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Abstract

The effect of volume conduction on brain source reconstruction using beam-
former techniques – in particular Synthetic Aperture Magnetometry (SAM) – is
investigated.
The sphere model that is commonly used in the analysis of brain activity

provides only a very rough representation of the real head geometry, whereas
Finite Element (FE) models can model realistic head shapes and head tissue
conductivity distributions very accurately. The effect of inaccurate geometry
approximation on the beamformer is examined in simulations. We show that the
effects are especially large in those regions where the sphere model differs the
most from the true head geometry.
It is also common practice to model the head volume to be entirely isotropic. In

reality the head has anisotropic compartments as well. We have investigated the
effects of skull anisotropy in a realistically shaped FE model. Simulations show
that by disregarding the skull anisotropy the depth localization is inaccurate,
especially in regions where the skull is relatively thick.
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1 Introduction

The aim of this thesis is the analysis of mathematical methods in the field of
electroencephalography (EEG) and magnetoencephalography (MEG), particu-
larly focusing on the prefrontal cortex.
The prefrontal cortex is especially significant in human brain functions and there-
fore of greatest meaning to human brain research. This is emphasized by the fact
that the prefrontal cortex has enlarged enormously compared to other brain re-
gions during evolution. It underwent progressive evolution and is larger in apes
than in monkeys and larger in humans than in apes [13]. Therefore it is not
surprising that a number of higher brain functions that are particularly assigned
to apes–or even entirely to humans–were localized in the prefrontal cortex:
This brain region has been implicated in planning complex cognitive behaviors,
personality expression, decision making and moderating correct social behav-
ior. The basic activity of this brain region is considered to be orchestration of
thoughts and actions in accordance with internal goals. Thus, the most typical
psychological term for functions carried out by the prefrontal cortical (PFC) area
are executive control functions.

Moreover, brain source activity in PFC areas has turned out to play a major role
in different psychological conditions. It has for example consistently been shown
that the amygdala and prefrontal cortical areas play key roles in the control of
mood and anxiety. Pathologic anxiety is discussed to be a result of exaggerated
amygdala response to stimuli that are not necessarily threatening. Amygdala
hyper-reactivity has predominantly been attributed to PFC dysfunction, as PFC
regions are responsible for the inhibition of inadequate emotional response. In
this context it is now desirable to examine the rapid and transient bottom-up
and top-down processes within the human fear circuit.

A further example where PFC activity is majorly involved are schizophrenic
disorders. Numerous studies have investigated reduced suppression of sensory
gating–an unconscious inhibition of irrelevant stimuli at earliest processing stages–
and dysfunctional data processing or impaired attention at the core of the spec-
trum of schizophrenic disorders. Whether schizophrenic patients reveal distur-
bances for emotional stimuli is yet to be investigated. Recent MEG studies on
affective conditioning in audition and vision have revealed very rapid PFC ac-
tivity preceding and bottom-up modulating the initial sensory processing. A
further investigation of these processes is of high importance to neuro scientific
research in order to find out more about reliable neuro biological correlates of
pathophysiogical mechanisms as well as endophenotypes.
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1 Introduction

A common method for the analysis of brain source activity is to apply numeri-
cal techniques to EEG or MEG data and thereby estimate the locations of the
underlying brain activity. These techniques all require a solution to the forward
problem, which in these applications is a calculation of electric/magnetic signals
at the EEG/MEG sensors for a known source within a given head volume. The
forward solutions strongly depend on the modelling of the head volume. A model
that is commonly used is an isotropic multilayer sphere model. The according
inverse problem is to compute the brain source from given EEG/MEG measure-
ments.

When interested in PFC activation the usability of the sphere model has turned
out to be limited, as the sphere is an inexact approximation of the head shape
especially in PFC areas. A promising approach to improving brain source recon-
struction is to use realistically shaped Finite Element (FE) head models. On top
of a better geometrical representation, FE models give the possibility of model-
ling anisotropy effects.

The goal of this thesis is to examine the effects of head modelling on the solution
of the inverse problem. The inverse procedure that this work will focus on are
beamformer techniques and Synthetic Aperture Magnetometry (SAM) in partic-
ular.

In order to analyze the ‘influence of volume conduction on beamformer source
analysis in the human brain’, the following topics will be discussed in this thesis:

• We will start with an explanation of some basic neural concepts since they
are the basis of the mathematical modelling that allows brain source recon-
struction. This explanation will in particular why activity in the human
brain is modelled by electric current dipoles.

• The next step is to derive the solution to the forward problem. This will
incorporate a derivation of the partial differential equation that describes
the forward problem as well as a description of the source model and the
head model. The Ritz-Galerkin approach that is used to generate the
forward solution will be considered in this context.

• After the introduction of the forward problem the focus lies on the inverse
procedure. A detailed derivation of the Linearly Constrained Minimum
Variance (LCMV) beamformer is given, followed by a specific description
of SAM. An important issue in beamformer source analysis is the estimation
of the data covariance matrix which will be further analyzed.

• These theoretical considerations are followed by the actual analysis of the
influence of volume conductor modelling on the beamformer source recon-
struction. For this purpose synthetic data are produced and analyzed with
SAM focusing on geometry effects and anisotropy effects of the head models
used. The simulations with their results will be presented and interpreted.

2



• To complete this thesis, the last chapter will give an outlook on aspects
that deserve further consideration in future research.
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1 Introduction
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2 Basic Neural Concepts

The processing of conscious action, sensory perception as well as unconscious
reactions include electrical activity in the human brain. Every movement of
electric charges causes an electric and a magnetic field. The EEG represents the
differences in electric potential resulting from this activity that can be measured
at the scalp. The MEG records the magnetic fields at some small distance from
the head surface in the range of a few centimeters.
The interpretation of this recorded data in the context of localizing the under-

lying sources within the brain requires some knowledge of the electrophysiological
processes in the human body. This chapter will give a brief overview on the pro-
cesses that are acting inside the human brain and how they can be recorded by
the electroencephalogram. A more detailed description can be found in [40, 44].

2.1 Physiology of the Neuron

The neuron is the structural and functional unit of the nervous system. A typical
neuron consists of a cell body (soma) together with two kinds of extensions, the
axon and the dendrites. With the dendrites the neuron receives signals from
other nerves. The axon that originates at the axon hillock of the soma transmits
the signal from the neuron to other nerve-, muscle- or gland cells. In the following
this transmission of signals to other neurons will be described. The axon ends
in the axon terminals at the synapse and thereby connects to the soma, the
dendrites, or the axon of the next neuron (see Figure 2.1). At the synapse
information is passed on chemically with the help of neurotransmitters. Within
a neuron information is passed electrically. The details of electric information
transmission will now be explained.
At the membrane of a living cell a difference in electric potential can be mea-

sured. The so-called resting potential has a value of −60 to −100 mV depending
on the cell type (negative inside the cell). The resting potential is a prerequisite
for the ability of neurons to pick up, process, and transmit neural signals. The
reason for the potential difference at the cell membrane is an unequal distribution
of ions in intracellular and extracellular fluid. The ions that are of interest for
the considered processes are potassium (K+), sodium (Na+) and chloride (Cl−).
In the resting state the concentration of potassium is much higher inside the cell
than outside and vice versa for sodium and chloride. The following phenomena
are of importance here:

• The cell membrane is well permeable for K+ in the resting state. Due to
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2 Basic Neural Concepts

the large concentration gradient, K+-ions will diffuse out of the cell, which
leads to a change in charge. The membrane is not permeable for protein
anions and only very little permeable for Na+. This diffusion potential will
gain until any further diffusion of K+ is avoided by the gaining potential.
Electric and osmotic work now cancel out each other.

• By active transport, which means with energy input, Na+ is permanently
“pumped” out of the cell, while K+ is pumped in (Na+-K+-ATPase). This
exchange is electrogenic, which means it can produce charge imbalance
across the cell membrane and can also contribute directly to the membrane
potential.

• The anions inside the cell are mostly negatively charged proteins.

Figure 2.1: Structure of a Neuron (taken from Zalpour [60]). The arrows indi-
cate the direction of the electric current flow. The blue background
surrounds the side of the neuron, where information is received: Cell
body (Zellkörper), and dendrites (Dendrit). The grey background
shows the side where the information is passed on: axon hillock
(Axonhügel), axon (Axon) and axon terminals (präsynaptische End-
knöpfe).

Two different kinds of information transport will now be described, first the
action potential and then the electrotonic conduction.

Action potential The axons of the neurons can have a length of up to 1 m.
Without a special mechanism an electric stimulus would quickly reduce to zero
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2.2 Functional Histology of the Cerebral Cortex

due to the high resistance inside the neuron fibers. Therefore signals are trans-
mitted along the axon as action potentials (AP) as explained in the following:
the resting potential of the membrane decreases towards 0 mV (depolarization)
and if the stimulus is strong enough to reach the so-called threshold potential of
−50 to −60 mV an AP can be fired. Reaching the threshold leads to a sudden
increase of the Na+-conductivity and to an inflow of Na+-ions into the cell via
the sodium channels. Thereby the membrane potential quickly breaks down (de-
polarization of the AP) and currently reaches positive values of up to +30 mV.
The conductivity (or rather permeability) for sodium gNa+ decreases again while
at the same time the conductivity for potassium gK+ increases, which restores
the resting potential of the membrane (repolarisation). The difference in charge
between a depolarized and a resting membrane leads to a compensating current
along the fibers which depolarizes the adjacent area.

Electrotonic Conduction Dendrites and somata do not have sodium channels,
so the transmission of information happens by electrotonic conduction. The
electrotonic potential can be described mathematically by the function Φ(x) =
Φ0e

−x/λ, where x is the distance from the application of the electric current and
λ is a constant incorporating geometric properties as well as the conductivity of
the membrane and the inside of the cell. Φ0 is the potential at the place of the
current application. The sum of all stimuli that are impressed on the dendrites
of a neuron and that are conducted to the axon hillock must reach the threshold
potential in order to activate an AP that passes the stimulus on.
At the synapse signals are only transmitted in one direction and that is from a

presynaptic cell to a postsynaptic cell. This transmission happens chemically via
so-called neurotransmitters. A difference is made between excitatory synapses
and inhibitory synapses. Acetylcholine as a transmitter leads to an increase
of the Na+-conductivity and thereby to a depolarization. Other transmitters
(e.g. glycine) lead to an increase of the conductivity of Cl− and K+ resulting in
hyperpolarisation of the postsynaptic membrane.

2.2 Functional Histology of the Cerebral Cortex

The brain can anatomically be divided into three major parts, the brainstem,
the cerebellum and the cerebrum. The cerebrum consists of a left and a right
hemisphere. The inner part, the white matter, is surrounded by a 1.3 to 4.5 mm
thick layer of grey matter making up the cerebral cortex (Figure 2.2) and mainly
consists of axons. Alltogether, the cerebral cortex can be described as multiply
folded layers of tissue. It contains about 1010 neurons and a large but unknown
number of glia cells that provide support and protection for the neurons.
Inside the cortex there are layers that mostly contain cell bodies next to layers

that mostly contain axons. A cut through the cortex would therefore appear
to be striped. According to the cell types incorporated six layers are typically
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2 Basic Neural Concepts

Figure 2.2: Coronal cut through the brain (taken from Zalpour [60]). Left and
right hemisphere, grey matter (graue Substanz) and white matter
(weiße Substanz).

differentiated:

1. molecular layer: This layer mainly consist of fibers but only very few
neurons.

2. external granular layer: Here small neurons of different shapes can be
found which run tangential to the surface.

3. external pyramidal layer: This layer mostly contains pyramidal neurons
of medium size.

4. internal granular layer: Small neurons of different sizes (stellate cells)
closely surrounded by fibers running tangentially to the surface.

5. internal pyramidal layer: This layer consists of medium size and big
pyramidal cells with long dendrites that reach up to the molecular layer.
The pyramidal cells lie parallel to each other and perpendicular to the
surface of the cortex. This layer is of special importance for the EEG and
MEG.

6. multiform layer: It is mainly made up from spindle-like pyramidal neu-
rons. The innermost part of this layer fades into the white matter.

8



2.3 Electro- and Magnetoencephalogram

Figure 2.3 shows the six layers of the cortex. It shows the neuronal circuits with
their afferent and efferent connections.

Figure 2.3: The six layers of the cortex: cortical neurons, their circuits with
afferent and efferent connections (taken from [44]).

