem has to be solved for many right-hand sides Jp = Jy, y ∈ Y (most often

several thousands). In this case, the following assumption is necessary for an

efficient computation of all solutions.

Assumption 6 We demand that the FE mesh is the same for all right-hand

sides Jp = Jy, i.e., we want to avoid local mesh refinement with regard to a

specific source location.

With regard to the EEG and MEG inverse problem, the full solution vector

for the potential is not required for all right-hand sides. Instead, only a linear

transform of the function u,

Au ∈ R
m, m � N, A : V → R

m,
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In this case, one can precompute the so-called transfer matrix

T := ÂK−1 ∈ R
m×N

where Â is the matrix representation of the linear mapping A restricted to the

finite dimensional space VN in the basis {ϕi | i ∈ I} (Wolters et al., 2004) 3 .

In case of the EEG, Â is either a restriction or a surface interpolation of the

potential vector to those FE nodes which represent the EEG electrodes. In

case of the MEG, Â is the secondary flux integration matrix (Wolters et al.,

2004).

The full subtraction method EEG forward solution is thus obtained by

Au ≈ A(uN + u∞,y) = ÂK−1by + Âu∞,y = Tby + Âu∞,y,

a matrix-vector multiplication with the m × N transfer matrix T . The MEG

forward solution can exploit the precomputed MEG transfer matrix in a very

similar fashion for the secondary magnetic flux parts (Wolters et al., 2004).

The setup of the transfer matrix T requires m times the solution of an N ×N

linear equation system with the stiffness matrix K. Using an optimal method,

e.g., multigrid, this can be done in O(m · N) (Hackbusch, 1994, Theorem

10.4.2). The term Âu∞,y can be computed easily because the solution u∞,y is

given analytically and it is smooth at the boundary where the support of Â

typically lies.

The projected subtraction approach (Wolters et al., 2007a) leads to the trans-

fer matrix ÂK−1(−Kcorr − S). This approach is only useful, if all right-hand

3 The transfer matrix is called lead field basis in (Wolters et al., 2004)
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This means that for the projected subtraction approach, σ(y) = σc with an

isotropic σc has to be assumed to allow for the use of the fast transfer ma-

trix approach because the entries of the matrices Kcorr and S in equations

(16), (17) depend on the conductivity at the dipole position. In contrast, the

conductivity for different source positions might vary for the presented full

subtraction approach. This is a further advantage of the full subtraction ap-

proach, since the cortex is sometimes referred to be a slightly anisotropic

conductor (see the discussion section).

A.5 Lead field matrix

Most inverse EEG and MEG source analysis algorithms are based on precom-

puted forward solutions for a set of anatomically and physiologically mean-

ingful sources, i.e., right-hand sides (Jy)y∈Y . It is then advantageous to pre-

compute the so-called lead field matrix L ∈ R
m × #Y , whose entry Li,y is the

forward computed field for source y at sensor i. The lead field matrix can be

computed by

(1) multiplying each right-hand side by with the transfer matrix T in

O(mN#Y ) and each analytic solution u∞,y by Â, or

(2) multiplying each row of the transfer matrix T (from the left) by the

matrix B ∈ R
N×#Y , Bi,y := by

i , of right-hand sides (and adding the

term Âu∞,y). The complexity for the naive approach would again be

O(mN#Y ). However, the matrix B can be cast into the H-matrix for-

mat (Wolters et al., 2004) so that each matrix-vector multiplication is

of complexity O(N log N). The multiplication Âu∞,y can as well be per-
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Hence, the total complexity reduces in this case to O(mN log N). This

approach is an ongoing work of the authors that will be published else-

where.
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Tanzer O., Järvenpää S., Nenonen J., E.Somersalo (2005): Representation of

bioelectric current sources using whitney elements in finite element method.

Phys.Med.Biol. 50:3023–3039.

Tuch D., Wedeen V., Dale A., George J., Belliveau J. (2001): Conduc-

tivity tensor mapping of the human brain using diffusion tensor MRI.

Proc.Natl.Acad.Sci.USA 98(20):11697–11701.

van den Broek S. (1997): Volume conduction effects in EEG and MEG. Ph.D.

thesis Proefschrift Universiteit Twente Enschede, The Netherlands.

Wang K., Zhu S., Mueller B., Lim K., Liu Z., He B. (2008): A new method

to derive white matter conductivity from diffusion tensor MRI. IEEE Trans

Biomed. Eng. 55(10):2481–2486.

Wendel K., Narra N., Hannula M., Kauppinen P., Malmivuo J. (2008): The

influence of CSF on EEG sensitivity distributions of multilayered head mod-

els. IEEE Trans. Biomed. Eng. 55(4):1454–1456.
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Table 1

Quadrature formulas of Stroud (Stroud, 1971) for the volume integral from Equation

(12) and the surface integral from Equation (13) .

Formula degree number integration points Reference

Volume integral from Equation (12)

Tn : 1 − 1 1 1 (Stroud, 1971, Chapter 8.8, p.307)

Tn : 2 − 1 2 n + 1 (Stroud, 1971, Chapter 8.8, p.307)

T3 : 7 − 1 7 64 (Stroud, 1971, Chapter 8.8, p.315)

Surface integral from Equation (13)

Tn : 1 − 1 1 1 (Stroud, 1971, Chapter 8.8, p.307)

Tn : 2 − 1 2 n + 1 (Stroud, 1971, Chapter 8.8, p.307)

T2 : 7 − 1 7 16 (Stroud, 1971, Chapter 8.8, p.314)

Table 2

Parameterisation of the anisotropic four layer sphere model.

Medium Scalp Skull CSF Brain

Outer shell radius 92mm 86mm 80mm 78mm

Tangential conductivity 0.33S/m 0.042S/m 1.79S/m 0.33S/m

Radial conductivity 0.33S/m 0.0042S/m 1.79S/m 0.33S/m
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Table 3

The number of nodes and elements of the three tetrahedral models used for numer-

ical accuracy tests.

Model Nodes Elements

tet360K 360, 056 2, 165, 281

tet287K 287, 217 1, 712, 360

tet39K 38, 928 229, 311

Fig. 1. Cross-section of the tetrahedral mesh tet360K of the four compartment

sphere model. Visualisation was done using Tetview (Si, 2007).
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Fig. 2. Relative error for tangentially (left) and radially (right) oriented dipoles with

quadrature orders of 1,2 and 7: Model tet39K (top row), tet287K (middle row) and

tet360K (bottom row). Note the different scaling for the RE.
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Fig. 5. Comparison between the presented full subtraction approach and the pro-

jected subtraction approach from (Wolters et al., 2007a) with regard to the rela-

tive error for tangential (left) and radial sources (right): Model tet39K (top row),

tet287K (middle row) and tet360K (bottom row).
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