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1 Introduction

Brain activity is directly correlated to electric activity in the brain. When a task is
processed electric currents in the dimension of a few nAm are flowing in the active area
of the brain. These currents produce electric potentials on the surface and magnetic
fields outside of the head. The first measurement of a human electroencephalogram
(EEG), that is the measurement of the electric potentials on the surface of the head,
was done in 1929 by H. Berger[4]. Around forty years later D. Cohen first recorded
the magnetic fields produced by the brain, the magnetoencephalogram (MEG)[7]. The
sensitivity of the MEG and therefore its importance was increased when superconducting
quantum interference devices (SQUIDs) were invented. The first MEG using SQUIDs
was recorded in 1972 from D. Cohen et al.[8].

Today electroencephalography and magnetoencephalography are often used, for exam-
ple in neurophysiological experiments and in clinical applications. In neurophysiological
experiments the EEG and the MEG are measured with a high temporal resolution to
find out which parts of the brain are active to perform certain tasks and how these parts
interact. A clinical application is for example epilepsy research where EEG and MEG
are recorded to find the defective area in the brain which causes the epileptic seizures.

In both of the above described applications a central question is how the current den-
sity distribution looks like, which generates the recorded electric potentials and magnetic
fields. The problem to find this current density distribution is called the inverse problem.
An essential part of the solution of the inverse problem, the source reconstruction, is to
simulate the electric potentials and magnetic fields produced by a given current density
distribution. This problem is referred to as the forward problem. Analytical solutions for
the forward problem only exist when it is assumed that the head as a volume conductor
has a special geometry, for example a spherical geometry. For arbitrary geometries of
the volume conductor numerical methods are needed to simulate the electric potentials
and magnetic fields. There are two numerical methods widely used in the EEG and
MEG source reconstruction: the boundary element method (BEM) and the finite ele-
ment method (FEM). In this thesis the application of the finite element on the simulation
of the EEG and the MEG will be validated by showing that FEM can solve the forward
problem with a high accuracy that is sufficient to accurately solve the inverse problem.
In addition the accuracy of FEM is compared to that of BEM as a competing numerical
method. For the FEM computations the implementation of the finite element method
into the software NeuroFEM was used.

This thesis can be divided into five parts. In the first part, chapter (2), the theoretical
background needed for this work is explained. Chapter (3) deals with the validation
of the forward computations of the EEG and MEG using the finite element method
in multilayer sphere models of varying complexity. in addition BEM and FEM are
compared in the multilayer sphere models with regard to their accuracy. In chapter (4)
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1 Introduction

it is studied on MEG measurements with a spherical phantom head model how accurately
the inverse problem can be solved using FEM. After having studied only simple spherical
geometries until this point, in chapter (5) the accuracy of the FEM forward computations
and the solution of the inverse problem using FEM in a realistic volume conductor is
tested. Again the comparison to the boundary element method is drawn. Finally in
chapter (6) the finite element method is applied to reconstruct the underlying current
density distribution for EEG and MEG data recorded during a real neurophysiological
experiment.
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2 Theory

In this chapter the theoretical background for the application of the finite element
method for the reconstruction of current density distributions from a measured EEG
and MEG is explained. First the neurophysiological origin of the electric currents which
produce the electric potentials and magnetic flux densities measured with the EEG re-
spectively the MEG is described. Then the equations governing the generation of the
potentials and fields by these electric currents are derived and the analytical solutions
for special geometries and the numerical solutions for arbitrary geometries are presented.
How the very small magnetic fields evoked by the brain are measured, using a technical
device called SQUID, and how environmental magnetic noise can be rejected is described
in the next sections. Finally the two algorithms employed in this thesis for the solution
of the inverse problem are briefly explained.

2.1 Origin of the Electric Currents in the Brain

The magnetoencephalogram and the electroencephalogram measure the magnetic fields
respectively the potential differences caused by electric currents in the brain. In this
section it will be explained what the origin of these currents is. For this purpose a brief
explanation of the basic structure of the brain and its physiology is given.