2.3 Electro- and Magnetoencephalogram

EEG: From the skin on the skullcap continuous changes in potential can be
derived and recorded as the electroencephalogram. Hans Berger discovered the
possibility of recording the electrical activity of the human brain. In the years
between 1929 and 1938 he created the foundations for the clinical and experimen-
tal use of this method. With the development of highly sensitive detectors cooled
with liquid helium (SQUIDS, Superconducting Quantum Interference Devices)
the magnetic field was first detected in 1968.
Numerous experiments have shown that the encephalograms essentially result

from postsynaptic activity of the cortical neurons rather than from the trans-
mission of these cells’ signals (action potentials) or from the activities of cortical
glia cells [40]. The fields measured on the outside are mainly generated in the
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2 Basic Neural Concepts

pyramidal cells inside the 5th layer of the cortex. The AP can physically be
modeled as a quadrupole and the postsynaptic potential is modeled as a current
dipole. Therefore at the head surface which has a considerable distance from the
source, mainly dipole induced fields are measured.
Not a single neuron will account for this measured field but rather a whole brain

region with a volume of several mm3 that is nearly simultaneously activated. A
volume of 1 mm3 contains about 105 neurons with about half of them being
pyramidal cells. Such a simultaneous activation pattern of large numbers of
neurons can be observed over several tens of milliseconds [53].
The recording of the EEG is an internationally used standard routine in neu-

rologic diagnosis. The positions of the electrodes on the head surface and the
recording conditions have to a large extent been standardized (international 10-
20 system). Modern EEG systems are using up to 128 surface electrodes. The
evaluation mainly concentrates on frequency, amplitude, shape, distribution and
occurance of the waves recorded in the EEG. Because of a maximum EEG-
amplitude of only a few 100 µV it is necessary to amplify the signals by a factor
of 103 to 104 for further analysis.
Due to the fact that spontaneous activity from different areas of the cortex

overlaps, the interpretation of the EEG is very complex. It is still possible to
differentiate healthy and pathological states and changes in the EEG. Based on
the EEG diagnostic conclusions (for example about the awake state, emotional
tension, the brain’s stage of maturity as well as some diseases) can be drawn. A
deeper analysis of the contained frequencies has shown that certain periodic sub
signals within a frequency band of 0.5 to 30 Hz and amplitudes between 10 and
150 µV are predominant. The frequency spectrum is usually divided into four
frequency bands:

denomination frequency amplitude
δ-waves 0.5− 3 Hz 100− 150 µV
ϑ-waves 4− 7 Hz 50− 100 µV
α-waves 8− 13 Hz ca. 30 µV
β-waves 14− 30 Hz ca. 10 µV

Variations in the potential are usually dependent on the state of awakeness.
In a healthy adult in a resting state with eyes closed, the α-rhythm is especially
predominant in the occipital direction. When opening the eyes or receiving other
sensual stimuli the α-waves disappear and β-waves with higher frequency but
lower amplitude are observed. Slower waveforms of higher amplitude like the ϑ-
waves and δ-waves can only be observed during sleep in an adult (Figure 2.4). As
mentioned before there is also a clinical meaning to the EEG. A slowing down
and irregularities in the potential curves are symptomatic for diffuse organic
brain diseases, after brain traumata or metabolic intoxication (coma). EEG
irregularities can also occur due to tumors or medicals (psychotropics). The
cease of the EEG is more and more used as a criterion for brain death.
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2.4 Evoked and Induced Potential

MEG: The magnetoencephalogram (MEG) records the magnetic activity of
the brain. The magnetic flux passing through specially shaped, supra conduct-
ing measuring coils (magnetometer or gradiometer respectively) is measured by
SQUIDS. The field strength lies in a range of 10−12 to 10−13 Tesla (T) [53].
The magnetic field of the earth has an order of 10−4 T. The complexity of the
measurements is accordingly high. The measurements are recorded in magneti-
cally shielded chambers in order to eliminate disturbing influences, for example
from the terrestrial magnetic field or electric cable. The advantage of the MEG
compared to the EEG is an up to ten times higher signal to noise ratio (SNR).

Figure 2.4: Top to bottom: Electric potentials are recorded by head surface elec-
trodes. Typical α-, β-, ϑ-, δ-waves, seizure potentials on orange back-
ground. Normal EEG-record of a healthy subject, changing between
α- and β-waves. (taken from [60])

2.4 Evoked and Induced Potential

Apart from spontaneous activity in the cortex, variations in the potentials are
mainly due to psychological, motor or sensory events. These characteristical po-
tentials usually show only small amplitudes and therefore summation techniques
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2 Basic Neural Concepts

are necessary to visualize them. Those variations in the electric potentials that
are located in the central nervous system as a response to stimulated receptors, to
peripheral nerves or other sensoric structures are called evoked potentials (EP).
By stimulation of peripheral somatic receptors or neurons, slow positive-negative
changes in the potential are registered in the somatosensory areas of the cortex,
which are called sensory evoked potentials (SEP). The diagnostic meaning of the
measurement of EP lies in testing the proper function of the peripheral sensory
and subcortical nervous system. The inverse analysis of the EEG and MEG
serves to identify the exact position of the processing of the EPs. Analogously
to the SEP, visually evoked potentials (VEP) can be registered. The respective
areas of the cortex are shown in Figure 2.5.

Figure 2.5: Lateral view of the main areas of the cerebral cortex (frontal (Lobus
frontalis), temporal (Lobus temporalis), parietal (Lobus parietalis)
and occipital(Lobus occipitalis) cortex)(taken from [60]).

An important property of EPs is that they are time locked to the stimulus.
This allows the averaging of recorded data trials in order to increase the SNR,
which is crucial for a number of inverse methods.
In this context induced potentials should also be mentioned. These potentials

underly brain activity that is not time locked to a particular stimulus. Therefore
averaging across trials is not possible as it might cancel out the signal. For the
analysis of induced potentials the inverse method must be chosen very carefully.
The beamformer techniques introduced later in this thesis are one possible choice
because they do not only operate on averaged data but on single trials as well.

12



3 The Forward Problem

In order to solve the inverse problem it is necessary to find a solution to the
forward problem first. In the case of EEG/MEG source reconstruction, solving
the forward problem means the following: For a given source location in the brain
with known source strength and direction, we need to find the electric/magnetic
potentials that would be measured at the sensor locations.
To fulfill this task, some crucial steps are necessary. These include expressing

the behaviour of electric currents within biological tissue mathematically, which
can be done with the help of the Maxwell Equations of electrodynamics. Further
a model for the electric sources in the human brain must be introduced, which
will be discussed in Section 3.3. Another focus of this chapter will be to find
a volume conductor model for the human head that takes specific anatomical
properties of the individual subject into account. This will be done using finite
element models.

3.1 The Maxwell Equations

In order to find the forward solution to the problem introduced above, the be-
haviour of electric and magnetic fields within the head volume must be described
mathematically. This is done by the Maxwell Equations of electrodynamics (see
e.g. Nolting [25]) using the following notations. E and D denote the electric
field and electric displacement respectively, ρ the electric free charge density, ε
the electric permittivity and j the electric current density. By µ the magnetic
permeability is denoted, by H the magnetic field and by and B the magnetic
induction.
In this application the low frequency band (frequencies below 1000 Hz) is con-

sidered. Therefore the capacitative component of tissue impedance, the inductive
effect and the electromagnetic propagation effect and thus the temporal deriva-
tives can be neglected in the Maxwell Equations [39] resulting in the quasi-static
Maxwell Equations

∇ ·D = ρ

∇× E = 0

∇×B = µj (3.1)
∇ ·B = 0 (3.2)

with material equations

13



3 The Forward Problem

D = εE (3.3)
B = µH. (3.4)

It is generally assumed that µ is constant over the whole head volume Ω and
equal to the magnetic permeability of vacuum [31]. The electric field can then
be described as the negative gradient of a scalar potential Φ:

E = −∇Φ. (3.5)

In bioelectromagnetism the current density is commonly divided into the so-
called primary or impressed current jp and the secondary or return currents σE

j = jp + σE (3.6)

with σ denoting the 3 × 3 symmetric, positive definite conductivity tensor de-
scribing the tissue conductivity in all different directions.

3.2 The Poisson Equation of the Electric
Forward Problem

The aim is to find the potential Φ to a given primary current jp. The formulae
above must therefore be rearranged to a partial differential equation that can be
solved for Φ using some techniques discussed later on in this chapter. Applying
Divergence to (3.1) and noting that µ is a scalar value and that the vector identity
∇ · ∇ ×B = 0 holds, we receive

∇ · ∇ ×B = ∇ · µj = µ∇ · j = 0. (3.7)

Substituting (3.5) and (3.6) this can further be rewritten to

0 = ∇ · j
= ∇ · (jp + σE)

= ∇ · jp +∇ · σ(−∇Φ)

= ∇ · jp −∇ · (σ∇Φ),

(3.8)

resulting in the Poisson equation

∇ · (σ∇Φ) = ∇ · jp = Jp in Ω. (3.9)

The Poisson equation represents the distribution of the electric potential Φ over
the head volume Ω due to primary current jp in the cortex of the human brain.
At the head surface Γ = ∂Ω homogeneous Neumann boundary conditions hold,
which can be expressed as

14



3.3 The Primary Currents

〈σ∇Φ,n〉 = 0 on Γ, (3.10)

where n is the unit surface normal and a reference electrode with given potential
Φ(qref ) = 0 is assumed. The continuity of the current density across surfaces
between regions of different conductivities σ1 and σ2 can be expressed by the
boundary condition

〈σ1∇Φ1,n〉 |at surface= 〈σ2∇Φ2,n〉 |at surface . (3.11)

Furthermore a compatibility condition must be respected, which means that
according to Gauss’ theorem ∫

Ω

JpdΩ = 0 (3.12)

must hold (see for example [5, 16, 59]).

3.3 The Primary Currents

A crucial point that deserves discussion when considering the Poisson equation
(3.9) is modelling the primary current Jp on the right-hand side.
In reality the primary currents are movements of ions within the dendrites of

the large Pyramidal cells of activated regions of the cortex. As described in [55]
stimulus-induced activation of a large number of excitatory synapses of a whole
pattern of neurons leads to negative current monopoles under the brain surface
and to positive monopoles quite closely underneath [26, 2].
It is shown in [27] that already at distances as small as the activated area only

the dipolar moment of the source term is visible. Therefore the mathematical
dipole is a commonly accepted model in the field of bioelectromagnetism [12]. A
dipole at position q0 ∈ R3 is defined as

jpdip(q) := mδ(q− q0), (3.13)

where m ∈ R3 represents the dipole moment and δ is the Dirac δ distribution
with the properties

∫
Ω

δ(q− q0)dq =

{
1, if q0 ∈ Ω

0, else
(3.14)

δ(q− q0) = 0 ∀q 6= q0 (3.15)

(see also Nolting [25]). Using the mathematical dipole as a source model for the
primary current, the right-hand side of the Poisson equation (3.9) can be written
as
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3 The Forward Problem

Jpdip(q) = ∇ · jpdip(q) = ∇ ·mδ(q− q0). (3.16)

Another approach to modelling the primary current is to use a direct approach.
The so called blurred dipole as introduced by Buchner et al. [8] introduces a
smoother current term compared to the mathematical dipole. The blurred dipole
does not compress the activation of a small cortex region to a single point but
rather distributes it over a small area, which probably represents the reality
better. According to [8, 55] the dipole moment is here approximated by a whole
collection of closely neighboured sources and sinks.

3.4 The Subtraction Approach

The so called subtraction method [59] provides a way of dealing with strong
singularities of the source model. The basic idea is to split up the total potential
Φ into a singularity potential Φ∞ and a correction potential Φcorr

Φ = Φ∞ + Φcorr. (3.17)

Splitting the potential into these parts is motivated as follows. It is assumed
that for the source position q0 ∈ R3 there exists a non-empty region Ω∞ ⊂ Ω of
constant homogeneous conductivity σ∞ (the homogeneous conductivity of the
grey matter) with q0 ∈ Ω∞ \ ∂Ω∞.
For the subtraction method the conductivity σ is split into two parts

σ = σ∞ + σcorr, (3.18)

so that σ∞ is constant over the whole volume conductor Ω and σcorr is zero
in the subregion Ω∞: σcorr(q) = 0,∀q ∈ Ω∞. The singularity potential Φ∞ is
now defined as the forward solution for a dipole in the unbounded homogeneous
conductor with constant conductivity σ∞ = σ∞I (this expression is valid for a
scalar conductivity value σ∞ ∈ R+ in the isotropic case). An analytical solution
to the Poisson equation

∆Φ∞ = Jp/σ∞ (3.19)

is then given by ([39])

Φ∞(q) =
1

4πσ∞

∫
Ω

Jp(q′)

|q− q′|
dq′ (3.20)

In the case where the mathematical dipole (3.16) is used as a source model, using
the vector identity

∇′ · (jp(q′)|q− q′|−1) = |q− q′|−1∇′ · jp(q′) + jp(q′) · ∇′|q− q′|−1 (3.21)
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and applying Gauss’ theorem, (3.20) can be written as (see [39])

Φ∞math(q) =
1

4πσ∞
〈m, (q− q0)〉
|q− q0|3

. (3.22)

The next step is now to find the correction potential. By subtracting (3.19)
from (3.9) we get (see [59])

∇ · (σ∇Φcorr) = ∇ · ((σ − σ∞)∇Φ∞) in Ω (3.23)

with inhomogeneous Neumann boundary conditions

σ
∂Φcorr

∂n

∣∣
Γ

= −σ
∂Φ∞

∂n

∣∣
Γ
. (3.24)

Once this equation is solved towards Φcorr the potential Φ can be calculated
with the help of (3.17) and (3.22).

3.5 The Venant Approach

The Venant approach provides a method to solve the Poisson equation (3.9) with
boundary conditions (3.10) and a fixed reference potential in the case where a
blurred dipole is used as a source model on the right-hand side of the Poisson
equation. The Venant approach proposed by Buchner et al. [8] is dependent on
the FE mesh and will therefore be discussed in Section 3.6

3.6 Finite Element Formulation

The task of simulating fields in realistically shaped volume conductors requires
numerical methods. The method of choice in this thesis is the Finite Element
(FE) method. It has shown to be appropriate in this context because it can
treat geometries of arbitrary shapes and conductivities. This includes isotropic
material properties as well as anisotropic ones. The FE method is used by
different research groups within the community of bioelectromagnetism (see e.g.
[4, 8, 19, 24, 28, 32, 33, 34, 37, 48, 57]).

