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ABSTRACT

Brain source localization with EEG and MEG modalities provides a useful means of

identifying and localizing bioelectric source in the brain. Source localization has been used

as an important tool in neuroscience and in clinical applications. Due to modern imaging

technology, one can construct a subject specific volume conductor model from a set of MRI

or CT images that can improve the accuracy of source localization over generic models.

Finite element method makes it possible to use the realistic geometry from the subject

specific imaging data and to assign tissue conductivity in a flexible way. The thesis works

use the FEM volume conductor model and studied three scientific issues in FEM source

localization, i.e., impact of current dipole model on the accuracy of forward solution,

tissue conductivity estimation with EEG data, and combined MEG/EEG conductivity

estimation.

The first study is to investigate the impact of dipole models and numerical solvers on

solution accuracy and computational efficiency. The accuracy and efficiency of analysis

play an important role in medical diagnostics and research as well as in the field of

neuroscience. In Electroencephalography (EEG) source reconstruction, a current distri-

bution in the human brain is reconstructed noninvasively from measured potentials on

the head surface (the EEG inverse problem). To solve this problem requires a numerical

modeling technique to simulate head surface potentials for dipolar current sources in

the human cortex, the so-called EEG forward problem. The solution to the inverse

problem then becomes an iterative optimization process involving many forward solutions.

The accuracy of the forward solution has a direct impact on the accuracy of inverse

localization. As one of the components in volume conduction, current dipole should be

modeled in the finite element space. Three FE dipole models (Venant, partial integration

and subtraction methods) have been proposed in an attempt to avoid source singularity

problem. We studied the impact of dipole models on the accuracy of forward solution

by EEG simulation. We also evaluated the computational efficiency of the FE solvers

(AMG-CG, IC-CG, Jacobi-CG) and the interplay between the solvers and the dipole

models. Best accuracies were achieved by the subtraction approach. It is shown that



the AMG-CG achieved an order of magnitude higher computational speed than the other

solvers. Our results should broaden the application of accurate and fast high-resolution

FE volume conductor modeling in source analysis routine.

The second study is to estimate the tissue conductivity with EEG data during source

localization. Bioelectric source analysis in the human brain from scalp EEG signals

is sensitive to geometry and conductivity properties of the different head tissues. We

developed a Low Resolution Conductivity Estimation (LRCE) method using simulated

annealing optimization on high resolution finite element models that individually opti-

mizes a realistically-shaped volume conductor with regard to the tissue conductivities.

As input data, the method needs T1- and PD-weighted magnetic resonance images and

scalp potential data. Our simulation studies showed that for realistic signal-to-noise so-

matosensory evoked potentials, the LRCE method was able to simultaneously reconstruct

both the brain and the skull conductivity together with the underlying dipole source in

somatosensory cortex and provided an improved source analysis result. Furthermore,

using scalp potentials with a high signal-to-noise ratio, the LRCE method was even able

to simultaneously reconstruct a pair of dipole sources together with the brain and the

skull conductivity.

The third study is to stabilize the procedure of conductivity estimation by MEG

data. Adding MEG modality to the EEG could play a role of stabilizing the EEG LRCE

estimation procedure, especially in case of low signal-to-noise ratio data. Since the MEG

is much less sensitivity to the tissue conductivity, the MEG dipole fit provides good

source parameter information that is relatively insensitive to conductivity variations.

The combined analysis takes the source parameter from the MEG dipole fit and uses it

as a prior constraint on the source for the EEG LRCE. We introduced a combination

of iteration scheme to compensate for the radial insensitivity of MEG and to estimate

conductivity more accurately. With these results, we have shown the viability of an

approach that computes its own conductivity values and thus reduces the dependence

on assigning values from the literature and likely produces a more robust estimate of

current sources. Using the LRCE method, the individually optimized (with regard to

both geometry and conductivity) volume conductor model can in a second step be used

for the analysis of clinical or cognitive data acquired from the same subject.

v
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CHAPTER 1

INTRODUCTION

Brain source localization is defined as reconstructing current sources responsible for

the electric and/or magnetic field distributed in the conducting medium of the human

head. Source localization with the data from the modalities such as EEG (Electro-

encephalograpy) or MEG (Magnetoencephalograpy) provides clinically significant infor-

mation of source parameters that can indicate the activity of brain functional disorders

such as epilepsy. An essential and critical component of source reconstruction is the

head volume conductor model, which contains both the geometry and the electrical

conduction properties of the head tissues. Studies have shown that the accuracy of both

parameters has a direct impact on the accuracy of the source localization [5–7] so that

it has become desirable to have patient specific models of the head. There are practical

challenges to creating patient specific conductor models that currently prohibit this degree

of customization for each routine case of clinical source localization. Specifically, the

conductivities of head tissues vary across individuals and within the same individual due

to variations in age, size, disease state, and environmental factors. In fact, while modern

imaging modalities provide the information necessary for geometric accuracy, there is no

functional equivalent that will provide conductivity information.

We propose an approach that will deal with uncertainty in conductivity by incor-

porating that uncertainty into the solution method and solving the resulting formula-

tion both for the source parameters and the conductivity values. The hypothesis of

this dissertation is that customized tissue conductivities with realistic head

geometry will improve the accuracy of source localization and that incor-

porating conductivity parameters into the problem formulation will achieve

those improvements. The hypothesis is based on the following observations. First,

accurate knowledge of bioelectric source parameter provides valuable information for

the diagnosis and pre-surgical planning of a patients with focal abnormal brain activity.

Subject-specific volume conductor models in terms of geometry and conductivity are
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the basis for obtaining the accurate source information. Second, medical images from

MR and/or CT techniques provide accurate geometry information of the human head

and enable the creation of realistic finite element head models. Third, a prevailing

disadvantage of the computational cost for the FEM (Finite Element Method) no longer

exists because the recent development of efficient FE solvers and the transfer matrix (or

lead field basis) approach reduces the complexity of FE computation. Global optimizers

such as SA (Simulated Annealing) are able to effectively handle multiple optimization

parameters of both source locations and tissue conductivities. Forth, recent studies to

resolve the uncertainty of conductivity values with sphere head model and/or boundary

element model have shows that incorporating the conductivity variance into the source

localization procedure improve the accuracy of source localization. Based on these

observations, the main goal of this research was to individually optimizes a

realistically-shaped volume conductor with regard to the tissue conductivities

and evaluate the resulting improvements in solution accuracy.

The following specific aims were designed to develop the hypothesis and served as the

major topics of the thesis.

1. Evaluate the role of the choice of FE solver and FE dipole model on

the accuracy of the forward computation. We investigated the impact with

three FE solvers (Jacobi-CG, IC-CG, and AMG-CG) and three FE dipole source

models (Venant method, partial integration approach, and subtraction method) and

compared accuracy and computational cost. The importance of the specific choice

of FE solver and FE dipole model on the accuracy of forward solution lies in the fact

that the inverse dipole fit method is based on iterative calls of a forward simulation.

We computed the solutions using a sphere FE model and evaluated the accuracy

with that of analytic solution for the same sphere model model.

2. Estimate tissue conductivity as part of the EEG source localization. We

developed a new method of LRCE (Low Resolution Conductivity Estimation) that

estimates tissue conductivities during source localization by allowing each tissue

conductivity to vary within a predefined set of values. The method used a realistic

FE head geometry created from a single subject’s three-dimensional MR images.

We tested our method with simulated EEG data and also applied it to empirical
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SEP (Somatosensory Evoked Potentials) EEG data collected from the subject in

order to estimate subject specific brain and skull conductivity.

3. Estimate tissue conductivity with EEG/MEG combined modalities. We

apply EEG/MEG combined analysis to the LRCE method in order to estimate

tissue conductivity. Using combined EEG and MEG data in combination with

realistic FE head geometry should further stabilize the application of the LRCE

method for the estimation of tissue conductivities. Given the FE head model, we

use the simulated MEG data to obtain the source parameters by MEG dipole fit

method. Then we apply our LRCE method to the simulated EEG data in order to

estimate brain and skull conductivities by fixing the source parameters to the MEG

fitted source. We continue to apply the method to real SEP/SEF (Somatosensory

Evoked Fields) data to estimate brain and skull conductivities.

The research was thus organized into three separate projects, each of which was

destined to result in a publication. in order to produce this dissertation, we begin with a

general introduction of the motivation for solving this problem. We then continue with

a background chapter on bioelectric field and one on the finite element approach as it

applies to bioelectric field problems. We then provide a chapter for each of three projects

that include specific methods, results and discussion sections. The dissertation concludes

with some general observations and an outline of some future research.

1.1 Motivation

The in-depth introduction of each aim is described in the following three sections.

1.1.1 Evaluate the role of the choice of FE solver and FE dipole
model on the accuracy of the forward computation.

Electroencephalography (EEG) based source reconstruction of cerebral activity (the

EEG inverse problem) is an important tool both in clinical practice and research [8],

and in cognitive neuroscience [9]. Methods for solving the inverse problem are based on

solutions to the corresponding forward problem, i.e., the simulation of EEG potentials for

a given primary source in the brain using a volume-conduction model of the human head.

While the theory of this forward problem is well established and many numerical imple-

mentations exist, there remain unresolved questions regarding the accuracy and efficiency

of contemporary approaches. In this study, we compared a range of numerical techniques
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and source representation approaches in the finite element method (FEM) and have shown

that careful choice of both are critical in order to solve realistic elecroencephalographic

forward (and inverse) problems.

The general approach for solving bioelectric field problems under realistic conditions

is well established and all quantitative solutions for the EEG forward problem are based

on the quasi-static Maxwell equations [10]. While boundary element method is able to

represent a head by realistic surface based compartments and to assign tissue conductivity

to each compartment, the finite element method has more flexibility in segmenting the

head and assigning conductivity. The main advantage of finite element method is that

it allows for a realistic representation of the complicated head volume conductor with its

tissue conductivity inhomogeneities and especially anisotropies [11–21].

The primary sources in the brain activity are electrolytic currents within the dendrites

of the large pyramidal cells of activated neurons in the human cortex. Even though one

can formulate more integrated estimates of the source [22], most often the primary sources

are formulated as a mathematical point current dipole [10, 23, 24]. To implement the point

current dipole as a source in the brain, the FE method requires careful consideration of

the singularity of the potential that inevitably arises at the source position.

One way to address this singularity is to use a “subtraction approach”, which divides

the total potential into an analytically known singularity potential and a singularity-

free correction potential, which can then be approximated numerically using an FE

approach [12–14, 16, 19–21]. For the correction potential, the existence and uniqueness

for a weak solution in a zero-mean function space have been proven and FE convergence

properties are known [20]. It has also been established that a full subtraction approach [21]

leads to an order of magnitude more accurate solution than a common alternative, the

projected subtraction approach [20], especially when considering sources that are close to

a conductivity inhomogeneity. Another family of source representation methods, known

as direct FE approaches to the total potential [11, 13, 15, 18, 19], are computationally less

expensive, but also mathematically less sound under the assumption that a point dipole

is a realistic source model.

Another general requirement for FE modeling of bioelectric fields is a volumetric mesh

that represents the head geometry with tissue electric properties assigned to each element.

An effective meshing strategy will balance acceptable forward problem accuracy against

reasonable computation times and memory usage. Very high accuracies can be achieved
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by making use of a Constrained Delaunay Tetrahedralization (CDT) in combination with

a full subtraction approach [21]. Adaptive methods, using local refinement around the

source singularity [12, 14], are another potential utility but they preclude the use of

fast transfer matrices [18, 25–27] and lose efficiency in solving the inverse problem (see

discussion section in Chapter 4).

Solving the forward problem is rarely the ultimate goal in calculating bioelectric fields

but rather a step towards solving the associated inverse problem. Thus the quest for

numerical accuracy and efficiency of the forward solution requires some anticipation of

the ultimate use in inverse solutions. The longtime state-of-the-art approach has been

to solve an FE equation system for each anatomically and physiologically meaningful

dipolar source (each source results in one FE right-hand side (RHS) vector) [12–16]. The

use of standard direct (banded LU factorization for a 2D source analysis scenario [13])

or iterative (Conjugate Gradient (CG) without preconditioning [12] or Successive Over-

Relaxation (SOR) [19]) FE solver techniques limit the overall resolution of the geometric

model because of their computational cost. The preconditioned CG method has been

used with standard preconditioners like Jacobi (Jacobi-CG) [18] or incomplete Cholesky

without fill-in, IC(0)-CG [15], and algebraic multigrid (AMG-CG) [28].

One recent approach to achieve efficient computation of the FE-based forward problem

is to pre-compute “transfer matrices” that encapsulate the relationship between source

locations and sensor sites based only on the geometric and conductivity characteristics

of the volume conductor, i.e., they are independent of the source. Techniques exist to

construct transfer matrices for problem formulations based on EEG [18, 27] or combined

EEG and MEG [25, 26]. Using this principle, for each head model, one only has to

solve one large sparse system of equations for each of the possible sensor locations in

order to compute the full transfer matrix. Each forward solution is then reduced to

multiplication of the transfer matrix by an FE RHS vector containing the source load.

Exploiting the fact that the number of sensors (typically up to about 600) is much smaller

than the number of reasonable dipolar sources (tens of thousands), the transfer matrix

approach is substantially faster than the state-of-the-art forward approach (i.e., solving

an FE equation system for each source) and can be applied to inverse reconstruction

algorithms in both continuous and discrete source parameter space for EEG and MEG.

Still, the solution of hundreds of large linear FE equation systems for the construction of

the transfer matrices is a major time consuming part of FE-based source analysis.
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The first goal of this study was therefore to compare the numerical accuracy of

the full subtraction approach [21] with the two direct approaches using partial inte-

gration [11, 13, 18] and Venant principle [15] in specifically-tuned CDT meshes of an

anisotropic four-compartment sphere model for which quasi-analytical solutions exist [29].

We then examined the interplay of the source model approaches with three FE solver

methods: a Jacobi-CG, an incomplete Cholesky CG (e.g., [30]), and an algebraic multigrid

preconditioned CG (AMG-CG), the last of which has already shown to be especially well

suited for problems with discontinuous and anisotropic coefficients [28, 31–34].

1.1.2 Estimate tissue conductivity with EEG source localization

The elecroencephalographic inverse problem is an attempt to reconstruct the under-

lying current source activity in the human brain by measuring the potential differences

among the sensor electrodes on the head surface. The head volume conductor model, the

significant factor of EEG source reconstruction, has an strong impact on the accurate

solution of the bioelectric problem. The reconstruction is associated with a forward

problem, which is defined as the simulation of the electroencephalogram (EEG) for a

known current source in the brain. The volume conductor model contains two major

components, the geometry and the electrical conduction properties of the head tissues,

and the accuracy of both parameters has direct (but not fully predictable) impact on the

accuracy of the source analysis [5–7]. The current challenges of creating patient specific

models in practice does not allow this degree of customization for each routine case of

clinical source analysis. Thus it is essential to identify the parameters that have the

largest impact on solution accuracy and to attempt to customize them to the particular

case.

The volume conductor model used in this study consisted of four individually and

accurately shaped compartments, the scalp, skull, CSF, and brain, and was created from

MR imaging of a normal subject. Magnetic Resonance (MR) or Computed Tomography

(CT) imaging provides the geometry information for the brain, the cerebrospinal fluid

(CSF), the skull, and the scalp [3, 7, 35, 36]. MRI has the advantage of being a completely

safe and noninvasive method for imaging the head, while CT provides better definition

of hard tissues such as bone. However, CT is not justified for routine physiological

studies in healthy human subjects. In this study we used a combination of T1-weighted

MRI, which is well suited for the identification of soft tissues (scalp, brain) and proton-
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density (PD) weighted MRI, enabling the segmentation of the inner skull surface [3].

This approach leads to an improved modeling of the skull thickness over standard (T1)

weighted MRI, an important parameter for a successful application of the proposed low

resolution conductivity estimation (LRCE) method in Chapter 5.

There is no imaging modality that can measure the absolute value of tissue conduc-

tivity. Diffusion tensor (DT) imaging is able to provide the directional preference of the

electric conduction, however, it is not able to measure the value of the conductivity. There

have been studies to get the tissue conductivity values. It is possible using cadaveric and

animal tissue measurement to estimate tissue conductivity values. Baumann et al. [37]

measured the conductivity of CSF and reported a value of 1.79 S/m which has been

accepted in the biomagnetism community. By contrast, a value of skull conductivity

remains disputed in the community. Various methods such as measurement of living

tissues, electrical impedance tomography (EIT), and indirect estimation with evoked

potential experiments have been proposed, but the reported values (relative to brain

conductivity) are in the wide range of from 15 to 80 [38–45]. Considering that the

skull conductivity is by far lowest of the head tissues, the accuracy of the skull tissue

conductivity has more impact on the EEG forward problem than those of any other

tissues. At this point, there is little hope that direct measurement will resolve these

large discrepancies, some of which may originate in inter-patient differences or natural

variations over time. We propose an approach that seeks to adjust the conductivity each

individual case by making conductivity an additional parameter to be solved.

A growing body of evidence suggests that the quality and fidelity of the volume

conductor model of the head plays a key role in solution accuracy [7, 36, 46], so that

the choice of numerical method could drive the overall accuracy of source reconstruction.

There is a wide range of approaches suitable for this problem including multi-layer sphere

models [47], the boundary element method (BEM) [36, 48–51], the finite difference method

(FDM) [52] and the finite element method (FEM) [3, 7, 53–56]. The FEM offers the most

flexibility in assigning both accurate geometry and detailed conductivity attributes to the

model, at the cost of both creating and computing on the necessary geometric model. The

use of recently developed FEM transfer matrix (or lead field basis) approaches [6, 56, 57]

and advances in efficient FEM solver techniques for source analysis [58] drastically reduce

the complexity of the computations so that one major disadvantage of FEM modeling

no longer exists. Lanfer et al [4] compared run-time and numerical accuracy of an FEM
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source analysis approach using the Venant dipole model [5] and the fast FE transfer matrix

approach [57] with an ISA vertex collocation BE approach, i.e., a double layer collocation

BE method using the isolated skull approach (ISA) [49] and linear basis functions with

analytically integrated elements [50] in combination with BE transfer matrices [59] in

an isotropic three layer sphere model. The reported numerical errors of the Venant FE

approach for realistic eccentricities were in the same range as those of the BE approach,

while, at the same time, the Venant FE forward computation was faster than the BE

forward computation. Additionally, similar errors and run times were achieved with the

Venant FE approach in anisotropic four compartment sphere models, showing the large

flexibility of this approach.

In this study, we propose a Low Resolution Conductivity Estimation (LRCE) method

using simulated annealing optimization in a realistically-shaped four compartment (scalp,

skull, CSF and brain) finite element volume conductor model that individually optimizes

the brain and the skull conductivity parameters. Like other source analysis approaches,

the LRCE method uses a geometric model, in this case based on T1-/PD-MRI, and scalp

EEG potentials as input. The method then determines the best combination of sources

within the somatosensory cortex together with the two individually optimized brain and

skull conductivity values over a discrete parameter space, i.e., for each source and for

each tissue conductivity the user has to define a reasonable set of a priori values. We

evaluated the accuracy of the LRCE method in simulation studies before applying it to

tactile somatosensory evoked potentials with the focus on establishing the best values for

the individual brain and skull conductivity. The results from the study will appear in

more detail in Section 5.3

1.1.3 Estimate tissue conductivity with EEG/MEG combined
modalities.

One of the recent trends in the community of brain source localization is the use of mul-

tiple functional modalities that include EEG/MEG [51, 60], fMRI/EEG [61], fMRI/MEG

[62], fMRI/EEG/MEG [63], and the combination of EEG/MEG/fMRI/DOT (Diffuse

Optical Tomography) [64]. The rational for these combined modalities in source lo-

calization is mainly due to the fact that not a single modality can recover all aspects

of the functional source parameter and, accordingly, combining each one’s advantage

may maximize the accuracy of source estimation. For instance, fMRI has a very good

spacial resolution (13̃mm), while the temporal resolution is in the range of a second [65].
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Combining fMRI with EEG or MEG, which both have a good temporal resolution, can

give an improved source estimation. We propose a combination of MEG/EEG specifically

to estimate the tissue conductivity.

The EEG has a strong sensitivity to electric conductivity that the MEG does not have.

The relative insensitivity of MEG to the tissue conductivity results in more accurate

source reconstruction in the face of conductivity variation, which can in turn justify the

high measurement system cost. However, the MEG modality has a poor sensitivity to

the radial component of any source; the extreme case of a purely radial source in a

perfect sphere, the MEG does not sense any source activity because of the symmetry

that leads to a cancellation of the magnetic field. This is the major weakness of the MEG

modality, compared to EEG, which is equally sensitive to both radial and tangential

source orientations.

The goal of MEG/EEG combined analysis is to use the strengths and compensate

for the weaknesses of both modalities in order to maximize the localization accuracy.

In our study, we used the combined MEG/EEG analysis in a novel way to estimate

the tissue conductivity in order to also minimize source localization error. Our initial

attempts to apply the LRCE approach to EEG measurement alone were successful only

under conditions of high signal to noise ratio, conditions that are not always practicable

in realistic settings. Thus it seemed using the information from MEG based source

localization, it would be possible to stabilize the EEG based conductivity estimation

even under low signal-to-noise conditions.

Recent study of Huang et al [66] introduced a combined MEG/EEG method to

estimate the tissue conductivity ratio. He showed the feasibility of his method with

simulation studies with spherical head and boundary element models. The simulation

results suggested that the conductivity ratio between skull and CSF is not a constant,

but rather a function of the absolute conductivity values. That is, the best fitted ratio

changes depending on the assumed tissue conductivity values. Huang et al’s use of MEG

and EEG shares common origins with our proposed method in that the MEG provided

source location information and the conductivity ratio was estimated with the EEG,

based on the least square fit between the tangential source component of the MEG and

the tangential component of the EEG computed with different conductivities. In their

study, the authors introduced a SVD based extraction method that decomposed the radial
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and the tangential components of the source parameter from the MEG gain matrix and

used the tangential component to estimate the conductivity.

In this study, we extended the EEG based LRCE to the EEG/MEG combined analysis

in order to more accurately estimate tissue conductivity. With the realistic FEM head

model in hand, the combined methods should stabilize the application of the LRCE

method for the estimation of tissue conductivities. Given the same FEM head model as

in the EEG LRCE study, we performed simulation studies with a single somatosensory

source. The MEG dipole fit method localized the source parameter and served as a sta-

bilizing constraint to the EEG LRCE in order to estimate brain and skull conductivities.

We apply the MEG/EEG combined method to real SEF/SEP (Somatosensory Evoked

Field/Potential) data to estimate brain and skull conductivities of a subject. Besides using

our new method for an improved source analysis of somatosensory evoked potentials, the

major future perspective for the LRCE is to provide an individually optimized volume

conductor model that can then be used in a second step for the analysis of clinical or

cognitive EEG data.

1.2 Organization of the Dissertation

This thesis document consists of seven chapters including introduction, background,

FEM model, forward accuracy study, EEG conductivity estimation, MEG/EEG combined

analysis, and future study.

Chapter 1 has introduced the overall aims and the specific research topics of the thesis

work. It also described the background information and the relevant previous researches

for each topic.

Chapter 2 describes the technical background of the bioelectric forward and inverse

problems. It includes the physics of the problem, components of the volume conductor,

origin of the bioelectric source, EEG/MEG measurement, brain source localization, and

optimized conductor model.

Chapter 3 formulates the bioelectric problem with the EEG/MEG modalities in the

finite element domain. Here we describes the mathematical dipole source models and the

iterative finite element solvers that served as a basis for the forward computation and

inverse dipole fit method.

Chapter 4 reports on studies of the accuracy and the computational efficiency of a set

of FEM solvers and dipole models based on a large number of forward computations to

compare the choice of solver and dipole.
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Chapter 5 describes a new method to estimate conductivity based on EEG data. The

simulation results of the LRCE method are presented to show the estimation of brain

and skull conductivities for both single source and two source models. Also shown are

the results of the application to the real EEG data.

Chapter 6 presents a combined MEG/EEG conductivity estimation. This is a contin-

uation of the work in Chapter 5 with an extension to the MEG modality in an attempt to

stabilize the inverse solution process with a strong constraint. We describes the simulation

studies and the real data application with a single somatosensory dipole and discusses

utility and the feasibility of the method.

