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Zusammenfassung

Mit Hilfe von Elektro- (EEG) und Magnetoenzephalographie (MEG) ist es möglich,
die elektrischen Potential auf der Kopfhaut bzw. die magnetischen Felder in geringer
Entfernung von der Kopfoberfläche zu messen, die durch elektrische Ströme in aktiven
Gehirnarealen entstehen. Beide Verfahren finden Anwendung sowohl in der Forschung
(z.B. in der Epilepsie-Forschung) als auch im klinischen Alltag.

Das sog. inverse Problem beschreibt die Aufgabe, die zu einer gemessenen Potential-
oder Magnetfeldverteilung gehörende Quellstromdichte innerhalb des Gehirns zu finden.
Zur Lösung dieses Problems ist es nötig, das EEG/MEG-Signal an den Messelektroden
für gegebene Stromdichtekonfigurationen zu simulieren. Dieses Problem bezeichnet man
als Vorwärtsproblem.

Zur Lösung des Vorwärtsproblems bedient man sich verschiedener analytischer und
numerischer Verfahren. In dieser Arbeit wurde die Finite Elemente Methode (FEM)
benutzt. Zur Anwendung der FEM ist es erforderlich, das Untersuchungsgebiet zu
diskretisieren. Hierzu kamen Tetraeder-Netze zum Einsatz, welche mit der Software
TetGen erstellt wurden.

Im vierschaligen isotropen Kugelmodell wurden mit Anwendung der FEM für einen
Subtraktionsansatz zum ersten Mal relative Fehler von unter 1 % für dipolare Quellen
mit 2 mm Abstand zum nächsten Leitfähigkeitssprung gefunden. Die hohe Genauigkeit
beruht auf der qualitativen Güte der Tetraedernetze und der Netzfeinheit in den äußeren
Schichten. Basierend auf den Ergebnissen der Netzgenerierung wurde ein Paper[1] zur
Veröffentlichung eingereicht.

Nach der erfolgreichen Validierung der FEM in Kugelmodellen wurden die Netzgener-
ierungstechniken auf ein realistisches Kopfmodell eines Epilepsie-Patienten angewandt,
der ein intrakranielles Elektrodenmessgitter (iEEG) für kortikale Oberflächenmessungen
implantiert bekam. Gleichzeitig wurde ein Oberflächen-EEG (sEEG) aufgenommen, um
die simultane Auswertung von iEEG- und sEEG-Daten unter Berücksichtigung des bei
der Implantation entstandenen Lochs in der Schädeldecke und der Kunststofffolie zu
ermöglichen.

Anschließend wurde die FEM zur Lokalisierung einer gemessenen peri-iktalen ICA (In-
dependent Component Analysis)-EEG-Komponente benutzt. Dabei wurde die dipolare
Quelle anhand des iEEG-Signales direkt unter dem Gitter lokalisiert, während die auf
dem Oberflächen-EEG basierende Rekonstruktion zu tief im Gehirn lag. Dieses Ergebnis
legt die Vermutung nahe, dass die Annahme, dass die zugrundeliegende Quelldistribu-
tion der iEEG- und sEEG-Signale bei simultaner iEEG/sEEG-ICA identisch ist, kritisch
hinterfragt werden muss.

In allen Untersuchungen konnte jedoch gezeigt werden, dass sich mittels der FEM
sowohl das Vorwärtsproblem als auch das inverse Problem bei der Quell-Lokalisierung
im menschlichen Gehirn akkurat und mit der Transfermatrixmethode auch sehr schnell
lösen lässt.
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1 Introduction

Understanding how the human brain processes information is the key question in modern
neuroscience. Different imaging techniques are therefore applied to study active areas
during certain cognitive tasks or to locate pathogenic tissue e. g. in epilepsy patients.

Among those is the functional magnetic resonance imaging (fMRI), which extends the
classical MRI method with a functional part. It measures the magnetization changes,
that occur due to variations in the blood oxygenation level of activated cortical areas
(blood oxygenation level dependency (BOLD)). With fMRI it is possible to localize active
brain areas with a spatial resolution of three to six millimeters, though the temporal
resolution is in the dimension of some seconds. Furthermore brain activity is measured
indirectly through the BOLD-signal, whereas other methods aim directly at the gener-
ated electrical signals.

Electro- (EEG) and Magnetoencephalography are important tools both in clinical
practice and research as well as in cognitive neuroscience. They are based on the electric
currents, that are produced in active cortical areas. These currents produce electric
potentials and magnetic fields, that can be measured outside or on the surface of the
head using sufficiently sensible sensors.

For the first time H. Berger published in 1929 his results of measuring electrical activity
directly on the brain surface[2]. Because of its small amplitudes the magnetic counterpart
took about forty years longer to acquire and finally in 1968 D. Cohen was able to
record the MEG of a human brain[3]. The breakthrough for developing more sensible
MEG sensors came with the invention of Superconducting Quantum Interface Devices
(SQUID), that allowed for very accurate measuring of very small changes in the magnetic
field[4]. The great advantage of EEG/MEG over other brain imaging techniques is their
high temporal resolution of less than one millisecond.

Today the tendency is to measure EEG and MEG simultaneously to combine the
information provided by both modalities.

In the field of source analysis EEG/MEG data are evaluated in order to localize
the active brain area which generated the measured potentials and fields. Methods
to compute the original current distribution (a procedure called the inverse problem)
heavily rely on the accurate modeling of the potential distribution that a given source
will generate (the forward problem). As analytical solutions for the forward problem
usually only exist for special geometries (such as spherical volume conductors), there
exist several methods to solve the forward problem numerically. Among these are the
Finite Difference Method (FDM), the Boundary Element Method (BEM) or the Finite
Element Method (FEM).

In this thesis the FEM was used because of its flexibility and the possibility to model
anisotropy and very complex geometries. After validating EEG forward calculations in
multilayer sphere models of varying complexity the FEM was applied to model a thin
plastic sheet with intracranial EEG (iEEG) electrodes, that an epilepsy patient had
implanted for monitoring. The skull had to be trepanated to place the iEEG directly on
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1 Introduction

the cortex surface in order to localize the epileptogenic tissue with the maximal possible
accuracy.

For evaluation of the simultaneously recorded surface EEG (sEEG), which is a non-
standard procedure and difficult to perform because of the need for a pressure bandage
and the danger of infection, an Independent Component Analysis (ICA) was performed
in [5], so the simultaneous analysis of the sEEG/iEEG-dataset was possible.

Because of the very complex geometry (skull trepanation hole) and the fact that the
skull was modeled as anisotropic conductor the BEM is inferior to the FEM in this case.

For all FEM calculations in this thesis the software toolbox SimBio[6] was used. Vi-
sualization was done using SCI’s BioPSE package[7].
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2 Theory

In this chapter a general overview of the theoretical background for bioelectricity espe-
cially concerning the human head shall be given and the used methods and algorithms
will be explained.

2.1 Basics of Bioelectricity

The electric potential differences and magnetic fields that can be measured outside the
human body by means of EEG and MEG are caused by electric currents inside. As
this thesis focuses on modeling the human head and brain and the current distribu-
tions inside, a short overview of the anatomical structure and physiology of the brain is
presented.

The human brain basically consists of three parts (see Figure 2.1), the brain stem
consisting of diencephalon, midbrain, pons and medulla oblongata, the cerebellum and
the telencephalon or cerebrum, the biggest part of the brain which is responsible for such
complex tasks as movement and sensory or language processing. The telencephalon is

Figure 2.1: Anatomical overview of the brain (from [8])

divided into two symmetric hemispheres which are separated by the medial longitudinal
fissure, a deep gap running from frontal to dorsal direction. The two hemispheres are
connected through several commissures with the corpus callosum as largest fiber bundle.

The surface of each hemisphere is two to four millimeters thick and called cortex or
gray matter. It is strongly folded into deep grooves called sulci which are surrounded by
the gyri. The cortex consists of a large number of nerve cells (mostly pyramidal neurons)
arranged in six layers whereas the underlying white matter is composed of nerve fibers
connecting different parts of the brain. By interactions of these neurons information is
processed and stored.
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2 Theory

A neuron (Figure 2.2) mainly consists of three parts, the cell body or soma, the
dendrites and the axon. The dendrites are used to receive electrical signals from other

Figure 2.2: Schematic drawing of a neuron (from [9])

neurons, that can be transmitted to further neurons by the axon. Therefore a neuron
has many dendrites yet only one axon. The connection of one neuron’s axon to another
neuron’s dendrite is called synapse.

The signal transmission is achieved by electric potential changes that are caused by ion
diffusion. When the neuron is at rest, a resting membrane potential of −50 to −80 mV
can be measured between the inside (negatively charged) and the outside of the cell.
It is caused by the diffusion of K+-ions to the outside of the neuron, that is driven
by a concentration gradient between the extra- and intracellular liquid. The diffusion
continues until an equilibrium is reached between the electric force caused by the resting
membrane potential and the diffusion force caused by the ion concentration gradient.

The resting membrane potential however is not a source of the signals measured by
EEG or MEG. Instead two mechanisms of neuron-neuron-interaction can be considered
to generate such potential differences.

The first process is the action potential, which erupts when the membrane potential is
increased by about 20 mV by an external stimulus. The Na+-ion channels suddenly open
and sodium ions can diffuse into the cell. The inflow results in further depolarization and
a positivity inside the neuron’s cell body which gives rise to the action potential with
an amplitude of about 60 to 100 mV. As this polarization process lasts only for about
1 ms and as the K+-ion channels are opened simultaneously a repolarization back to the
resting membrane potential occurs. A model to describe the initiation and propagation
of action potentials is the Hodgkin-Huxley model[10], where the biological components
are represented by their electrical counterparts.

The whole process of action potential rise and repolarization back to the membrane
resting potential occurs very fast, it takes only 0.5 – 2 ms. Because of this short time and
as even for synchronous activity across simultaneous active neurons the action potentials
are not in perfect synchronization the generated signals are too weak to be measured
from outside the body.
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2.2 Physical Modeling

Another process of electric signal generation that appears in neurons is the occurrence
of excitatory postsynaptic potentials (EPSP). When an electric signal travels from the
axon to the synapse the signal is transmitted through the synapse chemically. Certain
messenger substances are emitted in the synapse, that, when arriving at the dendrite end
cause an increase of the membrane potential of the receiving cell. This depolarization
of the dendrites is called excitatory postsynaptic potential.

This potential, which lasts for some ten milliseconds, causes electrical currents to
flow through the extracellular liquids and can cause the firing of an action potential in
the receiving cell. If many neighboring neurons are simultaneously generating EPSPs
(10000 – 50000, [11]), the resulting signals will be measurable from outside by means
of EEG/MEG. This was also proved in animal experiments, where the potentials inside
the cell and outside the head were measured simultaneously.

So the source of the signals that are measured in EEG/MEG are the excitatory post
synaptic potentials of many simultaneously active neurons.

2.2 Physical Modeling

The fundamental equations governing electrodynamics are the Maxwell equations (2.1).
From these a partial differential equation for the electric potential can be derived which
can then be simplified by a quasi-static approximation of the dynamic effects.

The starting point for the derivation are the Maxwell equations for the magnetic flux
density B, the electric and magnetic fields E and H and the electric displacement field
D in differential form:

∇ ·B = 0 (2.1a)

∇×E + Ḃ = 0 (2.1b)
∇ ·D = % (2.1c)

∇×H − Ḋ = j. (2.1d)

Here j is the current density and % the electric charge. As biological tissue can be treated
as an electrolyte the material equations for a linear homogeneous medium can be used:

B = µ0H (2.2a)
D = εrε0E. (2.2b)

Because biological tissue is non-magnetic the relative magnetic permittivity µr is as-
sumed to be equal to one: µr = 1. Furthermore µ0 describes the vacuums permeability
and εr and ε0 stand for the relative permittivity and the permittivity of free space,
respectively.