Anatomically you can differentiate between three parts of the human brain. First
there is the brain stem, then there is the cerebellum and finally the telencephalon or
cerebrum, which is with more than 80% of the whole brain the biggest and for us the
most interesting part as it is responsible for many complex tasks, like processing speech
or controlling motor functions, to give just a few examples. The telencephalon itself
consists of two hemispheres, which are divided by a deep groove, the medial longitudinal
fissure. The two hemispheres of the cerebrum are linked by several bundles of nerve
fibres, of which the largest bundle is the corpus callosum.

Each of the two hemispheres of the brain can furthermore be divided into the grey
matter at the surface and the white matter beneath the surface. The grey matter layer
at the surface of the cerebrum is called cerebral cortex. It consists of a large number
(109 to 1010) of nerve cells. The white matter is mainly composed of nerve fibres which
connect the different regions of the cortex to each other and to other parts of the brain.

The focus will now be on the structure of the cerebral cortex. It is a up to 5mm thick,
strongly folded layer at the surface of the cerebrum. The cortex itself is made up of six
layers which are alternately composed of nerve cells, the neurons, and nerve fibres. The
neurons of the cortex are mainly (≈ 80%) pyramidal neurons. Information is stored and
processed in the cortex by interaction of these neurons.

To see how the neurons can interact and how signals can be transmitted between these
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2 Theory

Figure 2.1: The major parts of the brain. Midbrain, pons and medulla oblongata together from the
brain stem. From [17].

the basic structure of a neuron will be briefly described. The neuron consists of a cell
body, which is called soma, dendrites and an axon. Neurons only have one axon, but
they can have many dendrites. The dendrites can receive electric signals from other cells
and signals can be transmitted to other cells through the axon. When an neuron is at
rest, you can measure a potential of −50 to −80 mV for a pyramidal neuron between the
inside of the cell and the outside of the cell, where the inside of the cell is more negative.
This potential is called resting membrane potential. It is mainly caused by the diffusion
of K+-ions from the inside of the cell to the outside. The diffusion is driven by the
concentration gradient of K+-ions between the intracellular and the extracellular liquid
and continues until the electric force caused by the membrane potential is at equilibrium
with the diffusion force caused by the concentration gradient.

Now two mechanisms of signal transmission in and between neurons, which could be
causing potential differences and magnetic fields visible in the EEG respectively MEG
will be discussed. The first mechanism is the action potential. When by some external
stimulus the membrane potential of the neuron is suddenly increased by approximately
20 mV the permeability of the membrane for Na+-ions grows steeply and sodium ions
can diffuse into the cell. This leads to a further depolarization of the cell and causes
the action potential, which has an amplitude of 60 to 100mV. The depolarization also
increases, with a certain delay, the permeability of the cell membrane for potassium ions,
so that K+ ions start to diffuse out of the cell. This decreases the membrane potential
and the resting potential is restored. In pyramidal cells the generation of the action
potential and the restoration of the resting potential happens very fast. The action
potential only lasts 0.5 to 2ms. Because the growth and decay of the potential is so fast
and because the excitation of the action potential is not perfectly synchronous between
simultaneously active neurons the potential differences and the magnetic fields which
are caused by single neurons do not sum up to a signal that can be observed in the EEG
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or the MEG.
The second mechanism that will be discussed is the excitatory post synaptic potential

(EPSP). The axon of one cell is connected to the dendrite of another cell through a
synapse. In most of the synapses the signal is transmitted in a chemical way. When
an electric signal reaches the synapse from the axon the synapse emits certain chemical
messenger substances. These substances reach the dendrite and increase the membrane
potential to more positive values. This depolarization of the dendrites is called excitatory
post synaptic potential. It lasts some ten milliseconds. The potential difference between
the depolarized dendrite and the soma at resting potential causes electric currents to
flow through the liquid outside the cells. If in many, that is some thousand, neighbouring
neurons such a potential is excited, the caused potential differences and magnetic fields
will sum up and form a signal which can be measured with the EEG or the MEG. In
animal experiments, in which simultaneously the potential inside and outside the cell
and the EEG was measured, it was shown that this in fact is the case. So we can say, that
the origin of the currents that cause the electric potentials and magnetic fields that are
measured in the EEG respectively the MEG are the excitatory post synaptic potentials
especially of the dendrites close to the surface of the cortex.