Chapter 7 summarizes the outcomes of the thesis research and discusses possible future

studies.



CHAPTER 2

BACKGROUND

2.1 Bioelectric Problem

Bioelectric fields in the brain come from neuronal excitations that are essential to

brain function. The excited neurons are the origin of electric fields and can be modeled

as current dipoles. The resulting currents travel through a conducting medium, which

is the head volume consisting of inhomogeneous tissues such as brain, CSF, skull, and

scalp. In the low frequency band (frequencies below 1000 Hz) of neuronal activities, the

capacitive component of tissue impedance, the inductive effect, and the electromagnetic

propagation effect can be neglected so that the relationship between bioelectric fields

and the underlying current sources in the brain can be represented by the quasi-static

Maxwell equations and reduced to a Poisson’s equations as follows.

∇ · (σ∇Φ) = ∇ · jp in Ω, (2.1)

σ
∂Φ

∂n
= 0 on Γ = ∂Ω,

where jp is the primary current source, Φ is an electric potential distribution in the

head domain (Ω), σ is the electric tissue conductivity, Γ is the homogeneous Neumann

boundary on the head surface, and n is the surface normal [48, 67]. The primary current

jp can be mathematically modeled by a dipole moment

jp = M0 δ(x − x0) (2.2)

at position x0 with the moment M0 composed of strength and direction.

With adequate knowledge of the bioelectric sources (primary current) and the electri-

cal characteristics (tissue conductivity) of the volume conductor, it is possible to calculate

the potentials from the brain by the Poisson’s equation (Eq. 2.1). The EEG measures

the electric potentials (Φ) at electrode locations on the scalp surface (Γ) as a result of
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the volume conduction. This process of computing head potentials from known sources

is called the EEG forward problem (Figure 2.1).

It is well known that the current also generates magnetic field around the current

conducting pathway. MEG is a modality that uses remotely located pickup coils to

measures the magnetic field induced from the primary current activity in the head. Both

the primary current and the volume current defined in the EEG forward problem are

sources of magnetic field that MEG can detect. Based on the the quasi-static Maxwell

equations, a magnetic potential A can be formulated as

A(x) =
µ

4π

∫

Ω

jp(y) − σ(y)∇Φ(y)

|x − y| dy, (2.3)

where µ is magnetic permeability.

We can determine the magnetic flux (Ψ) through a magnetometer flux transformer γ

based on Stokes theorem.

Ψ =

∫

S
BdS =

∮

γ
A(x)dx, (2.4)

where B is magnetic induction and S is surface enclosed by the transformer γ ≡ ∂S.

Then the magnetic flux becomes

Ψ = Ψpri + Ψsec (2.5)

=
µ

4π

∮

γ

∫

Ω

jp(y)

|x − y|dy · dx +
µ

4π

∮

γ

∫

Ω

−σ(y)∇Φ(y)

|x − y| dy · dx.

Here we can also see that the magnetic flux comes from two current sources, i.e., from

the primary dipole current, jp, and the secondary volume current, σ(y)∇Φ(y). Replacing

jp with M0δ(x − x0) and introducing C(y)

C(y) =

∮

γ

1

|x − y|dx, (2.6)

the magnetic flux can be simplified as

Ψpri =
µ

4π
< M0,C(x0) > (2.7)

Ψsec = − µ

4π

∫

Ω
< σ(y)∇Φ(y),C(y) > dy, (2.8)

where < ·, · > is the scalar product.

When the conducting medium is an unbounded infinite homogeneous medium, the

volume current has no contribution to the magnetic flux due to cancellation [48]. Ac-

cordingly, the secondary magnetic flux (Ψsec) goes to zero and MEG measures only the
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primary magnetic flux. Even with a special case of a simple bounded medium such

as a sphere, we can measure only the primary magnetic flux (Ψpri) with radial MEG

sensors because the secondary fluxes are canceled by the symmetry of the sphere [48].

In this case, the electric conductivity (σ) has no impact on the magnetic flux, since

primary magnetic flux comes purely from the primary dipole sources. However, a volume

conductor of realistic head geometry will generate both primary and secondary magnetic

fluxes because the conductor is no longer a perfect sphere.

In the EEG and MEG bioelectric problems, it is also possible to carry out the reverse,

i.e. calculate the sources from the known or measured electric potentials and magnetic

fields (Figure 2.1). This reverse solution process is called the EEG and MEG inverse

problem. The inverse problem was more clinical relevance than the forward problem

and this is the focus of most neuroscience research. However, the practical challenge is

that the inverse problem may not lead to unique solutions and even if unique solutions

are possible, there is great instability of the solution due to the noise in EEG/MEG.

Nevertheless, proper a priori information and regularization techniques can stabilize the

inverse solution process.

Dipole source EEG MEG

Figure 2.1. Forward and inverse problem in bioelectric study. Dipole sources in the
cortex of the brain generate electric and magnetic fields that can be measured by EEG
or MEG, respectively. Under appropriate conditions, it is possible to localize unknown
source dipoles from the measured electric or magnetic fields (the inverse problem).
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2.2 Modeling of Dipole Source

Action potentials are the fundamental means of communication and information

transfer in the brain. However, the extracellular fields from action potentials (1-2 mm) do

not last long enough to create measurable electric or magnetic fields at the scalp. Instead,

it is the subthreshold depolarization and hyperpolarization that lead to measurable fields

due to their longer duration (10-200 ms), despite their smaller amplitude. In addition, the

electric source activity due to the action potential, which can be modeled as a quadrupole,

has less effects on electrodes at the head surface because the potential distribution from

the quadrupole is proportional to distance from the source as 1/r4, where that of the

dipole is proportional to 1/r2. Specifically the origin of the bioelectric sources in the

EEG and MEG is the subthreshold activity at the postsynaptic junction which create a

dipolar field.

The anatomical origin of the sources is most likely the pyramidal cells in the gray

matter of the cortex (regions III and IV in Figure 2.2 (a)). Figure 2.2 (b) shows a

dipolar source in the apical dendrite of a single pyramidal cell. In reality, the dipolar

source activity does not come from a single neuron, but a concentrated collection of such

activities in the cortical region. Studies indicate that the primary dipole represents up to

105 ∼ 106 neuronal source activities and its strength ranges from the 10 nAm to 100 nAm,

depending on the strength of each source. It is this equivalent current dipole (ECD) that

forms the basis of EEG and MEG source analysis. The dipolar sources are rooted in the

layer of gray matter and usually oriented (but not always) normal to the cortical surface.

Because of the folding anatomy of cortex, the normal direction to the surface can be

purely radial, purely tangential or mixture of two orientations with respect to the head

surface (Figure 2.2 (c)). The current dipole source is then defined in terms of its position,

orientation, and strength. The mathematical dipole in Eq.(2.2) has these components,

i.e., source position x0 and source moment M0, that represents source direction and

strength.

2.3 Modeling of Volume Conductor

Depending on the requirement on accuracy, computational cost and application, a

specific volume conductor can be modeled for forward and inverse analysis. In addition,

the specific model requires a corresponding numerical method. There is a wide range

of modeling approaches including multi-layer sphere models[47], the boundary element
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(a) (b) (c)

Figure 2.2. Dipole model of neuronal activity. (a) Structure of cerebral cortex.
Pyramidal cells (regions III and IV) are responsible for the dipolar current source activity.
The diagram is adapted from [1]. (b) Generation of dipolar source at the postsynaptic
junction. One junction plays as a source and the other as a sink. (c) Dipole vectors
aligned along the cortex column.

method (BEM) [36, 48, 51], the finite difference method [52] and the finite element method

(FEM) [7, 53–56, 68] (Figure 2.3). These conductor models are based on how we model

the head geometry on the one hand and how we define the head tissue inhomogeneity on

the other hand. This accuracy of the head volume conductor model plays a significant

role in the solution procedure, computational cost, and the solution accuracy [7, 36, 46].

Due to the simplification of its symmetry, a sphere model of the head has an analytical

solution and hence low computational cost. However, the geometric simplification causes

inaccurate results [46]. Recent growth in imaging technologies such as MRI and CT make

it possible to create realistic head models. The boundary element method requires models

based only on the surfaces and the resulting solutions are more accurate than those of the

sphere model. However, the BEM requires a higher computing power due to the nature

of this model, i.e., solving a large linear system of equations. The FEM offers the most

flexibility in assigning both accurate geometry and detailed conductivity attributes to the

model at the cost of both creating and computing on the resulting geometric model. The

use of recently developed transfer matrix (or lead field bases) approaches [6, 56, 57] and

advances in efficient FEM solver techniques for source analysis [58] drastically reduces

the complexity of the computations so that the main disadvantage of FEM modeling no

longer exists.
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Sphere BEM FEM

Figure 2.3. Volume conductor modeling of human head depending on how to model
head geometry, how to assign tissue conductivity, and how to solve the forward problem
numerically. The volume conductors of sphere model, boundary element model, and finite
element model are shown with the real head image.

2.3.1 Realistic Geometric Modeling

Current medical imaging techniques contribute to create an accurate volume conduc-

tor model and there are advantages and disadvantages to each modality. Both Magnetic

Resonance (MR) and Computed Tomography (CT) imaging provide the anatomical in-

formation for the brain, the cerebrospinal fluid (CSF), the skull, and the scalp [7, 35,

36, 68]. MRI has the advantage of obtaining details of soft tissues such as gray and

white matters, while CT provides better definition of hard tissues such as bone. MRI

is completely safe for human use; however, CT is not justified for routine physiological

studies in healthy human subjects because of the exposure to radiation. As an alternative,

proton-density (PD) weighted MRI enables the segmentation of the inner skull surface.

A combination of T1-weighted, which is well suited for the identification of soft tissues

(scalp, brain) and PD-weighted MRI appropriately segment head compartments [3]. In

addition, this approach leads to an improved modeling of the skull thickness over standard

(T1) weighted MRI, an important parameter for a successful application of the forward

and the inverse source analysis.

2.3.2 Tissue Conductivity

Determining the second component of the volume conductor model, the conductivities

of the tissues, does not have the support of a technology as capable as MRI or CT.

The electric conductivities of the head tissues vary across individuals and within the

same individual due to variations in age, disease state and environmental factors. First
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attempts to measure the conductivities of biological tissues were in vitro, often using

samples taken from animals [69]. The conductivity of human CSF has been measured by

Baumann et al [37]. Latikka et al [38] investigated the conductivity of living intracranial

tissues from nine patients under surgery. As the skull has considerably higher resistivity

than the other head tissues—and thus could be expected to play a bigger role in the

electric currents in the head—much attention focused on determining its conductivity.

Rush and Driscoll measured impedances for a half-skull immersed in fluid[39, 70] and

since then the brain:skull conductivity ratio of 80 has been commonly used in bioelectric

source analysis [40]. A similar ratio of 72, averaged over six subjects, was reported recently

using two different in vivo approaches[41], one method using the principles of electrical

impedance tomography (EIT) and the other method based on an estimation through a

combined analysis of the evoked somatosensory potentials/fields (SEP/SEF). However,

those results remain controversial because other studies have reported the following

ratios: 15 (based on in vitro and in vivo measurements)[42], 23 (averaged value over

nine subjects estimated from combined SEP/SEF data) [43], 25 (estimated from intra-

and extra-cranial potential measurements) [44], and 42 (averaged over six subjects using

EIT measurements) [45]. Presumably these wide variations are due to the inter-personal

difference, temporal variation, or disease states. Since the EEG forward problem has a

strong dependency on the tissue conductivity, it is necessary to resolve such variations

by customizing conductivities for each individual.

Table 2.1 shows the impact of incorrect skull conductivity on source localization error

in a simulation study, performed with reference EEG data (SNR of 25dB). The data was

created with two somatosensory sources and a skull conductivity of 1/25 of brain. The

EEG data was fitted by the dipole fit method with a fixed skull conductivity values ranging

from the 1/80 to 1/5 of brain. The results in Table 2.1 show the effects of an erroneous

choice of the brain:skull conductivity ratio (80, 40, 15, 10, 8, 5) on the localization

accuracy in comparison to the localization errors caused just by the the addition of noise

when using the correct brain:skull ratio of 1:25. Incorrect skull conductivity within the

source localization caused localization errors of 12-15 mm compared to 2-7.5 mm with

the correct values.
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Table 2.1. Localization error (mm) for a fixed brain:skull conductivity ratio using the
simulated reference SEP data with a SNR ratio of 25dB.

σbrain tangential source radial source
to σskull right left right left

80 12.70 10.82 13.13 15.23
40 3.76 11.23 7.51 8.28
25 2.01 3.33 7.38 7.51
15 3.18 10.73 6.74 10.04
10 2.25 10.72 7.10 10.86
8 7.10 10.72 10.09 10.77
5 3.33 20.53 9.99 18.13

2.4 Brain Source Localization Method

EEG and MEG brain source localization is inherently an inverse problem. That is,

it aims to reconstruct the neural activities in the human brain using electric potential

differences measured at the head surface and/or magnetic fields measured at sensors

just above the head. In neuroscience, the inverse source localization provides source

information of event-related brain activities such as SEP (Somatosensory Evoked Poten-

tial), VEP (Visual Evoked Potential), and AEP (Auditory Evoked Potential). The source

information includes physical location of the source in the brain and the temporal changes

of source orientation and magnitude. Clinically, the source localization can provide the

geometric origin of brain functional abnormality such as epilepsy or Alzheimer’s and

Parkinson’s diseases. Often combined with information from other functional modalities

such as fMRI and PET, the bioelectric source information can assist neurologists to

determine the origin of the abnormality and thus to plan further treatments such as

embedding intracortical electrodes or open skull surgery. Accurate geometric source

information definitely reduces the cost and complexity of pre-surgical planning.

Diverse source reconstruction methods have been developed during the past decade

and these methods fall into two categories [65]. The first category is the parametric

approach. It assumes that a few of current dipoles represents the source and needs to

be estimated in terms of location and moment. This formulation leads to a nonlinear

inverse problem since the forward solution depends nonlinearly on the source location

and linearly on the source moment. In this category, there are three major solution

methods, least squared error estimation [5], beamformer [71], and the multiple signal

classification (MUSIC) [72]. The least squared error approach is to estimate the source
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parameters by minimizing a cost function defined as the difference between the forwardly

simulated data and the actual measured data. The beamforming method is to spatially

decompose the sensory signals into the data originated from a region of source activities

and data from elsewhere. The MUSIC method is to extract subspaces that represent the

signal and the noise by means of eigenvectors of measured data. The second category is the

imaging approach. It assumes that the source is intracellular and normally constrained to

the cortex surface. Then, the inverse process is to reconstruct only the time dependant

source strength over the entire cortex or some surface surrounding the cortex. Since

the only parameter to be searched is the source strength, the forward problem is linear.

However, it is also a physically ill-posed problem that depends sharply on input to noise

and requires some form of constraint or stabilizing (regularization).

2.5 Combined Modality of EEG and MEG

As mentioned in Section 2.1, EEG source analysis is strongly sensitive to tissue

conductivity, and MEG analysis is not as sensitive to the conductivities. Figure 2.4

shows a simulation result of EEG and MEG dipole fit, respectively, for quasi-tangential

and quasi-radial sources with a realistic FEM head model. From this, it is clear that

the MEG source localization does not depend significantly on the skull conductivity,

while EEG localization depends heavily on the conductivity. In the face of typical tissue

conductivity variation, this benefit of MEG based approaches encourages the use of MEG

measurement for more accurate source localization even though the MEG systems are

much more expensive than EEG systems. Moreover, the MEG has a poor sensitivity to

radial source components. When the source is mainly tangential, the MEG has a definite

advantage over the EEG. When the source is purely or partially radial, the results of MEG

source reconstruction need to be compensated by supplementary information for accurate

source reconstruction. As for the radial sources, the EEG has the same sensitivity as the

tangential sources. Accordingly, recent research tends to report the combined analysis

of EEG and MEG, which compensates each other’s weakness and maximize the solution

accuracy.

2.6 Optimized Volume Conductor

Although it is feasible to have a subject specific head geometry, it is not usually

practically possible to obtain a customized tissue conductivity for each subject. This
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Figure 2.4. Localization error with respect to skull conductivity, given EEG and
MEG data. x axis represents the conductivity ratio between skull conductivity ratio to
brain (0.33 S/m). Source localization was performed by dipole fit method with simplex
optimizer. The correct skull conductivity ratio is 25.

is partly due to the fact that the tissue conductivity is not measurable with current

medical modalities. Mere assumption of the conductivity from the reported values can

significantly deteriorate the solution accuracy in source analysis. The recent study of

Gutiérrez et al [73] took the conductivity variation into consideration during the source

analysis and used the maximum-likelihood and maximum a posterior(MAP) techniques

to estimate the tissue conductivity ratio and the source parameter simultaneously with

four layer sphere model. Gutiérrez’ et al’s approach to resolve conductivity uncertainty

was not able to generate an optimized volume conductor model at full scale because

of the unrealistic sphere head model used in their study. Therefore, it is necessary

to identify critical parameters related to the solution accuracy and to customize those

parameters to each individual case. The outcome of the customized parameters and

the volume conductor model could improve the quality of routine clinical evaluations.

The core of this thesis is to seek methods to customize tissue conductivities for each

individual by means of the experimental data from the EEG and the MEG modalities.

Such an approach can generate a subject-specific optimized volume conductor model with

regard to the tissue conductivities and the head geometry. Practically, combined with

the general advantages of a realistic head geometry model, the success of the conductivity
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optimization suggests a three step procedure for cognitive and clinical applications. First,

one could construct a realistic FEM head model from individual T1- and PD-MR images.

Second, one could collect and use ERP (Event Related Potential) such as SEP/SEF data

of the subject to create a customized volume conductor model that would be optimized for

realistic conductivity values together with the realistic FEM geometry. Third, with this

volume conductor model in place, recorded potentials from more complex and clinically

interesting sources could drive the inverse source localization. In the clinical situation

requiring an accurate source localization, this customized conductor model could play an

important role in increasing the localization accuracy.



CHAPTER 3

FINITE ELEMENT METHOD IN

BIOELECTRIC PROBLEM

As described in the Section 2.3, the FEM volume conductor model has the benefits

over other conductor models in terms of flexible accommodation of realistic head geom-

etry and inhomogeneous tissue conductivity. In this chapter, the bioelectric problem is

reformulated to a form compatible with the finite element method.

3.1 FEM Formulation of EEG/MEG Forward Problem

We defined EEG forward problem by the quai-static Maxwell equation in Chapter 2.1,

∇ · (σ∇Φ) = ∇ · jp in Ω, (3.1)

σ
∂Φ

∂n
= 0 on Γ = ∂Ω (3.2)

jp = M0 δ(x − x0),

where jp is the primary current source, Φ is an electric potential distribution in the

head domain (Ω), σ is the electric tissue conductivity, Γ is the homogeneous Neumann

boundary on the head surface, n is the surface normal, x0 is a dipole location, and M0

is a dipole moment defined by a dipole strength and a direction [48, 67].

The mathematical representation of the EEG forward problem must be reformulated

to solve using the numerical approximation method of FEM. For this, we use standard

piecewise linear basis functions ϕi(x) = 1 for x = ξi, where ξi is the i-th FE node, and

ϕj(x) = 0 for all j 6= i. The potential is projected into the FE space, i.e., Φ(x) ≈
Φh(x) =

∑n
j=1 ϕj(x)uj, where n is the number of FE nodes. Standard variational and

FE techniques for equations (3.1) yield the linear system

K · u = j

Kij =

∫

Ω
< ∇ϕi, σ∇ϕj > dx, 1 ≤ i, j ≤ n, (3.3)

j =

∫

Ω
(∇ · jp) ϕj dx,
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where K is the stiffness matrix (n×n ), u the potential coefficient vector for Φh (n×1), j

the primary source right-hand-side vector (n×1), and < ·, · > the scalar product [5, 74].

Based on the quasi-static Maxwell equations in Chapter 2.1, we also defined the

primary magnetic flux, Ψpri, and the secondary magnetic flux, Ψsec, for MEG forward

problem,

Ψpri =
µ

4π
< M0,C(x0) > (3.4)

Ψsec = − µ

4π

∫

Ω
< σ(y)∇Φ(y),C(y) > dy, (3.5)

where C(y) =
∮

γ
1

|x−y|dx.

For the MEG forward problem, the primary magnetic flux in Eq. (3.4) can be easily

evaluated analytically when the integration of C on the coil geometry is computed

numerically. The secondary magnetic flux in Eq. (3.5) can be represented by means

of FEM approach as follows:

S · u = Ψsec

Sij = − µ

4π

∫

Ω
< σ∇ϕj , Ci > dx, 1 ≤ j ≤ N, (3.6)

Ψsec = − µ

4π

∫

Ω
< σ∇Φh,Ci > dx, 1 ≤ i ≤ M,

where S is the secondary flux matrix (m×n), Ψsec is the secondary flux vector (m×1),

and m is the number of MEG sensors.

3.2 FEM Dipole Model

One of the key questions for the finite element approach to the bioelectric forward

problem is the appropriate treatment of the source singularity introduced into the dif-

ferential equation by the formulation of the mathematical dipole (2.2). Three different

FEM approaches for modeling the source singularity are known from the literature: a

subtraction approach[53, 75], a Partial Integration direct method [56], and a Venant direct

method [5]. Here we describe each FEM dipole approach.

3.2.1 Full subtraction approach

The subtraction approach [53, 75–77] splits the total potential Φ into two parts,

Φ = Φ0 + Φcorr, (3.7)

where the singularity potential, Φ0, is defined as the solution for a dipole in an unbounded

homogeneous conductor with constant conductivity σ0. σ0 ∈ R
3×3 is the conductivity
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at the source position, which is assumed to be constant in a non-empty subdomain Ω0

around x0, in the following called the homogeneity condition. The solution of Poisson’s

equation under these conditions for the singularity potential

∇ · (σ0∇Φ0) = ∇ · jp (3.8)

can be formed analytically for the mathematical dipole jp = M0 δ(x−x0) in Eq.(2.2) [77]

as

Φ0(x) =
1

4π
√

detσ0

〈M0, (σ0)
−1(x − x0)〉

〈(σ0)−1(x − x0), (x − x0)〉3/2
. (3.9)

Subtracting (3.8) from (2.1) yields a Poisson equation for the correction potential

−∇ · (σ∇Φcorr) = −∇ · ((σ0 − σ)∇Φ0) in Ω, (3.10)

with inhomogeneous Neumann boundary conditions at the surface:

〈σ∇Φcorr,n〉 = −〈σ∇Φ0,n〉 on Γ. (3.11)

The Neumann boundary condition for the correctional potential is not zero at the surface,

but the correctional contribution from the infinity unbounded homogeneous medium.

The advantage of (3.10) is that the right-hand side is free of any source singularity,

because of the homogeneity condition — the conductivity σ0 −σ is zero in Ω0. Existence

and uniqueness of the solution and FE convergence properties are shown for the correction

potential in Wolters et al [75]. For the numerical approximation of the correction poten-

tial, we use the FE method with piecewise linear basis functions ϕi. When projecting the

correction potential into the FE space, i.e., Φcorr(x) ≈ Φcorr,h(x) =
∑Nh

j=1 ϕj(x)u
[j]
corr,h,

and applying variational and FE techniques to (3.10) and (3.11), we finally arrive at a

linear system [77]

Khucorr,h = j
corr,h

, (3.12)

with the stiffness matrix

K
[i,j]
h =

∫

Ω
〈σ∇ϕj ,∇ϕi〉dx, (3.13)

for Kh ∈ R
Nh×Nh , and the right-hand side vector j

corr,h
∈ R

Nh with entries

j[i]
corr,h

=

∫

Ω
〈(σ0 − σ)∇Φ0,∇ϕi(x)〉dx −

∫

∂Ω
ϕi(x)〈n(x), σ0∇Φ0(x)〉dx. (3.14)

We then solve for the coefficient vector ucorr,h = (u
[1]
corr,h, . . . , u

[Nh]
corr,h) ∈ R

Nh and, using

(3.7), compute the total potential. Drechsler et al provided the theoretical reasoning and
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a validation in a four-compartment sphere model with anisotropic skull for the fact that

second order integration is necessary and sufficient for the right-hand side integration in

Equation (3.14) [77]. Direct comparisons with the projected subtraction approach have

shown that the full subtraction approach is an order of magnitude more accurate for

dipole sources close to a conductivity discontinuity [75, 77].