Generally in bioelectricity the current density j on the right hand of (2.1d) is divided
into two parts: the impressed or primary currents jp, that represent the electric source
distribution in the brain and the ohmic return currents σE:

j = jp + σE. (2.3)

Inserting (2.3) in (2.1d) leads to

∇×H − Ḋ = jp + σE. (2.4)

11



2 Theory

It is now possible to introduce potentials A, φ that automatically fulfill the homogeneous
Maxwell equations (2.1a) and (2.1b):

B = ∇×A (2.5a)

E = −∇φ− Ȧ (2.5b)

The vector potential A and the scalar potential φ have to be determined by solving
the inhomogeneous Maxwell equations (2.1c) and (2.1d). Eq. (2.5) however does not
uniquely determine A and φ, as the magnetic flux density B obviously does not change
if A is transformed to Ā:

Ā = A +∇χ. (2.6)

The function χ = χ(r, t) is an arbitrary scalar function. Of course φ has to be trans-
formed as well:

φ̄ = φ− χ̇. (2.7)

As the resulting fields E and B are not changed by this gauge transformation, the choice
of a suitable gauge is free.

A useful gauge fixing for the electrodynamic case is the fulfillment of the Lorenz
condition

∇ ·A + µ0εrε0φ̇+ µ0σφ = 0. (2.8)

To derive an equation for the potential φ the divergence of (2.4) is taken, the mate-
rial equations (2.2) are used and the auxiliary potentials (2.5) are inserted. Assuming
harmonic time dependencies of jp, A and φ,

A(r, t) = A(r) eiωt (2.9a)

jp(r, t) = jp(r) eiωt (2.9b)

φ(r, t) = φ(r) eiωt, (2.9c)

leads to the following partial differential equation for φ and A:

∇ ·
(
σ

(
1 +

iωε0εr
σ

)
∇φ+ σiω

(
1 +

iωε0εr
σ

)
A

)
= ∇ · jp. (2.10)

It describes three kinds of dynamic effects, that can be neglected when applied to the
calculation of EEG (and MEG) potentials: propagation effects, capacitive effects and
induction effects.

Before these effects are discussed a quick overview for some electrical properties of
biological materials is given to provide numerical values for necessary error approxima-
tions.

As it becomes necessary to consider complex conductivities of the form σ
(
1 + iωεrε0

σ

)
,

the numerical values of the ratio of capacitive to resistive currents iωεrε0
σ are of interest.

Measured values for this ratio of several different tissues at different frequencies are listed
in Table 2.1 (from [12]). The highest relevant frequency in bioelectric systems is of the
order of 1 kHz, as the rise of the action potential with a duration of about 1 ms is the
fastest process of significance.
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2.2 Physical Modeling

10 Hz 100 Hz 1 000 Hz 10 000 Hz

Lung 0.15 0.025 0.05 0.14
Fatty Tissue 0.01 0.03 0.15
Liver 0.20 0.035 0.06 0.20
Heart Muscle 0.10 0.04 0.15 0.32

Table 2.1: Averages of Ratio Capacitive to Resistive Current for Various Frequencies
and Body Tissues (from [12])

It was already mentioned that biological tissue usually is non-magnetic, so the per-
meability µ is that of free space µ0 = 4π · 10−7 H/m. The maximal distance of relevance
when discussing fields in the human body and especially the brain is chosen to R = 1 m.

Propagation effects
For an infinite homogeneous medium (2.10) can be solved using Green’s function

Gk(R) =
e−ikR

R
, (2.11)

with R = |r − r′|. The solution for the vector potential A is then

A =
µ0

4π

∫
V

dV
jp(r′)ei(ωt−kR)

R
. (2.12)

The propagation effect, i. e. the time required for source changes to propagate to each
field point, is represented by the phase delay factor e−ikR. With the Taylor series of this
factor,

e−ikR = 1− ikR− (kR)2

2!
+ i

(kR)3

3!
+ . . . , (2.13)

propagation effects can be ignored, if

kR� 1, (2.14)

because e−ikR is then nearly constant.
The factor k can be approximated by evaluating the defining equation

k = (1− i)
√
ωµ0σ

2

(
1 + i

ωε0εr
σ

)
(2.15)

with the aforementioned numerical values, a ratio of capacitive to resistive currents of√
2− 1 and a conductivity of σ = 0.33 S/m as usually used for the human brain:

kR ≈ (1− i)0.043. (2.16)

This yields a magnitude error of about 4 % and a phase angle error of 0.043 rad (about
2.5°) for the e−ikR-term, which makes propagation effects clearly negligible.
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2 Theory

Capacitive effects
The capacitive effects relating to the complex factor σ(1+ iωε0εr

σ ) can be neglected if the
capacitive currents are much smaller than the resistive currents, i. e. if

ωε0εr
σ

� 1. (2.17)

The maximal value for this ratio in Table 2.1 is 0.32, which satisfies (2.17) reasonably
good. Therefore also capacitive effects are negligible for bioelectric problems.

Inductive effects
When comparing the electric field component arising from magnetic induction to the
electric field due to the electric potential, the inductive effects can be neglected if the
ratio of both is sufficiently small:

|iωA|
|∇φ|

� 1. (2.18)

This relation is satisfied, as |iωA|
|∇φ| = |kR|2, and |kR|2 � 1 as can be seen from (2.14).

Thus, if propagation effects can be neglected, also inductive effects are insignificant.

Quasi-static Approximation
Ignoring the dynamic effects in (2.10) leads to the so-called quasi-static approximation
of the Maxwell equations for the electric potential φ:

∇ · (σ∇φ) = ∇ · jp. (2.19)

The vector potential A can then be calculated using Biot-Savart’s Law:

A(r, t) =
µ0

4π

∫
V

dr′
jp(r′, t)
R

− µ0

4π

∫
V

dr′
σ∇φ(r′, t)

R
. (2.20)

To complete the mathematical problem description the following boundary conditions
are stated. At the interfaces Γ between different compartments Neumann boundary
conditions apply:

(σ1∇φ1) · n = (σ2∇φ2) · n on Γ, (2.21)

where n is the normal vector on Γ, whereas on the surface of the base domain the normal
component must vanish:

(σ∇φ) · n = 0 on Γ = ∂Ω. (2.22)

Furthermore the value of the electric potential must be set to a specific value at one
reference point:

φ(rref) ≡ 0. (2.23)

2.2.1 The Mathematical Current Dipole

A common concept for modeling the primary current distribution jp on the right hand
side of (2.19) is the mathematical current dipole

jp(r) = M · δ(r − r′). (2.24)
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2.3 Analytical Solutions

It is the abstraction of two discrete electrical monopoles (a source and a sink) with the
charge Q and the distance l that come infinitely close together in r′, while the dipole
moment M = Q · l is constant and finite:

jp = lim
Q→∞
‖l‖→0

Q · l. (2.25)

The Dirac delta distribution in (2.24) is a very strong inhomogeneity that leads to
problems in numerical calculations using the mathematical current dipole as source
model. There exist several methods to deal with this inhomogeneity that are discussed
in Section 2.5.

2.3 Analytical Solutions

For special geometries the partial differential equation (2.19) can be solved analytically.
Especially for multilayer sphere models consisting of several concentric spheres of dif-
ferent conductivities a variety of analytical solutions exist, that can be computed easily,
which is why they are used widely in source analysis.

The series expansion formula for the electric potential of a mathematical dipole in
a multilayer sphere model used in this thesis was derived by de Munck and Peters[13,
14]. It is able to treat an arbitrary number of layers with radii rs < rs−1 < · · · <
r1 and constant radial and tangential conductivities σrad, σtang within. It is therefore
also possible to model an anisotropic skull layer with de Munck’s formula, as recent
measurements showed that the human skull has an anisotropic conductivity[15].

The spherical harmonics expansion for the mathematical dipole is expressed in terms
of the gradient of the monopole potential to the source point. Using an asymptotic
approximation and an addition-subtraction method to speed up the series convergence
yields

φana(x0, xe) =
1
4π
〈M, S0

xe

re
+ (S1 − cosω0eS0)

x0

r0
〉 (2.26)

with ω0e the angular distance between the source at x0 and the electrode at xe, and with

S0 =
F0

r0

Λ

(1− 2Λ cosω0e + Λ2)3/2
+

1
r0

∞∑
n=1

{(2n+ 1)Rn(r0, re)− F0Λn}P ′n(cosω0e)

(2.27)
and

S1 = F1
Λ cosω0e − Λ2

(1− 2Λ cosω0e + Λ2)3/2
+

∞∑
n=1

{
(2n+ 1)R′n(r0, re)− F1nΛn

}
Pn(cosω0e).

(2.28)
The coefficients Rn and their derivatives, R′n, are computed analytically and the deriva-
tive of the Legendre polynomials, Pn, are determined by means of a recursion formula.
The derivation of the above series of differences and the definition of F0, F1 and Λ can
be found in [14].

In later chapters this analytical solution is used as a reference, against which the
numerical solutions are compared.
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2 Theory

2.4 The Finite Element Method

The method of choice to numerically solve (2.19) in this thesis is the finite element
method (FEM, [16]), as it is able to treat arbitrary complex geometries and even
anisotropic conductivities σ. It is also widely used in various scientific or engineering
fields such as fluid dynamics, heat transfer problems or crash simulations in automotive
engineering.

As a first step in solving a differential equation using FEM the base domain must
be discretized into small regions, the so-called elements. In two dimensions these are
often triangular or rectangular, in three dimensions often tetrahedra or cubes are used.
This decomposition of the whole head domain into small elements is called triangula-
tion. Effective strategies to create quality tetrahedral triangulations are discussed in
Section 3.1.

For the electric potential appropriate ansatz functions in the elements have to be
chosen. Usually low order polynomials are used here. For the tetrahedral elements in
this thesis the linear ansatz

(e)φh(x, y, z) = c1 + c2x+ c3y + c4z (2.29)

was used.
As the electric potential is continuous throughout the head domain also its approxi-

mation has to be continuous from one element to the other. This continuity condition
can be fulfilled more easily when turning from element based ansatz functions (e)φh to
node based form functions (e)ψk:

(e)φh(x, y, z) =
n∑
k

(e)uk
(e)ψk(x, y, z). (2.30)

The (e)uk in (2.30) are called node variables, whereas n is the number of nodes in an
element. As this relation has to be fulfilled for every value combination of node variables,
the form functions (e)ψk have to meet the Lagrange condition

(e)ψk(xj) = δjk, (2.31)

i. e. for every node xj of the element it holds, that

(e)ψk(xj) =

{
1 if j = k,

0 if j 6= k
. (2.32)

The potential approximation for the whole domain is then constructed piecewise from the
elements’ ansatz functions. As already mentioned the use of node based form functions
is of advantage. In order to compose these global form functions ψk, all nodes of the
triangulation have to be numbered consecutively. Then the global form functions ψk are
constructed from all the local form functions (e)ψk that have the value 1 at node k.

Due to this construction approach the function ψk is only non-zero in such elements
the node k is part of. With this notation the equation for the electric potential becomes

φh(x, y, z) =
N∑

k=1

ukψk(x, y, z). (2.33)
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2.5 Dipole Modeling Strategies

Next this ansatz (2.33) is inserted into the differential equation (2.19). As the solution
for an arbitrary choice of node variables will in general not be exact, a residuum R
remains:

R(x, y, z) =
N∑

k=1

uk ∇ · (σ∇ψk)−∇ · jp. (2.34)

Applying the method of weighted residues this residuum is weighted with weighting
functions wj . Now the node variables uk are chosen in such a way, that the integral of
the weighted residuum over the whole domain vanishes:∫

Ω

dΩR(x, y, z)wj
!= 0. (2.35)

Following Galerkin’s method these weighting functions wj are chosen equal to the
form functions ψj , wj = ψj . Inserting this into (2.34) and applying integration by parts
yields

N∑
k=1

uk

∫
Ω

dΩσ∇ψk · ∇ψj

︸ ︷︷ ︸
=:Kjk

+
∫
Ω

dΩψj ∇ · jp︸ ︷︷ ︸
=:−Jj

= 0. (2.36)

The occurring surface integral is zero because of the boundary conditions on the surface
of the base domain (2.22).

With these definitions for K and J (2.36) can be rewritten as a matrix equation:

Ku = J . (2.37)

The matrix K is usually called the stiffness matrix. The task is now to solve (2.37) for
the electric potential u at the nodes of the finite element mesh. To efficiently calculate
the solution a fast and accurate algebraic multigrid pre-conditioned conjugate gradient
method (AMG-CG)[17] was used. A direct inversion of K is usually not feasible due to
the large size. Instead, the sparseness of K is exploited.

As the ansatz function ψk is only non-zero in elements the node k belongs to, the
integrand in K is only non-zero, if j and k belong to the same element. Therefore, every
row of K has only as many non-zero entries as a node has neighbors. Furthermore the
stiffness matrix is symmetric, which makes it easy to store in memory on normal desktop
computers even for hundreds of thousands of elements. For the FE calculations in this
thesis a desktop computer with a 2.0 GHz CPU and 2 GB RAM was used to solve the
equation systems.