3.6.1 Variational Expression of the Forward Problem

For the mathematical dipole and the subtraction approach, the variational for-
mulation was derived by Wolters et al. in [59]. Solvability and uniqueness of the
correction potential was proven in their study. However, this thesis is mainly
concerned with the Venant approach (see [8]), especially because of its compu-
tational efficiency.
In the following the goal is to solve the Poisson equation (3.9) with boundary

conditions (3.10) and a fixed reference potential in combination with a smoothly
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distributed source model using the FE method. In order to fulfill this task a
weak formulation of the Poisson equation is needed. A weak formulation is gen-
erally gained by multiplying with a test function, integrating and then applying
integration by parts. In the present application this results in the variational
equation (see [55])

a(Φ, v) = l(v) (3.25)

with the bilinear form a(·, ·) and the functional l(·) defined as

a(Φ, v) :=

∫
Ω

∇Φ · (σ∇v)dΩ (3.26)

l(v) = 〈l, v〉 := −
∫

Ω

JpvdΩ. (3.27)

In the following it is assumed that Φ ∈ H1(Ω), with H1(Ω) being a Sobolev
space over Ω (for definition see for example [5] or [9]) and that Jp is sufficiently
smooth (let us assume Jp ∈ L2(Ω)). A further definition that is needed is

H1
U :=

{
v ∈ H1(Ω) |

∫
Ω

vdΩ = 0

}
. (3.28)

In order to apply the following theorems to a(·, ·) and l(·), certain properties have
to be verified, which has been done by Wolters in [54, 59]. For a(·, ·) continuity
in H1(Ω) × H1(Ω) and ellipticity in H1

U were shown using Cauchy-Schwarz’s
inequality and a variant of Friedrich’s inequality respectively. It was also shown
that l(·) is bounded in H1(Ω), so that l ∈ (H1

U)′. For the following theorem we
define

V := H1
U(Ω) and H := H1(Ω). (3.29)

Theorem 3.6.1 (Existence and Uniqueness). Let Ω be a bounded domain, Γ a
sufficiently smooth boundary and σ ∈ L∞(Ω). Let V be a closed convex set in a
Hilbert space H and a : V×V→ R an elliptic bilinear form. Then the variational
problem

V ar(v) :=
1

2
a(v, v)− 〈l, v〉 → min! (3.30)

has one and only one solution in V for each l ∈ V′. In particular, the solution
Φ is characterized through

a(Φ, v) = 〈l, v〉 ∀v ∈ V. (3.31)

Because of the compatibility condition (3.12), (3.31) is also valid for v = const
and therefore ∀v ∈ H.
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Proof. Theorem of Lax-Milgram, Characterisation theorem, see for example [5,
54, 59].

Theorem 3.6.2. If the conductivities are discontinuous, the solution Φ to equa-
tion (3.30) is generally not a classical solution. That is Φ /∈ C2(Ω) ∩ C1(Ω),
but it has discontinuous derivatives on each boundary with jumping conductivity.
Only the tangential derivatives along those boundaries can be continuous.

Proof. Hackbusch [16].

3.6.2 Ritz-Galerkin Approach

The basic idea of the FE method is to discretize the head domain (source space)
and to approximate the potential Φ as a linear combination of given basis func-
tions that are defined on the discretized source space [9]. This process will now
be described in more detail.
The task that is considered here is to find a Φ ∈ V satisfying

a(Φ, v) = 〈l, v〉 ∀v ∈ V. (3.32)

In order to find a numerical solution of this problem, V is discretised by choosing a
finite dimensional subspace Vh ⊂ V with dimension dim Vh = Nh and with basis
functions ψ1, ..., ψNh

as described in [55, 59]. The average mesh size is denoted by
subscript h and Nh = O(h−3) is the number of unknowns. An approximation of
Φ is now generated using a Ritz-Galerkin approach, which means that in analogy
to (3.32) we are searching for a Φh ∈ Vh so that

a(Φh, vh) = 〈l, vh〉 ∀vh ∈ Vh. (3.33)

For any coefficient vector Φ̃h = (Φ̃
[1]
h , ..., Φ̃

[Nh]
h ) ∈ RNh the mapping P : RNh → Vh

is defined as

Φh(q) = PΦ̃h :=

Nh∑
i=1

Φ̃
[i]
h ψi(q). (3.34)

Using (3.34) the discrete variational problem (3.33) can be interpreted as a linear
equation system

KhΦ̃h = j̃h (3.35)

with

K
[ij]
h := a(ψj, ψi) ∀i, j : 1 ≤ i, j ≤ Nh (3.36)

j̃
[i]
h := l(ψi) ∀i : 1 ≤ i ≤ Nh. (3.37)
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From the ellipticity of the bilinear form a(·, ·) it can be followed that the ma-
trix Kh is symmetric positive definite. As the discretisation gets finer, the
Ritz-Galerkin approximation converges towards the analytical solution, which
is stated by the following theorem.

Theorem 3.6.3 (Convergence). Let Vi
h ⊂ V (i ∈ N) be a sequence of subspaces

with

lim
i→∞

d(Φ,Vi
h) = 0 ∀Φ ∈ V, (3.38)

for the distance function d equal to d(Φ,Vi
h) = inf

w∈Vi
h

‖Φ− w‖V. Let a(·, ·) be a

continuous and V-elliptic bilinear form. The Ritz-Galerkin approximation Φ̃i
h ∈

Vi
h is then converging against Φ:

‖Φ− Φ̃i
h‖V

i→∞−−−→ 0. (3.39)

A sufficient condition for (3.38) is

V1
h ⊂ V2

h ⊂ ... ⊂ V,
∞⋃
i=1

Vi
h dense in V. (3.40)

Proof. Hackbusch [16].

As described by Wolters [55] the head domain Ω is for the present application
decomposed into finite elements. The subspace Vh ⊂ V could for example be
chosen as the subspace of piecewise linear functions

Vh := {Φh ∈ C0(Ω) | Φh linear on each finite element}. (3.41)

A basis is then given by the Lagrange FE functions with ψi(qj) = δij(1 ≤ i, j ≤
Nh) where qj represents the jth FE vertex and the dimension Nh = dim Vh is
equal to the number of vertices.

3.6.3 The Blurred Dipole Model

The blurred dipole at a position ql (not necessarily a FE node) is represented by
a monopole source vector j̃l ∈ RK with entries j̃

[k]
l that are calculated for all k ∈

{1, ..., K} FE nodes qk that are neighbouring the FE node that is closest to the
position ql. The monopole sources are determined to approximate the moment
ml of a mathematical dipole at ql as well as possible but still incorporate the
smoothness of a distributed source. The calculation of the j̃

[k]
l will be described

in the following.
The basic relation

Tl =

∫
Ω

(q− ql)J
pdq (3.42)
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for a blurred dipole moment Tl ∈ R3 has been pointed out by Schönen et al. [42]
and Nolting [25]. In our application only discrete sources on the K neighbouring
nodes of ql are considered. So the above equation can be rewritten to

Tl =
K∑
k=1

∆qklj̃
[k]
l (3.43)

with ∆qkl := (qk − ql) being the vector from FE node qk to the dipole position
ql.
An expression for (3.43) using higher moments has been introduced by Rien-

äcker et al. [34]. The dipole moments at location ql in Cartesian direction r
(r = 1, 2, 3) with orders n ∈ N are denoted by the vector T̄r

l ∈ Rn0+1 (n0 ∈ N is
usually chosen as 1 or 2) with

(T̄r
l )

[n] = (T̄r
l )

[n](̃jl) :=
K∑
k=1

(∆q̄rkl)
[n]̃j

[k]
l ∀n = 0, ..., n0. (3.44)

The bar over the ∆qrkl indicates that a scaling by a reference length aref has
been performed so that

∆q̄rkl = ∆qrkl/aref < 1 (3.45)

is dimensionless and the physical dimension of the resulting scaled nth order
moment (T̄r

l )
[n] is that of a current [8, 55, 56]. Furthermore some definitions are

made:

X̄r
l ∈ R(n0+1)×K with (X̄r

l )
[nk] := (∆q̄rkl)

n (3.46)

m̄r
l ∈ Rn0+1 with (m̄r

l )
[n] := mr

l

(
1

2aref

)n
(1− (−1)n) (3.47)

W̄r
l ∈ RK×K with W̄r

l := DIAG((∆q̄r1l)
s, ..., (∆q̄rKl)

s) (3.48)

with s = 0 or s = 1 [56].
The problem of approximating the dipole moment as well as possible with

a smoothly distributed source load can now be expressed by the minimization
problem

Fλ(̃jl) = ‖m̄r
l − T̄r

l ‖2
2 + λ‖W̄r

l j̃l‖2
2 = ‖m̄r

l − X̄r
l j̃l‖2

2 + λ‖W̄r
l j̃l‖2

2 → min . (3.49)

As described by Wolters in [55] the first part of the functional Fλ proposes a
minimal difference between the resultant higher moments of the blurred dipole
and those of the mathematical dipole, while the regularisation with parameter λ
in the second part determines the smoothness of the monopole distribution and
enables a unique minimum for Fλ. A solution to this minimization is then given
by
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3∑
r=1

{
(X̄r

l )
T X̄r

l + λ(W̄r
l )
TW̄r

l

}
j̃l =

3∑
r=1

{
(X̄r

l )
Tm̄r

l

}
. (3.50)

3.6.4 The Direct Approach Exploiting the Blurred Dipole
Model

After the monopole loads for a blurred dipole have been derived in Section 3.6.3
for a local region around the source position (only the neighbouring FE nodes),
this model has to be transformed into a global model including the source loads
at all FE nodes. For a source location ql this yields the vector j̃

[i]
h ∈ RNh with

j̃
[i]
h :=

{
j̃
[k]
l if ∃k ∈ {1, ..., K} : i = GLOB(k)

0 otherwise,
(3.51)

where the function GLOB determines the global index i to each of the local
indices k.
The linear equation system to the variational equation (3.33) thus concludes

to

KhΦ̃h = j̃h (3.52)

with Kh defined as in (3.36) and j̃h defined as in (3.51). The forward solution
Φ̃h is now obtained by solving this linear equation system.

3.6.5 Generating the Forward Solution Using Transfer
Matrices

Many approaches for solving the inverse problem require the forward solution to
a large number of dipole positions and orientations. In practice this means that
whenever the right-hand side of (3.52) is changed, a whole new linear equation
system must be solved from scratch. This results in high computational costs.
Wolters et al. describe how these computational costs can be reduced by intro-

ducing the concept of transfer matrices in [58]. Assuming that the positions of
the seeg EEG electrodes directly correspond to the FE nodes at the surface of the
head model, it is straightforward to define a restriction matrix R ∈ R(seeg−1)×Nh

with only one non-zero entry (with value 1) per row that maps the potential
vector Φ̃h to the (seeg − 1) non-reference EEG electrodes:

Φ̃eeg := RΦ̃h. (3.53)

Defining the so-called transfer matrix T for the EEG as

T := RK−1
h ∈ R(seeg−1)×Nh (3.54)
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and multiplying (3.52) with T from the left-hand side yields

Tj̃h = TKhΦ̃h = RK−1
h KhΦ̃h = RΦ̃h = Φ̃eeg. (3.55)

Thus T allows a direct mapping of the FE right-hand side to the potential at the
electrodes. Remembering that j̃h only has K non-zero entries at the FE nodes
neighbouring the source location it can be derived that the calculation of Tj̃h
only consists of 2 · (seeg − 1) ·K operations.
In order to determine T the inverse of Kh must be computed first. This is

a difficult task due to the fact that the sparseness of K is lost when inverted.
Therefore another approach to computing T is used. Multiplying (3.54) with Kh

from the right-hand side and transposing both sides yields

KhT
T = (TKh)

T = (RK−1
h Kh)

T = RT . (3.56)

The FE transfer matrix T can thus be computed by iteratively solving (seeg− 1)
large sparse FE linear equation systems.
With the help of the FE transfer matrix T as it has been derived in this

chapter, the costs for a forward computation at a certain location reduce to a
single matrix multiplication with T. The transfer matrix has to be calculated
only once and is valid for all possible source locations. As described in [58], a
similar concept is possible for the FE based MEG forward problem.
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4 Beamformer

Beamformers are a spatial filtering technique that can be applied to solve the
EEG/MEG inverse problem. The theory of beamformers will be derived in this
chapter.

4.1 Data Model of the Vector Beamformer

This section will describe the idea of vector beamformers and derive some basic
formulae as done by Van Veen et al. [49]. It should be mentioned that even
though the following description uses the term “electrode” for a sensor (as in
EEG), the derived formulae would be the same for the MEG case, where the
sensors are magnetometers or gradiometers.