3.2.2 The partial integration direct approach

Multiplying both sides of Equation (2.1) by a linear FE basis function ϕi and inte-

grating over the head domain leads to a partial integration direct approach for the total

potential [56, 76, 78] expressed as

∫

Ω
∇ · (σ∇Φ)ϕidx =

∫

Ω
∇ · jpϕidx.

Integration by parts, applied to both sides of the above equation, yields

−
∫

Ω
〈σ∇Φ,∇ϕi〉dx +

∫

Γ
〈σ∇Φ,n〉ϕidΓ = −

∫

Ω
〈jp,∇ϕi〉dx +

∫

Γ
〈jp,n〉ϕidΓ.

Using the homogeneous Neumann boundary condition from Equation (2.1) and the fact

that the current density vanishes on the head surface, we arrive at

∫

Ω
〈σ∇Φ,∇ϕi〉dx =

∫

Ω
〈jp,∇ϕi〉dx = 〈M0,∇ϕi (x0)〉.

Setting Φ(x) ≈ Φh(x) =
∑Nh

j=1 ϕj(x)u
[j]
h , leads to the linear system

Khuh = j
PI,h

, (3.15)

with the same stiffness matrix as in (3.13) and the right-hand side vector j
PI,h

∈ R
Nh

with entries

j[i]
PI,h

=

{

〈M0,∇ϕi (x0)〉 if i ∈ NodesOfEle(x0),
0 otherwise.

(3.16)

The function NodesOfEle(x0) determines the set of nodes of the element which contains

the dipole at position x0. Note that while the right-hand side vector (3.14) is fully

populated, j
PI,h

has only |NodesOfEle| non-zero entries. Here, | · | denotes the number

of elements in the set NodesOfEle. For the linear basis functions ϕi considered here,

the right-hand side (3.16) and thus the computed solution for the total potential in (3.15)

will be constant for all x0 within a finite element. Figure 3.1 shows the schematic plot of

the partial integration dipole from a two dimensional finite element problem.
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Figure 3.1. Partial integration dipole method. The small circle is the mathematical
dipole location. The block dots are the nodes at which the dipole source moment is
evaluated.

3.2.3 The Venant direct approach

The Venant dipole approach is based on Venant’s principle that the detailed configura-

tion of the applying load (dipole source in our case) does not have a significant influence on

the result (forward potentials) when the observation (measurement) is made some distance

away from the load. The mathematical dipole at a given location can be distributed to the

selected neighboring nodes such that the resulting moment of the distribution becomes

the same as that of the original dipole moment. Due to this distribution of the load,

it is also called the blurred dipole model. Based on this principle, Buchner et al has

implemented the mathematical dipole in the finite element space [5]. Detailed derivation

is in Appendix B.

With Φ(x) ≈ Φh(x) =
∑Nh

j=1 ϕj(x)u
[j]
h , we can derive the linear system

Khuh = j
Venant,h

(3.17)

with the same stiffness matrix as in (3.13). The right-hand side vector j
Venant,h

∈ R
N
h

has only C non-zero entries and is determined by

j[i]
Venant,h

=

{

j
[c]
0 if c ∈ {1, . . . , C} : i = glob(c),
0 otherwise

(3.18)

for a source at location x0. The function glob determines the global index i to each of

the local indices c. Figure 3.2 shows the schematic plot of the Venant dipole approach.
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Figure 3.2. Venant dipole approach. The small circle is the mathematical dipole
location. The block dots are the nodes where the dipole source moment is distributed.

3.3 FEM Solvers

The computational complexity in solving large system of linear equations derived from

the FEM is often represented by a so-called condition number. The solution of hundreds of

large scale systems of equations (3.12), (3.15) or (3.17) with the same symmetric positive

definite (SPD) stiffness matrix (3.13) is the major time consuming task of the inverse

source localization process that requires many calls to solve the forward linear systems

of equations. The spectral condition of a SPD matrix, Kh, is equal to

κ2(Kh) =
λmax

λmin

with λmax the largest and λmin the smallest eigenvalues of Kh. The condition number

behaves asymptotically as O(h−2) where h is the mesh size and condition numbers of

more than 107 have been computed for FE problems in EEG and MEG source analy-

sis [68]. Large condition numbers are the reason for slow convergence of common iterative

solvers [79, 80] and any effective solution approach for the inverse problem has to minimize

the effects of this poor conditioning.

The Preconditioned Conjugate Gradient (PCG) iterative solver shown in Algorithm

1 (see, e.g.,[79–81]) can provide efficient procedures for such problems. Note that, in

theory, the convergence speed of the PCG is independent of the right-hand side j
h

of

the linear equation system [79]. A well-defined preconditioner, Ch ∈ R
Nh×Nh , is able

to reduce κ2(C
−1
h Kh) for the preconditioned equation system C−1

h Khuh = C−1
h j

h
. For

detailed mathematical discourse, refer to Hackbusch et al [79].
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Algorithm 1 PCG : (Kh, uh, j
h
, Ch,accuracy) → (uh)

rh = r0
h = j

h
− Khuh

Solve Chwh = rh

sh = wh

γ0 = γ = γold =< wh, rh >

while



γ/γ0 =

(

||r
h
||

C
−1
h

||r0
h
||

C
−1
h

)2

=

(

||Khe
h
||

C
−1
h

||Khe0
h
||

C
−1
h

)2

=

(

||ei

h
||

KhC
−1
h

Kh

||e0
h
||

KhC
−1
h

Kh

)2

> accuracy2



 do

vh = Khsh

α = γ/ < sh, vh >
uh = uh + αsh

rh = rh − αvh

Solve Chwh = rh

γ =< wh, rh >
β = γ/γold , γold = γ
sh = wh + βsh

end while

As indicated in Algorithm 1, the PCG method is stopped after the kth iteration if

the relative error, i.e., ek
h = uk

h − u∗
h in the controllable KhC−1

h Kh-energy norm is below

a given accuracy. In Chapter 4, we describe three preconditioners for the CG method

and compare their performance.

3.4 Brain Source Inverse Problem

As stated earlier, the attempt to identify or reconstruct source parameters that are

responsible for a given electric potential distribution or magnetic field distribution is

inherently inverse problem. The ill-posed nature of the problem leads to numerical

instability, which requires that a prior source information and regularization stabilize

any solution. Another challenge in solving inverse problem in FEM bioelectric problems

is the computational cost, which arises because the inverse solution requires iterative calls

to forward simulation. Thus, it is practically important to reduce the computational cost

in order to use the FEM approach with high resolution meshes. The recently developed

transfer matrix approach (or lead field basis approach) [56, 57] has substantially reduced

the computational cost so that, when computed on modern computers, FEM approaches

have become feasible.
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3.4.1 Transfer Matrix Approach

In general, one is interested in solving for the source parameter from the given electric

potential and/or magnetic field distributions at predefined EEG and/or MEG sensor

locations. This mean that it is not necessary to solve the FE linear system of equations

Eq. (3.3) & (3.6) for u at all FE nodes. For EEG based solutions, we can solve for

the potential vector uEEG only for those elements at electrode locations, which is much

smaller than u, by the following transfer matrix approach. Define uEEG as the following

uEEG = R · u, (3.19)

where R((e − 1) × n) is a matrix that restricts the potential vector at all FE nodes

to the potential vector at the electrode locations (either by a simple restriction or by

interpolation, if electrode locations do not directly correspond to FE nodes), e is the

number of sensors, and n is the number of FEM nodes. We can rewrite the Eq. (3.19)

with Eq. (3.3) as

uEEG = R(K−1)J = (RK−1)J = TEEGJ, (3.20)

where TEEG is called as the EEG transfer matrix (or lead field basis matrix). With

the EEG transfer matrix, TEEG, a simple matrix-vector multiplication yields the electric

potentials uEEG at EEG sensor locations from the source J . The EEG transfer matrix

equation can be rewritten by multiplying the stiffness matrix K from the right and

transposing, resulting in

KT T
EEG = RT (3.21)

and can be solved with a described PCG method such as AMG-CG.

One can also apply the transfer matrix approach to the computation of MEG sec-

ondary flux.

Πsec = S · u = S(K−1J) = (SK−1)J = TMEGJ (3.22)

Solving the following equation with the PCG method will determine the MEG transfer

matrix TMEG.

KT T
MEG = ST (3.23)

3.4.2 Dipole Fit Method

The non-uniqueness of the EEG inverse problem described in Section 2.1 requires a

combination of a viable forward problem, anatomical information, and a priori constraints

on some aspect(s) of the solution. Here, we described a dipole fit procedure that restricts
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the number of active sources to a small application dependent number, k [82, 83]. In

addition, we define a set of r discrete permissable source locations, or an influence source

space that is constrained to nodes of the geometric model that lay within the cortical

gray matter. Given this source space, the e scalp electrode locations, and a fixed volume

conductor, we have used the fast FE forward computation methods in Section 5.2.1 to

compute an lead field matrix, L, which maps sources directly to electrode potentials:

L · J = Φsim, (3.24)

where J is a current source vector of dimension 3r×1 defined at the discrete source space

and Φsim is the simulated potential vector of dimensions e × 1. L has dimensions e × 3r

because we do not use the normal constraint, i.e., sources on the discrete source space

can have orientations in any direction.

Since the potential depends linearly on the source moment (dipole direction and

strength) and nonlinearly on the source location, we used a two phase approach for

source localization [5, 84]. We started with k initial source locations and applied a linear

least squares fit to the EEG data that determines uniquely the source orientation and

strength, Js (3k×1). The numerical solver employed a TSVD (Truncated Singular Value

Decomposition) with a threshold for the minimization [84], based on a cost function, gf ,

that is the L2 norm of the difference between the simulated potential, Φsim, and the

measured EEG potential, ΦEEG (e × 1):

gf = min ‖ΦEEG − Φsim‖2 = min
Js

‖ΦEEG − Ls · Js‖2 (3.25)

In this equation, Ls (e ∗ 3k) indicates the reduced lead field matrix for the current choice

of source locations s = (s1, · · · , sk) with si the i-th source location (1 ≤ i ≤ k). The lead

field matrix L can be computed by means of the transfer matrix approach described in

the previous section.

The following algorithm summarizes the general procedure of the dipole fit method.

• Define the discrete influence space with r nodes.

• Fix the number, k, of sources to be fitted.

• Precompute the lead field matrix, L, with the given conductivity, σ.

• Repeat:
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– Allow an optimizer to choose a set of source locations, s = (s1, · · · , sk)

– Compute a cost function, gf = min‖ΦEEG−Ls(σ)Js‖2, with respect to source

moments, Js.

• Until cost function meets a tolerance criteria or the number of iterations exceeds

a limit.

• Accept the source locations as an optimal configuration.

This same approach also applies to reconstructing sources from MEG measurements.



CHAPTER 4

ACCURACY AND RUN-TIME STUDY OF

FEM SOLVER AND DIPOLE MODEL

4.1 Introduction

Accuracy and run-time play an important role in medical diagnostics and research

as well as in the field of neuroscience. In Electroencephalography (EEG) based source

reconstruction, a current distribution in the human brain is localized noninvasively from

measured potentials on the head surface (the EEG inverse problem). As part of the re-

construction, numerical modeling techniques are used to simulate head surface potentials

for candidate dipolar current sources in the human cortex, the so-called EEG forward

problem.

In this chapter, we describe a comprehensive comparison of the efficiency of alge-

braic multigrid (AMG), incomplete Cholesky (IC) and Jacobi preconditioners for the

conjugate gradient (CG) method for iteratively solving the finite element (FE) method

based EEG forward problem. We also evaluate the interplay of the three solvers with

three different dipole source presentation, a full subtraction approach and two direct

potential approaches, the Venant and the partial integration method. The examination

was performed in a four-compartment sphere model with anisotropic skull layer, where

quasi-analytical solutions allowed for an exact quantification of computational speed and

numerical error. Specifically-tuned constrained Delaunay tetrahedral FE meshes led to

high accuracies for both the full subtraction and the direct potential approaches. Best

accuracies were achieved by the full subtraction approach if the homogeneity condition

was fulfilled. It is shown that the AMG-CG achieves an order of magnitude higher

computational speed than the CG with the standard preconditioners with an increasing

advantage as mesh size decreased. Our goal was to broaden the application of accurate

and fast high-resolution FE volume conductor modeling in source analysis routine by

providing objective comparisons of candidate numerical methods.
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The following subsections summarized the three preconditioners (Jacobi, IC, and

AMG) used in this study.

4.1.1 Jacobi Preconditioning

The condition number of a symmetric matrix Kh is at least as large as the ratio

of the maximal and minimal diagonal element, since the smallest(largest) eigenvalue is

upper(lower) bounded by the smallest(largest) diagonal element [85] . The diagonal

elements corresponding to the head skull compartment are much smaller than those of

the outside skull compartment, since the skull conductivity is relatively much smaller than

the external boundary at the scalp and the internal boundary at the CSF compartment.

With properly scaled large diagonal elements, it is possible to reduce condition number.

The Jacobi preconditioner, which takes the diagonal entities of the stiffness matrix, i.e.,

Ch := diag(K11
h , · · · ,KNN

h ) (4.1)

scales down the stiffness matrix and improves the condition of the system matrix. The

scaling preserves the symmetry of Kh, maintaining the SPD character of the matrix.

With the simple scaling of the diagonal elements, the condition number of the system

may be substantially lowered. For detailed mathematical discourse, refer to Hackbusch

et al [79].

4.1.2 Incomplete Cholesky Preconditioning

Cholesky decomposition can decompose the the stiffness matrix Kh into LhLT
h . Due

to the large fill-in, the decomposed matrix is not a proper candidate for preconditioning.

Alternatively, Ch := L0L
T
0 by the Incomplete Cholesky decomposition (IC) can be used

for the preconditioner, where L0 is the Cholesky decomposition of the scaled stiffness

matrix K̃h, which is restricted to the same non-zero-pattern as the lower triangular part

of K̃h. However, a problem remains because the decomposition does not gurantee that the

result is SPD. In this case, certain preprocessing is required. For a detailed description

of the incomplete Cholesky decomposition, refer to Schwarz [81, p.266] and Hackbusch

et al [79, Theorem 8.5.15 and Remarks 8.5.16,17]. As a result, the incomplete Cholesky

preconditioner can be expresse as

Ch := L0L
T
0 ≈ Kh, (4.2)
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where L0 is a lower triangular matrix computed by the incomplete Cholesky decomposi-

tion. Forward and backward substitution solves the preconditioning operation Cw = r

in the PCG algorithm.

4.1.3 Algebraic Multigrid Preconditioning

Although the above preconditioners reduce the condition number of the system and

make it possible to solve the system practically, the major disadvantage is that the

convergence rate, i.e., the factor by which the error is reduced in each iteration, depends

on the mesh size h. Finer mesh size means that the convergence rate approaches 1 and

a higher number of iterations is required to achieve a given accuracy. It has been proved

that the Geometric Multi-Grid (GMG) has an h independent convergence rate (ρ < 1)

and an h-independent condition number [79] as

κ2(C
−1
h Kh) ≤ 1

1 − ρm
, (4.3)

with Ch the preconditioner resulting from m steps of the GMG method.

The purpose of MG (Multigrid) is to reduce the low and high frequency components

of the error by a combination of a coarse grid correction and a smoothing operation of

the error components. Unlike the GMG (Geometric Multigrid), AMG dose not build a

coarse grid physically, but operates based on virtual grids. Since it is difficult to construct

coarse grids for a head model with conductivity inhomogeneity and anisotropy, AMG give

a large benefit over the GMG for a multi-compartment head model. Detailed algorithm

and implementation are described by several authors [58, 68, 79, 86–88]. The success of

the AMG-CG solver in the FEM has had a great impact on the brain source analysis in

terms of reducing computational cost.

4.2 Methods

4.2.1 Validation platform

The numerical examinations of the theory presented above were carried out in a

four-layer sphere model with anisotropic skull compartment whose parameterization is

shown in Table 4.1 and Figure 4.1. For the choice of these parameters, we closely

followed previous studies by Marin et al [16] and Hallez et al [27]. We assigned isotropic

conductivity values to scalp, CSF, and brain compartment, and assigned an anisotropic

conductivity value to skull compartment.
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Table 4.1. Parameterization of the anisotropic four-layer sphere model with sphere
dimension and conductivity.

Medium Scalp Skull CSF Brain

Outer shell radius 92mm 86mm 80mm 78mm
Tangential conductivity 0.33S/m 0.042S/m 1.79S/m 0.33S/m

Radial conductivity 0.33S/m 0.0042S/m 1.79S/m 0.33S/m

Figure 4.1. Diagram of four compartment sphere model. The dimension of radius is
mm

Forward solutions were computed for dipoles of 1 nAm amplitude located on the y axis

at depths of 0% to 98.7% (in 1 mm steps) of the brain compartment (78 mm radius) using

both radial (directed away from the center of the model) and tangential (directed parallel

to the scalp surface) dipole orientations. Eccentricity is defined here as the percent ratio of

the distance between the source location and the model midpoint divided by the radius of

the inner sphere (78 mm). The most eccentric source position considered was only 1 mm

below the CSF compartment. Figure 4.2 shows the eccentric sources on the center cut

plane of the brain compartment. To achieve error measures which were independent of

the specific choice of the sensor configuration, we distributed 748 electrodes in a regular

fashion over the outer sphere surface. All simulations ran on a Linux-PC with an Intel

Pentium 4 processor (3.2GHz) using the SimBio-NeuroFEM software environment [89].

4.2.2 Analytical solution in an anisotropic multilayer sphere model

De Munck and Peters [29] have derived series expansion formulas for a mathematical

dipole in a multi-layer sphere model, denoted here as the analytical solution. The model
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(a) (b)

Figure 4.2. (a) Tangential sources on the center cut plane of the brain compartment .
(b) Radial sources on the center cut plane of the brain compartment

consisted of S shells with radii rS < rS−1 < . . . < r1 and piecewise constant radial,

σrad(r) = σrad
j ∈ R

+, and tangential conductivities, σtang(r) = σtang
j ∈ R

+, within

each layer rj+1 < r < rj . It was assumed that the source at position x0 with radial

coordinate r0 ∈ R was in a more interior layer than the measurement electrode at position

xe ∈ R
3 with radial coordinate re = r1 ∈ R. The spherical harmonics expansion for

the mathematical dipole (2.2) was expressed in terms of the gradient of the monopole

potential to the source point. Using an asymptotic approximation and an addition-

subtraction method to speed up the series convergence yields

φana(x0, xe) =
1

4π
〈M, S0

xe

re
+ (S1 − cos ω0eS0)

x0

r0
〉

with ω0e the angular distance between source and electrode, and with

S0 =
F0

r0

Λ

(1 − 2Λ cos ω0e + Λ2)3/2
+

1

r0

∞
∑

n=1

{(2n + 1)Rn(r0, re) − F0Λ
n}P ′

n(cos ω0e) (4.4)

and

S1 = F1
Λcos ω0e − Λ2

(1 − 2Λ cos ω0e + Λ2)3/2
+

∞
∑

n=1

{

(2n + 1)R′
n(r0, re) − F1nΛn

}

Pn(cos ω0e). (4.5)

The coefficients Rn and their derivatives, R′
n, were computed analytically and the

derivative of the Legendre polynomials, Pn, were determined by means of a recursion

formula. We refer to Munck et al [29] for the derivation of the above series of differences

and for the definition of F0, F1, and Λ. Here, it was only important that the latter

terms were independent of n and that they could be computed from the given radii and

conductivities of layers between source and electrode and of the radial coordinate of the
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source. The computations of the series (4.4) and (4.5) were stopped after the k-th term

if the following criterion was fulfilled

tk
t0

≤ υ, tk := (2k + 1)R′
k − F1kΛk. (4.6)

In the following simulations, a value of 10−6 was chosen for υ in (4.6). Using the

asymptotic expansion, no more than 30 terms were needed for the series computation

at each electrode.

4.2.3 Tetrahedral mesh generation.

The FE meshes of the four-layer sphere model were generated by the software Tet-

Gen [2] which used a Constrained Delaunay Tetrahedralization (CDT) approach [90]. This

meshing procedure starts with the preparation of a suitable boundary discretization of

the model in which for each of the layers and for a given triangle edge length, nodes

are distributed in a regular fashion and connected through triangles. This yields a valid

triangular surface mesh for each of the layers. Meshes of different layers do not intersect

each other. The CDT approach is then used to construct a tetrahedralization conforming

to the surface meshes. It first builds a Delaunay tetrahedralization starting with the

vertices of the surface meshes. The CDT then uses a local degeneracy removal algorithm

combining vertex perturbation and vertex insertion to construct a new set of vertices

which includes the input set of surface vertices. In a last step, a fast facet recovery

algorithm is used to construct the CDT [90]. This approach is combined with two further

constraints to the size and shape of the tetrahedra, the first of which is important for

the generation of quality tetrahedra. If R denotes the radius of the unique circumsphere

of a tetrahedron and L its shortest edge length, the so-called radius-edge ratio of the

tetrahedron can be defined as

radius/edge ratio =
R

L
. (4.7)

The radius-edge ratio can distinguish almost all badly-shaped tetrahedra except one type

of tetrahedra, so-called slivers. A sliver is a very flat tetrahedron which has no small

edges, but can have arbitrarily large dihedral angles (close to π). For this reason, an

additional mesh smoothing and optimization step is required to remove the slivers and

improve the overall mesh quality.
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Group 1
tet503K tet125K tet33K

Group 2
tet508K tet128K tet32K

Figure 4.3. Cross-sections of the six tetrahedral meshes of the four compartment sphere
model. The corresponding parameterizations of the models are shown in Table 4.2.
Visualization was done using the software TetView [2].

A second constraint can be used to restrict the volume of the generated tetrahedra in

a certain compartment. We follow the formula for regular tetrahedra:

volume =

√
2

12
· edge3. (4.8)

Table 4.2 shows the number of nodes and elements of the six tetrahedra models

used for the solver run-time comparison and accuracy tests. factor indicates the ratio

of the number of nodes of the most highly resolved to both other models within each

group. Additionally, the table contains the chosen radius/edge ratio (see Equation

(4.7)), the average edge length of the four triangular surface meshes, the corresponding

volume constraints (see Equation (4.8)) for the tetrahedra and the compartments where

the volume constraint was not applied. The most highly resolved meshes tet503K and

tet508K, of both groups had approximately the same resolution, while the others were

chosen to have a factor of 4 coarser resolution with regard to the number of nodes. The

meshes of group 1 concentrated the nodes in the outer three compartments because no
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Table 4.2. The six tetrahedra models used for the solver time comparison and accuracy
tests. The table shows the number of nodes and elements of each mesh and factor

indicates the ratio of the number of nodes of the most highly resolved to both other models
within each group. Additionally, the chosen radius/edge ratio (see Equation (4.7)),
the average edge length of the four triangular surface meshes, the corresponding volume

constraint (see Equation (4.8)) and the compartments where the volume constraint was
not applied are indicated.

Group 1 Group 2
Model tet503K tet125K tet33K tet508K tet128K tet32K

nodes 503,180 124,624 32,509 508,435 127,847 31,627
elements 3,068,958 733,022 187,307 3,175,737 781,361 190,060
factor 1 4.04 15.48 1 3.98 16.08

radius/edge ratio 1.0 1.0 1.1 1.0 1.0 1.1
edge (in mm) 1.75 2.7 5.2 2.42 3.9 6.87
volume (in mm3) 0.63 2.32 16.57 1.67 6.99 38.21
no volume brain brain brain / / /
constraint in

volume constraint was applied for the inner brain compartment, while the nodes in the

meshes of group 2 were distributed in a regular way throughout all four compartments.

The meshes of group 1 were thus preferentially beneficial to the full subtraction approach,

since the entries of the volume integral in Equation (3.14) are zero ((σ(x) − σ0) = 0 for

all x in the brain compartment) so that a coarse resolution can be expected to have

no impact on the overall numerical accuracy, but will reduce the computational cost.