2.5 Dipole Modeling Strategies

There exist several methods to numerically treat the singularity, that appears on the
right hand side of (2.19) when the mathematical dipole (2.24) is used as a source model.
The use of Venant’s Law and a mathematically more sound subtraction approach are
discussed in this section. Both approaches are implemented in the IP-NeuroFEM-
Toolbox [18] that was used for all forward and inverse computations for this thesis.
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2 Theory

2.5.1 Venant Principle

The principle of Saint Venant known from mechanics states, that for the measured signal
at the electrodes far away from the source it is not important how in detail the current
dipole is modeled.

Therefore the mathematical dipole can be approximated by monopoles that are dis-
tributed on the neighboring FE nodes and adjusted in strength. To find the appropriate
mesh nodes at first the node closest to the source position is determined, then the
monopole sources and sinks are distributed on all the neighbors of this node. The math-
ematical procedure to determine the monopole source strengths is covered in detail in
[19].

In a nutshell the normalized resultant moments of order n0 in the direction r at node
i are calculated from the nodal loads Jk as

n0M r
i =

(
∆xr

ki

aref

)n0

· Jk, (2.38)

in which ∆xr
ki means the r-component of the vector between node i and the source node

k and aref denotes a reference length, that ensures the convergence to 0 of the series(
∆xr

ki
aref

)n0

· Jk for n0 →∞.

2.5.2 Subtraction Approach

Another feasible approach to treat the mathematical dipole singularity is the subtrac-
tion approach[20, 21]. In order to eliminate the singularity from the partial differential
equation (2.19) the electric potential φ and the conductivity σ are split up:

φ = φ∞ + φcorr (2.39)
σ = σ∞ + σcorr. (2.40)

In a small non-empty area around the source position the conductivity σ∞ is assumed
to be constant and σcorr is zero in this region. The singularity potential φ∞ deals with
the inhomogeneity at the source position x0, as it is defined as the solution for a dipole
in an infinite homogeneous conductor with constant conductivity σ∞, which is governed
by the Poisson equation

∆φ∞ =
∇ · jp

σ∞
. (2.41)

The solution of (2.41) can be formed analytically as

φ∞(x) =
1

4πσ∞
〈M , (x− x0)〉
|x− x0|3

. (2.42)

For a homogeneous and anisotropic conductivity σ∞ (2.42) becomes

φ∞(x) =
1

4π
√

detσ∞
〈M , (σ∞)−1(x− x0)〉

〈(σ∞)−1(x− x0), x− x0〉3/2
. (2.43)

As the singularity potential φ∞ describes the potential in an unbounded volume con-
ductor, the correction potential φcorr has to be computed to correct the potential with
respect to the realistic volume conductor.
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2.6 Transfer Matrix Approach

Inserting (2.39) and (2.40) into (2.19) and using (2.41) yields a Poisson equation for
the correction potential

∇ · (σ∇φcorr) = −∇ · (σcorr∇φ∞) in Ω (2.44a)

with inhomogeneous Neumann boundary conditions

(σ∇φcorr) · n = − (σ∇φ∞) · n on Γ = ∂Ω. (2.44b)

In (2.44) the right-hand side is now singularity-free because of the homogeneity condition:

σcorr = σ∞ − σ = 0 in Ω. (2.45)

To numerically solve (2.44) a FEM ansatz as derived in Section 2.4 is employed using
Galerkin’s method which leads to the matrix equation

K · ucorr = Jcorr, (2.46)

where K is the stiffness matrix, ucorr the numerically calculated correction potential
vector and the right hand side vector Jcorr stands for

Jcorr = −
∫
Ω

dΩ ((σ − σ∞)∇φ∞) · ∇ψi −
∫

Γ=∂Ω

dΓσ∞ψi n · ∇φ∞. (2.47)

The node based global ansatz functions ψi are explained in Section 2.4.
To calculate the total electric potential first the singularity potential φ∞ is evaluated

using (2.43). Then the correction potential is computed by solving the equation system
(2.46). Finally the total electric potential is constructed using (2.39).

In [21] a theoretical reasoning is given alongside with a validation in a four-layer
sphere model with anisotropic skull compartment for the fact, that second order Gaus-
sian integration is necessary and sufficient for the right-hand side integration in (2.47).
This implementation of the full subtraction approach is in an order of magnitude more
accurate than the projected subtraction approach suggested in [20], where the singular-
ity potential φ∞ is projected into the finite element space and approximated by linear
ansatz functions.

2.6 Transfer Matrix Approach

For the solution of the inverse problem it is necessary to compute a forward solution
many times for different dipole positions. If each time an equation system like (2.37)
had to be solved this process would require too much computation time. So instead
of computing the potential every time for each node of the tetrahedra mesh the law
of matrix multiplication associativity is exploited in order to cut down the necessary
computational effort.

As one is usually only interested in the simulated potential at the measurement sensors,
a restriction matrix R is applied, that maps the large potential vector u onto the FE
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2 Theory

nodes corresponding to the measurement electrodes (if the electrodes are not part of the
FE mesh interpolation is required):

uEEG = R · u. (2.48)

For s electrodes and a mesh with n FE nodes R is a (s − 1) × n matrix (the potential
at the reference electrode is fixed, so it does not need to be calculated) with Rij = 1 if
electrode i is mapped to FE node j and Rij = 0 else.

Although the stiffness matrix K practically cannot be directly inverted because of its
sparseness and size, it can be done formally and thus u can be rewritten using (2.37).
Using the law of associativity then yields

uEEG = R
(
K−1J

)
=

(
RK−1

)
J = TJ . (2.49)

The matrix T is called transfer matrix. If T is known a forward calculation for the
measurement electrodes reduces to a simple matrix multiplication. To calculate the
transfer matrix its definition T = RK−1 is multiplied from the right side with the
stiffness matrix K and transposed (K = Kt as K is symmetric):

K T t = Rt (2.50)

By solving (2.50) (s− 1) times for the column vectors of Rt the transfer matrix T can
be computed.

2.7 Inverse Methods

The reconstruction of the underlying source distribution from a measured EEG dataset
is called the inverse problem. There exist many different algorithms for the solution of
the inverse problem such as the minimum norm solution, the goal function scan or the
dipole fit, which was used in this thesis and shall be briefly discussed in the next section.

2.7.1 Dipole Fit

The dipole fit is a method to determine a configuration of discrete current dipoles that
will generate a given field pattern at the m measurement sensors. After having chosen an
appropriate number n of active dipoles from a-priori knowledge the remaining parameters
location, orientation and magnitude of each dipole have to be determined.

First, the non-linear location parameters q are determined. The linear parameters
orientation and magnitude are then to be calculated, such that the difference between
measured and simulated data is minimized.

To find the linear parameters from a given set q of location parameters the lead field
matrix Lq ∈ R3n×m has to be calculated, whose columns are formed by the simulated
electric potential at the measurement sensors of three unit strength dipoles in orthogonal
directions. With this lead field matrix a forward calculation of the simulated potential
usim for an arbitrary source configuration of dipoles Jq reduces to a simple matrix
multiplication:

usim = LqJq (2.51)
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2.7 Inverse Methods

Now the goal function H(q) can be formulated, which is to be minimized.

H(q) := ‖LqJq − umeas‖
!= min (2.52)

The linear parameters can now be determined e. g. by a singular value decomposition
(SVD) of (2.52).

For the calculation of the nonlinear parameters q a downhill simplex optimizer[22]
can be used, that determines a local minimum of the goal function. Therefore the goal
function is evaluated at a set of vertices qi = (q0, . . . , qn), that form a simplex in the
parameter space. The worst point with the highest goal function value is then replaced
with a point reflected through the barycenter of the remaining points, thus moving
the simplex through the parameter space. So if a minimum is found, the simplex will
contract around it. The procedure is stopped when a certain stop criterion is met, such
as the maximal number of iterations or the goal function’s absolute value gets below a
certain upper bound.

In order to avoid the optimization process getting stuck in local minima of the goal
function, it has to be repeated for different initial parameter sets qi.
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3 Tetrahedral Mesh Generation for Multilayer
Sphere Studies

The application of the FEM on the bioelectric forward problem is studied in this chap-
ter on the basis of multilayer sphere models. As the human head is spherical in a first
approximation it can be modeled as concentric spheres of different conductivities. Sec-
tion 3.1 deals with the generation of the volume conductor models which are used for
forward calculations in Section 3.6.

3.1 Mesh Generation

To generate the tetrahedra models for this thesis the software TetGen[23] was used,
which utilizes a Constrained Delaunay Tetrahedralization (CDT) approach based on a
flipping algorithm[24].

A CDT[25] is a variation of a Delaunay triangulation discussed in the following sec-
tion that always respects a given boundary[26, 27]. It is therefore suitable to create
high-quality volume conductor models for numerical calculations. As there even ex-
ist polyhedra that cannot be tetrahedralized without adding additional points[28, 29],
various point insertion approaches to generate a CDT were suggested[27, 30, 31].

TetGen uses an approach discussed in [32] and relies on the adaptive exact arithmetic
predicates by Shewchuk[33] to perform geometrical operations like insphere or orientation
tests.

A

B

C

D

E

Figure 3.1: A Delaunay Triangulation of five points in two dimensions
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3 Tetrahedral Mesh Generation for Multilayer Sphere Studies

(a) Triangulated surfaces (b) Final tetrahedra mesh

Figure 3.2: Meshing procedure: From triangulated surfaces to the final volume con-
ductor

3.1.1 Delaunay Triangulation

The Delaunay Triangulation[34] of a given vertex set V is a triangulation such that no
vertex of V lies inside the circumsphere of any simplex s forming the triangulation. For
the two-dimensional case a suitable Delaunay Triangulation of a five point set is shown
in Figure 3.1.

The Delaunay triangulation has many optimal properties making it a good starting
point for the generation of meshes used in numerical calculations. For example, it maxi-
mizes the minimum angle of the simplices while also minimizing the maximal circumradii
for a point set in R2, therefore avoiding the creation of elements that are numerically
complicated to treat. An overview with further discussion can be found in [35].

There exist several reasonably fast algorithms to generate a Delaunay Triangulation
such as flipping methods[36], a divide-and-conquer approach or incremental strategies.

3.1.2 Meshing Procedure

The final meshing procedure using the aforementioned CDT approach starts with the
creation of suitable boundary surfaces that describe the different compartments of the
model.

Sphere Models

In the case of multilayer sphere models concentric spheres with different radii (see Fig-
ure 3.2(a)) are used. By spreading nodes equidistantly on a sphere surface a triangular
discretization is obtained, that approximates the sphere more or less roughly depending
on the mean vertex distance. The more vertices are on each shell from the beginning
the finer will the created tetrahedra mesh be, because TetGen tries to incorporate every
point on the surface into the volume mesh.

Usually three or four compartments are chosen representing the skin, the skull and
the brain, which can additionally be split into CSF and brain layer. Latest studies plan
to use even more shells, e. g. by considering the skull as being three-layered (with the
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3.1 Mesh Generation

anatomically more correct separation into osseous compacta and the inbetween spon-
giosa) or differentiating between gray and white matter in the brain compartment.

After having setup the different surfaces the CDT approach can be used to generate
a tetrahedralization conforming to the surface meshes. First a Delaunay triangulation
is built from the surface vertices. Then a local degeneracy removal algorithm is applied,
which combines vertex perturbation and insertion to result in a new set of vertices which
includes the input set. From this set the final CDT (Figure 3.2(b)) is constructed using
a fast facet recovery method.

With TetGen it is also possible to apply various constraints to the shape and size of
the tetrahedra in order to increase the mesh quality and thus the numerical accuracy of
FEM calculations. The first constraint concerns the quality of the generated tetrahedra.
For a tetrahedron t with a circumsphere radius R and a shortest edge length L the
radius-edge ratio Q can be defined as

Q :=
R

L
. (3.1)

This ratio is large (Q > 2) for most badly shaped tetrahedra and small (Q < 1) for the
best-shaped ones. The minimal value of

√
6/4 ≈ 0.612 is reached for the regular tetrahe-

dron. However there is a special, nearly degenerate type of tetrahedra that undermines
this quality measure and that must be accounted for: the so-called sliver is very flat and
can have a radius-edge ratio of as small as 0.707. Therefore additional mesh smoothing
and optimization steps like local flip operations are required to remove slivers.