Let x be an N×1 vector representing the potentials measured at the N electrode
sites at one given instant in time associated with a single dipole source. If this
source location is represented by the 3×1 vector q, then x = H(q)m(q) where the
elements of the 3 × 1 vector m(q) are the x, y and z components of the dipole
moment at the instant in time, x is the theoretical (noisefree) measurement
and the columns of the N × 3 leadfield matrix H(q) represent solutions to the
forward problem. More precisely, the first column of H(q) is the potential at
the electrodes due to a dipole source at location q having unity moment in the x
direction and zero moment in y and z direction. Similarly, the second and third
columns represent the potential due to sources with unity moment in y and z
directions, respectively.
Note that this model for the data applies to electric, magnetic, or combined

electric and magnetic measurements. Only the elements of H(q) depend on the
particular sensing modality. In a physical sense, H(q) represents the material
and geometrical properties of the medium in which the sources are submerged.
Because the brain can be considered to be a linear medium, the potential at the

scalp is the superposition of the potentials from many active sources. Suppose
x is composed of the potentials due to L active dipole sources at locations qi,
i = 1, 2, . . . , L and noise. Thus x can be written as

x =
L∑
i=1

H(qi)m(qi) + n (4.1)

where m(qi) is the dipole moment at location qi and n is the additive measure-
ment noise. In the limit of L → ∞ the sum may be represented as an integral

25



4 Beamformer

over the volume containing possible sources. Note that x does not contain any
temporal information since it is obtained by sampling all electrodes at a sin-
gle time instant. It represents the spatial distribution of the potential at the
measurement sites at the sampling time.
An essential concept of beamformer methods is to treat the qi as random

variables and describe them in terms of mean and covariance. Different time
instances are considered as realizations of these random variables. Specifically,
the moment mean vector m(qi) and the source covariance matrix Cov(qi) are
denoted as

m(qi) = E{m(qi)} (4.2)
Cov(qi) = E{[m(qi)−m(qi)][m(qi)−m(qi)]

T}. (4.3)

Assuming that the noise is zero mean (E{n} = 0) with N ×N covariance matrix
Q and that the moments associated with different dipoles are uncorrelated, that
is

Cov(qi,qk) = E{[m(qi)−m(qi)][m(qk)−m(qk)]
T} = 0 ∀i 6= k, (4.4)

then the mean of the data vector x is

x = E{x}

= E

{
L∑
i=1

H(qi)m(qi) + n

}

=
L∑
i=1

E{H(qi)m(qi)}+ E{n}

=
L∑
i=1

H(qi) E{m(qi)}

=
L∑
i=1

H(qi)m(qi) (4.5)

and the data covariance matrix C(x) is given by

C(x) = E{[x− x][x− x]T}

= E


[(

L∑
i=1

H(qi)m(qi) + n

)
−

L∑
i=1

H(qi)m(qi)

]
[(

L∑
i=1

H(qi)m(qi) + n

)
−

L∑
i=1

H(qi)m(qi)

]T
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= E


[(

L∑
i=1

H(qi)(m(qi)−m(qi)

)
+ n

]
[(

L∑
i=1

H(qi)(m(qi)−m(qi)

)
+ n

]T
= E


[

L∑
i=1

H(qi)(m(qi)−m(qi))

][
L∑
i=1

H(qi)(m(qi)−m(qi))

]T

+
L∑
i=1

H(qi)(m(qi)−m(qi))n
T

+
L∑
i=1

n(m(qi)−m(qi))
THT (qi)

+nnT


= E

{
L∑
i=1

L∑
j=1

H(qi)(m(qi)−m(qi))(m(qj)−m(qj))
THT (qj)

}
+ Q

=
L∑
i=1

L∑
j=1

H(qi) Cov(qi,qj)︸ ︷︷ ︸
= 0 for i 6= j

HT (qj) + Q (4.6)

=
L∑
i=1

H(qi)Cov(qi)H
T (qi) + Q. (4.7)

The assumption that the moments associated with different dipoles are uncor-
related generally does not hold. The performance of beamformers in the presence
of correlated sources will therefore be discussed in Section 4.2.4.
The variance associated with a particular source is defined as a measure of the

strength of the source. Here the beamformer differs from other inverse meth-
ods for brain source reconstruction that usually measure the source strength by
means of source amplitude. Because a scalar value is more convenient to measure
source strength, the covariance matrix representing the source variance along the
different directions is replaced by its trace

tr{C(q)}. (4.8)

In the case of a dipole with fixed orientation this corresponds to the true source
variance as show in the following:
The source moment m(q) can be devided into a dipole orientation m̃(q) and a
time dependent source strength s(t)

m(q) = m̃(q)s(t). (4.9)
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Then the source covarince is given by ([41])

Cov(q) = Var(s)m̃m̃T (4.10)

and Var(s) is its only nonzero eigenvalue. Because the trace of a matrix is
invariant to basis transformation, this yields

tr{Cov(q)} = Var(s). (4.11)

As described in Section 3.1, the electric field over the head volume can be
expressed by a potential Φ, which is unique up to a constant c. Therefore the
EEG measures the potentials at the head surface with respect to a reference elec-
trode. But instead of choosing the reference electrode arbitrarily, it is generally
accepted to use common average as defined in the following:
Let x = (x1, ..., xN) be the measurement vector and x = 1

N

∑N
i=1 xi the mean

accross all electrodes. Then the measurement in common average x̃ is calculated
by subtracting x from each sensor measurement, i.e. x̃ = (x1 − x, ..., xN − x).
The derivation and discussion that follows is applicable whether or not the

data is preprocessed to be in common average notation. For ease of exposition
the terms x and H(q) will be used.

4.2 Linearly Constrained Minimum Variance
Localization

The Linearly Constrained Minimum Variance (LCMV) approach is based on the
concept of spatial filtering. Spatial filtering refers to discrimination of signals on
the basis of their spatial location. This concept completely parallels the concept
of temporal filtering, where one discriminates between signals based on their
temporal frequency content. Hence, a “narrow-band” spatial filter passes signals
originating from a small “passband” volume while attenuating those originating
from other locations. Temporal filtering involves operating on time samples of
a signal, whereas spatial filtering involves processing spatial samples of a signal.
In the present application, the spatial samples are elements of the data vector x
and the spatial filter is implemented as a weighted combination of these samples.
The goal is to design a bank of spatial filters where each filter passes signals
originating from a specified location within the brain while attenuating signals
from other locations. A display of the variance or power as the output of each
filter as a function of the filter’s focused location provides an estimate of the
distribution of an activity within the brain.

4.2.1 Filter Design

The signal at each location in the brain consists of the three component dipole
moment m(qi) which provides information about the strength and the direction
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of the dipole. Hence, for each location three spatial filters (one for each compo-
nent of the dipole moment) will be constructed. The spatial filter focusing on
location q0 is expressed as the N × 3 matrix W(q0). Then the three component
filter output m̂ is given by the inner product of W(q0) and x

m̂ = WT (q0)x. (4.12)

An ideal narrow-band spatial filter satisfies

WT (q0)H(q) =

{
I, q = q0

0, q 6= q0

,q ∈ Ω (4.13)

where Ω represents the volume of the brain. If (4.13) is satisfied, then in the
absence of noise (n = 0) the filter output is m̂ = m(q0), which is exactly the
dipole moment at the location of interest that was to be reconstructed. As in
temporal filtering, it is generally impossible to have complete attenuation in the
stopband. Unit response in the passband is ensured by requiring

WT (q0)H(q0) = I. (4.14)

Zero response in the stopband implies W(q0) must also satisfy

WT (q0)H(qs) = 0 for q0 6= qs. (4.15)

Provided N ≥ 6 and the columns of H(q0) and H(qs) are linearly independent, it
is mathematically possible to simultaneously satisfy (4.14) and (4.15). However,
only a limited number of source locations other than q0 can be completely blocked
by the beamformer filter, depending on its degrees of freedom. Each column of
W(q0) only has N degrees of freedom. The passband constraint (4.14) uses up
three of these, and each independent null uses an additional three so one could at
most achieve simultaneous nulls at N/3−1 locations having linearly independent
leadfield matrices H(q).
Given the limitations on the stopband attenuation, one naturally asks how to

design a filter that is optimal in some sense. The LCMV approach offers a guiding
philosophy for designing an optimal filter. The idea is to find a W(q0) that
minimizes the variance at the filter output while satisfying the linear response
constraint (4.14), hence the name linearly constrained minimum variance.
The constraints ensure that the signals of interest are passed by the filter.

Minimization of variance optimally allocates the stopband response of the filter
to minimize the contribution to the filter output due to signals in the stopband.
This strategy only forces the stopband response to be small at a location qs if
there is significant energy originating from qs.
The LCMV problem is posed mathematically as

min
W(q0)

tr{C(m̂)} subject to WT (q0)H(q0) = I. (4.16)
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Using (4.12) and considering that W is not a random quantity, C(m̂) can be
written as (see [41])

C(m̂) = C(WT (q0)x) = WT (q0)C(x)W(q0). (4.17)

Therefore the LCMV problem can also be expressed as

min
W(q0)

tr
{

[WT (q0)C(x)W(q0)]
}

subject to WT (q0)H(q0) = I. (4.18)

The solution to (4.18) may be obtained using the methods of Lagrange multi-
pliers. Let 2L be a 3 × 3 matrix of Lagrange multipliers. The cost function in
(4.18) is augmented with the inner product of the Lagrange multipliers and the
constraint to obtain the Lagrangian L(W,L)

L(W,L) = tr{WTCW + (WTH− I)2L} (4.19)

where the arguments (q0) and (x) are omitted for clarity. Noting that
tr{A} = tr{AT} for any square matrix A and that (BC)T = CTBT for any
two matrices with appropriate dimensions, (4.19) can be rewritten as

L(W,L) = tr{WTCW + (WTH− I)L + LT (HTW − I)}. (4.20)

From this expression we gain

L(W,L) = tr{WTCW + (WTH− I)L + LT (HTW − I)}
= tr{(WTCW + (WTHL− L) + (LTHTW − LT )}
= tr{(WTCW + WTCC−1HL + LTHTW

+ LTHTC−1HL− L− LT − LTHTC−1HL}
= tr{(WTC + LTHTC−1C)(W + C−1HL)− L− LT

− LTHTC−1HL}
= tr{(WT + LTHTC−1)C(W + C−1HL)− L− LT

− LTHTC−1HL} (4.21)

by expanding. Here C was assumed to be invertible (at least in the presence of
noise).
Only the first term in the brackets of (4.21) is a function of W. Remembering

that C is a covariance matrix and therefore positive semi-definite, the minimum
of L(W,L) is attained by setting the first term to zero, that is

W = −C−1HL. (4.22)

The Lagrange multiplier matrix is now obtained by substituting W in the con-
straint WTH = I to obtain

− LTHTC−1H = I (4.23)
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or
LT = −(HTC−1H)−1. (4.24)

Note here that C is a symmetric matrix which yields C = CT and
C−1 = (C−1)T . Thereby substituting (4.24) into (4.22) yields the solution

WT = [−C−1HL]T

= [−C−1H(−(HTC−1H)−1)T ]T

= [C−1H((HTC−1H)−1)T ]T

= (HTC−1H)−1(C−1H)T

= (HTC−1H)−1HT (C−1)T

= (HTC−1H)−1HTC−1,

(4.25)

or more precisely

WT (q0) = [HT (q0)C−1(x)H(q0)]−1HT (q0)C−1(x). (4.26)

4.2.2 LCMV Localization

Using the filter derived above, namely (4.26), for signal reconstruction as de-
scribed in (4.12) gives an estimate of the moment at location q0. The estimated
variance or strength of the activity at q0 is the value of the cost function in (4.16)
and (4.18) at the minimum. Omitting q0 and x again, the estimation result is
therefore given by

V̂ar = tr{[WTCW]}
= tr{[HTC−1H]−1HTC−1C(C−1)TH([HTC−1H]−1)T}
= tr{[HTC−1H]−1[HT (C−1)H]([HTC−1H]−1)T}
= tr{([HTC−1H]−1)T}
= tr{[HTC−1H]−1},

or in detail
V̂ar(q0) = tr{[HT (q0)C−1(x)H(q0)]−1}. (4.27)

To perform localization, the variance or strength is estimated as a function of
location within the volume of the brain. This is accomplished by evaluating (4.27)
as a function of q0. Regions of large variance presumably have substantial neural
activity. The result in (4.27) is referred to as the estimated “spatial spectrum”
of neural activity.
This approach does not require specification or determination of the number

of dipole sources to fit to the data. Van Veen et al. [49] suggest that anatomical
information can easily be included by only evaluating (4.27) at locations corre-
sponding to physically realistic source locations. As we will show in simulations,
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this is rather critical as we are dealing with localizations errors depending on the
head model accuracy. This means that the beamformer might find maximum
activity at locations that are not physically realistic.
The resolution of detail in the spatial spectrum is ultimately limited by the

noise level that has a crucial influence on the minimum “width” or spatial ex-
tent of the filter’s passband, as we will explain in Section 5.2.2. Two distinct
sources that are located within the passband of a particular filter cannot be re-
solved. The spatial extent of the passband depends on the leadfield matrices
H(q), which in turn depend on the volume conductor, the number of electrodes,
their distribution and their source location. Simulations indicate that superficial
activity can be resolved with much greater detail than deep activity [49]. The
resolution also depends on the SNR associated with the feature of interest. This
is a consequence of the variance minimization procedure used to determine the
spatial filters. As SNR increases, resolution increases. Note that since the Beam-
former is variance based, SNR is defined as the variance of the source divided by
the variance of the noise. This is in contrast to the more usual notion of SNR
employed in EEG and evoked potential (EP) analysis (see Section 2.4), defined
as the ratio of the source signal amplitude to the noise standard deviation.

4.2.3 The Neural Activity Index and Noise

The SNR of measured data is often small, so the sensor noise comprises a signif-
icant component of the estimated neural activity obtained using (4.27). Brain
noise that appears spatially concentrated or non-uniformly distributed in the spa-
tial spectrum will interfere with localization of actual neural sources. Consider
the estimated spatial spectrum assuming C(x) is due entirely to spatial white
(sensor) noise with a mean of µ = 0 and standard deviation σ = 1, C(x) = I. In
this case (4.27) simplifies to

V̂ar(q0) = tr{[HT (q0)H(q0)]−1}. (4.28)

Hence, the noise spatial spectrum depends on the leadfield matrices H(q0). Note
that for locations q0 far from any electrode, the elements of H(q0) are generally
quite small, so [HT (q0)H(q0)]−1 will have large elements, resulting in a large
value for V̂ar(q0). In contrast, for locations q0 close to an electrode, H(q0)
will have several large elements and [HT (q0)H(q0)]−1 will in general have small
elements, resulting in a small value for V̂ar(q0). Because deep source locations are
relatively far from electrodes, noise generally has a dome shaped spatial spectrum
with the peak of the dome centered at the deepest locations. This dome may
be warped significantly if the electrodes are distributed non-uniformly, or if the
geometry of the head is assumed to be very non-uniform.
The LCMV spatial spectrum is not linear; that is, the spatial spectrum due

to a sum of signals is not the sum of the individual spatial spectra. This is
a consequence of the inverses in (4.27). However, application of the matrix
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inversion lemma to (4.7) and substitution into (4.27) indicates that (4.27) always
contains an additive noise component of the form

tr{[HT (q0)Q−1H(q0)]−1} (4.29)

This corresponds to the noise spatial spectrum in the absence of other signals.
Due to the relatively low SNRs associated with typical data, the noise spatial
spectrum may obscure the spatial spectrum of the neural activity of interest.
This problem is reduced by normalizing the estimated spatial spectrum of the
data by the estimated noise spatial spectrum to obtain the normalized estimate

V̂arN(q0) =
tr{[HT (q0)C−1(x)H(q0)]−1}
tr{[HT (q0)Q−1H(q0)]−1}

(4.30)

This estimate is termed the neural activity index.
The numerator of (4.30) is an estimate of the source plus noise variance at q0

and the denominator is an estimate of the noise variance at q0. Hence, the neural
activity index may be interpreted as an estimate of the source to noise variance as
a function of location. The normalization is a function of location, so the relative
levels of estimated neural activity at different locations are changed. In principle,
the absolute level can still be determined by reversing the normalization after
specific features are identified. The neural activity index requires knowledge of
the noise covariance matrix Q. If the noise is assumed to be spatial white noise,
i.e. uncorrelated between channels, then Q = σ2I.