In contrast, the meshes of group 2 were beneficial to both direct potential approaches.

Figure 4.3 shows samples from the six tetrahedra models that were generated using the

parameterizations from Table 4.2.

For modeling the skull anisotropy, we built a Smooth Surface Model (SSM) by eroding

the outer skull surface by half of its thickness and triangulated the surface with an edge

length of 10 mm [75]. Then we took the surface normal as the radial component of

the anisotropic tensor and assigned it a conductivity 0.0042 S/m, while the tangential

component has 0.042 S/m accordingly.

4.2.4 Error criteria

We compared numerical solutions with analytical solutions using three common error

criteria [12, 14, 16, 19, 91]. The relative (Euclidean) error (RE) is defined as
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RE :=
||φ

num
− φ

ana
||2

||φ
ana

||2
, (4.9)

where φ
ana

, φ
num

∈ R
m denote the analytical and the numerical solution vectors, respec-

tively, at the m = 748 measurement electrodes. We furthermore defined

RE(%) := 100 · RE, maxRE(%) := max
j

(RE(%)j) (4.10)

where j is the source eccentricity. In order to better distinguish between the topography

(driven primarily by changes in dipole location and orientation) and the magnitude error

(indicating changes in source strength), Meijs et al. [91] introduced the relative difference

measure (RDM) and the magnification factor (MAG), respectively. For the RDM, we can

show that

RDM := || 1

||φ
ana

||2
φ
ana

− 1

||φ
num

||2
φ
num

||2 =

√

2
(

1 − cos ∠(φ
ana

, φ
num

)
)

. (4.11)

It therefore holds that 0 ≤ RDM ≤ 2, so that we can furthermore define

RDM(%) := 100 · RDM

2
, maxRDM(%) := max

j
(RDM(%)j) . (4.12)

The MAG is defined as

MAG :=
||φ

num
||2

||φ
ana

||2
so that error is minimum at MAG = 1 and we therefore defined

MAG(%) = |1 − MAG| · 100, maxMAG(%) := max
j

(MAG(%)j) . (4.13)

With maxRE(%)k, we denote the maximal relative error in percent over all source

eccentricities for an accuracy level of accuracy = 10−k. The so-called plateau-entry for

an iterative solver is then defined as the first k at which the condition is true.
∣

∣maxRE(%)k − maxRE(%)k+1
∣

∣

maxRE(%)k+1
< 0.05 (4.14)

4.2.5 FEM and solver parameter settings

With the FEM sphere models in hand, we carried out forward computations for

each set of parameters. The parameters included FEM solver, relative solver accuracy,

dipole source model, source location, source direction, FEM mesh resolution, and mesh

constraint of brain. The setup times for the preconditioners were neglected in all calcu-

lations of computational cost because this step must be performed only once per head
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model. The relative solver accuracy was limited to the discrete set of accuracy levels

accuracy = 10−k with k ∈ {0, . . . , 9}. The parameters used in the accuracy and the

run-time studies are summarized in the Table 4.3. The total number of FEM forward

simulations performed in the study was 84,240.

Table 4.3. Parameters used in the accuracy and the run-time study.
Item Parameter

Solver Methods Jacobi-CG/IC(0)-CG/AMG-CG
Accuracy 1 ∼ 10−9 (in step of 10−1)

Model Venant/partial integration/subtraction
Source Locations 78 (in steps of 1mm)

Orientations radial/tangential
FEM mesh Resolutions fine/middle/coarse

Brain mesh constraints regular/coarsest possible

4.2.6 Realistic FEM head model

We also built a 3D realistic head model from the MR images of a 32 years old male

subject. We used T1- and PD-MRI for registration and segmentation of the image [7, 36,

46, 68, 92], resulting in 4 compartments of scalp, skull, CSF, and brain. We created regular

tetrahedral finite element meshes based on the Delaunay criterion [68, 93] by CURRY [94]

software. This resulted in models with 245 K nodes and 1,503 K tetrahedral elements

with isotropic conductivity assigned to each compartment. Scalp and brain had the same

conductivity of 0.33 S/m. Skull had 0.0042 S/m and CSF had 1.79 S/m. Figure 4.4

shows cross sections from the realistic FEM model.

Using the realistic head model, we computed forward potentials numerically on 71

evenly spaced electrodes on the head surface for 96 quasi-tangential and 96 quasi-radial

sources located in the brain. We used three dipole models (subtraction, Venant, partial

integration) and three FE solvers (AMG-, IC(0)-, Jacobi-CG) with a set of the relative

accuracies (from 10−9 to 100). Since it is unable to have an analytic solution for the

realistic head model, we used the potentials computed with the relative accuracy of

10−9 as the reference potentials used in the error measure of RE. For instance, RE was

calculated as

RE :=
||φ

num
− φ

10−9
||2

||φ
10−9

||2
. (4.15)



43

axial coronal sagittal

Figure 4.4. Cut plane view of the realistic FEM head model. Colors indicate the four
compartments of scalp, skull, CSF, and brain.

4.3 Results

4.3.1 Numerical error versus potential approach

In a first study, we compared the numerical accuracy of the full subtraction approach

(Section 3.2.1) with the two direct methods: Venant (Section 3.2.3) and partial integration

(Section 3.2.2). Figure 4.5 shows the RE(%) for the different source eccentricities for the

two finest models tet503K of group 1 (left) and tet508K of group 2 (right) (see Figure 4.3

and Table 4.2) with regard to the full subtraction (top row), the Venant (middle row)

and the partial integration approach (bottom row). The results were computed with the

AMG-CG and the necessary accuracy in Algorithm 1 for the plateau-entry (4.14) is

indicated for both source orientation scenarios. In Table 4.4, the maximal errors over all

source eccentricities at the AMG-CG plateau-entry (4.14) are shown for all tetrahedra

models, both source orientation scenarios, and the three dipole modeling approaches.

Figure 4.5 clearly shows the advantages of the full subtraction approach whose error

curves are smooth, while Venant and partial integration show an oscillating behavior

at generally larger error values. With RDM and MAG errors below 1% over all source

eccentricities and for both orientation scenarios (see Table 4.4), the full subtraction ap-

proach performed best for all source eccentricities for model tet503K (its mesh resolution

was sufficiently high and the FE nodes were concentrated in the compartments CSF,

skull and skin), where both direct approaches showed oscillations with a relatively high

magnitude. As the results for model tet508K showed, the oscillation magnitudes for the

direct approaches could be strongly reduced by means of distributing the FE nodes in

a regular way over all four compartments, hence decreasing the mesh size in the brain

compartment. Nevertheless, even for model tet508K, the full subtraction approach was
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Figure 4.5. RE(%) versus source eccentricity for the two most highly resolved models
tet503K of group 1 (left) and tet508K of group 2 (right) using the full subtraction
(top row), the Venant (middle row) and the partial integration (bottom row) potential
approaches. The necessary accuracy in Algorithm 1 for the plateau-entry (4.14) of the
AMG-CG is indicated for both source orientation scenarios.

the most accurate method for nearly all source eccentricities. It was only outperformed

by partial integration for the source that was only 1 mm below the CSF compartment.

As both Figure 4.5 and Table 4.4 show, the partial integration approach performed well

as long as the mesh was sufficiently fine in the brain compartment. The oscillation
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Table 4.4. Values of maxRE(%), maxRDM(%) and maxMAG(%) errors for the full
subtraction (Sub), the Venant (Ven) and the partial integration (PI) approach for all six
tetrahedra models (see Figure 4.3 and Table 4.2) and both source orientation scenarios
at the AMG-CG plateau-entry (4.14).

Group 1
Tangential source

Model tet503K tet125K tet33K

Approach Sub Ven PI Sub Ven PI Sub Ven PI
maxRE(%) 0.403 2.719 7.195 4.192 2.722 6.603 12.543 10.246 10.367
maxRDM(%) 0.202 1.311 3.450 1.322 1.296 3.304 6.020 4.920 4.674
maxMAG(%) 0.149 1.840 1.810 3.217 1.395 2.142 2.863 3.307 4.066

Radial source
Model tet503K tet125K tet33K

Approach Sub Ven PI Sub Ven PI Sub Ven PI
maxRE(%) 1.791 5.077 6.200 2.522 16.867 5.517 33.860 22.810 19.898
maxRDM(%) 0.820 1.408 2.846 1.066 1.662 2.727 17.184 6.730 9.958
maxMAG(%) 0.708 5.035 3.426 1.372 16.804 1.827 6.338 19.344 7.729

Group 2
Tangential source

Model tet508K tet128K tet32K

Approach Sub Ven PI Sub Ven PI Sub Ven PI
maxRE(%) 2.760 1.414 2.235 6.206 3.457 3.654 17.000 17.977 11.113
maxRDM(%) 0.874 0.599 0.965 2.202 1.665 1.814 6.721 8.715 5.031
maxMAG(%) 2.121 0.753 1.110 4.277 1.011 1.243 9.542 4.474 4.296

Radial source
Model tet508K tet128K tet32K

Approach Sub Ven PI Sub Ven PI Sub Ven PI
maxRE(%) 1.890 6.738 2.157 7.660 19.413 5.054 21.111 20.232 21.000
maxRDM(%) 0.804 1.131 1.051 1.212 1.893 2.141 10.616 9.120 9.188
maxMAG(%) 1.183 6.608 1.101 7.404 19.329 2.836 8.831 10.577 8.617

magnitudes of the Venant approach were generally even slightly smaller than for the

partial integration approach, with only one exception (the result for the radial source

1 mm below the CSF compartment, shown in the middle row of Figure 4.5). The main

reason for the outlier was that for the source 1 mm below the CSF, monopoles were

positioned in the CSF compartment, which had a strong effect on the MAG for the

radially oriented source.
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Figure 4.6. maxRE(%) versus PCG solver accuracy (see Algorithm 1 and Sec-
tion 4.2.5) for models tet503K of group 1 (left column) and tet508K of group 2 (right
column) for the AMG-CG (top row), the IC(0)-CG (middle row) and the Jacobi-CG
(bottom row). Source orientations and potential approaches can be distinguished by
their specific labels. The plot is in log-log scale.

4.3.2 Numerical error versus PCG accuracy

Figure 4.6 shows the numerical error maxRE(%) versus the PCG solver accuracy

from Algorithm 1 for the discrete set of accuracy levels from 100 to 10−9. Results for
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the high-resolution model tet503K of group 1 are shown in the left and from the high-

resolution model tet508K of group 2 in the right column for the AMG-CG (top row), the

IC(0)-CG (middle row) and the Jacobi-CG (bottom row).

Table 4.5. Maximally needed k ∈ {0, . . . , 9} for a PCG accuracy = 10−k for the
plateau-entry (4.14) over all three potential approaches.

Group 1
Tangential source Radial source

Solver AMG-CG IC(0)-CG Jacobi-CG AMG-CG IC(0)-CG Jacobi-CG
tet503K 5 6 7 6 5 6
tet125K 5 5 6 5 5 6
tete33K 4 5 6 3 3 5

Group 2
Tangential source Radial source

Solver AMG-CG IC(0)-CG Jacobi-CG AMG-CG IC(0)-CG Jacobi-CG
tet508K 6 6 7 6 7 8
tet128K 4 5 6 4 4 6
tete32K 3 5 6 3 4 5

The PCG accuracy measures the error in the solution vector of the FE linear equation

system (3.12) (correction potential), (3.15) and (3.17) (total potential). For the full

subtraction approach, maxRE(%) was thus not equal to 100 for accuracy = 100 because

φ
num

is equal to the analytically computed singularity potential Φ0 from Equation (3.9).

Because the PCG accuracy is measured in the KhC−1
h Kh-energy norm, the plateau-entry

(4.14) differs for different preconditioners Ch. As shown in Figure 4.6 for the high-

resolution models and as collected in Table 4.5 for all six tetrahedra models, the maximally

needed k (for a PCG accuracy of accuracy = 10−k) decreased when the preconditioning

quality increased (except for the radial source orientation in model tet503K, see Fig. 4.6).

Furthermore, as Table 4.5 shows, a higher PCG accuracy was needed for the plateau-entry

when the mesh resolution increased.

4.3.3 Numerical error versus solver time

In a last study, we compared solver wall-clock time versus numerical accuracy for the

three different CG preconditioners: AMG, IC(0), and Jacobi. The time for the setup of

the preconditioner was not included because this step was carried out only once per head

model.
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Figure 4.7. Solver time versus maxRE(%) for models tet503K of group 1 for tangen-
tially and radially oriented sources for the potential approaches full subtraction (top),
Venant (middle), and partial integration (bottom). Results are presented for the three
different CG preconditioners AMG, IC(0) and Jacobi. Each marker represents a PCG
accuracy = 10−k level and the largest examined level is indicated. The x-axis is in log
scale.
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Figure 4.8. Solver time versus maxRE(%) for models tet33K of group 1 for tangen-
tially and radially oriented sources for the potential approaches full subtraction (top),
Venant (middle), and partial integration (bottom). Results are presented for the three
different CG preconditioners AMG, IC(0) and Jacobi. Each marker represents a PCG
accuracy = 10−k level and the largest examined level is indicated. The x-axis is in log
scale.
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Figure 4.9. Solver iteration count versus maxRE(%) for models tet503K of group 1 for
tangentially and radially oriented sources for the potential approaches full subtraction
(top), Venant (middle), and partial integration (bottom). Results are presented for the
three different CG preconditioners AMG, IC(0) and Jacobi. Each marker represents a
PCG accuracy = 10−k level and the largest examined level is indicated. The x-axis is
in log scale.
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In Figure 4.7 and 4.8, the solver time is shown versus the maxRE(%) for different

levels of PCG accuracy for models tet503K and tet33K of group 1. In Figure 4.9, the

total iteration count of each solver is shown for tet503K model. The largest examined

PCG accuracy level 10−k is indicated in the figure. Please note that this level does not

necessarily correspond to the plateau-entry level. In most cases results are presented up

to one level higher.

Table 4.6. Average solver time (sec.) and iteration count (iter) over all source
eccentricities, source orientations and potential approaches for plateau-entry (4.14). For
all tetrahedra models of groups 1 and 2, results are presented for the three different CG
preconditioners AMG, IC(0) and Jacobi. The gain factor indicates the performance gain
of the AMG-CG relative to the Jakobi-CG.

Group 1
tet503K tet125K tet33K

Solver Time Iter Time Iter Time Iter
AMG-CG 12.25 11.20 1.87 9.04 0.18 5.89
IC(0)-CG 112.03 233.43 8.40 128.39 0.45 72.63
Jacobi-CG 167.82 679.43 16.98 414.00 0.76 229.52
gain factor 13.70 60.66 9.08 45.8 4.22 38.97

Group 2
tet508K tet128K tet32K

Solver Time Iter Time Iter Time Iter
AMG-CG 9.18 10.40 1.36 7.27 0.15 5.81

IC-CG 72.41 215.05 5.20 98.96 0.31 52.84
Jacobi-CG 99.60 578.04 9.62 331.15 0.47 161.68
gain factor 10.85 55.58 7.07 45.55 3.13 27.83

Table 4.6 contains results for all tetrahedra models of groups 1 and 2, average solver

times and iteration counts over all source eccentricities and source orientations and

potential approaches for a plateau-entry (4.14). Figure 4.7, 4.8, 4.9 and Table 4.6 clearly

show the superiority of the AMG preconditioner over the other approaches. In all cases,

even for the low-resolution grids tet33K and tet32K, the AMG-CG was the fastest solver,

followed by the IC(0)-CG and the Jacobi-CG. The main result of Table 4.6 is the so-called

gain factor, which is defined here as the result (solver time or iteration count) for the

Jacobi-CG divided by the result for the AMG-CG. The gain factors clearly showed that

the higher the mesh-resolution, i.e., the higher the condition number of the corresponding

FE stiffness matrix, the larger the difference in performance between AMG-CG, IC(0)-
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CG, and Jacobi-CG. An increasing mesh-resolution led to a strong increase in the number

of iterations of IC(0)-CG (factor of 3.2 between tet503K and tet33K and 4.1 between

tet508K and tet32K) and Jacobi-CG (factor of 3.0 between tet503K and tet33K and

3.6 between tet508K and tet32K), while the number of AMG-CG iterations was only

slightly increasing (factor of 1.9 between tet503K and tet33K and 1.8 between tet508K

and tet32K). This clearly shows the stronger h-dependence of the IC(0) and Jacobi

preconditioners.

4.3.4 Realistic FEM head model

Figure 4.10 shows the maxRE for the realistic volume conductor model with respect

to three solvers and three dipole models both in the quasi-tangentially and quasi-radially

oriented positions. The curves in the figure had a plateau like that of sphere model,

which means that the higher solver accuracy beyond the plateau entry did not improve

the RE accuracy. When the relative accuracies were large, the solver may have been

stopped without an iteration and the solution became the initial value of zero. In this

case the RE error becomes 100% based on the formula in Eq. 4.9 and Eq. 4.10. That

is, the denominator and the nominator in Eq. 4.9 are the same and the RE becomes one

and accordingly RE(%) becomes 100%. The partial integration and the Venant dipole

approach produced results that fell into this category. Even though the solver may be

stopped without an iteration for large errors, the RE could be more than 100% in the

subtraction dipole method because the numerical solution involves a solution for the

homogeneous infinite medium and a solution for the correction to the bounded medium.

The solution process of the correctional potential used the numerical solver and the

homogeneous solution used the analytic formula. The analytic portion of the solution

was used for the calculation of RE when the solver was stopped without iteration in the

large accuracies.

Table 4.7 shows the average solver time and iteration count over all eccentricities with

respect to three solvers and three dipole models. The solver time and iteration count

in the table was at the relative accuracy in the plateau entry. As in the case of sphere

model, the AMG-CG solver was the fastest for all dipole models. The AMG-CG solver

was 8.7 times, on average, faster than that of the slowest Jacobi-CG solver for all dipole

models and orientations.
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Figure 4.10. Maximal RE for solvers (AMG-CG, IC(0)-CG, and Jacobi-CG) and
dipole models (subtraction, Venant, and partial integration) with quasi-tangential and
quasi-radial sources in a realistic four tissue head model. The left colum is for a
quasi-tangential source and the right is for a quasi-radial source. The relative accuracy
on the x axis is the relative error in KC−1K energy norm. The x axis uses a log scale.

Figure 4.11 shows an potential map with isopotential lines and shading on a sagittal

cut of the head. The forward potential was computed for the Venant quasi-tangential
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Table 4.7. Average solver time (sec) and average iteration count at the largest relative
accuracy that leads to maxRE error within 1% for AMG-CG, IC(0)-CG, and Jacobi-CG
with subtraction, Venant, and partial integration models, given the realistic volume
conductor model. The gain factor indicates the performance gain of the AMG-CG relative
to the Jakobi-CG.

Quasi-tangential source
dipole model subtraction Venant partial int.

acc time iter acc time iter acc time iter
AMG-CG 10−6 2.81 12.69 10−5 2.19 9.99 10−5 2.08 9.44
IC(0)-CG 10−6 9.41 201.9 10−6 8.97 194.8 10−6 8.66 188.7
Jacobi-CG 10−8 20.51 997.7 10−7 18.54 893.6 10−8 20.68 961.8
gain factor 7.30 78.6 8.47 89.4 9.94 101.9

Quasi-radial source
dipole model subtraction Venant partial int.

acc time iter acc time iter acc time iter
AMG-CG 10−5 2.29 10.42 10−5 2.24 10.21 10−5 2.09 9.49
IC(0)-CG 10−6 9.22 199.7 10−6 8.91 194.6 10−6 8.69 190.2
Jacobi-CG 10−7 19.11 904.8 10−7 18.61 893.7 10−8 20.24 957.5
gain factor 8.34 86.8 8.30 87.5 9.68 104.1

source in the right somatosensory, using the AMG-CG solver with a relative accuracy of

10−5.

4.4 Discussion and conclusion

The goals of this technical study of finite element (FE) based solution techniques for

the elecroencephalographic forward problem were twofold. The first aim was to compare

three efficient iterative FE solver techniques under realistic conditions that still allowed

quasi-analytical solutions. The second aim was to evaluate three different numerical

formulations of the current dipole, which is the bioelectric source most commonly used

to represent neural electrical activity. A major motivation of such studies is the special

need to achieve high accuracy and efficiency with FE based approaches for this problem.

The many advantages of this approach are often hindered by unacceptable computational

costs so that improved efficiency will provide substantial progress to the field.

When using the KhC−1
h Kh-energy norm stopping criterion for the PCG algorithm

applied on meshes with up to 500 K nodes, relative solver accuracies of 10−6 for AMG-CG,

10−7 for IC(0)-CG and 10−8 for Jacobi-CG were necessary and sufficient to fall below the

discretization error. The AMG-CG achieved an order of magnitude higher computational
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Figure 4.11. Potential map on the head surface and the sagittal cut with iso-potential
lines. The source is at the right somatosensory cortex with quasi tangential orientation.
The potential was computed with AMG-CG solver, Venant dipole model, and the relative
accuracy of 10−5.

speed than the CG with the standard preconditioners with this acceleration increasing as

the mesh size decreased.

We generated two groups of Constrained Delaunay tetrahedral FE meshes, tuned

for the specific needs of the different potential approaches. In Group 1 using the full

subtraction approach [21], FE nodes were concentrated in the CSF, skull and skin, while

the brain compartment was meshed as coarsely as possible. Group 2 was tuned for the

needs of both direct potential approaches [11, 13, 15, 18], which profit more from a regular

distribution of FE nodes over all four compartments and especially higher resolution at

the source positions.

With regard to the numerical error, in the tuned FE meshes with about 500 K

nodes, we achieved high accuracies—in the range of a few percent maximal relative error

(maxRE)—over all source eccentricities for both the full subtraction and the two direct

potential approaches. With a maximal relative difference measure (maxRDM) and a

maximal magnification factor (maxMAG) of less than 1% over all source eccentricities for

sources up to 1 mm below the CSF compartment (model tet503K, maximal examined

eccentricity of 98.7%), the full subtraction approach performed consistently better than

both direct approaches. Our results clearly illustrate the advantages of the full subtraction
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approach as long as the homogeneity condition is fulfilled, i.e., as long as the distance

of the source to the next conductivity inhomogeneity is large enough or the resolution

of the FE mesh at the nearest conductivity inhomogeneity to the source is fine enough.

A theoretical reasoning for this finding is given in [20]. While error curves oscillated for

both direct approaches, they were smooth for the full subtraction approach.

Schimpf et al. [19] investigated different FE potential approaches in a four-layer sphere

model with isotropic skull and sources up to 1 mm below the CSF compartment. In

their report, a regular 1 mm cube model was used (thus a much higher FE resolution

than used in this study) and a maxRDM of 7% and a maxMAG of 25% were achieved

with a subtraction approach, which performed best in their comparison. Awada et

al. [13] implemented a two-dimensional subtraction approach and compared its numerical

accuracy with a partial integration method in a two-dimensional multi-layer sphere model.

A direct comparison with our results is therefore difficult, but the authors concluded that

the subtraction method was more accurate than the direct approach. In a locally refined

(around the source singularity) tetrahedral mesh with 12,500 nodes of a four-layer sphere

model with anisotropic skull and first order FE basis functions in a subtraction approach,

Bertrand et al. [12] reported a maxRDM of above 20% and a maxMAG up to 70% for

a maximal eccentricity of 97.6%. Van den Broek [14] used a subtraction approach in a

locally refined (around the source singularity) tetrahedral mesh with 3,073 nodes of a

three-layer sphere model with anisotropic skull. For the maximal examined eccentricity

of 94.2%, they reported a maxRDM of up to 50%.

However, the right-hand side (RHS) vector is expensive to compute and is densely

populated (i.e., Nh non-zeros) for the full subtraction approach (3.14) and sparse with just

some few (|NodesOfEle| for partial integration (3.16), and C for Venant (3.18)) non-zero

vector entries for the direct approaches, which has implications for the computational

effort when using the fast FE transfer matrix approach for EEG and MEG [18, 25–27],

which limits the total number of FE linear equation systems to be solved for any inverse

method to the number of sensors, m. After solving m FE linear equation systems to com-

pute the transfer matrix, each forward problem can be solved by a single multiplication

of the RHS vector with the transfer matrix [26], resulting in a computational effort of

2×m×P operations with P = Nh for the full subtraction, P = |NodesOfEle| for partial

integration and P = C for the Venant approach. Note that the transfer matrix approach

cannot be used if the mesh is adapted according to varying source positions within the
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inverse problem. We therefore attempted to avoid local mesh refinement techniques such

as those used elsewhere [12, 14].