As a second constraint the volume of each generated tetrahedron can be confined to
a certain value, so no element with a bigger volume will be created. This is useful for
refining a mesh in certain regions where high accuracy is necessary.

Realistic Head Model

For a realistic head model the compartment boundaries are based on the individual sub-
jects registered and segmented magnetic resonance (MR) images. The use of computed
tomography (CT) imaging is also possible but ruled out for healthy subjects because of
the inappropriate exposure to ionized radiation.

There are several methods of contrasting an MR image based on different pulse se-
quences. For instance, on a T1-weighted image gray matter and liquor or the boundary
between skull and scalp can be easily distinguished. After recording of an image sequence
the different image slices have to be aligned in order to compensate for movement ar-
tifacts and the like. The image is then partitioned into regions of similar gray values
that represent the different head compartments. By discretizing the surfaces of those
compartments the starting point for the CDT meshing approach as described above is
reached.

It is important for the mesh generation that the generated surfaces do not intersect
each other. That means that two facets may only intersect at a shared vertex, segment
or a union of shared facets and vertices.
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3 Tetrahedral Mesh Generation for Multilayer Sphere Studies

Conductivity Assignment

In order to compute a solution for the finite element equation system that results from
the volume conductor every tetrahedron needs to be assigned a conductivity σ. TetGen
is able to automatically assign a label to every created tetrahedron depending on the
compartment it is located in. This label number then corresponds to the real conduc-
tivity value in the calculations.

The automatic label assignment procedure in TetGen loops over every tetrahedron
and spreads the label value to its neighbors, until it stops at a boundary. Therefore it
is able to assign different labels to each closed compartment in the model.

3.2 Multilayer Sphere Models

Using the mesh generation techniques described in Section 3.1.2 three groups of isotropic
four layer sphere models with varying parameter constraints were created. These are
based on the geometric properties of the underlying volume conduction model of the
human head. The innermost compartment represents the brain (red in all the figures), it
does not differentiate between white and gray matter. Then follow, as already mentioned
in Section 3.1.2, the CSF (light green), skull (dark blue) and skin (yellow) layers.

In order to study the influence of different parameter combinations on the accuracy of
the numerical result, the parameters tetrahedra volume and surface triangle edge length
are evaluated in the meshes of Group 1 and 2. Meshes of Group 3 then combine the
best results of the other two in order to achieve minimal error values for the subtraction
approach.

3.2.1 Group 1 - Volume Constrained Meshes

On each sphere surface 2957 points were distributed which leads to mean mesh resolu-
tions of 5.7 mm for the innermost shell up to 6.8 mm for the outmost sphere surface.

Skin Skull CSF Brain

Radius in mm 92.0 86.0 80.0 78.0
Conductivity in S/m 0.33 0.0042 1.79 0.33

Table 3.1: Parameters of the isotropic four layer sphere models

To evaluate the impact of constraining the tetrahedra volume to 1 mm3 in the different
head compartments a mesh with isotropic conductivity values (see Table 3.1) was gener-
ated for every combination of affected compartments. Furthermore the effect of quality
meshing in the unconstrained model and a higher refinement for certain compartments
was investigated. Table 3.2 shows the parametrization of all meshes that were used in
the first part of the multilayer sphere studies. The cross-sections of the models with
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3.2 Multilayer Sphere Models

Constraints #Points #Elements

unrefined -1 -1 -1 -1 29462 165578
unrefined-q -1 -1 -1 -1a 39069 226404

fineskin -1 -1 -1 5 42974 238645

fineskull -1 -1 1 -1 124491 768271

fineskull-skin -1 -1 5 5 58854 338385
fineskull-skin* -1 -1 1 1 230538 1399786

fineCSF -1 1 -1 -1 34149 191716
fineCSF* -1 0.1 -1 -1 373380 2275401

fineCSF-skin -1 0.8 -1 5 57820 324987
fineCSF-skin* -1 0.1 -1 1 527833 3255504

fineCSF-skull -1 1 1 -1 124265 766754

fineCSF-skull-skin -1 1 2 2 117875 705085

finebrain 5 -1 -1 -1 140185 878325

finebrain-skin 1 -1 -1 1 696139 4403633

finebrain-skull 1 -1 1 -1 668407 4274257

finebrain-skull-skin 1 -1 1 1 773966 4901874

finebrain-CSF 1 1 -1 -1 578013 3696820

finebrain-CSF-skin 1 1 -1 1 697483 4411590

finebrain-CSF-skull 1 1 1 -1 667530 4268487

fineall 1 1 1 1 773846 4900971

Table 3.2: The parametrizations of the volume meshes used. The volume constraints
are ordered from inmost compartment to outmost, i. e. from left to right
brain, CSF, skull and scalp compartment
a: Model unrefined-q was meshed with a quality constraint of q = 1.2, see Sec-
tion 3.1.2.
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3 Tetrahedral Mesh Generation for Multilayer Sphere Studies

One refined compartment
fineskin fineskull fineCSF* finebrain

Other
unrefined unrefined-q fineCSF fineall

Figure 3.3: Cross-sections of some of the tetrahedral meshes with different volume
constraints of Group 1

only one refined compartment as well as the unrefined ones are shown in Figure 3.3.
The remaining meshes with two or more refined compartments are listed in Figure B.1
on page 96.

It is notable, that the model fineCSF looks quite similar to the unrefined one, because
a volume constraint of 1 mm3 is obviously not small enough for the very thin CSF
layer. Therefore that model was not used in the further evaluation. Instead the model
fineCSF* was created with an even tighter volume constraint of 0.1 mm3 for the CSF
compartment.

3.2.2 Group 2 - Surface Resolution Adapted Meshes

Another point of interest is the influence of the surface triangles’ edge length on the
accuracy of the forward solution.

Group 2a
To demonstrate the effect of increasing the spheres’ surface resolution h (which will
force TetGen to generate smaller tetrahedra close to the surfaces) first two models are
presented with different values of h. The first model, o11781, had 11781 nodes on
each sphere shell before meshing and resulted in a tetrahedra mesh consisting of 69602
nodes and 390677 elements. Its mean surface resolution is h1 = (3.1 ± 0.4) mm. The
same procedure with 31860 nodes on each sphere surface generated model o31860 with
214447 nodes and 1246470 elements. It therefore has a higher surface resolution of
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3.2 Multilayer Sphere Models

(a) The model o11781 (b) The model o31860

Figure 3.4: The two meshes of Group 2a with different surface resolutions h

h2 = (1.9± 0.3) mm.

Group 2b
For a more thorough analysis of the numerical error’s h-dependence six other sphere
meshes were generated with gradually increasing surface mesh resolutions and also with-
out any volume constraints. The geometrical properties were again the same as before,
so the outmost sphere radius is 92 mm. The final meshes’ properties are shown in Ta-
ble 3.3. To create the meshes with a higher sphere surface resolution the coarsest mesh
was gradually refined.

A B

P

Figure 3.5: Refinement of a sphere triangulation by adding a new point P on the sphere
surface instead in the middle of AB

In order to keep these refined meshes as close as possible to the original ones, the
idea is to add additional points to an existing mesh instead of recreating a new sphere
triangulation with a finer volume constraint. Instead of just adding a new point P in
the middle of AB as TetGen would do if used to refine a mesh, the new node is shifted
towards the sphere surface to better approximate the curved outline. The principle is
shown in Figure 3.5.

This refinement process was performed two times on a mesh with a mean surface
resolution of ca. 8 mm and on another mesh with 6 mm leading to the six tetrahedra
meshes listed in Table 3.3. Cross-sections of these are shown in Figure 3.6.

Another refinement series was carried out on a model with an inmost-sphere-radius of
only 74 mm, so the influence of a thicker CSF layer can be studied (see Figure 3.7 and
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edge length h #nodes #elements
in mm

8mm 8.05± 1.09 7500 38866
6mm 6.11± 0.77 13604 71045
4mm 4.01± 0.54 34636 188958
3mm 3.01± 0.38 69498 384090
2mm 2.00± 0.27 190126 1093263

1.5mm 1.50± 0.19 364691 2100452

Table 3.3: The tetrahedra meshes of the first refinement group in Group 2b

hstart = 8 mm
h = 8 mm h = 4 mm h = 2 mm

hstart = 6 mm
h = 6 mm h = 3 mm h = 1.5 mm

Figure 3.6: The tetrahedra meshes of the first refinement group in Group 2b

edge length h #nodes #elements
in mm

6mm 6.05± 0.76 13621 71130
3mm 2.97± 0.37 75855 426072

1.5mm 1.48± 0.19 445396 2616464

Table 3.4: Parameters for the meshes of Group 2b shown in Figure 3.7
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3.2 Multilayer Sphere Models

Refinement Group 2
h = 6 mm h = 3 mm h = 1.5 mm

Figure 3.7: The tetrahedra meshes of the second refinement group in Group 2b. The
spheres’ radii were 92, 86, 80 and 74 mm

Table 3.4).
The third series of refined models were created with equally thick head compartments.

The resulting models are shown in Figure 3.8 and the properties are listed in Table 3.5.
Every layer in the last three models is 10 mm thick, thus not appropriately describing
the human head any more.

Refinement Group 3
h = 10 mm h = 5 mm h = 2.5 mm

Figure 3.8: The tetrahedra meshes of the third refinement group in Group 2b. The
spheres’ radii were 90, 80, 70 and 60 mm
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edge length h #nodes #elements
in mm

10mm 10.35± 1.30 3652 18427
5mm 5.09± 0.65 19984 109548

2.5mm 2.53± 0.32 109976 635177

Table 3.5: Parameters for the meshes of Group 2b shown in Figure 3.8

3.2.3 Group 3 - Specifically Tuned Meshes

As a last mesh group two meshes shall be presented that resulted for the first time in
RDM values under 1 % for nearly all eccentricities. To achieve this good numerical
quality, a high sphere surface resolution was combined with specific volume constraints
to create a fine mesh with very regular tetrahedra. The first model, labeled o11781-Skin

(a) The model o11781-Skin (b) The model
o31860-CSF-Skin

Figure 3.9: The two specifically for the subtraction approach designed meshes

and displayed in cross-section in Figure 3.9(a), was constructed by distributing 11781
points on each of the four spheres which leads to a mean surface triangle edge length
of 3.1 ± 0.4 mm. Meshing this model with TetGen while applying a volume constraint
for the skin compartment of 1 mm3 results in a model with 149102 nodes and 905539
tetrahedra elements.

The same procedure was used for the o31860-CSF-Skin-model as seen in Figure 3.9(b),
only this time 31860 nodes on each shell and different volume constraints were used.
The mean surface resolution before meshing was 1.9 ± 0.3 mm and not only the skin
compartment but also the CSF section was volume constrained to 1 mm3 and 0.1 mm3

respectively. The total number of nodes after meshing was 360056 and 2165281 elements
were created.

3.3 Sensor Configuration

In the multilayer sphere studies an artificial electrode cap was used containing 748 mea-
surement points. These were distributed regularly on a sphere shell with 92 mm radius.
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The sensor locations on the corresponding sphere are shown in Figure 3.10.

Figure 3.10: The artificial 748-electrode cap used in the multilayer sphere studies

3.4 Error Measures

To quantify the deviation between (quasi-)analytical potential Φana and the numerical
solution Φnum usually three different kind of error measures are used.

The relative error (RE) is generally defined as

RE :=
||Φnum − Φana||2

||Φana||2
. (3.2)

where || · ||2 denotes the L2-norm which is defined for n sensors as

‖x‖2 :=

√√√√ n∑
i=1

x2
i . (3.3)

One major drawback of the RE is the fact that it does not differentiate between a
topographical error and a magnitude error. To better distinguish between these two,
Meĳs et al.[37] introduced the relative difference measure (RDM), that mirrors changes of
the dipole position and orientation, and the magnification factor (MAG), which indicates
source strength differences. RDM and MAG are defined as follows:

RDM : =
∣∣∣∣∣∣∣∣ 1
||Φana||2

Φana − 1
||Φnum||2

Φnum
∣∣∣∣∣∣∣∣

2

(3.4)

=
√

2 (1− cos ∠(Φana; Φnum)) (3.5)

MAG : =
||Φnum||2
||Φana||2

(3.6)

As the RDM is therefore bounded by 0 (minimal value) and 2 (maximum) respectively,
a percental value can be defined:

RDM(%) := 100 · RDM/2 (3.7)
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3 Tetrahedral Mesh Generation for Multilayer Sphere Studies

The same can be done for the MAG, whose optimal value is 1. This leads to the definition

MAG(%) := |1−MAG| · 100 (3.8)

3.5 Validation Platform

In order to evaluate the numerical errors of a forward simulation approach a validation
platform has to be set up, by which the quality of the method can be quantified. For
this purpose seventy-seven dipoles were placed inside the inmost sphere of the four layer
sphere models pointing either radially outwards or in the tangential direction as shown
in Figure 3.11 (only some dipoles are shown for better visualization). The dipoles have
an eccentricity1 ranging from 0 % to 99 %, as the last dipole is only 1 mm away from
the conductivity jump between brain compartment and CSF layer.