2.2 Equations for the Electric Potential and the Magnetic
Vector Potential

In this section the governing equations for the electric potential and the magnetic vector
potential in the quasi-static approximation are derived. Therefore first the dynamic
partial differential equation for the electric potential is derived. Then the different
dynamic effects incorporated by this equation are discussed and their size is estimated.
Finally the quasi-static approximation for the electric potential and the equation for the
magnetic vector potential are presented.

The starting point for the derivation are the Maxwell equations of electro dynamics.

∇ ·B = 0 (2.1a)

∇×E + Ḃ = 0 (2.1b)

∇×H− Ḋ = j (2.1c)

∇ ·D = ρ (2.1d)

Here B is the magnetic flux density, E is the electric field, H is the magnetic field and D
is the electric displacement field. In addition j is the current density and ρ is the electric
charge.

It can be assumed that biological tissue acts as an electrolyte. So the material equa-
tions for a linear, homogeneous medium can be used. Furthermore, as biological tissue
is non magnetic, the assumption µr = 1 can be made.

B = µ0H (2.2a)
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2 Theory

D = εε0E (2.2b)

Here µ0 denotes the magnetic permeability in free space and ε0 and ε stand for the
permittivity in free space respectively the relative permittivity.

The current density on the right hand side of equation (2.1c) can be divided into two
parts:

j = jp + σE (2.3)

The first part, jp, is the impressed or primary current density, which represents the
electric currents in the brain, and the second part, σE, describes the ohmic volume
currents. The primary currents have to be stated explicitly, as their generation is not
covered by the Maxwell equations, but by some neurophysiological effects, which are
outlined in section (2.1). Using this relation (2.3) for the current density in equation
(2.1c) results in equation (2.4).

∇×H− Ḋ = jp + σE (2.4)

Now the scalar electric potential φ and the magnetic vector potential A are introduced.
They are defined as follows:

B = ∇×A (2.5a)

E = −∇φ− Ȧ (2.5b)

This definition does not unambiguously determine φ and A. Assuming that the vector
potential A fulfils equation (2.5a) and having in mind, that the curl of a gradient of a
scalar function is zero, one can see that

Â = A +∇χ and φ̂ = φ− χ̇

with an arbitrary scalar function χ = χ (r, t), also fulfil equations (2.5a) and (2.5b). The
scalar function χ can be chosen in such a way that the Lorenz-condition is fulfilled.

∇ ·A + µ0ε0εφ̇+ µ0σφ = 0 (2.6)

As the Maxwell equations with linear material equations are also linear, the Fourier
decomposition of jp, φ and A is possible. Therefore assuming a harmonic time depen-
dency of this quantities is possible.

jp (r, t ) = jp (r ) eiωt

A (r, t ) = A (r ) eiωt

φ (r, t ) = φ (r ) eiωt

To obtain the partial differential equation for the electric potential φ the divergence
is applied to equation (2.4). Furthermore the linear material equations are employed,
the electric field E is replaced by the electric potential φ (Equation (2.5b)) and the
assumption of harmonic time dependency is used. This yields the following equation.

∇ ·
(
σ

(
1 +

iωε0εr
σ

)
∇φ+ iωσ

(
1 +

iωε0εr
σ

)
A

)
= ∇ · jp (2.7)
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This equation describes three kinds of dynamic effects: capacitive effects, propagation
effects and inductive effects. These dynamic effects are now discussed and it is shown
that they are negligible for the simulation of the EEG and MEG.

Capacitive Effects
The capacitive effects are related to the imaginary part of the factor

(
1 + iωε0εr

σ

)
in

equation (2.7). This imaginary part can be taken as the ratio of capacitive currents
to resistive currents. Capacitive effects can be neglected, if the capacitive currents are
much smaller than the resistive currents. This means

ωε0εr
σ

� 1.

For different biological tissues and for varying frequencies the value of the ratio of
capacitive to resistive currents was measured[22]. Table (2.1) shows the measured values.

10 kHz 100 kHz 1000 kHz

Lung 0.15 0.025 0.05

Fatty Tissue 0.01 0.03

Liver 0.20 0.035 0.06

Heart Muscle 0.10 0.04 0.15

Table 2.1: Measured values for the ratio of capacitive to resistive currents.

The maximum measured value for the ratio is 0.2. For this reason capacitive effects
can be neglected when modelling the EEG or the MEG.