In conclusion, the AMG-CG achieved an order of magnitude higher computational

speed than Jacobi-CG or incomplete Cholesky-CG for the FEM based EEG forward

and inverse problem. Our results corroborate the theoretical results that the higher the

FE resolution, the greater the advantage of using MG preconditioning. The AMG-CG

together with the fast transfer matrix approach enables resolutions which seemed to be

impracticable before. In the comparison of dipole modeling approaches, highest accuracies

were achieved with the full subtraction approach in CDT meshes, where nodes were

concentrated in the compartments CSF, skull and skin.



CHAPTER 5

LOW RESOLUTION CONDUCTIVITY

ESTIMATION WITH EEG SOURCE

LOCALIZATION

5.1 Introduction

Bioelectric source analysis in the human brain from scalp Electroencephalography

signals is sensitive to geometry and conductivity properties of the different head tis-

sues. In this chapter we describe a Low Resolution Conductivity Estimation (LRCE)

method using simulated annealing optimization on high-resolution finite element models

that individually optimizes a realistically-shaped volume conductor with regard to the

tissue conductivities. As input data, the method needs T1- and PD-weighted magnetic

resonance images to produce a volume conductor model and scalp potential data. Our

simulation studies showed that for realistic signal-to-noise somatosensory evoked poten-

tials, the LRCE method was able to simultaneously reconstruct both the brain and the

skull conductivity together with the underlying dipole source in somatosensory cortex

and provided an improved source analysis result. Furthermore, using scalp potentials

with a high signal-to-noise ratio, the LRCE method was even able to simultaneously

reconstruct a pair of dipole sources together with the brain and the skull conductivity.

The new method was then applied to measured tactile somatosensory evoked potentials.

The LRCE estimated the brain conductivity to be 0.48 S/m, which is higher than the

commonly used value of 0.33 S/m. The skull conductivity was fitted to the value of

0.004 S/m, which is in the range of the commonly used value. With these results, we

have shown the viability of an approach that computes its own conductivity values and

thus reduces the dependence on assigning values from the literature and likely produces

a more robust estimate of current sources. Using the LRCE method, the individually

optimized (with regard to both geometry and conductivity) volume conductor model can
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in a second step be used for the analysis of clinical or cognitive data acquired from the

same subject.

5.2 Methods

5.2.1 Transfer matrix approach with Venant dipole

As described in the Chapter 3, we used the finite element (FE) method for the

numerical approximation of equations (2.1) in combination with the reference electrode.

Chapter 4 contains the results of a comparison of three different FE approaches for mod-

eling the source singularity: a subtraction approach [53, 75], a Partial Integration direct

method [56], and a Venant direct method [5]. Based on the results of this comparison,

in this LRCE study we used the Venant approach, which for sufficiently regular meshes,

yields suitable accuracy over all realistic source locations [74, 75]. This approach has the

additional advantage of high computational efficiency when used in combination with the

FE transfer matrix approach described in Section 3.4.1 [57].

With these assumptions, Eq. 3.3 then becomes

K · u = JV en (5.1)

where K is the stiffness matrix with dimension n×n, u is the potential coefficient vector

with (n×1), and JV en is the Venant approach right-hand-side source vector (n×1) [5, 74].

A key goal of this study was to pursue solutions that achieve high computational efficiency.

Let us assume that there are e electrodes that directly correspond to FE nodes on the

surface of the head model (when not directly corresponding, potentials at electrodes need

interpolation among those of neighboring nodes). It is then straightforward to determine

the restriction matrix R ∈ R
(e−1)×n in Section 3.4.1, which has only one non-zero entry

with the value 1 in each row and which maps the potential vector u at nodes onto the

potential vector ΦEEG at the (e − 1) non-reference EEG electrodes:

R u =: ΦEEG. (5.2)

With the following definition of the ((e − 1) × n) transfer matrix for the EEG, T ,

T := R K−1, (5.3)

a direct mapping of an FE right-hand side vector onto the unknown electrode potentials

is given as:

T JV en (5.3)
= R K−1JV en (5.1)

= Ru
(5.2)
= ΦEEG. (5.4)
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Note that JV en has only C non-zero entries (with C being the number of neighbors of the

closest FE node to the source) so that T JV en only amounts in 2 · (e− 1) ·C operations.

Thus the resulting combination of the transfer matrix approach with the Venant method

leads to implementations that are especially efficient, an essential feature for our study.

The inverse FE stiffness matrix K−1 from (5.1) exists, but its computation is a difficult

task, since the sparseness of K will be lost while inverting. By means of multiplying

equation (5.3) with the symmetric matrix K from the right side and transposing both

sides, we obtain

KTtr = Rtr. (5.5)

The FE transfer matrix can thus be computed by means of iteratively solving (S − 1)

large sparse FE linear equation systems. Note that a fast FE transfer matrix for the

Magnetoencephalography (MEG) forward problem can be derived in a similar way [6, 57].

To solve numerically the resulting linear FE equations, we employed an algebraic multigrid

preconditioned conjugate gradient (AMG-CG) method [58], solved to a relative error of

10−9 in the controllable KP−1K-energy norm (with P−1 the matrix resulting from one

V-cycle of the AMG).

5.2.2 Globally minimizing the cost function

Since the volume conduction properties are incorporated in the lead field matrix Lr,

the free nonlinear optimization parameters in this case are only the source locations.

Optimization methods such as the Nelder-Mead simplex approach [95], the Levenberg-

Marquardt algorithm [96], and Simulated Annealing (SA) from combinatorial optimiza-

tion [97] are all able to update the source locations based on the previous source location

and misfit value. The optimization procedure continues until the cost function meets a

predefined tolerance criterion or a maximum allowable number of iterations. The chal-

lenge of local optimizers such as the Nelder-Mead simplex and the Levenberg-Marquardt

algorithm lies in determining the initial estimation of multiple parameters in the presence

of multiple local minima; a global optimizer such as SA is generally more effective in

localizing multiple parameters because it eliminates the need for high quality initial

estimates [84, 98–100]. We used an SA method that follows the Metropolis algorithm

for the stochastic optimization process [101]. The energy (the cost function in our case)

for the assigned parameters in each iteration was compared with a previous energy and

when the energy state was smaller than the previous ∆E < 0, the parameters were always
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accepted. When the energy was larger than the previous ∆E > 0, the acceptance of the

parameters depended on the probability based on the Metropolis criterion (6) [97]. This

stochastic acceptance test prevents the search from getting trapped in local minima as

long as the cooling schedule is slow enough [102, 103].

The following equation describes the process:

P (∆E, t) = exp−(∆E/t)

t = ft · tprevious, (5.6)

where t is a so-called temperature factor that regulates the acceptance probability. Through-

out the optimization process, t decreases according to a cooling rate ft. When the cooling

is slow enough, SA has been shown to converge to the global minimum of a given cost

function in a large search space [102, 103]. Initially the temperature is set to a high value,

resulting in the acceptance of most new parameters and as the temperature decreases, it

is less likely for new parameters to be accepted. This enables the search to focus on the

vicinity of the minima at the later stages of the optimization process.

5.2.3 Low resolution conductivity estimation

The proposed LRCE method adds electrical tissue conductivities as additional opti-

mization parameters to the cost function to the already parameterized source locations.

Here the set of optimization parameters including the conductivities was

X = {s, σ} = {~s1, ~s2, · · · , ~sk, σ1, σ2, · · · , σL}, (5.7)

where L is the number of tissue compartments and σl is the conductivity parameter for

the l-th tissue compartment (1 ≤ l ≤ L). Each source location ~si (1 ≤ i ≤ k) was allowed

to vary within the defined discrete influence space as described in Section 3.4. The

conductivity σl of tissue compartment l was allowed to have its value from a predefined

discrete set of possible conductivity values

σl ∈ {σhl
, 1 ≤ hl ≤ Hl}. (5.8)

Here, Hl is the number of possible conductivity values for tissue compartment l. Theo-

retically one could choose Hl to be a large number (high resolution) for each tissue, but

this would strongly increase computational costs and might be rather unrealistic given

the limited SNR in measured EEG data. Therefore, we confined each tissue to a rather
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small set of conductivity values (e.g., the different measured values for the considered

head tissue that can be found in the literature).

Given the influence source space and the electrode locations, we precomputed a

set of lead field matrices and collected them in Λ, which corresponded to all possible

combinations of conductivity values for all tissue compartments of interest. This resulted

in the number
∏L

l=1 Hl of lead field matrices in Λ.

Λ = {L (σh1 , . . . , σhL
) : 1 ≤ hl ≤ Hl, 1 ≤ l ≤ L}, (5.9)

with L (σh1, · · · , σhL
) being the (e×3r) lead field matrix for the specific choice of conduc-

tivities. Here, we describe an extension to the EEG transfer matrix approach, described

in Section 5.2.1, aimed at enhancing the computation of Λ. During each iteration of the

SA method, the set of optimization parameters includes not just a new estimate of the

bioelectric source, but a new configuration of both sources and conductivities in which

we allow changing the value of only one parameter chosen randomly per iteration. By

limiting the choice of conductivities to a discrete set of values, we maintain computational

efficiency by applying the associated precomputed lead field matrix from the set Λ. The

total number of possible configurations for sources and conductivities is

(

r
k

)

·
L
∏

l=1

Hl. (5.10)

The SA optimizer searches for an optimal configuration of dipole source locations r and

tissue conductivities σ that ensure the best fit to the measured data:

gf = min
s,σ

‖ΦEEG − Φsim(s, σ)‖2 = min
s,σ

‖ΦEEG − Ls(σ) · Js‖2 (5.11)

The following summarizes the general procedure of the low resolution conductivity

estimation.

• Define the discrete influence space with r nodes.

• Fix the number k of sources to be fitted.

• For all L tissue compartments, define a discrete set of conductivity values, i.e., fix

all σhl
, 1 ≤ hl ≤ Hl, 1 ≤ l ≤ L

• Precompute the set of lead field matrices Λ corresponding to each of the possible

conductivity combinations.
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• Repeat:

– Allow SA optimizer to choose a configuration of source locations s = (~s1, ~s2, · · · , ~sk)

and conductivities σ = (σ1, · · · , σL)

– Get lead field matrix Ls(σ) for the chosen source and conductivity configura-

tion.

– Compute its cost function value, gf = min‖ΦEEG−Ls(σ)Js‖2 with respect to

source moments Js.

• Until cost function value meets a tolerance criterion or the number of iterations

exceeds a limit.

5.2.4 Realistic head model

To carry out the LRCE analysis requires the construction of detailed realistic head

models, in this case from MRI image data. Here we used the same realistic head model of

Wolters et al [3] and summarized the steps for constructing the head model. The approach

emphasizes accurate modeling of the skull thickness, as the influence of this parameter

is closely related to the influence of skull conductivity and therefore is important for a

successful application of the presented LRCE algorithm.

In order to create an accurate geometric model of human head, we used multiple MR

imaging modalities, both T1-weighted MRI and PD-weighted MRI. T1-MRI is a good

modality to segment tissue boundaries such as scalp, outer skull, and gray matter. On

the other hand, PD-MRI is a good modality to segment the inner skull boundary, since

the amount of water proton in the CSF is much higher than that of the skull bone and

this large difference resulted in a high contrast between the two substances. Combining

two imaging data made it possible to construct more accurate skull thickness than the

imaging data of a single modality. We collected the imaging data from a healthy 32

years old male subject by a 3 Tesla whole body MRI scanner (Medspec 30/100, Bruker,

Ettlingen/Germany). An inversion recovery MDEFT sequence [104] and 3D FLASH

protocol [105] were carried out for T1- and PD-MRI, respectively. For the detailed

parameters used in the processing, refer to Wolters et al [3]. The final imaging resolution

is 1 x 1 x 1.5 mm3 in both T1- and PD-MRI.

A registration between the T1- and the PD-MR imaging data was performed to align

the images and to correct the changes of subject’s position. This registration used a
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voxel-similarity based affine registration without pre-segmentation, using a cost-function

based on mutual information described in Wolters et al [3]. Based on the registered

images, image segmentation was carried out by an Adaptive Fuzzy C-Means classification

method [3, 35] and a deformable model algorithm [3]. Since a portion of the head that the

EEG electrodes do not cover has a weak influence on source localization, the segmentation

procedures did not attempt to model the portion, but removed it from the model based

on a cutting protocol in Fuchs et al [5] and Buchner et al [51]. As a result, a four

compartment (scalp, skull, CSF, and brain) head model was created for the use of LRCE

study. Figure 5.1 shows the inner skull boundary extracted from the bimodal MRI,

compared with a boundary from a method that used only the T1-MRI. Figure 5.2 shows a

region of image voxels in which PD-MRI based segmentation improved the skull thickness.

Axial Coronal Sagittal

Figure 5.1. Segmentation of the inner skull surface: Comparison of the results using the
bimodal T1- and PD-MRI data set (in yellow) with the inner skull estimation approach
using exclusively the T1-MRI (in red) on underlying T1-MRI (top row) and PD-MRI
(bottom row). The images are adapted from [3]
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T1-MRI PD-MRI

Figure 5.2. Segmentation of the inner skull surface: Images represents the parietal area
of the neurocranial roof. Diagonal line on each image indicates the boundary between CSF
and skull. While the images on the top row are overlapped with the skull-CSF boundary
line segmented only by T1-MRI, the images on the bottom row are overlapped with that
of PD-MRI. The CSF layer extracted by PD-MRI is thicker than being segmented by
means of the T1-MRI based estimation procedure. The images are adapted from [3]

5.2.5 Volume conductor FE mesh generation

Given the segmented information from the above procedures, we generated finite

element mesh that represents the geometric and electric properties of the head volume

conductor. We used the commercially available CURRY software [94] to create a tetrahe-

dral tessellation of the four compartment head model. CURRY generates meshes based

on the the Delaunay-criterion that results in the regular tetrahedra elements [3, 5]. The

finite element volume conductor model had n = 245,257 nodes and 1,503,357 tetrahedra
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elements, shown in Figure 5.3. The color in Figure 5.3 indicates different electric tissue

conductivities.

Figure 5.3. Top row: Four compartment (scalp, skull, CSF and brain) realistic finite
element head model. Cross-section through the FE model without (left) and with (right)
visualization of the element edges.

5.2.6 Influence space mesh generation

An influence source space that represented the brain gray matter in which dipolar

source activities occur was extracted from a surface 2 mm beneath the outer cortical

boundary. The influence space was tessellated with a 2 mm mesh resulting in r =

21,383 influence nodes and 42,916 triangular elements shown in Figure 5.4. Since any

influence mesh is only a rough approximation of the real folded surface and does not

appropriately model the cortical convolutions and deep sulci, no normal-constraint was

used, i.e., the dipole sources were not restricted to be oriented perpendicular to the source

space. Instead, dipole sources in the three Cartesian directions were allowed.

5.2.7 Setup of the LRCE simulation studies

To validate the new LRCE approach, we carried out simulation studied with a refer-

ence volume conductor using isotropic conductivity values of 0.33 (see [106] and references

therein), 0.0132 [44], 1.79 [37], and 0.33 S/m (see [106] and references therein) were

assigned to the scalp, skull, CSF, and brain compartment, respectively. The results was

a brain:skull ratio of 25 for the reference volume conductor. For the modeling of the
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Figure 5.4. The cortical influence source space is extracted from 2mm under the brain
outer surface. The region of somatosensory dipole sources are indicated by red dots.

EEG, 71 electrodes were placed on the reference volume conductor surface according to

the international 10/10 EEG system.

Two reference dipole sources were positioned on influence nodes in area 3b of the

primary somatosensory cortex (SI) in both hemispheres, as shown in Figure 5.4. Two

source orientation scenarios were considered, in which both dipoles were either oriented

quasi-tangentially or quasi-radially with regard to the inner skull surface. In both sce-

narios, the two sources were simultaneously active using current densities of 100 nAm.

Another experiment consisted of just a single source in the left SI with quasi-tangential

or quasi-radial direction and a source strength of 100 nAm. Forward potential com-

putations were carried out for the different scenarios using the direct FE approach as

described in Section 5.2.1. Noncorrelated Gaussian noise was then added such that the

signal-to-noise-ratio,SNR were 40, 25, 20, and 15 dB (SNR(dB) := 20∗ log10(SNR) with

SNR := 1
S

S
∑

i=1

∣

∣

∣

∣

Φ
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∣
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∣

, where Φ
[i]
EEG is the noisy signal and ǫ[i] the noise at electrode i).

Figure 5.5 shows the potential maps for the two-sources experiment for both orientation

scenarios, the quasi-tangential (top row) and the quasi-radial orientations (bottom row)

for different SNR values.

5.2.8 SEP measurement

We then measured somatosensory evoked potentials (SEP) in order to estimate subject-

specific conductivity values by applying our LRCE approach to real empirical EEG data.
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Figure 5.5. Simulated noisy (40, 25, and 20dB from left to right) reference data
for the two-sources and two-orientation scenarios in the reference volume conductor
model (σbrain:σskull = 25). The top row shows the maps of the simultaneously active
quasi-tangentially oriented somatosensory sources and the bottom row the maps of the
simultaneously active quasi-radially oriented sources. The potential maps are linearly
interpolated over the electrodes (white spheres). Gray lines indicate isopotentials and
the map scale is in microvolt.

A tactile stimulus that evokes the SEP results in an activation of single dipole in a

somatosensory cortex. When we use the SEP data as an input to the LRCE method, we

can predict the number of active source to inversely fit. This application of the LRCE

to the SEP data is intended to localize the single somatosensory evoked dipole and to

estimate the subject-specific tissue conductivity.

Tactile somatosensory stimuli were presented to the right index finger of the right-

handed subject from Section 5.2.4 using a balloon diaphragm driven by bursts of com-

pressed air. We compensated for the delay between the electrical trigger and the arrival

of the pressure pulse at the balloon diaphragm as well as the delay caused by the inertia

of the pneumatic stimulation device (half-way displacement of the membrane), together

52 ms in our measurements. Following standard practice [83], the stimuli were presented

at 1 Hz (±10% variation to avoid habituation effects). A 63 EEG channel system following

the standard 10% EEG system recorded the raw time signals for the SEP study. Two
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EOG (Electro-oculo-graphy) electrodes were furthermore used for horizontal and vertical

eye movement control. The collection protocol consisted of three runs of 10 minutes each

EEG data with a sampling rate of 1200 samples/sec using a real time low pass filter of

0-300 Hz. The BESA software [107] was then used for a rejection of noise-contaminated

epochs (e.g., epochs containing eye movements detected by means of the EOG channels)

and for averaging the non-contaminated epochs within each run. In order to optimize

the SNR, the SEP data were furthermore averaged over the three averaged runs. The

baseline-corrected (from -35 ms to 0 ms pre-stimulus) averaged EEG dataset was filtered

using a 4th order butterfly digital filter with a bandwidth of 0.1 to 45 Hz. When using

the prestimulus interval between -20 ms and 0 ms for the determination of the noise level

and the peak of the first tactile component at 35.3 ms as the signal, we achieved a SNR

of 24 dB. Finally, by means of a channel-selection procedure (exclusion of 20 ipsilateral

electrodes with poor SNR), we were able to even increase the SNR to 26.4 dB. A butterfly-

Figure 5.6. First tactile SEP component at the 43 selected electrodes. Selection was per-
formed in order to optimize the SNR. (Left) Butterfly plot (Right) Interpolated potential
map of P35 component on the selected electrodes. Gray lines indicate isopotentials.

and a position-plot of the SEP data is shown in Fig. 5.6.

5.2.9 Measures of Estimation Quality

There are two measures used in this study, localization error and explained residual

variance. The localization error is defined as the Euclidian distance between the reference
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source locations used in computing simulated EEG and the fitted source locations resulted

from conductivity estimation. The residual variance, v, of the goal function was calculated

as the percentile misfit between the noisy reference potential and the fitted potential

that was computed from the fitted source parameters and conductivities. The explained

variance is then defined as 100% − v.

5.3 Results

We performed simulation studies with various scenarios including brain and skull con-

ductivity estimation with two-source localization, brain and skull conductivity estimation

with single source localization, and skull only conductivity estimation with two-source

localization. We then applied our LRCE method to the real SEP data set of a subject in

order to estimate the actual tissue conductivity of the subject.

5.3.1 Simultaneous reconstruction of brain and skull conductivity and
a pair of somatosensory sources

For this studies, we performed the LRCE procedure as described in Section 5.2.7

with an inverse two-dipole fit on the discrete influence space, while allowing skull and

brain conductivity to vary as free discrete optimization parameters. The permitted

brain conductivities (σbrain) were 0.12, 0.33 [106], and 0.48 S/m with scalp and brain

conductivities set to be equal. For each brain conductivity, the skull conductivity (σskull)

was allowed to vary so as to achieve brain:skull ratios of 80, 40, 25, 15, 10, 8, and 5.

The CSF conductivity remained fixed at 1.79 S/m. Keeping the CSF conductivity fixed

avoided possible problems that are due to the ambiguity between source strength and

overall conductivity. This resulted in a total of 21 conductivity configurations.

X = {sleftsomato
, srightsomato

, σskull, σbrain}

σbrain ∈ {0.12, 0.33, 0.48 S/m}

σskull ∈ {σbrain/r, where r = 80, 40, 25, 15, 10, 8, 5}

σscalp/σbrain = 1, σCSF = 1.79 S/m

Following Equation (5.10), the total number of possible source and conductivity con-

figurations in this simulation was thus approximately 4.8 billion. For the SA optimization,

we used a very slow cooling schedule with the cooling rate (ft) of 0.99 in order to make sure

that the search reached the global minimum of the cost function. The current acceptance

probability was determined by setting the current temperature, ti, at 99% of the previous
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Table 5.1. Results of the LRCE algorithm when applied to the simultaneous reconstruc-
tion of the brain and the skull conductivity together with a pair of active sources in the
somatosensory cortex. Part I: Localization error and estimated conductivity.

Reference SEP Localization error(mm) Estimated conductivity Goal function
(tangential) right dipole left dipole σbrain(S/m) σbrain : σskull expl. var.(%)
Noise free 0 0 0.33 25 100

40dB 2.246 2.246 0.33 25 99.76
25dB 3.175 10.721 0.12 10 99.06
20dB 13.436 10.388 0.48 15 97.44

Reference SEP Localization error(mm) Estimated conductivity Goal function
(radial) right dipole left dipole σbrain(S/m) σbrain/σskull expl. var.(%)

Noise free 0 0 0.33 25 100
40dB 3.013 3.013 0.33 25 99.44
25dB 6.430 7.379 0.48 25 96.57
20dB 5.218 12.462 0.48 25 92.76

Table 5.2. Results of the LRCE algorithm when applied to the simultaneous reconstruc-
tion of the brain and the skull conductivity together with a pair of active sources in the
somatosensory cortex. Part II: Error in dipole moments. The reference moments are (0
100 0) for the tangential and (0 0 -100) for the radial dipole.

Reference SEP tangential
right dipole left dipole

noise free (0 100 0) (0 100 0)
40dB (5.1 114.4 10.5) (-4.1 81.9 -0.9)
25dB (-7.1 44.3 -10.4) (-9.0 87.5 49.8)
20dB (-2.0 192.9 59.8) (1.8 64.6 13.8)

Reference SEP radial
right dipole left dipole

noise free (0 0 -100) (0 0 -100)
40dB (-3.7 1.4 -116.9) (6.1 -5.4 -87.7)
25dB (11.0 -10.9 -88.7) (33.3 -6.6 -120.3)
20dB (16.3 -9.9 -117.5) (-24.5 -30.0 -149.1)

temperature, i.e., ti+1 = 0.99 ∗ ti. The maximum number of SA iterations was set to 50

million.