(a) Radial direction (b) Tangential direction

Figure 3.11: Dipoles in radial (left) and tangential (right) direction placed in the
spheres for validation purposes

Realistic sources in the human head however are usually located in the middle of the
cortex, which is approximately 4 mm thick. Therefore the most relevant source with
regard to the real situation in the head is the penultimate with a distance of 2 mm to
the next compartment. The last source used in the validation procedure was therefore
placed to strongly challenge the numerics. A convergence analysis for the errors and
reasoning for higher values close to conductivity jumps is found in [20].

For each of these seventy-seven dipoles the forward solution can be calculated using
the numerical method of choice and it can be compared with the analytical solution
derived by de Munck’s formula (2.26). The error between both can then be quantified
by the value of the RE or further differentiated using the RDM and MAG mentioned
above.

1The eccentricity is defined as the quotient of the dipole’s distance to the center of the sphere and the
radius of the inner shell.

34



3.6 Results

3.6 Results

On the following pages the numerical errors (RDM and MAG) with regard to the ana-
lytical solution for the three mesh groups are shown. These are calculated as explained
in the previous section.

As dipole model the subtraction approach (see Section 2.5.2) was used. The accuracy
of the PCG-solver was set to 10−9.

For Group 1 only certain models are presented, an overview of all the meshes’ errors
can be found in Appendix B.1.

35



3 Tetrahedral Mesh Generation for Multilayer Sphere Studies

 0

 0.5  1

 1.5  2

 2.5  3

 3.5  4

 4.5

 0
 10

 20
 30

 40
 50

 60
 70

 80
 90

 100

RDM in %

E
ccentricity in %

unrefined
fineskin
fineskull

fineC
S

F
*

finebrain

 0

 0.5  1

 1.5  2

 2.5  3

 0
 10

 20
 30

 40
 50

 60
 70

 80
 90

 100

RDM in %

E
ccentricity in %

unrefined
fineskin
fineskull

fineC
S

F
*

finebrain

 0.85

 0.9

 0.95  1

 1.05

 1.1

 1.15

 1.2

 0
 10

 20
 30

 40
 50

 60
 70

 80
 90

 100

MAG

E
ccentricity in %

unrefined
fineskin
fineskull

fineC
S

F
*

finebrain

 1

 1.005

 1.01

 1.015

 1.02

 1.025

 1.03

 1.035

 1.04

 0
 10

 20
 30

 40
 50

 60
 70

 80
 90

 100

MAG

E
ccentricity in %

unrefined
fineskin
fineskull

fineC
S

F
*

finebrain

F
igu

re
3.12:

R
D

M
(top)

and
M

A
G

(bottom
)

for
the

4
m

odels
ofG

roup
1

w
ith

only
one

refined
com

partm
ent

(volum
e

constraint
of

1
m

m
3)

and
the

unrefined
one

for
radial(left)

and
tangential(right)

dipole
directions

36



3.6 Results

Group 1 - Volume Constrained Meshes
Figure B.2 on page 97 shows that for all models listed in Table 3.2 the RDM does not
exceed a value of 5 % while the MAG stays between 0.85 and 1.2 in the worst cases.

When only one compartment is meshed with a tight volume constraint the figure
on the left shows that for best numerical accuracy with the subtraction approach this
compartment should be the skull. Tetrahedra with a maximal volume of one cubic
millimeter produce an RDM value below 2.5 % for all eccentricities and a maximal
MAG of below 1.02 in this case. The overall error in form of the RE is then below 5 %.

Table 3.6 shows the errors for the most eccentric dipole position ordered by the RE
value for the radial direction.

Model RE RDM MAG RE RDM MAG
rad rad rad tang tang tang
in % in % in % in %

fineskin 20.418 3.27652 1.19124 3.73592 1.13187 1.02946
fineCSF 15.5835 4.4411 0.867951 5.7672 2.6683 1.02049

unrefined 14.4581 4.48384 0.882498 6.40246 2.57144 1.03683
finebrain 13.8677 4.42775 0.889286 6.60982 2.59129 1.0397
fineskull 4.86713 2.35631 0.986673 2.73551 1.04066 1.01754

Table 3.6: Errors for the most eccentric dipole in the meshes of the Group 1

If more compartments are taken into account for refinement, one can see from the
zoomed Figure B.3 on Page 98 that then even RDM values of below 1.5 % are achievable.
By refining brain, skull and skin or simply all compartments the RE for both directions
stays below 2.1 %

So for the meshes of Group 1 that were created from pretty coarse sphere surface
meshes especially constraining the tetrahedra volume of the outer compartments leads
to increased numerical accuracy.

This relates to the large potential gradient of dipolar current sources close to conduc-
tivity discontinuities that cannot be approximated good enough by the finite element
ansatz functions if there are just few very big elements between the source and the
conductivity jump.
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3.6 Results

Group 2a - Surface Resolution Adapted Meshes
The first two meshes of Group 2 show the expected decrease of the RDM values for
a higher surface resolution. Whereas the coarse model’s obfl11781-all RDM values
range between 1 and 2 %, they drop to between 0.5 and 1.2 % for the finer one.

Model RE RDM MAG RE RDM MAG
rad rad rad tang tang tang
in % in % in % in %

obfl11781-all 3.27032 1.62479 0.995757 3.72014 1.84846 0.995111
obfl31860-all 2.41426 1.18658 1.00416 2.59294 1.27688 1.00418

Table 3.7: Errors for the most eccentric dipole in the meshes of the Group 2a

With the exception of the most eccentric dipole location the MAG in radial direction
is better for the coarser model. Even for this outlier the relative error is below 4 %, as
shown in Table 3.7.

The increase of numerical accuracy is reasonable as the subtraction approach includes
the evaluation of the surface integral (2.47), which will be better approximated the
higher the outer surface resolution becomes.
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3.6 Results

Group 2b - Surface Resolution Adapted Meshes
The gradually refined meshes show the expected error convergence for both directions
in the RDM as well as in the MAG values. The biggest error in all modalities belongs
to the coarsest model, while the finest mesh with h = 1.5 mm produces the best errors
of below 1.3 % RDM for all eccentricities. The extraordinary high RDM value for the
last dipole 8 mm-model probably relates to a badly shaped tetrahedron, as the errors
for the other refinement groups are by far not so huge.

The highest occurring errors are listed in Table 3.8. They belong to the last source
which is only one millimeter away from the conductivity jump to the CSF compartment.
This relation for the relative error is also visualized in Figure 3.15.
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Figure 3.15: RE of the dipole with highest eccentricity of the first refinement group in
Group 2b depending on the surface resolution h

As the sphere surface resolutions become gradually finer the real shape is approximated
better and better. Therefore the numerical error decreases. A theoretical reasoning for
this convergence towards the exact solution is given in [20].

h RE RDM MAG RE RDM MAG
rad rad rad tang tang tang

in mm in % in % in % in %

8 82.202 42.670 0.352968 58.393 16.300 1.43421
6 17.7 5.669 1.13015 18.941 4.7871 1.15892
4 7.3048 2.4348 0.944352 10.553 2.9209 1.08621
3 2.797 1.3761 1.00467 5.3989 2.1980 1.03039
2 4.9752 2.4457 1.00797 2.122 1.0054 1.00658

1.5 2.706 1.2956 1.00748 1.3505 0.63107 1.00473

Table 3.8: Errors for the most eccentric dipole in the meshes of the first refinement
series of Group 2
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3.6 Results

The error convergence towards the analytical solution when increasing the surface
mesh resolution can also be seen if the CSF compartment is made thicker, as is the case
for the meshes of the refinement group 2.

Table 3.9 lists the errors for the most eccentric dipole and Figure 3.17 depicts the
dependence of the relative error from the mesh resolution h.

h RE RDM MAG RE RDM MAG
rad rad rad tang tang tang

in mm in % in % in % in %

6 12.4596 4.77351 0.915252 23.3077 2.87671 1.22422
3 5.42823 2.70347 1.00356 4.44889 2.21003 1.00417

1.5 4.2178 2.10626 0.996825 3.64848 1.79317 1.00609

Table 3.9: Errors for the most eccentric dipole in the meshes of the second refinement
group in Group 2b
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Figure 3.17: RE of the dipole with highest eccentricity of the second refinement series
of Group 2b depending on the surface resolution h
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3.6 Results

Even if all the outer compartments are modeled with the same thickness of one cen-
timeter (refinement group 3) the numerical errors to the analytical solution are in the
same range as for the second refinement series. As seen in Figure 3.18 the RDM value
is below 10 % for all dipoles and the MAG is close to 1 at least for the two finer models.
Table 3.10 lists the errors for the last dipole position, which are also plotted against the
surface resolution h in Figure 3.19.

h RE RDM MAG RE RDM MAG
rad rad rad tang tang tang

in mm in % in % in % in %

10 22.6859 7.89137 0.824112 47.3902 3.33986 1.46695
5 8.68974 4.16261 0.97139 10.0043 4.59151 1.0357

2.5 5.82281 2.88257 1.00668 5.65428 2.82825 0.998621

Table 3.10: Errors for the most eccentric dipole in the meshes of the third refinement
group in Group 2b
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Figure 3.19: RE of the dipole with highest eccentricity of the third refinement group
of Group 2b depending on the surface resolution h
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3.6 Results

Group 3 - Specifically Tuned Meshes
As mentioned above the last two multilayer sphere meshes were specifically tuned for
the numerical needs of the subtraction approach, so the RDM values for both radial and
tangential sources are below 1 % for all but the last source.

The MAG is very close to the optimal value of 1, only for the last dipole position there
is a bigger difference of about 0.05 (for the radial direction).

Model RE RDM MAG RE RDM MAG
rad rad rad tang tang tang
in % in % in % in %

o11781-Skin 4.45636 0.775647 0.958103 4.43942 1.16863 0.961982
o31860-CSF-Skin 1.23972 0.619797 0.999731 0.82759 0.404854 0.998256

Table 3.11: Errors for the most eccentric dipole in the meshes of the Group 3

The meshes of Group 3 perform best regarding numerical accuracy because they com-
bine high initial sphere surface resolutions with tight volume constraints for the skin and
CSF compartment respectively.

Judging from the results of the Group 1 meshes it should be possible to lower the
numerical errors even further by also constraining the tetrahedra volume in the brain
compartment, though the computational effort would then be even higher than for the
two million elements of the o31860-CSF-Skin model.

A study basing partially on this work and comparing the subtraction approach to
other dipole approaches and different solver methods can be found in [1].

47





4 Application on Realistic Head Models

In this chapter the previously mentioned mesh generation techniques are applied to
construct a realistic head model with an implanted intracranial electrode grid made from
an electrically isolating silicone elastomer. The impact of this very badly conducting
sheet of plastic on EEG measurements is studied as well as its influence on inverse
techniques like source localization. Finally the generated volume conductor model is
used to perform source localization on a highly dipolar EEG pattern measured in an
epilepsy patient.

4.1 Motivation

Epilepsy is a common neurological disorder affecting over 50 million people worldwide
and remains inadequately controlled in 30% of the patients. Even those whose seizures
are controllable may suffer from chronic medication side effects and cuts in their personal
lives[38].

Presently treatment options for patients suffering of epilepsy that cannot be treated
medically narrow down to implantation of a vagus nerve stimulator that is connected to
the subject’s chest wall or surgical removal of the epileptogenic areas of the brain[39, 40].
Whereas the implantation of the nerve stimulator rarely leads to complete seizure free-
dom the epilepsy surgery has best chances of providing a cure, but it is only applicable,
when the source region of the epileptic foci can be accurately localized and safely re-
moved.