Propagation effects
Assuming a infinite homogeneous medium equation (2.7) can be solved using Green’s
function

Gk (R) =
e−ikR

R
, where R =

∣∣∣r− r
′
∣∣∣ . (2.8)

This yields equation (2.9) as a solution for the magnetic vector potential.

A (r, t ) =
µ0

4π

∫
Ω

jp
(
r

′
)

eiωt−ikR

R
dΩ (2.9)

The propagation effects are represented by the phase factor e−ikR. By looking at the
series expansion of this factor,

e−ikR = 1− ikR− (kR)2

2!
+ i

(kR)3

3!
. . . ,

one can see that it is negligible, if
k ·R� 1.
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R describes the distance between the source point and the measurement point. The
maximum value, Rmax, can be conservatively choosen as Rmax = 1m. For EEG and
MEG R will in most cases be smaller than this. To estimate the size of k the definition
in equation (2.10) can be used.

k = (1− i)
√
ωµ0σ

2

(
1 + i

ωε0ε

σ

)
(2.10)

A good estimate for the frequency ν of the current density is ν = 1 kHz, as the fastest
process in the brain is the rise of the action potential which has a duration of around
1 ms. According to table (2.1) it is reasonable to assume a value of

√
2− 1 for the ratio

of capacitive to resistive currents. The conductivity is chosen as σ = 0.33 S
m . This value

is often used as the conductivity of the brain. With these values k ·R can be estimated
as

k ·R ≈ (1− i)0.04.

The error of the magnitude of the phase factor is then approx. 4% and the error of the
phase is around 2.5◦. Therefore propagation effects can be neglected.

Inductive effects

The left hand side of the dynamic partial differential equation (2.7) can be interpreted
as consisting of two parts, a static part and an inductive part.

∇ ·
(
σ

(
1 +

iωε0εr
σ

)
∇φ

)
︸ ︷︷ ︸

Static part

+ iω∇ ·
(
σ

(
1 +

iωε0εr
σ

)
A

)
︸ ︷︷ ︸

Inductive part

= ∇ · jp

The inductive part is describing the inductive effects. The influence of the inductive
effects can be described using the ratio of the inductive to the static part. Inductive
effects can be neglected, if

|iωA |
|∇φ|

= |k ·R|2 � 1 (2.11)

This relation is satisfied, as |k ·R| � 1, which was already shown, when estimating the
size of propagation effects. This means that inductive effects can be neglected.

Neglecting these dynamic effects in equation (2.7) yields the quasi-static approxima-
tion of the Maxwell equations for the electric potential φ in equation (2.12).

∇ · (σ∇φ) = ∇ · jp (2.12)

The equation for the magnetic vector potential A (equation (2.13)) is derived using
Biot-Savart’s law.

A (r, t ) =
µ0

4π

∫
Ω

jp
(
r

′
, t

)
R

dΩ− µ0

4π

∫
Ω

σ∇φ
(
r

′
, t

)
R

dΩ (2.13)
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2.3 Analytical Solutions

R means here, as above, the distance between the measurement point, r, and the source
point, r

′
.

R =
∣∣∣r− r

′
∣∣∣

The mathematical formulation of the problem is not complete without boundary condi-
tions. On the interfaces, Γ, between compartments with different conductivity Neumann
boundary conditions apply.

(σ1∇φ1) · n = (σ2∇φ2) · n on Γ (2.14)

n is the normal vector on Γ. For Γ = ∂Ω, that is for the surface of the base domain,
equation (2.14) becomes

(σ∇φ) · n = 0 on Γ = ∂Ω. (2.15)

In addition the value of the electric potential at one point has to be set to a defined
value.

φ
(
r reference

)
≡ 0 (2.16)

2.3 Analytical Solutions for the Quasi-Static Approximation

2.3.1 Analytical Solutions for the EEG

For special geometries of the volume conductor the quasi-static approximation for the
electric potential (equation (2.12)) can be solved analytically. An analytical solution ex-
ists, for example for a multilayer sphere model, which consists of a number of concentric
sphere shells, where the conductivity of each shell is constant. Using the analytical so-
lution the electric potential can be computed easily. Therefore multilayer sphere models
were and are still used to model the human head. In this thesis the exact analytical
solutions are used as reference solutions to which the numerical solutions are compared.