Table 5.1 contains the LRCE source localization and conductivity estimation results

for the simulated reference SEP data. As the table shows, besides appropriately localizing
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both sources, the LRCE was able to accurately select the reference conductivity values of

the brain and the skull compartment in the cases of noise free and low-noise (40 dB

SNR) SEP data. However, for the noisy data with a SNR of 25 or lower, neither

the somatosensory sources nor the brain and the skull conductivity values could be

selected correctly. Table 5.2 additionally presents the LRCE reconstruction errors in

the corresponding dipole moments.

5.3.2 Simultaneous reconstruction of brain and skull conductivity and
a single source in the left somatosensory cortex

In the second set of simulations, we first generated noise-free and noisy reference data

for a single dipole source in the left somatosensory cortex and then performed a single

dipole fit with skull and brain conductivity as two additional free optimization parameters

in the LRCE. We used the same scalp, skull, CSF, and brain conductivity values as in

the previous simulation:

X = {sleftsomato
, σskull, σbrain}

σbrain ∈ {0.12, 0.33, 0.48 S/m}

σskull ∈ {σbrain/r, where r = 80, 40, 25, 15, 10, 8, 5}

σscalp/σbrain = 1, σCSF = 1.79 S/m

The number of possible source and conductivity configurations was 449K, which was also

used as the maximum number of SA iterations and the cooling rate (ft) was set to 0.99.

As shown in Table 5.3, the conductivity was accurately estimated for reference data

with 40dB and 25dB SNR and the localization errors were acceptable. For 20dB, the

localization was still acceptable, but the brain conductivity was no longer correctly

reconstructed, while the skull to brain conductivity ratio was still correct. Still higher

noise levels led to unacceptable results. Table 5.4 additionally presents the LRCE recon-

struction errors in the corresponding dipole moments.

5.3.3 Simultaneous reconstruction of the brain:skull conductivity ratio
and a pair of somatosensory sources

Using the reference volume conductor model and the reference SEP data from Sec-

tion 5.2.7, we carried out a third set simulations, in which only skull conductivity was

allowed to vary with fixed conductivity values for brain (0.33 S/m), scalp (0.33 S/m),

and CSF (1.79 S/m). The brain:skull conductivity ratio was chosen as follows:
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Table 5.3. Results of the LRCE algorithm when applied to the simultaneous recon-
struction of the brain and the skull conductivity together with a single source in the left
somatosensory cortex. Part I: Localization error and estimated conductivity.

Reference SEP Localization error Estimated conductivity Goal function
(tangential) (mm) σbrain(S/m) σbrain : σskull expl. var.(%)
Noise free 0 0.33 25 100

40dB 0 0.33 25 99.85
25dB 2.245 0.33 25 96.73
20dB 4.141 0.48 25 95.76
15dB 9.420 0.12 25 83.39

Reference SEP Localization error Estimated conductivity Goal function
(radial) (mm) σbrain(S/m) σbrain/σskull expl. var.(%)

Noise free 0 0.33 25 100
40dB 0 0.33 25 99.94
25dB 2.246 0.33 25 98.40
20dB 4.140 0.12 25 90.04
15dB 10.769 0.48 10 78.95

Table 5.4. Results of the LRCE algorithm when applied to the simultaneous recon-
struction of the brain and the skull conductivity together with a single source in the left
somatosensory cortex. Part II: Error in dipole moments. The reference moments were (0
100 0) for the tangential and (0 0 -100) for the radial dipole.

Reference SEP tangential radial
noise free (0 100 0) (0 0 -100)

40dB (1.6 100.0 1.8) (0.2 -0.1 -100.0)
25dB (-0.7 101.9 -4.5) (1.6 -7.0 -98.7)
20dB (-16.2 105.6 6.0) (-0.6 1.9 -88.0)
15dB (-3.8 59.7 -4.8) (-33.5 -32.8 -98.4)

X = {sleftsomato
, srightsomato

, σskull}

σbrain = σscalp = 0.33 S/m, σCSF = 1.79 S/m

σskull ∈ {σbrain/r, where r = 80, 40, 25, 15, 10, 8, 5}
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Table 5.5. Results of the LRCE algorithm when applied to the simultaneous reconstruc-
tion of the brain:skull conductivity ratio and a pair of active sources in the somatosensory
cortex. Part I: Localization error and estimated conductivity.

Reference SEP Localization error(mm) Estimated Goal function
(tangential) right dipole left dipole σbrain/σskull expl. var.(%)
Noise free 0 0 25 100

40dB 2.236 2.246 25 99.76
25dB 2.008 3.329 25 99.04
20dB 6.025 5.941 25 97.43
15dB 17.596 41.099 15 64.31

Reference SEP Localization error(mm) Estimated Goal function
(radial) right dipole left dipole σbrain/σskull expl. var.(%)

Noise free 0 0 25 100
40dB 3.013 3.013 25 99.44
25dB 7.379 7.511 25 96.55
20dB 5.218 10.676 25 92.72
15dB 24.639 13.209 5 89.14

Table 5.6. Results of the LRCE algorithm when applied to the simultaneous reconstruc-
tion of the brain:skull conductivity ratio and a pair of active sources in the somatosensory
cortex. Part II: Error in dipole moments. The reference moments were (0 100 0) for the
tangential and (0 0 -100) for the radial dipole.

Reference SEP tangential
right dipole left dipole

noise free (0 100 0) (0 100 0)
40dB (5.1 114.4 10.5) (-4.1 81.9 -0.9)
25dB (5.4 107.9 0.7) (2.1 91.5 9.7)
20dB (10.3 124.0 20.2) (-16.3 98.6 3.1)
15dB (18.8 119.4 -4.6) (33.6 78.6 -9.5)

Reference SEP radial
right dipole left dipole

noise free (0 0 -100) (0 0 -100)
40dB (-3.7 1.4 -116.9) (6.1 -5.4 -87.7)
25dB (15.6 -6.6 -83.3) (29.3 2.8 -102.8)
20dB (14.1 -2.1 -105.1) (-27.9 -21.7 -135.5)
15dB (-0.6 -17.9 -139.7) (-0.5 -3.2 -31.8)

The total number of possible source and conductivity configurations for this scenario

was 1.6 billion and again we used a cooling rate of (ft) = 0.99 and a maximum number

of SA iterations of 10 million.
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Table 5.7. Localization error(mm) for a fixed brain:skull conductivity ratio using the
simulated reference SEP data with a SNR ratio of 25dB. Explained residual variance in
%.

σbrain Tangential source Radial source
to σskull right left expl. var. right left expl. var.

80 12.702 10.816 98.562 13.131 15.230 95.924
40 3.757 11.228 98.960 7.514 8.281 96.445
25 2.008 3.329 99.042 7.379 7.511 96.548
15 3.175 10.725 99.038 6.736 10.041 96.452
10 2.246 10.722 98.993 7.101 10.862 96.297
8 7.101 10.722 98.692 10.093 10.769 96.093
5 3.330 20.531 98.892 9.992 18.131 96.281

As shown in Table 5.5, for both source orientation scenarios, the LRCE estimated the

skull conductivity correctly down to a 20 dB SNR, while acceptable source localization

errors were only achieved down to 25 dB SNR. The LRCE reconstruction failed to give

acceptable results for both the source positions and the brain:skull conductivity ratio

only at 15 dB SNR or above. Table 5.6 additionally presents the LRCE reconstruction

errors in the corresponding dipole moments.

5.3.4 Simulation with a fixed conductivity and a pair of
somatosensory sources

In a last set simulations, volume conductors with fixed skull conductivity values from

the set of σskull were used. For these fixed volume conductors, only the two somatosensory

sources were reconstructed on the discrete influence space using the simulated annealing

optimizer with reference EEG data at a SNR of 25dB. The results in Table 5.7 show

the effects of an erroneous choice of the brain:skull conductivity ratio (80, 40, 15, 10,

8, 5) on the localization accuracy in comparison to the localization errors caused just

by the addition of noise when using the correct brain:skull ratio of 1:25. Incorrect skull

conductivity within the source localization caused large localization errors. As expected,

the correct skull conductivity (σbrain/σskull = 25) gave the smallest localization errors

and the highest explained variance for both source orientation scenarios.
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5.3.5 Application of LRCE to the SEP data

To apply this approach to measured data, we carried out an analysis based on LRCE of

the post stimulus P35 component of the averaged SEP data at the peak latency of 35.3ms

as indicated in Figures 5.6. The detailed, four-compartment (scalp, skull, CSF, and

brain) finite element model with improved segmentation of the skull geometry described

in Section 5.2.4 was used as the volume conductor. Because of the limiting SNR of 26.4 dB

for the SEP data and based on our simulation results from Section 5.3.2, we focused on the

simultaneous reconstruction of the contralateral somatosensory P35 source in combination

with the estimation of both the brain and the skull conductivities. Accordingly, we

assigned fixed isotropic conductivities to scalp (0.33 S/m) and CSF (1.79 S/m). Again,

the source space from Section 5.2.6 was used as the influence space for simulated annealing

optimization together with brain:skull conductivity ratios of 140, 120, 100, 80, 72, 60, 42,

25, 23, 15, 10, 8 and 5.

X = {ssomato, σbrain, σskull}

σscalp = 0.33 S/m, σCSF = 1.79 S/m

σbrain ∈ {0.12, 0.33, 0.48, 0.57 S/m}

σskull = {σbrain/r, where r = 140, 120, 100, 80, 72, 60, 42, 25, 23, 15, 10, 8, 5}

The total number of possible source and conductivity configurations, as well as the max-

imum of SA iterations was 1,026K and we again chose an SA cooling rate of (ft) = 0.99.

Applying the LRCE approach resulted in the contralateral somatosensory source shown

Figure 5.7. Source reconstruction result for the first tactile SEP component at the peak
latency of 35.3ms.
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in Fig. 5.7, with a brain conductivity of 0.48S/m, and a brain:skull conductivity ratio

of 120, i.e., a skull conductivity of 0.004 S/m, with an explained variance of 98.98%.

While the value of skull conductivity is close to what is generally used in source analysis

(0.0042 S/m, see [5, 47, 51]), the estimated brain conductivity and thus also the brain:skull

ratio is higher than the traditional values proposed [40, 106].

5.4 Discussion and conclusion

We developed a Low Resolution Conductivity Estimation (LRCE) procedure to in-

dividually optimize a volume conductor model of a human head with regard to both

geometry and tissue conductivities. We exploited a combined T1-/PD-MRI dataset for

the construction of a four-tissue volume conductor FE model with a special focus on an

improved modeling of the skull shape and thickness and of the highly conducting cere-

brospinal fluid (CSF) compartment [37]. Obtaining accurate skull geometry is important

because changes in skull conductivity are known to be closely related to changes in its

compartmental thickness. Goncalves et al also argued that the correct geometric modeling

of the skull compartment was essential for the measurement of skull conductivity [45].

While other authors have used parameter estimation in continuous parameter space with

local optimization algorithms [51, 73, 108], we propose the combination of a discrete low

resolution parameter estimation with a global optimization method applied to realistic

geometry to better take into account the limited SNR of real EEG measurements. Because

the cost function was shallow [41], the proposed computationally expensive procedure

using realistic FE volume conductor modeling and global Simulated Annealing (SA)

optimization was important to accurately search an optimal parameter. While other

authors used three compartment Boundary Element (BE) models [45, 51, 109] of the head,

we additionally modeled the CSF, not only because its presence is required for accurate

and realistic forward computations as shown in [3, 7], but also to avoid the problem of

the ambiguity between source strength and overall conductivity.

Plis et al [109] derived a lower Cramer-Rao bound for the simultaneous estimation of

source and skull conductivity parameters in a sphere model for dipoles whose locations

were not constrained within the inner sphere volume. Since source depth and skull con-

ductivity are closely related, their final result was that it is impossible to simultaneously

reconstruct both source and skull conductivity parameters from measured surface EEG

data in the sphere model. While Plis et al reported an incapability of the simultaneous
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estimation, there were strong differences to our study. Our study, as well as the FE

study of Vallaghe et al [108], used a cortex constraint, i.e., sources were only allowed on

a surface and a realistic FE model of the head instead of the spherical volume conductor

model for the derivation of the Cramer-Rao bounds used by Plis et al, and we fixed the

conductivity of the CSF compartment in our analysis to the value measured by Baumann

et al [37].

In a first study, we evaluated the LRCE algorithm in EEG simulations for its ability to

determine both the brain and the skull tissue conductivities together with the reconstruc-

tion of one and two somatosensory reference sources. At relatively low noise levels (down

to 25 dB SNR in the single source scenario and down to 40 dB SNR in the two source

scenario), the LRCE resulted in acceptable reconstruction errors for the reference sources

and correctly estimated reference tissue conductivities, while results became unstable

at lower SNR. We also set up a simulation for the reconstruction of the skull to brain

conductivity ratio in which results were satisfying (correct skull:brain conductivity ratio,

source localization errors smaller than 3.4 mm) up to noise levels equivalent to 25 dB

SNR for the mainly tangentially oriented somatosensory reference sources. We found

in our simulations that the most accurate source reconstructions were always associated

with the correctly estimated conductivities (or conductivity ratio) and, moreover, that

assuming an incorrect conductivity ratio had a profoundly negative effect on the source

reconstruction accuracy.

In a last examination, we applied the LRCE to measured tactile Somatosensory

Evoked Potentials (SEP) with the focus on estimating both the brain and the skull

conductivity. With an SNR of 26.4 dB, the data were of similar quality to that in the

second simulation study, which was based on a single equivalent current dipole model.

As shown in numerous studies [83, 110], this source model is adequate because the early

SEP component arises consistently from area 3b of the primary somatosensory cortex

(SI) contralateral to the side of stimulation. Our explained variance to the measured

data of about 99% for this source model further supports our choice. The results from

the LRCE analysis were a brain conductivity of 0.48 S/m and a skull conductivity of

0.004 S/m. While this skull conductivity corresponds to the traditional value in the

literature [5, 47, 51], the brain had a lower resistance than generally assumed [106]. Many

recent papers have focused on the brain:skull conductivity ratio and large variability of

results have been reported for this value including 80 [40], 72 [41], 42 [45], 25 [44], 23 [43],
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15 [42] and 8 [111]. Because of the higher conductivity of the brain, with an estimated

ratio of 120, our LRCE result is larger than the largest previously reported value of 80

[40].

The current results illustrate the feasibility of building an optimized volume conductor

model with regard to both geometry and conductivity. As we have formulated it, such

a study requires accurate head geometry, in this case from both T1- and PD-weighted

MRI and cortical constraints on the sources. The highly conducting CSF should not

be neglected in a model of the head and our procedure takes this compartment into

account. By obtaining somatosensory evoked potential data, which allow independent

reconstruction of the underlying bioelectric source, it is then possible to estimate the

optimal conductivities for the individual subject using the proposed LRCE approach

in highly realistic finite element models, provided that the data has a sufficient signal-

to-noise ratio. A related finding from this study is that there is a trade off between

the number of independent parameters that can be determined and the complexity of

the assumed source model. The specific trade off point is also strongly influenced by

the quality of the measured electric potentials. Thus the number of parameters that

can be dependably estimated is a function of both the signal quality and the number

and quality of a priori knowledge about, for example, the source location or orientation

through a combination with fMRI or anatomical and/or functional arguments (e.g., a

strong restriction of the source location to anatomically and physiologically reasonable

areas close to the somatosensory SI area). In this context, others have suggested that

by including MEG data in the scheme [51, 66], it will be possible to improve stability

considerably. We note that our approach differs from others published studies [51, 66]

with regard to both head modeling and conductivity optimization.

The success of the conductivity optimization approach and the more general advan-

tages of customized geometric models suggest a procedure for clinical applications. First

of all, one could use SEP data generated from a dependable source location with high SNR

together with T1- and PD-MR images from the patient to construct a model that would

be optimized for both geometric accuracy and individual conductivity values. With this

volume conductor model in place, recorded potentials from more complex and clinically

interesting sources could drive the inverse solution and source analysis.

Optimizing the volume conductor using the proposed LRCE method is an important

step towards making effective use of simultaneous EEG/MEG source analysis [51]. Com-
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bining EEG and MEG modalities compensates the disadvantages of each approach, i.e.,

poor sensitivity of MEG to radial sources and the much stronger conductivity dependency

of EEG. Using combined somatosensory evoked potentials and fields (SEP/SEF) in com-

bination with T1- and PD-MRI should further stabilize the application of the presented

LRCE method for the estimation of tissue conductivities. For the quasi-tangentially

oriented P35 somatosensory source, MEG-SEF data can be exploited to strongly restrict

the source location and especially its depth as shown elsewhere, [51, 66], so that the

resolution of the proposed LRCE method with regard to the conductivities of the different

compartments could be increased. With such data in hand, the presented LRCE method

using FE volume conductor modeling might also contribute to the estimation of anisotropy

ratios in the skull and brain compartments [3, 55, 112].



CHAPTER 6

MEG/EEG COMBINED SOURCE

ANALYSIS FOR CONDUCTIVITY

ESTIMATION

Although the EEG LRCE can estimate the tissue conductivity with low noise (high

SNR) data, the higher noise levels can deteriorate the stability of the EEG LRCE

procedure and eventually result in poor tissue conductivity estimation. In order to cope

with the problem, we proposed a stabilizing method that imposes a constraint on the

source parameter. The constraint is a priori information about the source that is acquired

from the MEG dipole fit. The rational is that the MEG is not very sensitive to the tissue

conductivity so that fitting an MEG dipole gives a good localization result even with

uncertainty of tissue conductivity values. In Section 2.5, simulation results showed the

low sensitivity of tissue conductivity on the source localization from measured MEG. This

constrained LRCE approach uses sources from the MEG dipole fit in the EEG LRCE as

a constraint on the source that is derived from MEG data. In the subsequent step the

EEG LRCE searches for tissue conductivity. This method expects to strongly stabilize

the LRCE procedure even with high noise data. In this study, we performed simulations

with the proposed conductivity estimation procedure with multi EEG and MEG data.

Also we applied the method to set of measured real SEP/SEF data.

6.1 Methods

6.1.1 MEG dipole fit

Here we describe the MEG dipole fit method that is used for the combined analysis.

As in the Section 3.4.2, we can use an MEG dipole fit method based on the MEG lead

field matrix for a given source space and the MEG sensors. The dipole fit equation will

be

LMEG · JV en = Φsim, (6.1)
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where JV en is a current source vector of dimension 3r × 1 defined at the discrete source

space and Φsim is the simulated magnetic flux vector of dimension m × 1. m is the

number of MEG sensors and r is the number of permissible source locations. LMEG has

dimension m × 3r because we do not use the normal constraint.

The goal function to be minimized will be

gf = min ‖ΦMEG − Φsim‖2 = min
Js

‖ΦMEG − Ls · Js‖2. (6.2)

In this equation, Ls (m ∗3k) indicates the reduced MEG lead field matrix for the current

choice of source locations s = (s1, · · · , sk) with si the i-th source location (1 ≤ i ≤ k).

The procedure of the MEG dipole fit is the same as in the Section 3.4.2.

6.1.2 EEG/MEG combined analysis for conductivity estimation

The procedure is similar to that of the LRCE method with EEG data, except that the

source parameter is no longer a free parameter but fixed during the calibration phase of

LRCE. This method requires both EEG and MEG data and consists of two stages. The

first calibration stage is to fit a dipole source with MEG data only by the procedure in the

Section 6.1.1. As a result, we have the source parameter including source location and

source moment (dipole direction and dipole strength). The second stage is to run the EEG

LRCE in order to estimate tissue conductivity with constraints from the source parameter

derived from the MEG dipole fit. The following summarizes the general procedure of the

conductivity estimation with the MEG fitted source parameter. Here we use two types

of constraints. One is the source location, and the other is all components of the source

parameter. In the first case, the lead field matrix L will be m × 3, since we fix location

and allow moment to be changed during an optimization. In the latter case, the lead

field matrix L will be m× 1, since we fix location, direction, and magnitude to the MEG

fitted dipole.

• Define a discrete estimate of the conductivity values for each tissue, i.e., fix all

σiji
, 1 ≤ i ≤ l

• Obtain a dipole source parameter Js (location, orientation, magnitude) by MEG

dipole fit method.
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• Precompute the global influence matrix Λ corresponding to each of the possible

conductivity combinations, given the source parameter or source location fitted in

the previous step.

• Repeat:

– Allow SA optimizer to choose a configuration of conductivities σ = (σ1, · · · , σl)

– Get lead field matrix Ls(σ) for the chosen conductivity configuration.

– Compute a cost function, gf = min‖ΦEEG −Ls(σ)Js‖2 with respect to source

parameter Js.

• Until cost function meets a tolerance criteria or the number of iterations exceeds

a limit.

• Accept the configuration of conductivities as an optimum.

When the source is purely tangentially, we expect the source parameter from the MEG

dipole fit to be accurate. However, since the reconstruction of non-tangential sources with

MEG might lead to spurious orientation and strength components, we use the following

iterative procedure for the combined EEG and MEG data to better take into account

the strength and weaknesses of each modality. Therfore, the iterative approach could

compensate an error in the radial component of the MEG fitted source moment with the

combined EEG/MEG LRCE as in the Algorithm 2.

6.1.3 Simulation studies

For the study of the combined EEG/MEG conductivity estimation, we used the four

compartment (scalp, skull, CSF, brain) isotropic FEM volume conductor model created

with the same method described in Section 5.2.4 and 5.2.5. The FEM model consisted

of 164903 nodes and 1,001,293 tetrahedra. We also created the discrete influence space

of 21,302 nodes and 42,760 triangles by means of the method described in Section 5.2.6.

We used an EEG configuration with 63 electrodes and the MEG sensor configuration

of the Omega 2005 machine from VSM Medtech, Ltd. with 275 axial gradiometer

measurement sensors. The measurement coils of this machine have a baseline of 50mm

and a radius of 9mm. Additionally, the MEG system is equipped with a noise rejection

technique that is described in Lanfer [4]. 29 reference sensors, being either magnetometers

or axial or planar gradiometers with differing coil radii of between 7.76mm and 17.27mm
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Algorithm 2 Iterative Approach
do while variance-to-data-not-well-explained

step 1: MEG dipole fit. Result: Single SEF source at location x with orientation
o1 and magnitude m1.

step 2: Keeping location and moment (m1 · o1) constant, perform LRCE fit for
brain and skull conductivity. Result: σbrain1 and σskull1.

step 3: Keeping only the dipole location x fixed and using the optimized volume
conductor with conductivities. σbrain1 and σskull1, compute o2 and m2

by means of a linear least square fit to the EEG data. Result: o2 and m2

(step 3 is necessary since o1 and m1 might be spurious in the case that
the source is not optimally quasi-tangential.

step 4: Fix x and o2 and perform linear least square fit to the MEG data.
Result: m3.

step 5: Keeping x and moment o2 ∗ m3 constant, perform EEG LRCE fit for
brain and skull conductivity. Result: σbrain2 and σskull2.

step 6: Final result for best parameters: x, o2,m3, σbrain2 and σskull2.
end

and a gradiometer baseline of 78.74mm, are situated in the dewar above the measurement

sensors. Figure 6.1 shows a configuration of MEG measurement sensors and reference

sensors.

Figure 6.1. MEG Measurement sensors and reference sensors. FEM nodes were used to
model the sensors. This visualization is adapted from [4]

We used a single quasi-tangential dipole source in the left somatosensory cortex region

as a reference source for the simulation study. We chose the single source because the

right finger tactile stimulus experiment evokes a single left somatosensory dipole. Given a

dipole strength of 10nAm, the forward EEG and MEG simulations were carried out using

the FE model with the reference conductivities (see below). Then we added noncorrelated
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noises to the reference EEG and MEG data, resulting in 40, 25, 20, and 15 dB SNR. The

SNR was calculated as SNR(dB) := 20∗ log10(SNR) with SNR := 1
S(

S
∑

i=1
Φ2

[i])/σ
2, where

Φ[i] is the noisy signal of either EEG or MEG at sensor i and σ the standard deviation

of noise.

The following indicates that the reference source position is not an the source mesh

node and the reference brain and skull conductivities are not conductivities in the discrete

conductivity parameters.

• reference dipole source: pos(196.3 162.2 170.2), dir(0 1 0), mag(10 nAm)

• reference conductivity: brain(0.365), skull(0.0135), scalp(0.33), CSF(1.79)

Figure 6.2 shows the EEG potential maps (40dB, 25dB, and 20dB SNR) on the scalp,

which were used as reference EEG data for the simulation study. The figure also shows

the reference MEG magnetic flux maps on the MEG sensors located around the head.