4.2.4 Correlated Sources

Recall that the moments associated with distinct dipoles were assumed to be
uncorrelated (4.4). The presence of correlation between distinct sources can lead
to reduction of the estimated variance for the sources that are correlated.
Using that (4.6) applies for correlated sources, it can be derived that the output

variance at location qk is given by

tr{WT (qk)C(x)W(qk)}

= tr

{
L∑
i=1

L∑
n=1

WT (qk)H(qi)Cov(qi,qn)HT (qn)W(qk)

+ WT (qk)QW(qk)

}
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= tr


L∑
i=1
i=k

L∑
n=1
n=k

WT (qk)H(qk)︸ ︷︷ ︸
=I

Cov(qk,qk) HT (qk)W(qk)︸ ︷︷ ︸
=I

+
L∑
i=1
i=k

L∑
n=1
n6=k

WT (qk)H(qk)︸ ︷︷ ︸
=I

Cov(qk,qn)HT (qn)W(qk)

+
L∑
i=1
i 6=k

L∑
n=1
n=k

WT (qk)H(qi)Cov(qi,qk) HT (qk)W(qk)︸ ︷︷ ︸
=I

+
L∑
i=1
i 6=k

L∑
n=1
n6=k
n6=i

WT (qk)H(qi)Cov(qi,qn)HT (qn)W(qk)

+WT (qk)QW(qk)


= tr

C(qk) +
L∑
i=1
i 6=k

WT (qk)H(qi)C(qi)H
T (qi)W(qk)

+
L∑
i=1
i 6=k

[C(qk,qi)H
T (qi)W(qk)

+ WT (qk)H(qi)C(qi,qk)]

+
L∑

n,i=1
n,i 6=k
n 6=i

[WT (qk)[H(qi)C(qi,qn)HT (qn)

+ H(qn)C(qn,qi)H
T (qi)]W(qk)]

+ WT (qk)QW(qk)

 . (4.31)

The cross terms on the right-hand side of (4.31) are not guaranteed to be positive
for all W(qk). Recall that the LCMV criterion chooses a W(qk) to minimize
(4.31). The minimum is in general obtained with a W(qk) that would turn the
cross terms to be negative. If this occurs, then the estimated variance of the
source at qk, tr{WT (qk)C(x)W(qk)}, is significantly smaller than its true value
tr{C(qk)}. For full correlation it turns out that tr{WT (qk)C(x)W(qk)} = 0
holds. The spatial filter exploits the correlation between sources to minimize
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output variance by canceling the correlated portion of the source of interest.
Correlated source cancellation is a phenomenon that is well known in adaptive
beamforming applications of the LCMV method for radar and sonar [52]. Perfect
correlation between spatially distinct sources in the brain is unlikely, although
partial correlation is expected in certain situations, such as when several brain
areas react to an external stimulus or become activated by a common third active
area.
The performance of beamformers in the presence of correlated source activity

has been investigated by Sekihara et al. in [43]. They have shown that the reduc-
tions in the reconstructed signal intensities is small for sources with a medium
degree of correlation (less than 20% for two correlated sources with a correlation
coefficient of less than 0.6). Even for significantly correlated sources (correlation
coefficients of 0.7 − 0.8) can still be reconstructed if their intensities are strong
enough to overcome the signal cancellation [43].

4.3 Synthetic Aperture Magnetometry (SAM)

As described above, the LCMV Beamformer approach does not make any prior
assumption on the direction of the dipole moment for a given source location q.
The SAM approach significantly differs from LCMV in the sense that SAM tries
to estimate the dipole direction at source location q in advance, hence that the
Beamformer weights are only computed for one distinct direction. In this case
the spatial filter W(q) is no longer a N × 3 matrix but a N × 1 weight vector.
The determination of the dipole direction will be described in this section.

The idea of SAM is to find a dipole orientation at which some beamformer param-
eter is optimal (see [50]). In this derivation the parameter to be optimized is the
pseudo-Z value that will be introduced in this section. In order to find the dipole
orientation that maximizes the pseudo-Z value for a given source location the
formulae derived above are going to be considered for a fixed dipole orientation.
The notations used above will be maintained throughout this chapter.
Assuming that the dipole orientation at location q is given by a 3×1 vector e,

the dipole moment at q can be written as m(q) = ae for a scalar value a. The
N × 3 transfer matrix H(q) reduces to a N × 1 transfer vector

h = H(q)e (4.32)

and the spatial filter in equation (4.26) simplifies to

wT =
hTC−1

hTC−1h
. (4.33)

As in the LCMV approach we have to account for projected sensor noise again.
Instead of the neural activity index introduced by van Veen et al. [49], SAM
typically uses so-called pseudo-Z values which represent the estimated spatial
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spectrum of the data normalized by the beamformer projected noise. Like in
(4.27) the estimated spatial spectrum of the data can be written as

V̂ar(q) =
1

hTC−1h
. (4.34)

Note that unlike in (4.27) the trace does not need to be considered, as the
argument obtained is now a scalar value and not a matrix. The noise spatial
spectrum is derived as follows.
Assuming that the noise is distributed with zero mean and variance σ2 and

uncorrelated for all sensors, the noise covariance matrix Q can be written as

Q = σ2I, (4.35)

where I corresponds to the N -dimensional identity matrix. In practice σ2 is often
chosen to be the smallest eigenvalue of the data covariance matrix C. The noise
spatial spectrum is now obtained by applying the spatial filter w to the noise
covariance matrix (4.35)

η2 = wTσ2Iw = σ2wTw. (4.36)

In order to write (4.36) in full detail, note that

w = (wT )T = (hTC−1(hTC−1h)−1)T

= ((hTC−1h)−1)T︸ ︷︷ ︸
((hT C−1h)T )−1

(hTC−1)T

=
C−1h

(hTC−1h)T

=
C−1h

(hTC−1h)
(4.37)

and therefore

η2 = σ2 hTC−1

hTC−1h

C−1h

(hTC−1h)
= σ2 hTC−2h

(hTC−1h)2
. (4.38)

Using (4.34) and (4.38) the pseudo-Z notation is given as

V̂arN =
1

hTC−1h

(hTC−1h)2

σ2hTC−2h
=

hTC−1h

σ2hTC−2h
(4.39)

The next crucial step to actually finding the optimal dipole direction is to
interpret (4.39) as a function of dipole orientation. For this purpose equality
(4.32) is used which results in

V̂arN(e) =
eTHTC−1He

σ2eTHTC−2He
(4.40)

=
eTAe

σ2eTBe
, (4.41)
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with A = HTC−1H and B = HTC−2H. It becomes obvious that (4.40) is
the generalized Rayleigh Quotient. Hence, the dipole direction maximizing the
neural activity index is given by an eigenvector e0 corresponding to the biggest
eigenvalue of B−1A and

V̂arN(e0) = max
e

V̂arN(e). (4.42)

4.4 Covariance Matrix Error and Finite
Integration

From (4.26) and (4.33) it becomes obvious that the beamformer spatial filters
– and therefore also the source reconstruction – directly depend on the data
covariance matrix. The data covariance matrix that is used to compute the filter
weights is a data driven estimation of the true data covariance matrix.
As described by Brookes et al. in [6] the accuracy of the covariance matrix is

crucial and e.g. for MEG it particularly depends on crosstalk between neighbour-
ing sensors, errors in the gain of the system amplifiers, inaccurate synchronisation
of channels and so on. A crucial parameter that affects the covariance accuracy
is the amount of data used to create the covariance estimate, which will also
be denoted as the integration window or covariance window. Ideally, covariance
would be computed as the infinite integration limit in order to give a perfect rep-
resentation of signal power. In practice though, for localisation of spontaneous,
evoked or induced brain activity, integration windows can only be a few hundred
milliseconds long per trial. This is affecting the accuracy of covariance estima-
tion and therefore the accuracy of the source power estimates and reconstructed
volumetric images.
In the following the results of [6] will be discussed. Although [6] focuses on

MEG, the main principles should also apply for the EEG that we are concen-
trating on.

As mentioned before, the beamformer weights and thereby the beamformer
estimate of source amplitude are dependent on the data covariance matrix C
and the forward solution given by the leadfield matrix H. Assuming an accurate
forward solution, the accuracy of the beamformer entirely depends on the data
covariance matrix. Consider now the case in which a single source is active
with forward solution h and variance ρ2. Using (4.7) an analytical form for the
covariance matrix in the infinite integration limit is given by

C0 = ρ2hhT + σ2I. (4.43)

Again Q = σ2I represents the covariance matrix of the sensor noise in the case of
spatial white noise with power σ2 at all MEG channels. The first term in (4.43)

37



4 Beamformer

represents the genuine source power, whereas the second term is representative
of the uncorrelated noise power.
In practice the data covariance matrix is unknown since the source location

and orientation are unknown. Therefore it must be estimated from the data. A
commonly used estimate of the covariance measured between two channels i and
j is

Cij =
1

K

K∑
l=1

(mi(tl))(mj(tl)), (4.44)

where K is the number of samples recorded during the time window tcov, mi(tl)
represents the lth magnetic field measurement from channel i and mj(tl) rep-
resents the lth magnetic field measurement for channel j respectively. It is as-
sumed here that the magnetic field measurements have zero mean. A useful rule
of thumb is that the number of samples (K) must be greater than the total num-
ber of channels in the system (N) in order for C to remain non-singular, and
therefore invertible for (4.26). Furthermore, it is suggested in [49] that if C is
constructed from a random process, increasing the number of recorded samples
K decreases the amount of randomness (hence, inaccuracies in the estimation of
covariance). In the following the aim is to relate these inaccuracies quantitatively
to the integration window.
First Brookes et al. [6] introduce the concept of covariance matrix error ∆C.

It is defined such that
∆C = C−C0, (4.45)

where C represents the data-derived covariance matrix from (4.44) and C0 the
analytically derived covariance matrix given by (4.43). Note here that, written
in this form, covariance matrix errors may not be solely due to finite integration
time, but may also contain components due to gain error, inaccurate synchro-
nization of channels or crosstalk. In the following however, only the effect of
finite integration time will be taken into account.
Generally mi(tl) is given by [6]

mi(tl) = m0i(tl) + ηi(tl), (4.46)

where m0i represents a noiseless measurement of the magnetic field at the ith
channel and ηi represents the effect of sensor noise at the ith channel and therefore
the error in the measurement. In the following the sensor noise is assumed to
have zero mean, i.e. ηi = 0. The elements of the data covariance matrix are given
by substituting (4.46) into (4.44), thus

Cij =
1

K

K∑
l=1

[m0i(tl) + ηi(tl)][m0j(tl) + ηj(tl)] (4.47)

holds. Expanding product and sum yields

Cij = C0ij + ∆Cij, (4.48)
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where C0ij =
1

K

K∑
l=1

m0i(tl)m0j(tl) (Brookes et al. [6] assume that due to the

sampling theorem the estimator on the right-hand side is equal to the analytical
C0ij from equation (4.45) for K sufficiently large) and ∆Cij = A1 +A2 +A3 with

A1 =
1

K

K∑
l=1

m0i(tl)ηj(tl)

A2 =
1

K

K∑
l=1

m0j(tl)ηi(tl)

A3 =
1

K

K∑
l=1

ηi(tl)ηj(tl).

It follows that ∆Cij represents the elements of the covariance matrix error
and in the limit of infinite integration ∆Cij will tend to zero due to the facts
that sensor noise is uncorrelated for different channels and that the noise and
the signal are uncorrelated. For finite integration times ∆Cij will be finite and
under the assumption in [6] that the processes A1, A2 and A3 are uncorrelated,
the magnitude of these covariance error elements ∆Cij can be represented by
samples from a random process with variance given by

Var(∆Cij) = Var(A1) + Var(A2) + Var(A3). (4.49)

The assumption that the processes A1, A2 and A3 are uncorrelated is generally
not fulfilled. For i = j we obviously have A1 = A2, which is highly correlated.
Therefore we will take a closer look at the cases i 6= j and i = j. The properties
derived in the following can easily be shown under the assumption that the noise
ηi at channel i is stochastically independent (st. i.) to processes depending on
noise from other channels and/or any brain source signal, including the signal
m0i at the ith sensor. We further assumed that processes depending on the
noise at different instances in time are stochastically independent, i.e. processes
depending on ηi(tl) and ηi(tr) are stochastically independent for l 6= r. The noise
is assumed to have zero mean.
Let i 6= j. In this case A1 is uncorrelated to A2 and A3:

Cov(A1, A2) = E[A1A2]− E[A1] E[A2]

= E[A1A2]− E

[
1

K

K∑
l=1

m0j(tl)ηi(tl)

]
E[A2]

= E[A1A2]−


1

K

K∑
l=1

E[m0j(tl)ηi(tl)]︸ ︷︷ ︸
E[m0j(tl)]| {z }

0

E[ηi(tl)] (st. i.)