There exist several formulas for the quasi-static potential in spherical volume conduc-
tors of varying complexity. Geselowitz derived in [12] an expression for the potential
in a three layer, isotropic sphere model. In this model the sphere shells with constant,
isotropic conductivity reflect the conductivity profile of a human head with the three
compartments scalp, skull and brain. Another formula was developed by Hosek in [13] to
calculate the electric potential in a four layer, isotropic sphere model. The four compart-
ments of this model mirror the compartments scalp, skull, cerebro spinal fluid (CSF) and
brain of the human head. Furthermore de Munck presented in [10] a series expansion
for the electric potential, which is able to treat an arbitrary number of layers and radial
to tangential anisotropic conductivity in each of the layers. Using de Munck’s formula
the head can be modelled with an anisotropic skull layer, because measurements in for
example [2] showed that the skull has an anisotropic conductivity.

13



2 Theory

2.3.2 Analytical Solution for the MEG

For the MEG, as for the EEG, analytical solutions exist for special geometries. Sarvas,
for example, studied the solution of the MEG for spherical volume conductors. In [21]
he derived a formula for the magnetic fields outside a sphere. The analytical solution
for the MEG has some remarkable characteristics. One of these characteristics is, that
the solution does not at all depend on the conductivity profile of the spherical volume
conductor. It only depends on the position of the dipole relative to the centre of the
sphere. Another important property of the MEG solution is that a radially orientated
dipole in a sphere does not produce any magnetic field outside of the sphere. Furthermore
Sarvas found that only the primary current density contributes to the radial component
of the magnetic field.

2.4 Boundary Element Method

The quasi-static approximation of Maxwell’s equations cannot be solved analytically for
arbitrary geometries and conductivity profiles of the volume conductor. Therefore nu-
merical methods must be applied to compute the electric potential and the magnetic
vector potential. A numerical method which can be used to solve the quasi-static ap-
proximation for arbitrary geometries is the boundary element method (BEM). In the
next sections it is briefly explained how the electric potential and the magnetic flux
density can be numerically calculated using BEM[34].

For the boundary element method it is assumed that the inhomogeneous base domain
Ω can be divided into p compartments Ωi with homogeneous and isotropic conductivities.
Γi is the outer interface of the compartment Ωi. In this case an integral equation for the
electric potential on i-the interface, x ∈ Γi, can be derived.(

σ−i + σ+
i

)
φ (x) = 2φ∞ (x)−

p∑
j=1

(
σ−j − σ+

j

) ∫
Γj

k
(
x,x′

)
φ

(
x′

)
dΓj (2.17)

k (x,x′) is the dipole kernel,

k
(
x,x′

)
= − 1

2π
n (x′) · (x′ − x)

|x′ − x|3
,

and φ∞ (x) is the potential of a dipole in an infinite, homogeneous medium,

φ∞ (x) =
1
4π

M · (x− x0)
|x− x0|3

.

sigma− and sigma+ are the conductivites inside respectively outside of the interface
Gammai. To solve this integral equation numerically the interfaces l = 1, . . . , p are
discretised into triangles ∆l

m. On these triangles basis functions hl
n and collocation

points ξl
n are chosen to approximate the electric potential as in equation (2.18).

φh =
p∑

l=1

k(l)∑
n=1

αl
n h

l
n (2.18)
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2.4 Boundary Element Method

To determine the potential at the collocation points the coefficients αn
l have to be com-

puted.
In general for the basis functions polynomials are chosen. Often used are constant

and linear basis functions. For a constant collocation the collocation points are the
barycentres of the triangles and the basis functions are defined by

hl
n (x) =

{
1 : x ∈ ∆l

n

0 : x /∈ ∆l
n

. (2.19)

For the linear collocation the basis functions

hl
n (x) =

{
1 : x = xl

n

0 : x 6= xl
n

(2.20)

are chosen. The vertices of the triangles are used as collocation points. So at the vertices
xi

m of the triangle mesh the basis functions can be expressed using the δ function.

hl
n

(
xi

m

)
= δliδmn

Inserting the linear basis functions in the integral equation yields equation (2.21).