40dB 25dB 20dB

Figure 6.2. Simulated EEG (top) and MEG (bottom) maps with noise. Both maps are
linearly interpolated among the sensors. The EEG map is on the scalp surface and the
MEG map is over the head. White contour lines are iso-lines of electric potential and
magnetic field amplitudes.
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6.1.4 SEP/SEF measurement

We took a simultaneous SEP/SEF measurement of the tactile stimulus experiment

for the same male subject as in Section 5.2.8. We used an MEG-compatible EEG cap

with 63 electrodes following the 10% EEG system and the 304 channel MEG system as

described above for the combined SEP and SEF measurements. Among the 304 MEG

channels, 29 channels were used as reference sensors to reject environmental noises [4] as

in the simulation study. The experimental protocol and the post processing procedure

were the same as that of SEP measurement in Section 5.2.8. The SNR for SEP and SEF

were 24dB and 30dB, respectively. As for the reference SEP/SEF data, we extracted the

post stimulus P35 components from 63 EEG channels and 275 MEG channels. Figure 6.3

shows the P35 components of SEP and SEF data.

SEP SEF

Figure 6.3. Sample measured SEP and SEF data (Left) Map of SEP potentials on the
scalp surface. The small spheres indicate the EEG electrodes and the map is linearly
interpolated among the electrodes. Electric potential is in mV. (Right) Magnetic field
map of SEF over the head boundary. The small spheres indicate the MEG sensors. The
field map is also linearly interpolated among the MEG sensors. The magnetic field is in
fT. White contour lines indicate either iso-potential for SEP and iso-field lines for SEF.

6.2 Results

6.2.1 Skull conductivity estimation with single source

We first estimated skull tissue conductivity, given the reference volume conductor

model. The following shows the setup of parameter for the estimation. The skull

conductivity was assigned a value from a predefined set of possible skull conductivities
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that did not include exactly the reference skull conductivity (0.0135), which is intended

to simulate a realistic situation.

X = {sleftsomato
, σskull}

σbrain = 0.332S/m

σskull ∈ {0.0042, 0.0055, 0.0083, 0.0095, 0.0111,

0.0123, 0.0133, 0.0144, 0.0166, 0.0221, 0.0415}

σscalp = 0.33, σCSF = 1.79 S/m

In the first simulation, we fixed only the source location to the MEG fitted source and

the source direction and the strength were allowed to change during the optimization. For

the MEG dipole, we used a brain conductivity of 0.332 and skull conductivity of 0.0133,

which were not the same values as the reference brain and skull conductivities. This is

intend to simulate a realistic situation and also to avoid the so-called inverse crime. For

the scalp and CSF, the conductivity values were 0.33 and 1.7 /S/m. Table 6.1 shows

the results of skull conductivity estimation with the constraint of fixed source location.

In the table, the left most column indicates the three different SNR levels of data for

the MEG dipole fit used to locate the source. For each MEG SNR level, five different

levels of EEG data noise were used for the estimation (SNR=15, 20, 25, 40, ∞ dB). The

simulation results are tabulated for each EEG and MEG data combination. The table

showed the estimated skull conductivity and the source moment with residual variance.

Since we fixed only the location and were allowed to change the source moment during

the optimization of EEG LRCE, the fixed source location in the table was from the

MEG dipole fit, while the fitted direction and magnitude were from the EEG LRCE.

Also included are the localization errors that measures the Euclidian distance between

the reference source location and the MEG fitted source location. Overall, the single

conductivity estimation gives a good estimation of skull conductivity at all noise levels,

even though the conductivity diverges gradually from the reference value as the noise

level increases. The best estimation was 0.0133, while the reference value is 0.0135. The

worst was 0.221 in the case of 20dB MEG and 20dB EEG. The fitted directions for the

MEG data of 40 dB and 25 dB SNR were very close to the reference direction of (0 1

0), while those of the 20dB MEG were more deviated from the reference than the other

MEG data. The noise level of MEG data had an influence on the fitted dipole direction.
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Table 6.1. Simulation study: EEG skull conductivity estimation by fixing source
location to MEG fitted with σbrain = 0.332 , σskull = 0.0133. The MEG fit was carried
out with simulated annealing and TSVD(10−2). Explained residual variances of EEG
and MEG are in %.

Data σskull location fixed fitted source explVar
MEG EEG dir mag EEG MEG

no 0.0133 (-0.08 1 -0.02) 9.5 99.9 99.0
40dB 0.0133 x=196.8 (-0.05 1 -0.05) 9.5 98.0 99.0

no 25dB 0.0144 y=163.7 (-0.16 0.98 -0.03) 9.2 95.5 98.7
20dB 0.0166 z=171.7 (-0.05 1 0.03) 8.6 91.2 99.6
15dB 0.0144 err=2.2 mm (-0.12 0.99 0.04) 9.3 85.5 98.3

no 0.0133 (-0.08 1 -0.02) 9.5 99.9 98.1
40dB 0.0133 x=196.8 (-0.05 1 -0.05) 9.5 98.0 98.2

40dB 25dB 0.0144 y=163.7 (-0.16 0.98 -0.03) 9.2 95.5 97.7
20dB 0.0166 z=171.7 (-0.05 1 0.03) 8.6 91.2 98.7
15dB 0.0144 err=2.2 mm (-0.12 0.99 0.04) 9.3 85.5 97.4

no 0.0144 (-0.09 1 -0.01) 9.2 99.9 94.3
40dB 0.0144 x=196.8 (0.06 1 -0.03) 9.2 99.1 94.0

25dB 25dB 0.0144 y=163.7 (-0.17 0.99 -0.01) 9.2 95.6 94.2
20dB 0.0166 z=169.7 (-0.07 1 0.03) 8.6 91.1 94.2
15dB 0.0166 err=1.7 mm (-0.13 0.99 0.04) 8.9 85.7 94.3

no 0.0166 (-0.29 0.95 -0.13) 10.2 99.6 89.5
40dB 0.0166 x=195.8 (-0.28 0.95 -0.15) 10.1 98.5 89.2

20dB 25dB 0.0166 y=157.7 (-0.35 0.93 -0.13 ) 10.5 95.2 89.0
20dB 0.0221 z=169.7 (-0.28 0.95 -0.1) 9.1 90.1 87.1
15dB 0.0166 err=4.6 mm (-0.32 0.94 -0.08) 10.4 84.3 89.2

Table 6.2 shows the results of skull conductivity estimation with the EEG LRCE by

fixing the source parameter (both source location and moment) to the MEG fitted dipole.

The best estimation of skull conductivity was 0.0144 and the worst estimation was 0.0055,

where the reference is 0.0136. The explained residual variance of 20dB MEG data were

from 52% to 62.2%, while that of other MEG data were from 80% to 99.2%. It seems that

the source moment constraint made the fit worse in the case of 20dB MEG data than the

source location constraint in Table 6.1. The constraint of source moment seems not to

reflect the actual moment. This results could indicate that incorrect radial component of

source moment plays a negative role in the estimation. As a cure for the problem, the

proposed iteration method must be applied. Also, the table shows that the fitted source

locations by MEG data of no noise (2.2 mm), 40 dB SNR (2.2 mm), and 25 dB SNR (1.7
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mm) were close neighboring nodes to the reference source, while that of 20dB MEG was

more away (4.6 mm) from the reference location.

Table 6.2. Simulation study: EEG skull Conductivity estimation by fixing source
location and moment to MEG fitted with the non-reference conductivities of
σbrain = 0.332, σskull = 0.0133. Explained residual variances of EEG and MEG are
in %.

Fixed to noise no 40dB
MEG fitted location (196.8 163.7 171.7) (196.8 163.7 171.7)

source direction (-0.15 0.98 -0.09) (-0.15 0.98 0.09)
magnitude(nAm) 8.7 8.7

location error 2.2 mm 2.2 mm

noise σskull explVar σskull explVar
EEG MEG EEG MEG

EEG data no 0.0166 99.2 99.7 0.0166 99.2 98.8
(dB) 40dB 0.0144 98.0 99.7 0.0166 98.1 98.8

25dB 0.0166 95.3 99.7 0.0166 95.3 98.8
20dB 0.0144 90.0 99.7 0.0144 90.1 98.8
15dB 0.0166 85.0 99.7 0.0166 85.0 98.8

Fixed to noise 25dB 20dB
MEG fitted location (196.8 163.7 169.7) (195.8 157.7 169.7)

source direction (-0.24 0.96 -0.12) (0.14 0.92 0.36)
magnitude(nAm) 8.7 11.2

location error 1.7 mm 4.6 mm

noise σskull explVar σskull explVar
EEG MEG EEG MEG

EEG data no 0.0083 94.0 94.8 0.0055 61.9 91.5
(dB) 40dB 0.0083 92.9 94.8 0.0055 62.2 91.5

25dB 0.0095 92.2 94.8 0.0055 52.9 91.5
20dB 0.0083 84.9 94.8 0.0055 58.6 91.5
15dB 0.0083 80.0 94.8 0.0055 52.0 91.5

6.2.2 Brain and skull conductivity estimation with single source

We estimated the brain and the skull tissue conductivities with the EEG/MEG

combined method, given the single dipole source. The estimated conductivity parameters

were the same as in the previous section, except for the addition of brain conductivity.

We used three conductivity values for the brain that all differenced from the reference

brain conductivity (0.365). We also used predefined estimates for the skull conductivity
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that did not include the reference value (0.0135). The following shows the parameters we

used during the optimization.

X = {sleftsomato
, σbrain, σskull}

σbrain ∈ {0.12, 0.332, 0.48 S/m}

σskull ∈ {0.0042, 0.0055, 0.0083, 0.0095, 0.0111,

0.0123, 0.0133, 0.0144, 0.0166, 0.0221, 0.0415}

σscalp = 0.33,

σCSF = 1.79 S/m

First of all, we used the constraint of the source location fitted from the MEG

dipole fit in order to estimate the brain and skull conductivities. The same conductivity

values (brain=0.332, skull=0.0133 S/m) as in the previous section are used for the MEG

dipole fit. Table 6.3 shows the estimation results with the EEG and MEG data. The

estimated skull conductivity varies from 0.0133 to 0.0166 for all noise levels (reference

values was 0.0135). The estimated brain conductivity was either 0.33 or 0.48 (reference

was 0.365).

Table 6.4 shows the conductivity estimation result of the combined EEG/MEG method

by fixing the source parameter (source location and moment) to the MEG fitted. For the

case of no noise and 40dB MEG data, the brain conductivity was estimated as 0.332 for

all EEG noise levels, which is the closest value to the reference conductivity value. The

estimated skull conductivity values differed from the reference value by 6.7% to 23.5%.

For the case of 25dB and 20dB MEG data, however, the estimated brain conductivity

was 0.48, which differed more from the reference than that of the 40dB MEG data. As

described in the previous section, the MEG fitted source moment may not be correct due

to the poor radial sensitivity of MEG and the higher MEG noise. The low explained

residual variances in the case of 20dB MEG data suggests that the fitted parameter did

explain the reference EEG data well enough, even though they were best fits that would

possible with the method.

6.2.3 Iteration Approach

In an effort to compensate for the poor radial sensitivity of MEG, we applied the

iteration method proposed in the Section 6.1.2 to the estimation results in Table 6.4.

Table 6.5 shows the results after a single iteration. The estimated brain conductivity for
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Table 6.3. Simulation study: EEG Brain & Skull conductivity estimation
by fixing source location through MEG fitting with the non-reference con-
ductivities of σbrain = 0.332 , σskull = 0.0133. (Reference conductivities;
σbrain = 0.365 , σskull = 0.0135. Explained residual variances of EEG and MEG are
in %.

Data σbrain σskull location fixed fitted source explVar
MEG EEG dir mag EEG MEG

no 0.332 0.0133 (-0.1 1 0) 9.5 99.9 99.0
40dB 0.332 0.0133 x=196.8 (-0.1 1 -0.1) 9.5 99.0 99.0

no 25dB 0.48 0.0133 y=163.7 (-0.2 0.98 -0.0) 11.5 95.5 82.3
20dB 0.48 0.0166 z=171.7 (-0.1 0.99 0) 10.4 91.2 94.0
15dB 0.48 0.0144 err=2.2 mm (-0.1 0.99 0)) 9.3 82.3 98.0

no 0.332 0.0133 (-0.1 1 0) 9.5 99.9 98.1
40dB 0.332 0.0133 x=196.8 (-0.1 1 -0.1) 9.5 99.0 98.2

40dB 25dB 0.48 0.0133 y=163.7 (-0.2 0.98 -0.0) 11.5 95.5 81.5
20dB 0.48 0.0166 z=171.7 (-0.1 0.99 0) 10.4 91.2 93.1
15dB 0.48 0.0144 err=2.2 mm (-0.1 0.99 0)) 9.3 82.3 97.2

no 0.332 0.0144 (-0.1 1 0) 9.2 99.9 94.3
40dB 0.332 0.0144 x=196.8 (-0.1 1 0) 9.2 99.1 94.0

25dB 25dB 0.48 0.0133 y=163.7 (-0.2 0.97 0) 11.5 95.6 81.0
20dB 0.48 0.0166 z=169.7 (-0.1 0.99 0.0) 10.4 91.1 90.2
15dB 0.332 0.0166 err=1.7 mm (-0.1 0.99 0.0) 8.9 85.7 94.3

no 0.48 0.0144 (-0.3 0.95 -0.1) 12.5 99.6 87.7
40dB 0.48 0.0144 x=195.8 (-0.3 0.95 -0.1) 12.4 98.5 88.2

20dB 25dB 0.48 0.0166 y=157.7 (-0.4 0.93 -0.1) 12.4 95.2 87.0
20dB 0.48 0.0166 z=169.7 (-0.3 0.96 -0.1) 11.5 90.1 89.3
15dB 0.48 0.0144 err=4.6 mm (-0.3 0.94 -0.1) 12.8 84.3 85.3

all cases was 0.332, except the 20dB EEG and 20dB MEG data. The estimated skull

conductivities were 0.0166 for the no noise, 40dB and 25dB MEG cases. The residual

variances of the 20dB MEG data are much better than those of Table 6.4. Overall, this

compensative iteration approach with the combined MEG/EEG method produced more

stable results than the combined method without an iteration in estimating the brain and

skull conductivity with high noise measurement data.

The signal to noise ratio (SNR) represents the overall root mean squared level amount

of noise in a signal. It does not specify how the noise is distributed over the space, i.e.,

scalp EEG electrodes and the MEG sensors. This means that it is possible to have

different spatial topographies for the same SNR values. In order to reveal the sensitivity

of the results to different noise configurations, we performed simulation studies with ten

different EEG/MEG noise configurations of the 20dB SNR for MEG and EEG data.
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Table 6.4. Simulation study: EEG Brain & Skull Conductivity estimation by fixing
source location and moment to MEG fitted with the non-reference conductivities of
σbrain = 0.332, σskull = 0.0133. Explained residual variances of EEG and MEG are in %.

Fixed to noise no 40dB
MEG loc (196.8 163.7 171.7) (196.8 163.7 171.7)
fitted dir (-0.15 0.98 -0.09) (-0.15 0.98 0.09)
source mag 8.7 8.7

noise conductivity explVar conductivity explVar
σbrain σskull EEG MEG σbrain σskull EEG MEG

EEG data no 0.332 0.0166 99.2 99.7 0.332 0.0166 99.2 98.8
(dB) 40dB 0.332 0.0144 98.0 99.7 0.332 0.0166 98.1 98.8

25dB 0.332 0.0166 95.3 99.7 0.332 0.0166 95.3 98.8
20dB 0.332 0.0144 90.0 99.7 0.332 0.0144 90.1 98.8
15dB 0.332 0.0166 85.0 99.7 0.332 0.0166 85.0 98.8

Fixed to noise 25dB 20dB
MEG loc (196.8 163.7 169.7) (195.8 157.7 169.7)
fitted dir (-0.24 0.96 -0.12) (0.14 0.92 0.36)
source mag 8.7 11.2

noise conductivity explVar conductivity explVar
σbrain σskull EEG MEG σbrain σskull EEG MEG

EEG data no 0.48 0.0144 94.9 94.1 0.48 0.0083 63.9 90.6
(dB) 40dB 0.48 0.0144 94.0 94.1 0.48 0.0083 64.1 90.6

25dB 0.48 0.0166 92.0 94.1 0.48 0.0083 55.0 90.6
20dB 0.48 0.0133 85.8 94.1 0.48 0.0083 60.7 90.6
15dB 0.48 0.0166 81.8 94.1 0.48 0.0083 53.5 90.6

Different sets of random noise of 20dB SNR were generated and added to the noise

free reference data such that each set had topologically different noise configuration.

Table 6.6 shows the results of the iteration method for the ten datasets. As shown in

the table, the estimated conductivities were different from one another. Nevertheless,

the averaged conductivity values (brain=0.36 and skull=0.0164) over the ten cases gives

a close approximation of the reference conductivities (brain=0.365, skull=0.0135). The

average (± standard deviation) of the MEG fitted source positions over the ten datasets

was (196.5±0.7 161.9±3.8 170.4±0.9) with a localization error of 3.6 mm.

6.2.4 Application to SEP/SEF data

We applied the proposed MEG/EEG combined analysis for the conductivity estima-

tion to a real SEP/SEF dataset from the experiment described in Section 5.2.8. We fixed

scalp and CSF conductivities and allowed the brain and skull conductivities to vary as
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Table 6.5. Brain and skull tissue conductivity estimation with the proposed iteration
method based on the combine EEG/MEG analysis. Explained residual variances of
EEG (varEEG) and MEG (varMEG) are in %.

MEG no noise
EEG o2 m2 m3 σbrain2

σskull2 varEEG varMEG
no noise (-0.08 1.00 -0.03) 8.8 8.8 0.332 0.0166 99.2 99.7
40dB (-0.06 1.00 -0.05) 9.2 8.9 0.332 0.0166 99.0 99.5
25dB (-0.16 0.99 -0.03) 8.8 8.5 0.332 0.0166 95.3 99.6
20dB (-0.05 1.00 0.03) 9.0 8.8 0.332 0.0166 90.1 99.7
15dB (-0.12 0.99 0.03) 8.9 8.5 0.332 0.0166 85.0 99.4

MEG 40dB noise
EEG o2 m2 m3 σbrain2

σskull2 varEEG varMEG
no noise (-0.08 1.00 -0.03) 8.8 8.8 0.332 0.0166 99.9 98.8
40dB (-0.06 1.00 -0.06) 8.9 8.9 0.332 0.0166 99.0 98.6
25dB (-0.16 0.99 -0.03) 8.8 8.5 0.332 0.0166 95.4 98.6
20dB (-0.05 1.00 0.03) 9.0 8.8 0.332 0.0166 91.1 98.8
15dB (-0.12 0.99 0.03) 8.9 8.5 0.332 0.0166 85.5 98.6

MEG 25dB noise
EEG o2 m2 m3 σbrain2

σskull2 varEEG varMEG
no noise (-0.14 0.99 -0.01) 11.2 8.6 0.332 0.0166 99.6 94.5
40dB (-0.12 0.99 -0.03) 11.2 8.7 0.332 0.0166 98.8 94.4
25dB (-0.22 0.97 -0.01) 10.8 8.4 0.332 0.0166 95.2 94.1
20dB (-0.12 0.99 0.04) 11.2 8.7 0.332 0.0166 90.8 94.4
15dB (-0.19 0.98 0.04) 10.9 8.5 0.332 0.0166 85.4 93.9

MEG 20dB noise
EEG o2 m2 m3 σbrain2

σskull2 varEEG varMEG
no noise (-0.29 0.95 -0.09) 15.1 10.8 0.332 0.0144 99.2 90.1
40dB (-0.28 0.96 -0.11) 15.1 10.9 0.332 0.0133 99.0 90.5
25dB (-0.36 0.96 -0.09) 15.7 10.8 0.332 0.0144 95.3 88.8
20dB (-0.28 0.96 -0.05) 14.6 10.7 0.48 0.0221 90.0 89.7
15dB (-0.32 0.95 -0.04) 15.5 10.6 0.332 0.0166 85.0 88.9

parameters of the optimization . The sets of the brain and skull conductivities include

the following values from the literature.
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Table 6.6. Proposed iterative EEG/MEG combined analysis for conductivity estimation
with MEG (20dB) and EEG (20dB) data, given the 10 sets of different EEG/MEG noise
configurations. Explained residual variance is in %.

Before iteration parameters during iteration After iteration explVar
# σbr1 σsk1 o2 m2 m3 σbr2 σsk2 EEG MEG
1 0.48 0.0083 (-0.28 0.96 -0.05) 14.6 10.7 0.48 0.0221 90.1 89.7
2 0.48 0.0123 (-0.26 0.96 -0.11) 13.5 10.7 0.332 0.0166 91.1 90.4
3 0.48 0.0083 (-0.29 0.94 -0.15) 15.5 11.1 0.332 0.0144 91.3 90.4
4 0.48 0.0221 (-0.13 0.98 0.13) 9.4 8.5 0.332 0.0144 90.4 89.7
5 0.332 0.0123 (-0.06 1.00 -0.02) 9.3 8.9 0.332 0.0123 91.0 90.7
6 0.48 0.0055 (-0.33 0.94 -0.12) 18.4 11.2 0.332 0.0123 91.8 89.8
7 0.48 0.0221 (-0.15 0.99 0.075) 10.3 9.0 0.332 0.0166 91.7 91.3
8 0.48 0.0221 (-0.17 0.98 -0.11) 9.7 8.9 0.48 0.0221 91.3 90.0
9 0.332 0.0166 (-0.04 1.00 0.035) 9.0 8.8 0.332 0.0166 91.2 90.8
10 0.332 0.0166 (-0.15 0.98 -0.11) 8.2 7.8 0.332 0.0166 91.1 89.9

mean 0.44 0.0146 (-0.19 0.97 -0.04) 11.8 9.6 0.36 0.0164 91.1 90.3
std 0.07 0.0062 (0.1 0.02 0.1) 3.5 1.2 0.06 0.0034 0.5 0.5

X = {ssomato, σbrain, σskull}

σscalp = 0.33 S/m, σCSF = 1.79 S/m

σbrain ∈ {0.12, 0.332, 0.48, 0.57 S/m}

σskull ∈ {0.00066, 0.00083, 0.00095, 0.0011, 0.0013, 0.0015, 0.0018, 0.0021, 0.0024, 0.0028,

0.0033, 0.0042, 0.0046, 0.0055, 0.0079, 0.0133, 0.0144, 0.0221, 0.0332, 0.0415, 0.0664}

We used four different approaches to estimate the conductivities. The first was EEG-

only LRCE, and the second one was the EEG LRCE by fixing the source location based

on MEG fitting. The third approach was the EEG LRCE by fixing the source location

and moment (magnitude and direction) based on MEG. The fourth was the iterative

method based on the results of the third approach. For the MEG dipole fit, we used a

simulated annealing on the source space with σbrain = 0.332, σskull = 0.0042 S/m. TSVD

was used for the regularization with the relative cut off of 10−2.

Table 6.7 shows the results of conductivity estimation by the four different methods.

Depending on the source constraint, the estimated skull conductivity varied widely, while

the brain conductivity remained the same at 0.48. The EEG and MEG residual variances

reflect the type of constraints; with the source location fixed, the result of EEG LRCE

gave a good EEG residual variance because the source moment was fitted to optimize

the EEG data. With the source location and moment fixed, the conductivity estimation
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Table 6.7. SEP/SEF study: Brain and skull Conductivity estimation by the four
different methods. The conductivities of the CSF and scalp were 1.79 and 0.33 S/m,
respectively. Explained residual variances of EEG (varEEG) and MEG (varMEG) are in
%, and Mag is in nAm

EEG LRCE MEG/EEG
Loc fixed Loc/Mom fixed Iteration

σbrain 0.12 0.48 0.48 0.48
σskull 0.0055 0.0055 0.0011 0.0015

x 198.8 196.8 196.8 196.8
src loc y 155.7 163.7 163.7 163.7

z 171.7 169.7 169.7 169.7
dx 0.62 0.58 0.24 0.59

src dir dy 0.69 0.79 0.81 0.79
dz -0.39 -0.21 -0.53 -0.16

src mag 2.6 6.7 15.1 15.4
varEEG 97.3 97.9 74.1 96.4
varMEG - 61.0 95.8 88.0

gave a good MEG residual variance because the source parameters came from the best

fit MEG data. Even though the fixed source parameter from the MEG fit was used for

the EEG LRCE, the iteration revised the radial component of the source moment from

the EEG fit.