E[A2]
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= E[A1A2]− 0

= E

[
1

K2

K∑
r=1

K∑
l=1

m0j(tl)ηi(tl)m0i(tr)ηj(tr)

]

=
1

K2

K∑
r=1

K∑
l=1

E[m0j(tl)ηi(tl)m0i(tr)ηj(tr)] (st. i.)

=
1

K2

K∑
r=1

K∑
l=1

E[m0j(tl)ηi(tl)m0i(tr)] E[ηj(tr)]︸ ︷︷ ︸
0

= 0 (4.50)

and

Cov(A1, A3) = E[A1A3]− E[A1] E[A3]

= E[A1A3]− 0 E[A3]

= E

[
1

K2

K∑
r=1

K∑
l=1

m0i(tl)ηj(tl)ηi(tr)ηj(tr)

]

=
1

K2

K∑
r=1

K∑
l=1

E[m0i(tl)ηj(tl)ηi(tr)ηj(tr)] (st. i.)

=
1

K2

K∑
r=1

K∑
l=1

E[m0i(tl)]︸ ︷︷ ︸
0

E[ηj(tl)ηi(tr)ηj(tr)]

= 0. (4.51)

A2 and A3 are shown to be uncorrelated analogously, so that (4.49) holds for
i 6= j.
Let i = j. Then A1 = A2 and A1 is uncorrelated with A3:

Cov(A1, A3) = E[A1A3]− E[A1] E[A3]

= E[A1A3]− 0 E[A3]

= E

[
1

K2

K∑
r=1

K∑
l=1

m0i(tl)ηi(tl)η
2
i (tr)

]

=
1

K2

K∑
r=1

K∑
l=1

E[m0i(tl)ηi(tl)η
2
i (tr)] (st. i.)

=
1

K2

K∑
r=1

K∑
l=1

E[m0i(tl)]︸ ︷︷ ︸
0

E[ηi(tl)η
2
i (tr)]

= 0. (4.52)
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In this case ∆Cii = 2A1 + A3 holds and (4.49) must be rewritten to

Var(∆Cij) = Var(2A1 + A3)

= Var(2A1) + Var(A3)

= 4 Var(A1) + Var(A3)

= 2(Var(A1) + Var(A2)) + Var(A3) (4.53)

for i = j. Note here that Var(aX) = a2 Var(X) for a random quantity X and a
scalar value a.
The following analysis can now be developed by recognizing that the summa-

tions in (??) are related to correlation coefficients. As proposed in [6] and derived
in the following, the term A3 for example can be rewritten as

A3 =
1

K

K∑
l=1

ηi(tl)ηj(tl) =
r̂(ηi, ηj)‖ηi‖F‖ηj‖F

K
, (4.54)

where r̂(ηi, ηj) is the empirical correlation coefficient between ηi and ηj, and
‖ηi‖F and ‖ηj‖F are the Frobenius norms of ηi and ηj respectively. With Std(X)
representing the standard deviation of argument X, the equality in (4.54) can be
shown by replacing r̂(ηi, ηj), ‖ηi‖F and ‖ηj‖F by their definitions and assuming
that the noise has zero mean:

r̂(ηi, ηj)‖ηi‖F‖ηj‖F
K

=
Ĉov(ηi, ηj)

Ŝtd(ηi)Ŝtd(ηj)
· ‖ηi‖F‖ηj‖F

K

= Ĉov(ηi, ηj) ·
‖ηi‖F‖ηj‖F

KŜtd(ηi)Ŝtd(ηj)

= Ĉov(ηi, ηj) ·

√√√√ K∑
l=1

η2
i (tl)

√√√√ K∑
l=1

η2
j (tl)

K · 1
K

√√√√ K∑
l=1

η2
i (tl)

√√√√ K∑
l=1

η2
j (tl)

= Ĉov(ηi, ηj) · 1

=
1

K

K∑
l=1

ηi(tl)ηj(tl). (4.55)

The symbol ·̂ again indicates empirical quantities.
The Frobenius norms ‖ηi‖F and ‖ηj‖F are related to the root mean square

(RMS) value of the uncorrelated noise at each MEG sensor such that, if σi
represents the level of the uncorrelated noise at sensor i, then

‖ηi‖F =

√√√√ K∑
l=1

η2
i (tl) ≈

√
σ2
iK = σi

√
K. (4.56)
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Since ηi and ηj are uncorrelated random processes, r(ηi, ηj) → 0 holds in the
limit of infinite integration. For finite integration times however, Brookes et al.
[6] argue that the standard deviation of the correlation coefficient Std(r̂(ηi, ηj))
is given by (see [3])

Std(r̂(ηi, ηj)) =
1√
K

for i 6= j (4.57)

and

Std(r̂(ηi, ηj)) =
2√
K

for i = j. (4.58)

Note that the correlation coefficient in (4.57) is defined as
dCov(ηi,ηj)

Std(ηi) Std(ηj)
and not

as
dCov(ηi,ηj)dStd(ηi)dStd(ηj)

as in (4.55). The autocorrelation coefficient in (4.58) is defined
analogously. Combining (4.54)-(4.58) gives

Std(A3) ≈ σiσj√
K

for i 6= j (4.59)

and

Std(A3) ≈
√

2

K
σ2
i for i = j. (4.60)

This is validated by

Std(A3) =
√

Var(A3)

=

√
Var

(
r̂(ηi, ηj)‖ηi‖F‖ηj‖F

K

)

≈

√√√√Var

(
r̂(ηi, ηj)σi

√
Kσj
√
K

K

)

=

√
σ2
i σ

2
jK

2

K2
Var(r̂(ηi, ηj))

= σiσj

√
Var(r̂(ηi, ηj))

= σiσj Std(r̂(ηi, ηj))

=


σiσj√
K

i 6= j√
2
K
σ2
i , i = j.

(4.61)

The standard deviations of A1 and A2 are derived in a similar way. A1 can be
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rewritten to

A1 =
1

K

K∑
l=1

m0i(tl)ηj(tl)

= Ĉov(m0i, ηj)

= r̂(m0i, ηj)Ŝtd(m0i)Ŝtd(ηj)

= r̂(m0i, ηj)Ŝtd(m0i)
‖ηj‖F√
K

.

(4.62)

Here Ŝtd(m0i) represents the standard deviation of the noiseless field measure-
ments at sensor i and is given by

Ŝtd(m0i) =

√√√√ 1

K

K∑
i=1

(m0i(tl))2 ≈ ρ2hi, (4.63)

with hi representing the forward solution to the fixed dipole at the ith sensor.
Analogous to equation (4.57), we have

Std(r̂(m0i, ηj)) =
1√
K
. (4.64)

Together with (4.56) and (4.62) this concludes to

Std(A1) =
√

Var(A1)

=

√
Var

(
r̂(m0i, ηj)Ŝtd(m0i)

‖ηj‖√
K

)

≈

√√√√Var

(
r̂(m0i, ηj)Ŝtd(m0i)

σj
√
K√
K

)

=
√
σ̂2(m0i)σ2

j Var(r̂(m0i, ηj))

= Ŝtd(m0i)σj

√
Var(r̂(m0i, ηj))

= Ŝtd(m0i)σj
1√
K

=
Ŝtd(m0i)σj√

K
. (4.65)

The standard deviation of A2

Std(A2) ≈ Ŝtd(m0j)σi√
K

(4.66)
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is derived analogously.
Considering the case in which the noise level is equal at all channels (i.e.

σi = σj = σ), substitution of (4.61), (4.65) and (4.66) into (4.49) yields

Var(∆Cij) = Var(A1) + Var(A2) + Var(A3)

= [Std(A1)]2 + [Std(A2)]2 + [Std(A3)]2

≈

[
Ŝtd(m0i)σ√

K

]2

+

[
Ŝtd(m0j)σ√

K

]2

+

[√
1

K
σ2

]2

=
σ2

K

{
[Ŝtd(m0i)]

2 + [Ŝtd(m0j)]
2 + σ2

}
(4.67)

is obtained for i 6= j.
By substituting (4.61), (4.65) and (4.66) into (4.53), we obtain

Var(∆Cij) = 2 Var(A1) + 2 Var(A2) + Var(A3)

= 2[Std(A1)]2 + 2[Std(A2)]2 + [Std(A3)]2

≈ 2

[
Ŝtd(m0i)σ√

K

]2

+ 2

[
Ŝtd(m0j)σ√

K

]2

+

[√
2

K
σ2

]2

=
σ2

K

{
2[Ŝtd(m0i)]

2 + 2[Ŝtd(m0j)]
2 + 2σ2

}
=

2σ2

K

{
[Ŝtd(m0i)]

2 + [Ŝtd(m0j)]
2 + σ2

}
(4.68)

for i = j. Note that Var(∆Cij) for i = j and for i 6= j only differ by a factor of
two.
The equation above represents the standard deviation of the elements of the

covariance matrix error ∆Cij. It is now desirable to derive a scalar parameter
that is representative of the error in the covariance estimate across the entirety
of ∆C.
Using E[∆Cij] = 0, the expected Frobenius norm of the covariance matrix

error is given by

E[‖∆C‖F ] = E[

√√√√ N∑
i=1

N∑
j=1

∆C2
ij]

=

√√√√ N∑
i=1

N∑
j=1

E[∆C2
ij]

=

√√√√ N∑
i=1

N∑
j=1

Var(∆Cij)
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=

√√√√√ N∑
i=1

N∑
j=1
j 6=i

Var(∆Cij) +
N∑
i=1

Var(∆Cii)
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K
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i=1

N∑
j=1

{
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2 + [Ŝtd(m0j)]
2 + σ2

}

+
N∑
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{
[Ŝtd(m0i)]

2 + [Ŝtd(m0i)]
2 + σ2

}) 1
2

. (4.69)

The summations in this expression can be performed separately, so ‖∆C‖F can
be rewritten to

E[‖∆C‖F ] ≈ σ√
K

(
N∑
i=1

N∑
j=1

{
[Ŝtd(m0i)]

2 + [Ŝtd(m0j)]
2 + σ2

}
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K

[
2
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{
[Ŝtd(m0i)]2

}
+Nσ2

]
. (4.70)

Substituting (4.63) into this equation and defining the signal to noise ratio (in
agreement with Section 4.2.2) as

SNR =
ρ2‖h‖2

F

Nσ2
(4.71)
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we get

E[‖∆C‖F ] ≈ σ

√√√√N + 1

K

[
2

N∑
i=1

{[Ŝtd(m0i)]2}+Nσ2

]

= σ

√√√√N + 1

K

[
2

N∑
i=1

{ρ2h2
i }+Nσ2

]

= σ

√
N + 1

K
[2ρ2‖h‖2

F +Nσ2]

= σ

√
N + 1

K
[2Nσ2 SNR +Nσ2]

= σ

√
N(N + 1)σ2

K
[2 SNR +1]

= σ2

√
N(N + 1)

[2 SNR +1]

K
. (4.72)

For large N � 1 the limit reduces to

E[‖∆C‖F ] ≈ σ2

√
N2

2 SNR +1

K

= σ2N

√
2 SNR +1

K
. (4.73)

This formula gives a simple expression of the expected Frobenius norm of
the error of the covariance matrix. It shows the dependence of the covariance
estimation error on different parameters and their interplay, i.e. the influence of
the signal to noise ratio SNR, the number of EEG/MEG channels N and the
number of samples K used for the covariance estimation.
Interestingly, the covariance matrix error for example increases with the SNR,

but the relative covariance error ‖∆C‖F
SNR

decreases because

‖∆C‖F
SNR

≈
σ2N

√
2 SNR +1

K

SNR
∼
√

SNR

SNR
=

1√
SNR

. (4.74)

Increasing sensor noise will obviously also increase the covariance error and so
will an increasing number of channels N . Increasing the number of sample points
in contrast will lead to a smaller covariance matrix error, which is consistent with
the assumption that in the limit of infinite integration the covariance matrix is
determined correctly, hence without any error.
At this point Brookes et al. [6] argue that according to the sampling theorem

equation (4.73) only applies to unfiltered data, i.e. in the case where the signal
bandwidth (δf) is at the Nyquist limit, i.e. δf = τ/2, where τ is the sampling
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frequency. This would mean that only in this case K would be the number of
useful samples. If the bandwidth was reduced by filtering, the number of ‘useful’
samples that could be recorded during the time window tcov would be

Kuseful = 2tcovδf. (4.75)

Kuseful can be thought of as a measure of how much information is contained in
the data. In this context Brookes et al. suggest that in the case where δf < τ/2
holds, (4.73) should be rewritten to [6]

‖∆C‖F ≈ σ2N

√
2 SNR +1

2tcovδf
. (4.76)

However, the application of the sampling theorem in the situation described
above is not appropriate, as the sampling theorem is based upon the cutoff
frequency ∆f , rather than the bandwidth δf . The application of the sampling
theorem is also problematic, as it exploits the determinisic character of the signal,
but the former derivations are based on random processes as discussed in [6].
Although the derivation given in [6] does not hold, for recorded data that is
entirely due to noise equation (4.75) can still be derived differently:
A signal recorded with sampling frequency τ over a time interval with the length
tcov has a cutoff frequency ∆f of

∆f =
1

2τ
, (4.77)

hence
1

τ
= 2∆f. (4.78)

The number of samples recorded is given by

K =
tcov
τ
. (4.79)

Together this yields

K =
tcov
τ

= 2tcov∆f. (4.80)

Gaussian noise by definition incorporates all frequencies within the Nyquist
limit with the same probability. As we are aiming at estimating the source
variance, it should be noticed that due to Parseval’s Theorem we can estimate
the variance in the Fourier space by applying the formula of the empirical vari-
ance (except for an unimportant factor). Therefore we will consider the Fourier
transformed signal. Here we assume that the Fourier transformed samples are
stochastically independent.
Applying a discrete Fourier transform to the K recorded samples gives K

samples in the Fourier space ranging from −∆f to ∆f . Bandpass filtering would
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remove all samples in the Fourier space but k samples within a frequency band
δf (−δf respectively) and the relationship

δf

∆f
=

k

K
=

k

2tcov∆f
(4.81)

holds, which can be rewritten to

k = 2tcovδf. (4.82)

This k corresponds to the term Kuseful used by Brookes et al. [6].
Note here that for equation (4.81) the assumption was used that theK samples

in the Fourier space were uniformly distributed across all frequencies between
−∆f and ∆f . In other words (4.75) and thereby (4.76) only hold for noise data
and generally not for deterministic signals.
Brookes et al. present simulations to validate (4.76), but they only use band-

pass filtered random samples as signals (as well as noise). This supports our
derivation of (4.76), but does not hold for deterministic signals. A real brain
signal consists of a deterministic part and noise. It is not clear to what extent
(4.76) holds in such realistic situations.
However, the signal in the simulations in [6] has the same properties as noise.