The current concept for epileptic seizures assumes a discrete area of the brain be-
coming active, the so called Ictal Onset Zone IOZ. The activation then propagates to
the surrounding tissue, the Epileptogenic Zone EZ, to generate seizures. It is believed,
that upon removal of both the IOZ and the attached EZ the patient should become
seizure-free[41].

In order to localize this IOZ patients EEG data are recorded during a seizure and the
active brain areas are reconstructed by means of source analysis.

4.2 Epilepsy Patient’s Head Model

In a preliminary data collection for a larger epilepsy study at the Mayo Clinic, Rochester,
USA, the University of California, San Diego and the University of Utah, Salt Lake City,
one subject with medically intractable epilepsy underwent intracranial monitoring and
had a 78 channel iEEG electrode grid implanted[5]. Simultaneously a regular 29 channel
surface EEG was recorded. To implant the electrode grid, the subject’s head was opened
and part of the skull removed. Then the plastic sheet was placed directly on the cortex,
and the wound was closed with a pressure bandage.
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4 Application on Realistic Head Models

Presurgically a T1-MRI was recorded with a resolution of 256 slices in axial, 256 in
sagittal and 120 in coronal direction and a voxel-size of 0.86×1.6×0.86 mm. Furthermore,
a post-surgical CT was taken with a resolution of 68 slices in axial, 512 in sagittal and
635 in coronal direction and a voxel-size of 0.49× 0.49× 2.65 mm (see figure 4.1). The
iEEG electrode positions were reconstructed from the CT.

(a) Pre-surgical MRI, registered and
segmented

(b) Post-surgical CT

Figure 4.1: Pictures with implanted electrodes grid. (a) Pre-surgical MRI with skull
trepanation hole, (b) Post-surgical CT with 2 electrode grids and 4 sEEG
electrodes visible (down right)

For data evaluation and numerical simulations a three-dimensional volume conduc-
tor model was then constructed from the image slices. Therefore the MRI dataset was
loaded into the commercial software Curry[42] which is able to segment the different
compartments of the brain by their gray value. The triangulated surfaces of the seg-
mented brain compartments were then exported and subjected to a meshing procedure
with TetGen as described in Section 3.1.2.

4.2.1 Modeling the Plastic Sheet

In order to generate a three-dimensional tetrahedral mesh of the plastic sheet from the
given electrode positions (Figure 4.2(a)) first a closed surface has to be created, that
can be meshed with TetGen. To do so each of the 108 given points defining the two-
dimensional surface was shifted in the average surface normal direction of the triangles
it belongs to (see Section A.1 for a detailed explanation), thus creating a second surface
(the green line in Figure A.1(c) on Page 92).

The resulting model of the plastic sheet has a thickness of 0.127 mm, which forces the
mesh generator to create a big number of very small tetrahedra.

Because of the brain shift[43] and the different imaging modalities the electrode lo-
cations and the head compartments are based on, the grid surface intersects with the
brain surface at several points. Moreover also the inner and outer skull surface pose a
problem, because both base on pictures where already a big part of the skull is missing.
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4.2 Epilepsy Patient’s Head Model

(a) Two-dimensional grid sur-
face

(b) Three-dimensional closed
surface suitable for meshing

(c) Final tetrahedral mesh of
the grid

Figure 4.2: From two-dimensional surface to three-dimensional tetrahedra mesh

The resulting hole and the implanted grid can not be modeled by closed surfaces any-
more as TetGen requires. The skull is further problematic in the lower areas near the
neck, where the spine passes through. The skin surface layer also leads to intersections
in that area because the MR data ends there.

Therefore another approach was taken. First the non-intersecting surfaces that Tet-
Gen can mesh without problems are used to create a preliminary head model without
any volume constraints. This does not incorporate every head compartment and has
very large tetrahedra away far from the surface. One by one the missing compartments
(including the grid) are added to the model by inserting the surfaces’ points using Tet-
Gen’s -I-switch. With this option it is possible to add a list of points to an existing
tetrahedra mesh.

Using this technique on the problematic surfaces of the outer and inner skull resulted
in a tetrahedra model that incorporates the layers skin, skull with trepanation hole, CSF,
brain and the plastic sheet. The final realistic head model with the inserted grid points
is presented in Figure 4.3. It consists of 116651 nodes which form 662099 tetrahedra.

But as in the process points are inserted into an already existing tetrahedra mesh the
automatic labeling algorithm of TetGen (see Section 3.1.2) cannot determine which ma-
terial each tetrahedron has to be assigned. Therefore after mesh generation an additional
labeling step has to be performed in order to assign the correct conductivities.

The labeling approach used in this thesis identifies each tetrahedron by its barycenter
and checks if it lies inside a given closed surface. It is described in detail in Section A.2.
This conservative approach is very slow, because for every tetrahedron of the 662099
elements it has to loop over every triangle of the defining surface. At a resolution of
2.5 mm these surfaces have about 20000 to 30000 triangles. Therefore the runtime of
the labeling algorithm lasts even on a dual core Desktop machine for several hours.

To evaluate the impact of the grid on source simulations and reconstruction a second
model without implanted plastic sheet was created by using the aforementioned labeling
approach and assigning every tetrahedron belonging to the plastic sheet the conductivity
of the CSF, thus effectively removing the sheet.
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4 Application on Realistic Head Models

(a) Cross-sections in sagittal, frontal and transversal directions

(b) Zoomed into grid region

Figure 4.3: Realistic FEM model of the epilepsy patient’s head with the intracranial
electrode grid (light blue)
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4.3 Sensor Configuration

4.3 Sensor Configuration

As mentioned in section 4.2 for the data acquisition of the epilepsy patient a surface
EEG and an intracranial EEG were recorded simultaneously. Figure 4.4(a) shows the
location of the 30 sEEG electrodes in relation to the brain surface while Figure 4.4(b)
depicts the implanted plastic sheet with the subdural electrode layer.

(a) The 30 sEEG sensor locations (b) The 78 iEEG sensor locations

Figure 4.4: The locations of the 108 electrodes which where measured simultaneously

The plastic sheet in fact consists of two separated electrode layers, a small 4 × 6-
electrode sheet and a bigger 6 × 8-electrode grid with only 46 sensors. Furthermore a
separate strip consisting of eight measurement sensors was deposited in the interhemi-
spheric fissure (fissura cerebri longitudinalis).

4.4 Error Measures

In the following sections forward and inverse calculations are compared, that were gen-
erated with and without the grid. In inverse computations, the reference data were
simulated in the model with grid and the dipole fits were always run in the model
without the grid.

4.4.1 Errors in forward calculations

To describe the errors between forward calculations again the RDM (3.7) and MAG (3.6)
values from Section 3.4 are used.

4.4.2 Errors in inverse calculations

To quantify the error between an original and the corresponding reconstructed current
dipole the overall error is split up in three parts that are presented separately, namely a
spatial error or error in space, an angular error and an error in magnitude. These are
examined independently from each other.
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Dipole # x y z Magnitude
in mm in mm in mm in nAm

1 110.0 102.16 150 100
2 110.0 102.16 160 100
3 110.0 102.16 170 100
4 110.0 102.16 180 100
5 110.0 102.16 190 100

Table 4.1: Locations and Magnitudes of the 5 dipoles

Error in space
An arrow is drawn from the original dipole position used to create the forward solution
to the location resulting from a dipole fit. Thus, large arrows correspond to large spatial
errors.

Error in angle
The angle between the original dipole direction a and the fitted dipoles direction b is
calculated via the dot product of the two:

∠(a; b) = arccos
a · b

||a||1 · ||b||2
(4.1)

The resulting value is displayed as a scaled colored sphere, i. e. the bigger the sphere the
larger is the angle between fitted and original dipole direction.

Error in magnitude
The last error measurement is the difference between the magnitude of the reconstructed
current dipole and the original one:

∆M = Mreconstr −Morig. (4.2)

Again scaled spheres are used to visualize this difference in the figures in Sections 4.5.2
and 4.5.2.

4.5 Results

In order to evaluate the impact of the plastic sheet on source reconstruction first its
influence on forward calculations is studied. Then the effect on inverse computations is
investigated by source analysis of synthetic forward data for different dipole positions
directly underneath the grid and throughout the whole brain volume.

The computations in this chapter were performed using the Venant dipole model (see
Section 2.5.1). The accuracy is sufficient and the speed of the current implementation
outperforms the subtraction approach by far[44].
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4.5 Results

(a) Radial (z-) direction

(b) Tangential (y-) direction

Figure 4.5: The five dipoles underneath the grid in radial (z-) and tangential (y-)
direction

Dipole number Direction RDM in % MAG

1 (farthest from the grid) radial 1.85646 1.02583
2 radial 4.2335 1.0845
3 radial 6.01525 1.11145
4 radial 6.82394 1.1033

5 (closest to the grid) radial 17.1966 1.46569

1 tangential 3.47796 1.01836
2 tangential 4.38049 1.0214
3 tangential 9.94436 1.04499
4 tangential 15.9249 0.975701
5 tangential 19.0578 1.03737

Table 4.2: RDM and MAG between forward solutions with and without grid for the
five dipoles in radial and tangential direction
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4.5.1 Influence of the plastic sheet on forward calculations

As the electrode grid will have the most influence on sources located directly underneath
it, five dipoles were placed in arising order below it as seen in Figure 4.5. Each source was
placed both in z- and in y-direction (quasi-radial and -tangential to the grid). Table 4.1
shows the respective spatial position and the induced dipole moment.

The forward solutions for these five sources were calculated using the Venant dipole
approach once for the model without the plastic sheet and once for the model with
included grid. The effect of the plastic sheet on these forward calculations is shown
in Figure 4.6 on page 57. The upper rows of Figs. 4.6(a) and 4.6(b) show the poten-
tial on the surface of the head calculated in the model without the grid, whereas the
corresponding lower rows depict the scalp potential if the grid is present.

It is noticeable that the smaller the distance of the dipole to the grid gets, the more
the potential is affected. Because of the very low conductivity of the silicone material
the grid is made of, volume currents in the head will have to flow around it thus blurring
and smearing the resulting dipolar pattern. This effect can be observed especially good
for the two topmost dipoles close to the grid.

This result is also striking in the values of the RDM calculated for the forward solution
without the grid with respect to the results with included plastic sheet. These are listed
in Table 4.2 and are maximal for the last two dipole positions. For both radial and
tangential directions one pole of the potential distribution nearly vanishes when the
source comes close to the grid. RDM values of up to 19 % for the tangential and 17 %
for the radial direction resemble this. The MAG values for the tangential sources however
do not diverge much of the optimal value 1.0, which indicates that the difference is mere
topological and the strength of the remaining unblurred pole is nearly accurate. For the
radial case the effect of the grid on the MAG is much stronger.

4.5.2 Influence of the plastic sheet on inverse calculations

As a first step in examining the grid’s impact on inverse calculations the calculated
forward potential in the model with grid (see Figs. 4.6(a) and 4.6(b), bottom row) was
used as reference for a dipole fit procedure (see Section 2.7.1) in the model without grid.
This approach will show the errors in source localization if the insulating plastic sheet
is not accounted for in a realistic head model.

In order to avoid the simplex optimizer getting stuck in local minima of the cost
function the optimization procedure was started from sixteen different seeding positions
and the solution that explains most of the input data was kept. The sixteen different
seed points are shown in Figure 4.7.

The results of the dipole fit for all five dipoles in both directions are shown in Table 4.3.
The third radial dipole has a very high error in magnitude because it was placed in a
highly conductive CSF element by the simplex optimizer which is not restricted as to
where it may put the source. Apart from this outlier the localization errors are in the
sub-centimeter range for every dipole.

56



4.5 Results

(a
)

R
ad

ia
ld

ir
ec

ti
on

(b
)

T
an

ge
nt

ia
ld

ir
ec

ti
on

F
ig

u
re

4.
6:

E
ffe

ct
of

th
e

pl
as

ti
c

sh
ee

t
on

fo
rw

ar
d

ca
lc

ul
at

io
ns

fo
r

th
e

5
di

po
le

s
in

ra
di

al
an

d
ta

ng
en

ti
al

di
re

ct
io

n
T

op
ro

w
:

ca
lc

ul
at

io
n

w
it

ho
ut

pl
as

ti
c

sh
ee

t,
bo

tt
om

ro
w

:
ca

lc
ul

at
io

n
w

it
h

pl
as

ti
c

sh
ee

t
Le

ft
to

ri
gh

t:
di

po
le

#
1

–
#

5;
T

he
sc

al
e

is
µ

V

57
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4.5 Results

Figure 4.7: The sixteen different seed points for the simplex optimizer

For a deeper understanding of the grid’s effects on source reconstruction the same
calculation method was performed for a higher number of dipole locations and directions.