Figure 6.4 is the plot of explained residual variance with respect to the fixed skull

conductivity in order to show the goal function to be optimized. The residual variances

in Figure 6.4 (a) were computed with the estimation result of EEG LRCE, given a fixed

source location from the MEG dipole fit. The curve is very flat in the region of the

maximum, which means that any skull conductivity in the flat region does not make a dif-

ference in terms of the estimation quality. However, the variance curves in Figure 6.4 (b)

computed with the iterative MEG/EEG combined method were very sensitive to the skull

conductivity variation. The peak variances of the four brain conductivities were agreed

very closely; the difference between the minimum and the maximum over the peaks of

four curves was only 1.5%. However, variance changed sharply with skull conductivity in

each case, dropping to 70% for shift of 1.5-1.75 in skull conductivity. Also, the value of

σskull corresponding to the maximum variance changed with the value of σbrain. These

result suggest that the brain conductivity has less influence to the estimation result than

the skull conductivity.
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Figure 6.4. Plot of residual variance. (a) The explained residual variance was computed
with the parameters that resulted from the EEG LRCE with the fixed source location of
MEG dipole fit. (b) The explained residual variance was computed with the estimated
parameter from the iterative MEG/EEG combined method. Also shown with the other
brain conductivities.

Figure 6.5 shows the potential on a sagittal cut plane with the source fitted with the

iterative combined SEP/SEF method. It also shows the current flow on the scalp surface

generated by the reconstructed dipole source and the reference SEP. Figure 6.6 shows the

magnetic field due to the source fitted with the iterative combined SEP/SEF method at

the MEG sensors.

Figure 6.5. Results after one iteration of combined approach. Left: potential map
on the sagittal cut with fitted source after an iteration. Right: Current on the scalp
surface (yellow lines) after an iteration together with the original SEP coded by color.
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Figure 6.6. Magnetic field map on the MEG sensors over the head boundary. The field
was computed with the iteratively fitted source and conductivities.

6.3 Discussion and Conclusion

The conductivity estimation with the combined MEG/EEG source analysis opens up

a possibility of estimating an individual’s own tissue conductivity and then using the

resulting customized head model to localize the desired pathological sources. In contrast

to the EEG-only LRCE, the MEG/EEG combined analysis strongly stabilizes the inverse

solution process, mainly due to the constraints on the source parameters from the MEG

modality. The results of these simulation studies support such a possibility. Unlike the

EEG-only LRCE, the combined method gives more stable estimation even with the low

SNR EEG data. The accuracy of the conductivity estimation seems to depend more on

the MEG SNR and less on the EEG SNR. This means that the quality of the constraint,

i.e., the accuracy of the source parameter that is obtained from the MEG dipole fit, has

more influence on the estimation results than any other typical factor.

When the source was tangentially positioned, the MEG dipole fit was able to correctly

fit source moment. In the case of a non-tangential source, however, the MEG fitted source

moment did not fully recover the radial component of the source, probably due to the poor

sensitivity to radial component of the MEG modality. The proposed iterative method is

an attempt to take advantage of the EEG modality that has the same radial and tangential

sensitivity of the source, in order to compensate for the unrecovered radial source moment

from MEG. The simulation results clearly show the effectiveness of the iterative approach.

Taking into account both modalities’ advantages resulted in the strong possibility of

customizing an individual volume conductor model in terms of tissue conductivity.
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The MEG/EEG combined analysis produced a type of goal function that has a deep

valley. The residual variances (a way of representing the goal function) in the MEG/EEG

combined analysis with different constraints (Figure 6.4) clearly showed the characteristic

of goal functions. While the one that took only source location into the constraint gave a

very flat curve near the best fit, the one with the full accommodation of source parameters

with iteration gave a quadratic curve that showed a clear peak. Full commitment of source

parameter including source location, direction and magnitude makes a deep goal function

to be optimized.

The application of those approaches to real SEP/SEF data resulted in values of

0.48 S/m for brain conductivity and 0.0015 S/m for skull conductivity. The estimated

brain conductivity lay within the reported values from the literature, however, the skull

conductivity was much smaller than the lower limit of the reported values that fall into

the range of 0.0133∼0.0042 S/m. The sensitivity of the skull thickness on the forward

computation was relatively larger than that of other tissues. Therefore, it is reasonable

to investigate the influence of the skull tissue modeling on the forward computation. In

fact, the skull is in fact made of compacta (hard bone) and spongiosa (soft tissue); the

compacta is of high electric resistance and the spongiosa is of low resistance. Because of

these components of skull tissue, the skull conductivity is often modeled as an effective

anisotropy that captures the lower conductivity in the radial direction and the higher

conductivity in the tangential direction. We might consider the effect of skull anisotropy

on the conductivity estimation.

We also point out that with regard to the skull conductivity modeling, it was recently

reported in [113] that it might not be sufficient to approximate the influence of outer

compacta, spongiosa and inner compacta by means of a radial-to-tangential anisotropy

as proposed in [55]. Accordingly, it is reasonable to model the three layeredness of

skull tissue and to estimate the skull conductivities based on the skull tissue model. A

modeling of the three-layeredness can easily be done in a high-resolution 1mm hexahedra

FE approach as long as a segmentation of the spongiosa is available.

We could apply the combined MEG/EEG conductivity estimation to other event re-

lated evoked data such as VEP/VEF (Visaul Evoked Potential/Field) and AEP/AEF (Au-

ditory Evoked Potential/Field). Having those data could further validate the conductivity

estimation procedure. In the long run, we could have a customized conductivity profile

of a subject by means of the MEG/EEG evoked data and the proposed conductivity
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estimation procedure. This specific conductivity profile would then be used clinically for

more routine EEG analysis that has a strong dependency on the conductivity.

As briefly described in the introduction, a recent study of Huang et al [66] tried to

estimate tissue conductivity ratio with a sphere model and boundary element model. The

study did not fully account for absolute tissue conductivity values, but tried to find a

best fit ratio among head tissue conductivities. He used the MEG and EEG combined

modality for the study and decomposed the MEG fitted source moment into the radial

and tangential components in order to use only the tangential component that can be

correctly obtained from the MEG. For the sphere model, the radial source direction is

obvious, but for the boundary element model that has the geometry from the realistic head

image, getting the radial direction is not an obvious procedure. He proposed to extract

the radial source from the MEG gain matrix at the fitted source location. SVD (Singular

Value Decomposition) decomposed the MEG gain matrix and give three eigenvalues and

three eigenvectors that represent three orthogonal directions. Out of the three eigenvalues,

the smallest eigenvalue is presumed to be from the least sensitivity direction, which is

the radial direction in MEG. The eigenvector corresponding this eigenvalue is then the

radial direction. The other two eigenvectors represent two tangential directions.



CHAPTER 7

SUMMARY AND FUTURE WORK

7.1 Summary and Conclusions
The research of this dissertation divides naturally into three projects, all based on

the numerical method of finite element volume conductor models. The first project

sought to evaluate numerical accuracy and computational cost of a forward simulation

for three FE dipole models and three numerical FE solvers using a spherical FEM head

model. Second, we developed a new method to expand the basic source localization

approach in a way that also estimates skull and brain tissue conductivities from EEG

data, given a realistic, four compartment FEM head model. Third, we further extended

this approach of tissue conductivity estimation by adding MEG data into the EEG based

estimation method, thus achieving another goal of maximizing the utilization of both

compensating modalities. The long-term goal of this research is to create subject specific

volume conductor models in terms of head geometry and tissue conductivity.

The summary and the important outcomes of each research project are described in

the following.

1. Chapter 4 described the evaluation of FEM forward solution accuracy with respect

to three dipole models (Venant model, partial integration method, and subtraction

approach) and the computational efficiency with respect to three finite element

solvers (Jacobi-CG, IC-CG, and AMG-CG). Despite many years of research in

the area of finite element solvers, the relative novelty of the multigrid method

and especially the more sophisticated dipole source representations made this a

unique, timely, and practically essential study. We modeled the head as a four

compartment (scalp, skull, CSF, and brain) sphere. A large number of forward

computations were carried out with respect to a set of parameters including solver

accuracy, dipole location, dipole orientation, finite mesh size, and brain mesh

constraint, for a given choice of the dipole model and the numerical solver. We

computed the accuracy of the forward simulation by the error metrics of RE,
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RDM, and MAG at given EEG electrode locations, based on the forward solution

of an analytic sphere model. We also measured wall-clock time for each forward

computation to evaluate computational efficiency. Simulation results showed that

the subtraction approach was the most accurate over all source locations and did

not depend on the mesh size of brain compartment where the source was placed.

Nevertheless, the Venant dipole model showed a compatible performance in the

solution accuracy, as long as the mesh was regular and of high resolution. Another

benefit of the Venant dipole is its high computational efficiency due to the nature of

a simple implementation. Concerning the solver efficiency, the AMG-CG iterative

solver outperformed the other solvers due to its superior preconditioning quality.

2. Chapter 5 described a new method that extends source localization to include an

estimation of tissue conductivity. The motivation for this approach comes from

the persistent discrepancies in the values of tissue conductivity that are found

in the literature. It may well be that tissue conductivity varies among individ-

uals or even over times. Hence a solution that adjusts tissue conductivity values

based on individual and time specific electrical measurements has the potential to

dramatically improve source localization by customizing it to situation. The low

resolution conductivity estimation (LRCE) method was implemented based on a

global optimizer and the lead field approach. By this method, initially a global

lead field matrix is created with possible source locations and possible conductivity

values. Based on EEG measurements and using a global optimizer and a linear

least-square fit, the sources are evaluated in a predefined source space and, similarly,

the conductivity values are evaluated in their predefined set of values, such that

the LRCE finds an optimal combination of source and conductivity that meets a

minimum norm criteria. The feasibility of the LRCE was tested with the several

scenarios of source and conductivity configurations, including single source and

brain/skull conductivities, two sources and skull conductivity, and two sources

and brain/skull conductivities. The two sources were located in the right and

left somatosensory area and oriented either quasi-tangentially or quasi-radially. We

used a four compartment (scalp, skull, CSF and brain), realistic FEM conductor

model that was created from the MR images of a subject. The source space was

extracted from the 2 mm under the outer surface of the brain, which represents

a layer of gray matter. The predefined conductivity values were collected from
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the literature. The simulation results showed that the LRCE method correctly

estimated conductivities as long as the EEG data had SNRs better than above

25dB, but was unable to estimate them correctly with the low SNR data. We also

applied the method to real somatosensory evoked EEG data and estimated brain

and skull conductivity to be 0.48 S/m and 0.004 S/m, respectively, values that are

within those in the literature.

3. Chapter 6 described a further extension of the LRCE approach that combined

MEG/EEG source analysis and estimated tissue conductivity with even better

accuracy and robustness. In order to improve the EEG based conductivity esti-

mation, we introduced a priori constraints on the source parameter based on MEG

measurement. The rational for this approach is the fact that MEG signals are

less affected by tissue conductivities than EEG signals, although they are more

prone to errors in source orientation. Thus we sought to use MEG signals to

estimate source localization as a constraint on a subsequent application of the LRCE

approach. The EEG LRCE method in Chapter 5 was modified to accommodate the

source constraint from the MEG dipole fit. Moreover, we implemented an iteration

scheme to compensate for the poor radial sensitivity of the MEG modality. We

tested the MEG/EEG conductivity estimation with the same realistic FEM head

model, given a quasi-tangentially oriented dipole source in the left somatosensory

cortex. The simulation studies were carried out with the constraint of source

location and the constraint of source location, direction and magnitude. While

the conductivity estimation with the constraint of source location did not improve

the result appreciably, the additional constraint of source direction and magnitude

with the iteration scheme clearly improved the estimation results. Based on the

simulation results, we can conclude that the iterative combined MEG/EEG conduc-

tivity estimation with the source parameter constraint is more robust at estimating

tissue conductivity than the original EEG-only LRCE method. We also applied

the combined method to real SEP/SEF data and the estimated brain and skull

conductivities were 0.48 S/m and 0.0015 S/m, respectively. While this estimated

brain conductivity is in the range of literature values, the skull conductivity is

approximately three time less than the lower limit of the literature values.
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7.2 Future Works

As with any study, this one introduces as many new questions and it provides answers

and there is a wide range of future directions for this area of research. The basic concept

of the LRCE approach is not limited to skull and brain conductivity, nor are these the

only parameters in the inverse source localization problem that could influence the results

in a meaningful way. Here we summarize just a few examples of specific extensions of our

findings and ideas.

The LRCE results for a single combined SEP/SEF measurement is not representative

for other head models. Further studies including more subjects and a variety of evoked

potential measurements have to be performed and results of LRCE analysis have to

be validated with other methods such as, e.g., EIT. The single dipole source might

not be sufficient to appropriately model the SEP/SEF peak at 35 ms post-stimulus.

Furthermore, realistic EEG/MEG data noise, segmentation inaccuracies, a too coarse

FE meshing and the general limitations of the quasistatic Maxwell equations and the

dipole model should be considered for the customized volume conductor. White matter

conductivity anisotropy might play a bigger role as shown in Wolters et al and Güllmar

et al [114].

There is an intimate relationship between skull thickness and specific conductivity

as they both affect the solution of bioelectric field problems in the head by the same

mechanisms. Hence, while we focused on conductivity in this study, a similar approach

applied to the thickness of the skull could provide additional opportunities for model

optimization. For the current study, we created a realistic head geometry from the T1-

and PD-MR images in order to study the role of tissue conductivity in the solution of a

finite element volume conductor problem. The assumption of the conductivity estimation

was that the segmented geometry represented the anatomy of a head as closely as possible,

so that we could estimate an absolute tissue conductivity value. The PD-MR image was

used as an adjunct to more typical T1-MRI, which avoided the need for ionizing radiation

of CT and yet still allowed us to extract an inner skull boundary. However, because the

skull conductivity is relatively much smaller than other tissues, a small variation of the

skull thickness has larger impact than that of other tissues. By perturbing the skull

thickness and applying an LRCE type approach, we could quantify the variation of the

estimated conductivity that arises due to errors in skull thickness measurements.
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All of the results presented here are based on the assumption that skull conductivity

is a constant, at least over one patient or a short period of time, and isotropic. However,

there is evidence to suggest that conductivity does depend on orientation of the current,

i.e., it is anisotropic and consists of highly conducting soft spongiosa sandwiched by two

layers of poorly conducting hard compacta[3]. Including the assumptions of anisotropy of

skull conductivity is therefore an additional potential direction for future development.

The finite element approach is very well suited to inclusion of anisotropy, through an

effective anisotropic conductivity assigned to each FE element of skull compartment [3].

Extending the LRCE approach to include anisotropy would require modifications and

it is not clear that it would generate stable results given the additional optimization

parameters.

A recent study of Sadlier et al [113] reported that it might not be enough to approxi-

mate the influence of outer compacta, spongiosa and inner compacta on the skull tissue

conductivity by means of a mere radial-to-tangential anisotropy. This result indicates

that a skull anisotropy does not accurately model the conductivity of skull compartment

and suggests that a segmentation of the three skull layers is necessary for an accurate

representation of skull tissue inhomogeneity. As long as a segmentation of the spongiosa

is available, FE approach is able to model the three-layeredness in a high-resolution.

Similar to the inclusion of anisotropy in the skull conductivity, it would also be possible

and justified to include anisotropic white matter conductivity in a comprehensive source

localization. In the current study, we used a four compartment model, in which the brain

was modeled as one homogeneous tissue and assigned an isotropic conductivity value.

However, the brain tissue consists of two substances, gray matter and white matter and

while the grey matter is isotropic, the fibrous structure of the white matter gives it a

high degree of anisotropic conductivity. The preferable pathway of water diffusion in the

white matter captured from DT-MR imaging can be used to build a directional preference

of electric conduction and to formulate anisotropic conductivity tensors for the white

matter. Nevertheless, each tensor provides the information of anisotropic conductivity

ratio, not the absolute conductivity value. Recent study of Wolters et al [3] indicated that

conductivity in the modeling of white matter may give a more accurate forward solution,

especially when the sources are located deep in the brain. Our combined MEG/EEG

conductivity estimation could be extended to estimate the absolute conductivity value of

anisotropic white matter with a FEM volume conductor model. In addition, the combined
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estimation could be extended to estimate the scaling factor (just one parameter for the

white matter compartment) between the measured diffusion tensors and the conductivity

tensors that are computed from the diffusion tensors by means of an effective medium

approach as proposed by Tuch et al [115, 116] and used in Wolters et al [28] and Güllmar

et al [114].

Validation is an ongoing and sometimes challenge aspect of any simulation studies

and there are additional approaches to testing the accuracy of LRCE based source

localization. One such possibility is to validate the conductivity estimation method with

other event related experimental data such as visually evoked potential/field (VEP/VEF)

and auditory evoked potential/field (AEP/AEF). In the current study, only SEP/SEF

were used to estimate tissue conductivity and by exciting other sensory systems, the

source location would shift and thus provide extended validation options. While the

resulting conductivities from such simulations might vary, they could provide a reasonable

range of values that would limit the choice of conductivity and provide the information

for some constraints.

One source of uncertainty in all practical applications of source localization is deter-

mining the number of independent sources active in the brain. An incorrect assumption

about this value can lead to high errors in the resulting solution, whereas knowledge of

the number of sources provides a strong constraint on the viable solutions. To resolve

this ambiguity, the dipole fit method, the basis of the conductivity estimation method,

could be combined with the method of linear estimation or independent component

analysis (ICA) to accommodate the more realistic measurement data. As in the evoked

potential experiment in the current research, there are cases in which we can correctly

assume the number of sources. However, it is not always easy to predict the number of

source in advance and many realistic clinical cases fall into this category. Accordingly,

when the number of sources is uncertain, the dipole fit method may not be a good means

of source localization. Instead, one should first determine the number of sources from the

given EEG or MEG data in order to apply the properly constrained dipole fit approach to

the given data. One such method is the linearized estimation in the source localization.

The linearized estimation does not need to specify the number of sources, instead it

solves the linear system of equations without specifying the number of sources for a

source vector of source strengths. With this information, it is then possible to evaluate

the source strength map that may indicate the number of sources. Another method
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with the same goal is the principal component analysis (PCA) or the ICA. The methods

decompose EEG or MEG data into principal components or independent components,

respectively. Among the components, we can extract source components and disregard

all the other artifacts. The number of source components may be used as an a priori

constraint on the number of sources in the dipole fit approach.

One original implicit goal of our studies was to maximize the utility of the EEG to help

localize brain sources, in part because of its simplicity to apply and low cost. We have

shown, however, that the additional MEG data from the same patient can substantially

improve the accuracy of our approach. Thus an intriguing future study would be to use

the MEG as we have used the EEG and consider the accuracy of an MEG-based forward

solution with a finite element conductor model. In the current study, we used only EEG

modality and evaluated the forward solution accuracy with respect to dipole models. For

a future study, MEG should go through an accuracy evaluation with respect to dipole

models with a finite element model [4]. One could follow the same method as used in the

evaluation of the EEG forward accuracy. In addition, the radial source could serve as

a good measure of numerical accuracy of the finite element model, since the MEG does

not see the radial source activity due to the symmetry of sphere. Thus an MEG-based

forward simulation for a radial source with a spherical head model would provide the

numerical error due to the use of FEM modeling techniques.

Another core assumption of most brain source modeling is that a focal source is the

most realistic choice for the actual distribution of bioelectric fields in the head. However,

there are fields that might be better described as coming from a distributed source and

there is a persistent need for high quality, realistic models for such sources. Developing

and evaluating such models is a significant task but one that is critical for the application

of source modeling to a wide array of disorders.
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APPENDIX B

THE VENANT DIRECT APPROACH

To derive the Venant direct potential approach, we follow the ideas of [5] and start

from the basic relation for a dipole moment T0 ∈ R
3 at position x0 ∈ R

3, T0 =
∫

Ω(x −
x0)J

p(x)dx (see, e.g., [117, formula (2.92)]). Assuming discrete sources and sinks on

only the C neighboring FE mesh nodes to the FE node which is closest to x0, T0 =
∑C

c=1 ∆xc0j
[c]
0 with ∆xc0 denoting the vector from FE node c to source position x0.

When using higher moments T̄
r
0 ∈ R

n0+1 with n0 = 1, 2 and the Cartesian direction r

(r = x, y, z), this expression becomes

(

T̄
r
0

)[n]
=
(

T̄
r
0

)[n]
(j

0
) =

C
∑

c=1

(∆x̄r
c0)

n j[c]
0

∀n ∈ 0, . . . , n0 (B.1)

(for a motivation of higher moments see [5]). The bar indicates a scaling with a reference

length aref, so that

∆x̄r
c0 = ∆xr

c0/aref
!
< 1 (B.2)

is dimensionless and the physical dimension of the resultant scaled nth order moment,
(

T̄
r
0

)[n]
, is that of a current (i.e., Amps). The reference length aref has to be chosen so that

∆x̄r
c0 is less than 1. The equation is well known from the Saint Venant law in mechanical

engineering — small forces in combination with long lever arms have the same effect on

the system as large forces in combination with short lever arms.

If we now define the matrix X̄r
0 ∈ R

(n0+1)×C , the moment vector M̄
r
0 ∈ R

n0+1,

computed from a given dipole moment vector M0, and the diagonal source weighting

matrix W̄ r
0 ∈ R

C×C by

(

X̄r
0

)[n,c]
= (∆x̄r

c0)
n

(

M̄
r
0
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= M r

0

(

1
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)n

(1 − (−1)n)

W̄ r
0 = DIAG ((∆x̄r

10)
s , . . . , (∆x̄r

C0)
s) (B.3)
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with s = 0 or s = 1, then we can compute the monopole load vector j
0
∈ R

C for the

Venant direct approach on the C neighboring FE nodes from a given dipole moment

vector M0 at position x0 by means of minimizing the following functional

Fλ(j
0
) = ‖M̄ r

0 − T̄
r
0(j0

)‖2
2 + λ‖W̄ r

0 j
0
‖2
2 = ||M̄ r

0 − X̄r
0j

0
||22 + λ‖W̄ r

0 j
0
‖2
2

!
= min.

The first part of the functional Fλ ensures a minimal difference between the moments of

the Venant approach T̄
r
0 and the target moments M̄

r
0, while the second part smoothes the

monopole distribution in a weighted sense and enables a unique minimum for Fλ. The

solution of the minimization problem is given by

(

(X̄r
0)trX̄r

0 + λ(W̄ r
0 )trW̄ r

0

)

j
0

= (X̄r
0 )trM̄

r
0

(see, e.g., [118, Theorem 4.2.1]), so that the final solution for the monopole source vector

j
0

of the Venant approach is given by

j
0

=

(

3
∑

r=1

{

(X̄r
0)trX̄r

0 + λ(W̄ r
0 )trW̄ r

0

}

)−1 3
∑

r=1

{

(X̄r
0)trM̄

r
0

}

. (B.4)

The order n0 is generally chosen as n0 = 1 or n0 = 2, where the latter imposes a

spatial concentration of loads in the dipole axis. Furthermore, s = 1 stresses the spatial

concentration of loads around the dipole. With Φ(x) ≈ Φh(x) =
∑Nh

j=1 ϕj(x)u
[j]
h , we can

derive the linear system

Khuh = j
Venant,h

(B.5)

with the same stiffness matrix as in (3.13). The right-hand side vector j
Venant,h

∈ R
N
h

has only C non-zero entries and is determined by

j[i]
Venant,h

=

{

j
[c]
0 if ∃c ∈ {1, . . . , C} : i = glob(c),
0 otherwise

(B.6)

for a source at location x0. The function glob determines the global index i to each of

the local indices c.
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[114] D. Güllmar, J. Haueisen, M. Eiselt, F. Gießler, L. Flemming, A. Anwander, T. R.
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