Therefore the simulations only support the validity of (4.76) for noise signals. In
order to validate the effects of inappropriate covariance estimation in general it
would be necessary to set up simulations where the brain source is represented
by a deterministic signal.
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5 Practical Application of
Synthetic Aperture
Magnetometry

In this chapter the influence of volume conductor properties on the SAM results
will be examined. For this purpose synthetic data was simulated and analyzed
by the beamformer (SAM) that was implemented as a part of the SimBio soft-
ware (see Section 5.2.4). In the following a detailed description of the volume
conductor model will be given, followed by some crucial implementation details.
After that the simulations that were made will be presented and discussed.

5.1 The Finite Element Model

The FE model that was used for the beamformer analysis is the same model
that was used and described in [57]. This model was built to take into account
realistic head shapes as well as conductivity anisotropies in the skull.
The realistic head shape is reflected in the finite element mesh, which was

derived from MRI data. As described in [57], T1-weighted MRI is well suited
for the segmentation of tissue boundaries like white and grey matter, outer skull
and skin. Proton density (PD) weighted MRI sequences are more successful
in identifying the inner skull surface as the quantity of water protons between
intracranial and bone tissues is large.

5.1.1 Measurement of T1- and PD-MRI

MR imaging of a healthy 32 year old male subject was performed on a 3 Tesla
whole-body scanner (Medspec 30/100, Bruker, Ettlingen/Germany). For the
T1-MRI, an inversion recovery MDEFT sequence [23] was employed (flip angle
of 25◦, TR = 11.7 ms, TE = 6 ms, TMD = 1.3 s). For the 3D PD-MRI, acquired
one week later, a 3D FLASH protocol [15] with TE = 6 ms, a flip angle of 25◦
and TR = 11.7 ms was used. The scan resolution was 1 × 1 × 1.5 mm3 in both
acquisitions, which were linearly interpolated to an isotropic 1 mm3 voxel size.

5.1.2 Registration and Segmentation

Constructing a realistic volume conductor model requires segmentation of the
different tissues within the head with special attention to the poorly conducting
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human skull [17, 10, 35, 20, 33].

In order to correct for different subject positions and geometrical distortions,
T1- and PD-MRI were first aligned with a voxel-similarity based affine registra-
tion without pre-segmentation using a cost-function based on mutual information
[55, 57]. The T1 images provided the information on soft tissues while the reg-
istered PD image enabled the segmentation of the inner skull surface.
Wolters et al. used a nearly automatic segmentation process consisting of a

3D implementation of an Adaptive Fuzzy C-Means classification method that
compensates for image intensity inhomogeneities (based on the original work in
two dimensions of [30]), followed by a deformable model algorithm to smooth
the inner and outer skull surfaces [55]. Five head compartments were segmented
out of the bimodal dataset; skin, skull, cerebrospinal fluid (CSF), grey and white
matter. In source reconstruction, it is generally accepted that the weak volume
currents outside the skull and far away from EEG and MEG sensors have a
negligible influence on the measured fields [7]. Therefore, no effort was made to
segment the face and instead a cutting procedure like that reported in standard
boundary element head modelling was used (see e.g. [51]).

5.1.3 FE mesh generation

A prerequisite for FE modelling is the generation of a mesh that represents the
geometric and electric properties of the head volume conductor. To generate the
mesh, Wolters et al. [57] used the software CURRY1 to create a surface-based
tetrahedral tessellation of the five segmented compartments. The procedure ex-
ploits the Delaunay-criterion, enabling the generation of compact and regular
tetrahedra, and is described in detail elsewhere [51, 55]. The process resulted in
a finite element model with 147,287 nodes and 892,115 tetrahedra elements.

5.1.4 Finite Element Conductivity and Skull Tensor
Eigenvalues

The finite elements were then labeled according to their compartment mem-
bership and assigned the following conductivities for the isotropic head model
[14, 38, 19]: skin = 0.33 S/m, skull = 0.0042 S/m (skull to skin conductivity ratio
of approximately 1:80) and brain = 0.33 S/m (the brain includes grey matter,
white matter and CSF). The resulting FE mesh is shown in Figure 5.12

The human skull shows a conductivity with high resistance in the radial di-
rection (as a first approximation, a series connection of a high, a low and a high

1CURrent Reconstruction and Imaging, http://www.neuro.com.
2image created with TetView, http://tetgen.berlios.de/tetview.html
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resistor for inner compacta, spongiosa and outer compacta) and much lower resis-
tance in the tangential directions (parallel connection of the same three resistors)
[38, 57].

Figure 5.1: Axial cut through the realistically shaped FE model with elements
coloured according to their compartment: red for skin, green for skull
and blue for the brain.

Marin et al. have pointed out the importance of well-defined skull conductivity
tensor eigenvectors by reporting errors in the simulated EEG for the case of an
erroneous modelling [24]. Wolters et al. determined the radial direction from
a strongly smoothed triangular mesh, which was shrunken from the outer skull
onto the outer spongiosa surface using a discrete deformable surface model [55].
Realistic modelling of the conductivity tensor eigenvalues in the skull is a dif-

ficult task, not only because the absolute and relative thicknesses of spongiosa
and compacta layers vary and their boundaries are difficult to segment, but espe-
cially because of inhomogeneous skull resistivity and an inter- and intrasubject
variability which can be related to age, diseases, environmental factors, and per-
sonal constitution [38, 22, 19, 32, 28, 1]. Wolters et al. therefore started from the
commonly used isotropic conductivity value of σskull = 0.0042 S/m [20, 10, 8, 51]
and simulated the anisotropic case in the following way: For a given anisotropy
ratio, σrad : σtang, radial and tangential eigenvalues were computed by obeying
the volume constraint [55], which retains the geometric mean of the eigenvalues
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and thus the volume of the conductivity tensor, i.e.

4

3
πσrad(σtang)2 !

=
4

3
πσ3

skull. (5.1)

According to [38, 11, 29, 48, 24], the skull has an anisotropy ratio of 1:10. Using
the volume constraint, σrad = 0.000905 and σtang = 0.00905 were obtained.

5.1.5 3-layer Isotropic Sphere Model

The 3-layer isotropic sphere model was obtained by fitting a sphere to the realistic
EEG sensor positions using the coordinate system of the according FE model.
This sphere has a radius of 89.66 mm and represents the outer boundary of
the head volume. The outer skull was then modeled by inserting a concentric
sphere with radius 83.33 mm and the inner skull was modelled by adding another
concentric sphere with radius 74.89 mm. Hence, the volume inside the innermost
sphere represents the brain compartment. The electrode positions were gained
by projecting the realistic sensor positions to the surface of the outer sphere.

5.2 Beamformer Application

In this section we will present practical applications of SAM to synthetic data.
For this purpose crucial details of simulating synthetic data will be discussed
followed by a close examination of the effects that volume conduction has on the
SAM results.

5.2.1 Possible Source Locations

In order to examine the effects of volume conductor modelling on beamformer
results, synthetic data must be produced. In particular this means that for
a number of distinct source locations the sensor leadfield is computed using a
certain volume conductor model. The question that implicitly arises is how to
choose these distinct source locations.
As described in Section 2.3, brain source activity is usually located in the cortex

of the human brain. Another issue that has to be taken into account is that the
distributed source model used for the Venant approach and therefore also the
forward solution is dependent on the FE mesh. As described in Section 3.6.3,
the blurred dipole model distributes monopolar loads to neighbouring FE nodes.
In our simulations we only want to take source locations into account, where all
monopolar loads are placed in the cortex sheet. This property will be called the
Venant property. It makes sure that all neighbouring finite elements represent
the same tissue conductivity.
To identify locations that incorporate the requirements described above, we

started off by distributing a 2 × 2 × 2 mm source-mesh across grey- and white
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matter of a segmented 5-layer (skin, skull, CSF, grey matter, white matter)
MR image with resolution 1 × 1 × 1 mm. All the nodes of this mesh were
examined with regard to the Venant property. For this purpose each node of
the source mesh was projected to his nearest neighbour in the FE mesh. If this
nearest neighbour and all of his neighbouring FE nodes had the conductivity of
the brain, the according source node was labeled to fulfil the Venant property,
otherwise it was not.
The next step was to resample the segmented MR image to have a resolution of

2×2×2 mm using nearest neighbour interpolation to determine the values of the
enlarged voxels. The voxel positions of the grey- and white matter segments were
now a subset of the source-mesh nodes. Distance transformation with respect
to the white matter compartment was performed and all voxels with a distance
smaller or equal to 2 mm were added to the white compartment. This can be
thought of as a slightly blown up white matter compartment. We were now
seeking to extract the surface of this blown up white matter compartment which
will lie within the grey matter. This was done with the use of a morphologic
operator. An erosion was performed on the surface of the enlarged white matter
compartment and the removed voxels are the very candidates for source locations
As mentioned above, these voxels can be identified with nodes of the source-

mesh. The last step was to remove all candidates whose corresponding nodes
did not fulfil the Venant property, which had been checked previously. The final
result is a number of possible source locations that are all located in the cortex
and fulfil the Venant property. These locations are shown in Figure 5.2.

5.2.2 Beamformer Resolution and Noise

In order to investigate the effect of volume conductor modelling on beamformer
results, synthetic data is used as this provides the possibility of examining cer-
tain aspects in a clean environment. When a single source is simulated using an
arbitrary volume conductor, then in the absence of noise, the beamformer recon-
struction using the same volume conductor produces a sharp peak at the original
source position. A very sharp peak indicates that even sources with a different
but very similar leadfield are blocked. This has been validated using a realis-
tically shaped 3-layer isotropic FE model and the result is shown in Figure 5.3
a).
The purpose of this work is to investigate the influence of the head model on

the SAM reconstruction result. Therefore, the model used for the reconstruction
is usually not the same one as that used for the simulation of the data. In these
cases the very high resolution that was obtained in the absence of noise is a
serious problem as the leadfields that are computed for the nodes of the search
space grid in the reconstruction model may significantly differ from the reference
leadfield. In this context it becomes necessary to decrease the resolution of the
beamformer, which results in broader peaks.
One way to achieve this is to add noise to the simulated data. In order to
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(a) (b)

(c) (d)

(e) (f)

Figure 5.2: Selection of sagittal MR slices with red dots indicating the source
locations used for simulations. (a)-(f) ordered from superior to infe-
rior.
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avoid errors due to finite integration times (see Section 4.4) we do not generate
noise by random numbers but rather use the theoretical covariance matrix of the
form CΣ = σ2I. Here σ2 represents the noise level. Under the assumption that
the noise and the signal are uncorrelated, the data covariance matrix that is used
to compute the beamformer weight can be written as

C = Csignal + CΣ = Csignal + σ2I, (5.2)

where Csignal represents the covariance matrix of the noise free simulated data.
Figure 5.3 shows plots of the beamformer resolution obtained using different noise
levels. Again the realistically shaped 3-layer isotropic FE model was used or the
simulation as well as for the reconstruction. As expected, an increase of noise
results in a decrease of resolution. The plots in Figure 5.3 all represent pseudo-Z
values of the beamformer output, i.e. the SAM results were normalized by the
beamformer projected sensor noise. However, the effect of noise blurring the
beamformer peaks would also apply to the beamformer output before computing
the pseudo-Z value. In spite of broadening the peaks the beamformer maximum
peak will still be found at exactly the same position as the sharp peak.
The introduction of noise to simulated data does not only broaden the peaks,

it also causes artifacts which are presented in Figure 5.4. The small light spots in
the SAM reconstruction have a much higher absolute value than the peak value
at the original position of the simulated source. These artifacts are due to the
noise that was added to the simulated data. The beamformer projected noise at
a position q is given by

wT (q)CΣw(q) = wT (q)σ2Iw(q) = σ2‖w(q)‖, (5.3)

Using (4.34) it can be seen that the projected noise typically increases with
decreasing leadfield length:

wT (q)CΣw(q) ∼ 1

‖h(q)‖
(5.4)

We have validated that the artefacts in Figure 5.4 are right at those positions
where the length of the leadfield is comparably small, hence at positions where

1
‖h(q)‖ is large.
A possible and recommendable way of dealing with these artefacts is to use

pseudo-Z values that are gained by dividing the beamformer output by the beam-
former projected noise. This will compensate for the artefacts while the peak at
the reconstructed source position becomes sharper, but remains visible as shown
in Figure 5.4.