To find the directions for the sources that would have the biggest impact on the inverse
calculation the following steps were carried out:

• For each dipole position three forward calculations were performed in the model
with the plastic sheet wherein which the source was oriented in x-, y- and z-
direction respectively.

• The leadfield matrix A ∈ R3×nsens was constructed which contains those forward
solutions as row vectors.

• A singular value decomposition (SVD) of A was calculated so that A = U ·Σ ·V T .
The rectangular diagonal matrix Σ then contains the so called singular values of
A which are usually ordered in a non-increasing fashion.

• The columns of the matrix U ∈ R3×3 belonging to the biggest and the smallest
singular value of A were chosen as new directions for the dipole at the current
position.

This approach accounts for a possible misslocation of the electrode cap, because it
includes the worst imaginable case of positioning: a source of interest that would
contribute the least to the measured potential at the sensors. The two considered
directions are referred to as the strong and the weak direction respectively.

• An alternative direction was determined by calculating the SVD for the matrix
B ∈ R3×nsens containing the difference of two forward solutions (with and without
the grid) in x-, y- and z-direction accordingly.

The direction belonging to the biggest singular value of B therefore is mostly
responsible for the "error", i.e. the deviation between the forward solutions with
and without grid. It will be labeled the maxerr direction in the following.
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4 Application on Realistic Head Models

By this procedure for each point three directions (maxerr, strong and weak) were con-
structed and a dipolar source was placed with these directions and a moment of 1 nAm.
For these configurations the forward solutions were calculated again in the model with
the plastic sheet and the obtained potentials at the electrodes were used as input for the
inverse solver using a dipole fit routine in the model without grid.

Errors for dipoles in the whole brain volume

The first step in evaluating the impact of the grid for a higher number of dipoles was to
place 3172 sources in the whole brain volume. This was accomplished by meshing the
2.5 mm-surface of the cortex that was exported from Curry with TetGen and using the
resulting tetrahedra corner nodes as dipole locations. Figure 4.8 shows these locations
with light blue dots.

(a) Frontal view (b) Left side view

Figure 4.8: The 3196 dipole positions spread over the whole brain volume

This series of dipole positions is referred to as the wholebrainvol dipole series. For
each of these locations the procedure described above was applied, resulting in three
error modalities as described in Section 4.4 for each of the three directions (these are
shown in Figure B.5 on Page 101).
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(a) Frontal view

(b) Left side view

(c) Bottom view

Figure 4.9: Spatial errors for the maxerr direction in the whole brain volume. The
arrows point from the original dipole position to the fitted location.
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4.5 Results

(a) Frontal view

(b) Left side view

(c) Bottom view

Figure 4.10: Angle errors for the maxerr direction in the whole brain volume. The
scale is in °.
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(a) Frontal view

(b) Left side view

(c) Bottom view

Figure 4.11: Errors in magnitude for the maxerr direction in the whole brain volume.
The scale is in nAm.
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4.5 Results

Figures 4.9 to 4.11 show the errors for the maxerr direction which are expected to be
the highest of the different directions’ values.

The spatial reconstruction error is in the subcentimeter range for the left hemisphere,
which is not influenced much by the presence of the grid. For the dipoles located in
the right hemisphere below the plastic sheet however a misslocalization of one to two
centimeters is encountered. Here it is notable that most of the error arrows point away
from the grid. The angle error is far below 20° throughout the brain volume, only at
locations very close to the grid bigger angles between original and reconstruction occur
(up to 90°). The magnitudes of the reconstructed dipoles are for most locations close
to the originals, with differences of below 1 nAm. There occur higher magnitude errors
of up to 600 % for locations deeper in the brain, especially near the spatial ventricles,
as well as for some points in the right hemisphere. This can be caused by dipoles that
were placed in a highly conductive CSF element by the optimizer, which is not restricted
regarding the location of the fitted dipoles.

The error distribution for all three modalities is shown in the upper row of Figure B.7
on Page 103.
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(a) Frontal view

(b) Left side view

(c) Bottom view

Figure 4.12: Spatial errors for the strong direction in the whole brain volume. The
arrows point from the original dipole position to the fitted location.

66



4.5 Results

(a) Frontal view

(b) Left side view

(c) Bottom view

Figure 4.13: Angle errors for the strong direction in the whole brain volume. The
scale is in °.
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(a) Frontal view

(b) Left side view

(c) Bottom view

Figure 4.14: Errors in magnitude for the strong direction in the whole brain volume.
The scale is in nAm.
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4.5 Results

For the strong direction the errors of the wholebrainvol series are shown in Fig-
ures 4.12 to 4.14. Due to the construction of the different directions the error values for
this direction should be the smallest of the three.

The spatial errors are indeed mostly smaller than for the maxerr direction (see also
Figure B.7 on Page 103, middle row, and the mean values in Table 4.4). As well as
for the other directions the arrows with maximal lengths tend to be focused under the
grid and point away from it. The angle error distribution looks quite similar, however
the absolute values are bigger for the strong direction. Especially some of the right-
hemispherical points with angle differences of more than 45° stick out. Most locations
exhibit a small to insignificant magnitude error. But again some higher errors appear
to in the proximity of the plastic sheet, that are in the range of 1 nAm.
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(a) Frontal view

(b) Left side view

(c) Bottom view

Figure 4.15: Spatial errors for the weak direction in the whole brain volume. The
arrows point from the original dipole position to the fitted location.
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(a) Frontal view

(b) Left side view

(c) Bottom view

Figure 4.16: Angle errors for the weak direction in the whole brain volume. The scale
is in °.
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(a) Frontal view

(b) Left side view

(c) Bottom view

Figure 4.17: Errors in magnitude for the weak direction in the whole brain volume.
The scale is in nAm.
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The errors for the weak direction are presented in Figures 4.15 to 4.17. At first glance
the spatial error distribution looks quite similar to the maxerr series. Also the mean
error in Table 4.4 is of the same dimension. The locations which exhibit the biggest
angle errors lie clearly in the right hemisphere just below the grid. Differences of 45–60°
are focused there, whereas for the rest of the brain volume seems the angle error does
not change very much compared to the strong direction. For very deep source locations
again slightly higher angles of up to 30° occur.

The error distribution for all three modalities is shown in the bottom row of Figure B.7
on Page 103.

Spatial Error Angle Error Magnitude Error
∅ in mm ∅ in ° ∅ in µV

maxerr 4.1429± 3.8230 6.3577± 11.5980 0.0526± 0.2771
strong 2.9995± 2.7503 3.614± 6.0093 0.0495± 0.2066
weak 3.4426± 4.0051 4.0166± 8.7346 −0.0120± 0.2166

Table 4.4: Statistics of the inverse results for the 3172 dipoles placed in the whole brain
volume

Errors for dipoles directly below the grid

In order to further evaluate the impact of the plastic sheet on sources directly below it,
the volume 2 cm underneath was meshed with a finer constraint and the generated 1959
points were also used for the forward-inverse procedure. The resulting dipole positions
are labeled the volundergrid dipole series and the three testing directions are presented
in Figure B.6 on Page 102.

(a) Frontal view (b) Left side view

Figure 4.18: The 1959 dipole positions under the plastic sheet
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(a) Frontal view

(b) Left side view

(c) Bottom view

Figure 4.19: Spatial errors for the maxerr direction in the volume underneath the grid.
The arrows point from the original dipole position to the fitted location.
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(a) Frontal view

(b) Left side view

(c) Bottom view

Figure 4.20: Angle errors for the maxerr direction in volume underneath the grid. The
scale is in °.
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(a) Frontal view

(b) Left side view

(c) Bottom view

Figure 4.21: Errors in magnitude for the maxerr direction in volume underneath the
grid. The scale is in nAm.
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As before for the wholebrainvol series the maxerr direction was examined for the
volundergrid series and the results are presented in Figures 4.19 to 4.21.

The spatial error distribution (see Figure B.8 on Page 104) is quite broad and values
from 7.5 mm to 20 mm occur with similar frequencies. It is notable that again the
majority of the arrows point away from the grid. For the angle difference the tendency
of the wholebrainvol trend can be confirmed: close to the grid the difference is as high
as 60 to 90°, deeper in the brain it becomes quickly smaller. Errors in magnitude can
only be observed for the topmost layer of dipole positions directly beneath the grid. For
the other positions a magnitude difference is quasi not existing.
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Figure 4.22: Spatial errors for the strong direction in the volume underneath the grid.
The arrows point from the original dipole position to the fitted location.
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Figure 4.23: Angle errors for the strong direction in volume underneath the grid. The
scale is in °.
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Figure 4.24: Errors in magnitude for the strong direction in volume underneath the
grid. The scale is in nAm.
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For the strong direction the errors shown in Figures 4.22 to 4.24 are the smallest of
the three also in the volundergrid series.

The spatial errors look similarly distributed as for the maxerr direction, although
smaller in amplitude. The angle error is mostly below 30°and the magnitude error is for
nearly all points mostly identical to the one of the maxerr direction.
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Figure 4.25: Spatial errors for the weak direction in the volume underneath the grid.
The arrows point from the original dipole position to the fitted location.
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Figure 4.26: Angle errors for the weak direction in volume underneath the grid. The
scale is in °.
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Figure 4.27: Errors in magnitude for the weak direction in volume underneath the grid.
The scale is in nAm.
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4.6 Source Analysis of Epilepsy Data

The general tendency that was shown for all of the directions is also applicable for the
weak direction of the volundergrid series. As shown for the other two, the spatial error
arrows presented in Figure 4.25 also generally point away from the grid and the angle
errors in Figure 4.26 are bigger for sources closer to the grid. The magnitude errors
in Figure 4.27 however are of higher amplitude than before and especially noticeable is
the increase in the volume under the gap between the two parts of the grid. Here even
differences of 2 nAm and more are exhibited, which is an error of 200 %.

Spatial Error Magnitude Error Angle Error
∅ in mm ∅ in µV ∅ in °

maxerr 13.0920± 5.4342 1.0421± 6.4726 29.8396± 18.1307
strong 8.1582± 4.4401 1.1459± 6.7287 14.1014± 11.2328
weak 10.9327± 6.9110 −0.1195± 0.4196 19.9041± 15.9477

Table 4.5: Statistics of the inverse results for the 1959 dipoles placed directly below
the grid

From the simulations of the wholebrainvol and the volundergrid dipole series it is
evident, that the modeling of the implanted plastic grid has an impact on the potential
distribution on the head surface and therefore also on source reconstruction based on
the measured signals. Misslocalizations in the dimension of some centimeters and angle
differences of up to 90° close to the grid are possible, if the plastic sheet is not considered
in realistic head models.

This is reasonable, as the ohmic volume currents, that flow from the active brain areas
to the outside measurement sensors, have to flow around the strongly insulating plastic
barrier instead of taking the direct way. This blurres and weakens the measured potential
at the electrodes, so the potential distribution looks just like one a dipole deeper in the
brain would cause if the grid would not be present.

4.6 Source Analysis of Epilepsy Data

After creating the realistic head model of the epilepsy patient it was used to analyze
measured data from the subject. For this purpose four 15-minute datasets were recorded
during drowsy sleep. These datasets were then subjected to extended infomax ICA
(Independent Component Analysis, [45]) that incorporated 107 channels (29 scalp EEG,
78 iEEG). Each decomposition returned 107 maximally independent components across
the data.

The FEM was then applied to localize the source of the highly dipolar peri-ictal IC1-
component (see Figure 4.28).

4.6.1 Model

To model the real situation as closely as possible of course the model with implanted
grid was used for source localization. As starting points for the simplex optimization
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(a) The measured iEEG potential distribution

(b) The measured sEEG potential distribution

Figure 4.28: The measured IC1 component on the iEEG and sEEG electrodes (scales
are µV)
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procedure again the sixteen seed points of Figure 4.7 were used.

4.6.2 Results

The localization results of a dipole fit procedure using the same seedpoints as in the
grid error studies (see Figure 4.7) are shown in Figure 4.29. The arrow with the number
0 represents the solution that derives from taking only the iEEG electrode data into
account. It is localized at (96.89/62.38/166.78) mm. Using only the sEEG signal results
in a dipole at position 1, (129.15/87.66/145.75) mm. Both modalities in combination
yield the solution 2 at (100.65/61.85/169.70) mm.