(
σ−i + σ+

i

) p∑
l=1

N(l)∑
n=1

αl
nh

l
n

(
xi

m

)
= 2φ∞

(
xi

m

)
−

p∑
j=1

(
σ−j − σ+

j

) ∫
Γj

k
(
xi

m,x
′
) N(j)∑

n=1

αj
nh

j
n

(
x

′
)

dΓj (2.21)

This equation can be written as a matrix equation A · a = b, that can be solved to
obtain the potential at the vertices of the triangle mesh.

For the magnetic flux density also an integral equation can be found.

B (x) = B∞ (x) + µ0

p∑
l=1

(
σ+

j − σ−j

) ∫
Γj

(
φi

(
x

′
)
∇ 1
|x− x′ |

)
× dΓj (2.22)

When inserting the approximation for the electric potential (2.18) into this equation it
can be rewritten as a matrix equation.

B = S · a (2.23)

So the magnetic flux density B can be computed when the potential at the vertices of
the triangle surfaces mesh is known.
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2.5 The Finite Element Method

A second numerical method, which is widely used in scientific and engineering applica-
tions and able to treat arbitrary geometries, is the finite element method (FEM)[23]. In
the following section the application of FEM to the simulation of the EEG and MEG is
presented. In addition two different ways of modelling the mathematical current dipole
are presented and an very efficient method to compute the potential and flux with regard
to the inverse problem is described.

2.5.1 Finite Element Method Solution for the EEG

To solve a differential equation using FEM first the base domain has to be discretised.
This is done by separating the base domain into smaller regions, the elements. Often used
elements are tetrahedra and hexahedra. In the simulations for this thesis tetrahedra,
regular hexahedra and deformed hexahedra elements are used.

Then for the elements an appropriate ansatz function has to be chosen. Very com-
mon as ansatz functions are polynomials. For the FEM computations with tetrahedra
elements in this thesis a linear ansatz function was chosen.

(e)φh (x, y, z) = c1 + c2x+ c3y + c4z (2.24)

For the hexahedra elements in the FEM computations a bilinear ansatz was used.

(e)φh (x, y, z) = c1 + c2x+ c3y + c4z + c5xy + c6xz + c7yz (2.25)

As the electric potential is continuos the approximation of the potential has to be
continuous, too. The continuity can more easily be guaranteed when turning from the
element based ansatz function (e)φh to the node based form functions (e)ψk. For a single
element the form functions are defined by equation (2.26).

(e)φh (x, y, z) =
p∑
i

(e)uk
(e)ψk (x, y, z) (2.26)

p is the number of nodes of the element and the (e)uk are called node variables. As
equation (2.26) has to be fulfilled for any choice of values for the node variables, the
form function (e)ψk has to be 1 at the node Pk and 0 at all other nodes, Pj 6=k, of the
element. Let rj be the coordinates of the node Pj then this characteristic of the form
functions is described by equation (2.27).

(e)ψk (rj) =
{

1, if j = k
0, if j 6= k

(2.27)

The ansatz for the whole base domain is now constructed piecewise from the ansatz
functions for the single elements. As discussed above using node based form functions
is of advantage. Therefore the nodes of all elements are numbered consecutively and
global form functions, ψk, are introduced. The global form function ψk is composed of
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all the local form functions which are 1 at node k. Due to this construction the global
form function ψk is only non-zero in the elements to which the node k belongs. Now the
ansatz for the electric potential in the whole base domain can be written as in equation
(2.28).

φh (x, y, z) =
n∑
k

ukψk (x, y, z) (2.28)

Next Galerkin’s method is applied to the partial differential equation (2.12).Therefore
the ansatz (2.28) is inserted into the differential equation. For an arbitrary choice of the
node variables uk the equation will in general not be solved exactly, but there still is a
residuum.

R (x, y, z) =
n∑
k

uk∇ · (σ∇ψk (x, y, z))−∇ · jp (2.29)

Following the method of weighted residues the node variables uk shall now be chosen
in such a way that the residuum weighted with functions wj integrated across the whole
base domain Ω is zero. ∫

Ω

R (x, y, z) wj dΩ != 0 , j = 1, . . . , n (2.30)

In Galerkin’s method the weighting functions are chosen equal to the form functions,
wj = ψj . Applying furthermore Green’s formula results in equation (2.31).

n∑
k

∫
Ω

(σ∇ψk) · ∇ψj dΩ

︸ ︷︷ ︸
≡Kjk

+
∫
Ω

(∇ · jp)ψj dΩ

︸ ︷︷ ︸
≡−Jj

= 0 (2.31)

The surface integral from applying Green’s formula is zero because of the homogeneous
boundary conditions on the surface of the base domain. In addition the equation was
multiplied with −1.