5.2.3 Source Orientation

For each source location q the dipole orientation that would maximize the ex-
pected localization error was determined. Therefore, the leadfield for the forward
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5 Practical Application of Synthetic Aperture Magnetometry

Figure 5.3: Plots of the beamformer resolution along the x-achses (right to left)
for different noise levels (pseudo-Z values). The red circles indicate
the true location of the simulated source, the green star represents
the maximum peak of the SAM reconstruction.
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5.2 Beamformer Application

(a)

(b)

Figure 5.4: (a) SAM reconstruction results before applying pseudo-Z correction
for projected noise. The blue arrow points to the true source loca-
tion, the green arrows point at some arbitrary artefacts. (b) SAM
reconstruction using pseudo-Z values to compensate for artefacts due
to sensor noise. The blue arrow points at the correctly reconstructed
source postion.
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model Hsim(q) and the leadfield for the inverse model Hsam(q) were computed.
For the difference in these leadfields (Hsim(q)−Hsam(q)) a singular value decom-
position (SVD) was performed. The dipole orientation was chosen to have the
direction of the eigenvector to the largest eigenvalue of the SVD. In this direc-
tion the L2 norm of the potential difference between forward and inverse model
is maximized. Choosing this dipole orientation, we expect to find localization
errors close to the largest localization errors that can be observed for any dipole
at location q.

5.2.4 Simulation Software

All simulations presented in this thesis have been run using the SimBio3 software
package.
The SimBio code provides algorithms to solve the EEG/MEG inverse problem

as well as analytical and quasi analytical solutions to the forward problem in mul-
tilayer sphere models. In addition there are Boundary Element Method (BEM)
solutions for the forward problem in realistically shaped multilayer isotropic head
models.
SimBio allows the generation of EEG and MEG forward solutions based on the

Finite Element method. The SAM implementation used for the inverse solutions
was embedded into SimBio. The iterative forward calculations and SAM recon-
structions were realized by a MATLAB R©4 routine, calling the according SimBio
functions.
The visualizations of the results were done with SCIRun5 and MRIcro6, the

SAM results generated by the SimBio software were processed with MATLAB R©

to generate appropriate input files for SCIRun and MRIcro.

5.2.5 Forward Simulation and SAM Reconstruction

After identifying possible source locations and determining the source orientation
for each location, a forward simulation was performed separately for each of these
sources. The source time course was simulated as a sine wave with a frequency of
40 Hz and an amplitude of 10 nAm. The sampling frequency was set to 1200 Hz
and 100 trials with 200 samples per trial were simulated. The EEG sensors were
arranged according to the 10-20 system. Their positions relative to the head
model are shown in Figure 5.5.
The simulated measurements were used to construct the noise free data covari-

ance matrix Csignal. Perfect noise at a level of σ2 = 2 · 10−13 V was simulated by
adding the noise covariance matrix CΣ = σ2I to Csignal. The resulting covariance
matrix C = Csignal + CΣ was used to compute the SAM filter weights.

3https://www.mrt.uni-jena.de/neurofem/index.php/Main_Page
4http://www.mathworks.de/products/matlab/
5http://software.sci.utah.edu/scirun.html
6http://www.sph.sc.edu/comd/rorden/mricro.html
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5.2 Beamformer Application

(a) axial view (b) sagittal view (c) coronal view

Figure 5.5: Sensor locations relative to the brain.

As we are interested in the influence of volume conductor modelling on the
beamformer results, two scenarios will be analyzed in particular:

• The first scenario we will focus on incorporates a forward simulation in the
realistically shaped 3-layer isotropic FE model and a SAM reconstruction
on the basis of a 3-layer isotropic sphere model. The idea of analyzing
this experimental setup is to reveal effects that are entirely due to the
differences in geometry between the forward model (realistic shape) and
the inverse model (sphere).

• The second scenario consists of a forward simulation in the realistically
shaped 3-layer anisotropic FE model followed by a SAM reconstruction
using the realistically shaped 3-layer isotropic FE model. This analysis is
supposed to show up the pure skull anisotropy effect.

5.2.6 The Geometry Effect

As described in Section 5.2.5, the geometry effect was examined by simulating
single dipoles in the realistically shaped 3-layer isotropic FE model and perform-
ing a SAM reconstruction on the basis of a 3-layer isotropic sphere model. The
differences between the original source position and the reconstructed source po-
sition are visualized in Figure 5.6. Note that the displacement cones in that
figure do not each represent a single dipole but the average over all displace-
ment cones within a volume of 1cm3. The average was computed by dividing
the source space into 1 cm3 cubes and determining the arithmetic mean of all
source positions within one cube first. This average source position was chosen
as the origin of the corresponding cone. The direction and length were then
determined by calculating the arithmetic mean of all the displacement vectors
(reconstructed position - true source location) to the sources within that voxel.
The colours encode the lengths of the cones in mm, i.e. the average displacement
within the represented voxels.
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5 Practical Application of Synthetic Aperture Magnetometry

(a) axial view

(b) sagittal view

(c) coronal view

Figure 5.6: The geometry effect (isotropic FEM vs. isotropic sphere model).
Cones pointing from the true source location to the reconstructed
position. Each cone represents the average of all displacement vec-
tors within a voxel of 1 cm3.
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5.2 Beamformer Application

The results in Figure 5.6 clearly show large reconstruction errors in the pre-
frontal cortical (PFC) areas that we are especially interested in. The sources
are ‘pushed’ inside or outside the head depending on under- or over-estimation
of the skull thickness. Even bigger errors are found in the regions around the
brainstem and the cerebellum. These results correspond well with the geometri-
cal differences between the realistic head shape and the sphere, which are shown
in Figure 5.7 and Figure 5.8. In Figure 5.7 the distance of the head surface to
the sphere surface was estimated for each FE skin surface node by computing
the RMS distance to the sphere surface over all FE skin surface nodes within a
radius of 1 cm. Figure 5.8 shows an overlay of the segmented MR image and
the Sphere model. Comparing this to Figure 5.6 it can clearly be seen that the
reconstruction errors become large in exactly those areas where the sphere fits
the head shape badly. The large errors in the brainstem and the cerebellum may
as well be partly due to the bad sensor coverage in these areas, which is presented
in Figure 5.5 and Figure 5.7.
The results gained from these simulations stand in close agreement with vari-

ous publications on the geometry effect. Hämäläinen and Sarvas [18] compared
the MEG forward solutions of sphere models to the MEG forward solutions of
realistically shaped isotropic head models and found considerabel differences, es-
pecially in frontal areas. Van Uitert and Johnson [45] have produced synthetic
MEG data using a 5-layer isotropic FE model and performed inverse calculations
based on 5 different sphere models. The overall outcome of their study was, that
localization errors for deep sources were generally larger than the localization
error for superficial sources that were located closer to the sensors. Van Uitert
et al. also pointed out differences in the MEG forward solutions of realistically
shaped head models and sphere models in [46].

5.2.7 The Anisotropy Effect

In order to investigate the anisotropy effect a number of sources were simulated
separately in the realistically shaped 3-layer anisotropic FE model and then re-
constructed with the realistically shaped 3-layer isotropic FE model. The results
are shown in Figure 5.9. Again the cones represent the average reconstruction
error across all sources simulated within 1 cm3 voxels. The average was deter-
mined analogously to the averaging process described for the visualization of the
geometry effect in Section 5.2.6. As above, the colours encode the lengths of the
cones in mm, i.e. the average displacement within the represented voxels.
The simulation results in Figure 5.9 show that by disregarding the anisotropy

of the skull (here modeled as 1:10 (radial:tangential) following the volume con-
straint) leads to ‘pushing’ the sources further into the head.
This again confirms results that were presented by Marin et al. who investigated
reconstruction errors when disregarding skull anisotropy [24]. As reported and
validated in a sensitivity study by Huiskamp et al. correct modelling of the
thickness of the skull is of high importance [20]. This means that in areas where
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(a) axial view

(b) sagittal view

(c) coronal view

Figure 5.7: Differences between the sphere model and the realistically shaped
FE model by means of the local mean square distance between the
realistic head surface and the corresponding sphere’s surface.
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5.2 Beamformer Application

(a) (b)

(c) (d)

(e) (f)

Figure 5.8: (a)-(f): Selection of slices along the x-axes (ordered from right to left)
showing an overlay of the MR that the realistically shaped 3-layer
isotropic FE model was based on and the 3-layer sphere model.
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(a) axial view

(b) sagittal view

(c) coronal view

Figure 5.9: The anisotropy effect. Cones pointing from the true source location
to the reconstructed position. Each cone represents the average of
all displacement vectors within a voxel of 1 cm3.
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5.2 Beamformer Application

the skull is thick, the reconstruction error will be larger than in areas where the
skull is rather thin. This is also observed in Figure 5.9 when comparing it to
the thickness of the skull presented in Figure 5.10. We currently believe that,
according to the global sensitivity study of Vallaghé et al. [47], the main effect is
due to the change in radial skull conductivity by means of the volume constraint.
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(a) axial view

(b) sagittal view

(c) coronal view

Figure 5.10: Thickness of the skull computed for each skull-skin boundary FE
node as the distance to the closest CSF-skull boundary FE node.
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6 Conclusion

The aim of this thesis was to investigate the influence of volume conduction on
EEG beamformer analysis. For this purpose the forward problem and the under-
lying neural concepts were described. This was followed by a chapter on solving
the associated inverse problem using beamformer techniques. These theoreti-
cal derivations provided the basis for the simulations performed in Chapter 5.
The geometry effect between a 3-layer isotropic sphere model and a realistically
shaped 3-layer isotropic FE-model, as well as the skull anisotropy effect in com-
parison of a realistically shaped 3-layer anisotropic FE-model and a realistically
shaped 3-layer isotropic FE-model were examined in detail.

It was found that the geometry effect was especially large in those areas where the
sphere model differed the most from the realistic head geometry. This included
the PFC areas that were of high interest with respect to future real data studies
as they were described in the introduction (anxiety disorders and sensory gat-
ing in schizophrenic diseases). For positions in the prefrontal cortex localization
errors of up to 20 mm can be observed in Figure 5.6. Our results correspond
well with other studies on the geometry effect that can be found in literature
([18, 20]).
The results presented for the anisotropy effect show that skull-anisotropy has a

common effect on source localization across the whole head volume as all sources
are pushed’ into the head. The reconstruction errors appear to be larger in
areas where the skull is thick than in areas where the skull is rather thin. This
is especially the case in the prefrontal cortex. These results are again in close
agreement with literature on the effect of skull-anisotropy ([57]). It however
seems that the change in radial conductivity has a considerable influence [47].

Concludingly one can say that the geometry effect as well as the anisotropy
effect do have significant influence on beamformer source analysis in 3-layer head
models. Therefore it is recommended to use a realistically shaped head model
that takes skull anisotropy into account for real data analysis, as this comes
closest to the reality among those models that were discussed in this thesis.
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7 Outlook

For the investigation of the effects of volume conduction on EEG beamformer
analysis, this theses focused on 3-layer models as they are well suitable to examine
the geometry effect and the anisotropy effect separately.

An effect that is still to be evaluated is the dependence of the beamformer results
on the sensor coverage. As it was shown in Figure 5.5, the sensor coverage is only
restricted to realistic EEG sensor positions. When working on synthetic data,
as it was done throughout this thesis, it is also possible to place virtual sensors
for example inside the neck in order to gain better coverage for sources near the
brainstem or in the cerebellum.
The anisotropy effect has so far been observed for the volume constraint. A

study incorporating the same radial skull conductivity as in the isotropic model
but by a factor 10 higher tangetial skull conductivity may as well provide a
deeper insight into the effects of skull anisotropy [21, 24, 47].
Another scenario that should be examined is to validate the simulations in this

thesis that were all done for the EEG by performing the same simulation setup
for the MEG. Combined EEG and MEG is of great interest.

In future work, an examination of 4- and 5-layer models may give further clues on
volume conduction effects in beamformer source analysis. Using 5-layer models
can also account for white matter conductivity anisotropy which might have an
influence on the beamformer reconstruction results. It is expected that the deeper
the source, the more important white matter anisotropy modelling is [57, 36]

And last but not least an application to real measured data should be the aim of
future research. As described in the introduction, source reconstruction methods
serve to actually learn more about the human brain, its functions and how it
processes stimuli. Therefore the efficiency of a head model in combination with
an inverse method should be judged by the applicability to real data problems.
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Symbols

Symbol Explanation
A upper case boldface symbols: vector fields or matrices

depending on the context
v lower case boldface symbols: vectors unless indicated

differently
δ(·) Dirac δ-distribution
∇ ·A Divergence of the vector field A
×A Curl of the vector field A
∇Φ Gradient of a scalar potential Φ
∆ Laplace Operator
〈a,b〉 Scalar product of the vectors a and b
H1(Ω) Sobolev space over Ω
L2(Ω) Space of square integrable functions over Ω
L∞(Ω) Space of essentially bounded functions over Ω
C2(Ω) Space of twice continuously differentiable functions over

Ω
C1(Ω) Space of continuously differentiable functions over Ω
C0(Ω) Space of continuous functions over Ω
DIAG(n1, . . . , nk) k× k Matrix with diagonal entries n1 to nk and all non-

diagonal entries are zero
AT Transpose of the matrix A
A−1 Inverse of the matrix A
tr{A} Trace of the matrix A
E{X} Expected value of random quantity X
Cov(X, Y ) Covariance of random quantities X and Y
Cov(X) Autocovariance of random quantity X
Var(X) Variance of random quantity X
Std(X) Standard deviation of random quantity X
‖ · ‖F Frobenius norm
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