Figure 4.29: Reconstructed dipole positions for iEEG data only (0), sEEg data only
(1) and both (2)

The dipoles number 0 and 2 are close to the grid and in the very neighborhood of the
peaking iEEG electrode. Their distance is about 4.8 mm. The sEEG fit (arrow number
1) however is localized more than 4 cm deeper in the brain.

Goodness of Fit #Iterations

iEEG only 98.8247 % 248
sEEG only 93.5572 % 749

both sEEG and iEEG 95.3249 % 774

Table 4.6: Results of the dipole fit

Although at least the reconstructed dipole directions for iEEG and sEEG data look
quite similar, the spatial distance of both dipole solutions is unexpected. The goodness of
fit (GOF) for the sEEG-fitted dipole is about 5 % less than the GOF for the iEEG-result
(see Table 4.6.

The iEEG fit result lies directly under the grid. As seen in Section 4.5.2 if the grid
is not modeled for source reconstruction but was present for the forward calculation, a
source in that region would be localized deeper in the brain. But as the dipole fitting
was performed in the model with the plastic sheet, both inverse results should have
been nearly the same. Therefore the grid, although it has undeniably an influence on
the source localization for the brain volume underneath, is not the direct reason for the
misslocalization.
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A further reason for the fact, that the source is fitted close to the grid if both modalities
are used for the reconstruction is the amplitude difference of the two signals. While the
sEEG potential distribution has a maximal value of about 4 µV, the grids peak is at
−46 µV. Therefore fitting the source close to the grid explains a greater variance (see
Table 4.6.

In [5], the same IC1-component was analyzed without modeling the plastic sheet. For
the sEEG-based result the same discrepancy was found and the iEEG-based localization
was also close to the grid (though for certain seedpoints even above the plastic sheet,
whereas in this study the sources were localized below it in all cases).

The results of this study as well as the previous simulations without grid modeling
suggest, that the assumption, that the underlying source distribution of iEEG and sEEG
is identical in simultaneous iEEG/sEEG-ICA has to be challenged.

A weak signal-to-noise ratio might be a further source of errors, because the sEEG
electrodes have to be arranged on the pressure bandage covering the implantation wound,
which might spoil the sEEG signals.

Lastly more accurate modeling by segmenting e. g. the skull into more layers (spongiosa
and compacta, see Section 3.1.2) or differentiating between gray and anisotropic white
matter in the brain compartment might also help decrease the errors. However further
investigation is necessary to see if this really is the case.
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5 Conclusion

In this thesis the use of the finite element method (FEM) on source reconstruction was
first validated in multilayer sphere models and then applied to a realistic head model of
an epilepsy patient who had a very strongly insulating plastic sheet with iEEG electrodes
implanted for intracranial monitoring.

The multilayer sphere studies in Chapter 3 showed that the FEM solutions of the
forward problem converge towards the analytical solution with decreasing mesh size
h. Using the full subtraction approach the errors are generally very low. Refining
certain compartments of the model with a finer volume constraint for the generated
tetrahedra can increase the numerical accuracy of the forward solution. If at all possible
preferably all compartments should be refined with a tight volume constraint to get the
best numerical results. To reduce computational complexity without loosing too much
accuracy the first step is not to constrain the inner brain compartment but keep the
outer layers fine. Should for any reason no more than one layer be refined, constraining
the tetrahedra volume of the skull compartment proved best for isotropic four layer
sphere models.

The software TetGen is capable of generating very high quality tetrahedra meshes from
given triangulated surfaces. It however demands that these surfaces do not intersect each
other, a requirement that can not always be met when dealing with realistic head models
that base on patients’ individual CT and MRI data.

Using the transfer matrix method in combination with the Venant dipole approach
acceptable computation times are achievable. Once the transfer matrix is computed and
stored, a forward calculation reduces to some milliseconds on a normal desktop PC. The
matrices can also be saved and reused for later computations with the same model.

With the FEM it is possible to model a very thin iEEG plastic sheet, that patients
with medically intractable epilepsy get implanted for intracranial monitoring routinely
nowadays, as described in Chapter 4. As the whole sheet is only 0.127 mm thick it
requires a very fine mesh resolution. Once a closed surface of this sheet exists, meshing
it with TetGen results in quality mesh, that needs to be embedded in the suspect’s head
model. This proved to be a difficulty as TetGen requires closed, non-intersecting surfaces
(see above). Therefore an alternative approach of point-adding and labeling was applied
(see Section 4.2.1).

Generally the construction of realistic head models with tetrahedra from registered and
segmented image data is possible, but can become difficult in cases of skull trepanation
holes or other irregularities. A way to skip this mesh generation part would be to apply
hexahedral finite elements and simply use each MR voxel as hexahedron. The sub-
millimeter resolution of modern MRI scanners can lead to high quality volume conductor
models and the time consuming labeling step could be omitted. However modeling such
complex geometries as the implanted plastic sheet with hexahedra might prove very
difficult.

Finally applying the FEM to realistic data measured in the epilepsy patient yielded
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5 Conclusion

not quite the expected result. Using just the iEEG signal to reconstruct a very dipolar
pattern resulted in a dipolar current source directly below the grid. But reconstructing
the position only from the sEEG signal leads to a localization about 4 cm deeper in the
brain compartment.

This however resonates with the findings of an earlier study[5] were the grid was not
modeled at all. Therefore the assumption that the underlying source distribution of
iEEG and sEEG is identical in simultaneous iEEG/sEEG-ICA has to be challenged.

Another source of localization errors might result from the weak signal-to-noise ratio,
that relates to the pressure bandage covering the iEEG sheet, which might have spoiled
the sEEG electrodes’ signal.

Furthermore improving the realistic head model e. g. by modeling the skull anatomi-
cally correct as three-layered compartment or by distinguishing between isotropic gray
and anisotropic white matter in the brain layer could lead to smaller localization errors
for sEEG-only-based source reconstruction.

The FEM is the method of choice for this kind of numerics, because of its ability
to model such complex geometries and anisotropic conductivities. Using the transfer
matrix approach yields acceptable computation times that make the FEM a valuable
tool also for clinical routine.
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A Methods and Algorithms

A.1 The shifting algorithm

To generate a closed surface suitable for meshing with TetGen from the original electrode
data the following algorithm was applied (see Figure A.1):

1. Calculate the surface normal ni for each triangle ti

2. For each node calculate the average of the normals of the triangles the node is part
of:

navg =
1

#ti

∑
xi∈ti

ni (A.1)

3. Add a new point: x̃ = x+f ·navg, where f is the length the point will be projected
on in navg-direction

4. For each triangle ti define new triangle t̃i consisting of the corresponding new
vertices

5. Connect the two surfaces s and s̃ by adding appropriate “wall” triangles

6. Make sure all triangles have the correct orientation (i. e. the surface normal points
outwards) by sorting the nodes accordingly

A.2 The labeling algorithm

The solid angle Ω of an object with regard to a viewpoint V is defined as the ratio of
the area S of the object projected onto the surface of a sphere around V and the radius
r of that sphere, i. e.

Ω =
S

r
. (A.2)

For a triangle it can be efficiently calculated as ([46])

tan
(

1
2
Ω

)
=

[R1R2R3]
R1R2R3 + (R1 ·R2)R3 + (R1 ·R3)R2 + (R2 ·R3)R1

, (A.3)

where for i ∈ {1, 2, 3} the Ri denote the position vectors of the triangle corner points.
If a point P lies inside a closed surface consisting of triangles, it holds that∑

ti

Ωi = 4π. (A.4)

Therefore one can apply the following algorithm to decide whether a given tetrahedron
identified by its barycenter B lies inside or outside a closed triangulated surface s.
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A Methods and Algorithms

A
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D

E

(a) Calculate surface normals

A

B

C

D

E

A′
B′

C ′

D′

E′

(b) Shift vertices in average surface normal direction

B

C

D

A

A′
B′

C ′

D′

E′

E

(c) Connect old (black) and new (green) surfaces by ’wall’ elements (red)

Figure A.1: Shifting process (for simplification in 2-d)
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A.2 The labeling algorithm

1. Calculate the barycenter B of the tetrahedron S

2. For each triangle of the surface calculate the solid angle Ωi regarding S

3. If
∑

Ωi = 4π then B lies inside s

With this algorithm it is now possible to successively assign material labels to tetrahedra
according to a given surface. As every tetrahedron inside the surface is labeled, one must
start with the outmost surface (in this case, the outer skull surface) and continue inwards
with the inner skull, the brain and the plastic sheet surfaces.
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B Additional Figures

B.1 Multilayer Sphere Studies

On the following pages some additional figures are listed that thematically belong to
Chapter 3.

First the remaining meshes of Group 1 are presented in Figure B.1. These are the
eight meshes with two refined compartments and the four with only one unrefined layer.

Figure B.2 shows the RDM and MAG values of Group 1’s meshes for all eccentricities.
To better distinguish the different models Figure B.3 zooms into the last five eccentrici-
ties. A better overview of the overall error is given by presenting the RE in Figure B.4.
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B Additional Figures

Two refined compartments
fineskull-skin fineskull-skin* fineCSF-skull finebrain-skull

Two refined compartments
fineCSF-skin fineCSF-skin* finebrain-skin finebrain-CSF

Three refined compartments
fineCSF-skull-skin finebrain-skull-skin finebrain-CSF-skin finebrain-CSF-skull

Figure B.1: Cross-sections of the remaining 12 tetrahedral meshes with different vol-
ume constraints of Group 1. The corresponding parametrizations of the
models are shown in Table 3.2.

96



B.1 Multilayer Sphere Studies
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B Additional Figures
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B.1 Multilayer Sphere Studies
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Figure B.4: RE for every tetrahedra model shown in Table 3.2 in chapter 3
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B Additional Figures

B.2 Epilepsy Patient’s Head Model

B.2.1 Directions

In Section 4.5.2 three directions called maxerr, strong and weak were defined for each
source location in the epilepsy patient’s head model. These are visualized in Figure B.5
for the wholebrainvol series and in Figure B.6 for the volundergrid dipole series.

Particularly the volundergrid series shows the influence of the grid. It is notable,
that most arrows for the maxerr direction point towards the mid of the grid, which
is explainable by the definition of the direction. As it points into the direction, that
produces the biggest difference between forward solutions with and without grid, it is
reasonable for locations below the grid, that dipoles pointing towards the middle of the
sheet will produce the biggest differences. Because for such directions, the impressed
primary currents point directly towards a strong insulator which causes the ohmic re-
turn currents to blur much more than for sources pointing directly to a measurement
electrode.
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B.2 Epilepsy Patient’s Head Model
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B Additional Figures
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B.2 Epilepsy Patient’s Head Model

B.2.2 Error Statistics

To shed further light on the error statistics for the realistic head model of the epilepsy
patient the error distribution of all three types of errors defined in Section 4.4 for the
three directions is plotted for the wholebrainvol series in Figure B.7.
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Figure B.7: Error distribution of the wholebrainvol dipole series for the maxerr (top
row), strong (middle row) and weak direction (bottom row)

The spatial error is below 5 mm for at least 74 % (in the case of the maxerr-direction)
of the test locations (see Table B.1).

Direction Lat. Error < 5 mm Angle < 20 ° Magn. Diff. < 1 nAm
maxerr 74.1 % 93.3 % 98.2 %
strong 86.0 % 96.8 % 98.8 %
weak 82.6 % 95.5 % 99.7 %

Table B.1: Error distribution statistics for the wholebrainvol dipole series
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B Additional Figures

Figure B.8 shows the same statistics for the volundergrid dipole series in the volume
under the grid.
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Figure B.8: Error distribution of the volundergrid dipole series for the maxerr (top
row), strong (middle row) and weak direction (bottom row)

The error distribution for the volundergrid dipole series is for all directions much
broader und reaches to higher error values than the wholebrainvol distribution. Ta-
ble B.2 also illustrates this, as particularly the spatial errors are much worse than for the
wholebrainvol series. This once again emphasizes the importance of modeling electrode
grids made from strong insulating materials when constructing realistic head models.

Direction Lat. Error < 5 mm Angle < 20 ° Magn. Diff. < 1 nAm
maxerr 4.0 % 36.0 % 87.7 %
strong 26.8 % 78.5 % 89.1 %
weak 23.5 % 57.9 % 97.6 %

Table B.2: Error distribution statistics for the volundergrid dipole series
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