An important characteristic of the stiffness matrix can be seen directly from its def-
inition. When remembering that the ansatz function ψk is only non-zero in elements
that belong to the node k, it is obvious that the integrand in the definition of K is only
non-zero when j and k are nodes of the same finite element, that is neighbouring nodes.
Because of this one row of the stiffness matrix only has as many non-zero entries as a
node has neighbours. So the stiffness matrix is sparsely populated with only around
30 or 40, depending on the element type, non-zero entries. Due to this fact and due
to the fact that K is in addition symmetric the matrix can be handled on a common
desktop computer with limited memory even for FE meshes with hundreds of thousands
of nodes.

With the definitions of the stiffness matrix K, the potential vector u and the source
vector J equation (2.31) can be rewritten as a matrix equation.

K · u = J (2.32)
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This equation can be solved in a computer to get u, the electric potential at the nodes
of the finite element mesh.

2.5.2 Finite Element Method Solution for the MEG

The magnetic flux through the coil of a sensor is often computed as the integral of the
magnetic flux density across the face of the sensor. Using FEM it is more convenient to
reformulate the equation for the magnetic flux using Stoke’s formula.

Φ =
∫
S

B · dS =
∫
S

(∇×A) · dS =
∫

C≡∂S

A · dC (2.33)

Now that it is integrated along the contour of the coils this contour has to be modelled
with bar elements, which can be straight or curved. For the simulations in this thesis
curved bar elements were used, which better approximate the geometry of the circular
coils[19].

Using the magnetic vector potential from equation (2.13) in the magnetic flux from
equation (2.33) yields equation (2.34).

Φj =
µ0

4π

∮
Cj

∫
Ω

jp
(
r

′
)

R
dΩ · ds

︸ ︷︷ ︸
Primary Magnetic Flux Φp

j

−µ0

4π

∮
Cj

∫
Ω

σ∇φ
(
r

′
)

R
dΩ · ds

︸ ︷︷ ︸
Secondary Magnetic Flux Φs

j

(2.34)

The separation of the electric current density j into an primary, impressed current and the
secondary, volume currents also shows in this formula for the magnetic flux. It consists
of two parts. The first one, the primary magnetic flux, describes the contribution of
the impressed current to the magnetic flux and the second part, the secondary magnetic
flux, describes the contributions of the volume currents.

As the electric current density is always assumed to be a mathematical dipole (see
section (2.3.1)) the expression for the primary magnetic flux can be calculated using
equation (2.35).

Φp
j =

µ0

4π
M ·

∮
Cj

1
|r′ − r0|

ds

︸ ︷︷ ︸
≡Ij

=
µ0

4π
M · Ij (2.35)

r0 denotes the coordinates of the current dipole. The integrand in the above formula
can be calculated analytically, while the integration is performed numerically on the bar
elements, with which the sensor coils are modelled.

To calculate the secondary magnetic flux first the ansatz (2.28) is inserted for the
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electric potential.

Φs
j = − µ0

4π

n∑
k=1

uk


∮
Cj

∫
Ω

σ∇ψk

(
r

′
)

|r− r′ |
dΩ · ds

︸ ︷︷ ︸
≡Sjk

(2.36)

S is the secondary magnetic flux integration matrix[19]. Equation (2.36) can be rewritten
into a matrix equation.

S · u = Φs (2.37)

To compute the secondary magnetic flux, first the electric potential at every node of the
FEM mesh has to be computed. One can interpret the matrix entry Sjk of the secondary
magnetic flux integration matrix as the magnetic flux a unit potential at node k would
cause at the sensor j.

2.5.3 Venant’s Approach for Modelling the Mathematical Dipole

When numerically computing the electric potential one has to model the mathematical
current dipole. One method used for the dipole modelling is Venant’s approach.

The mathematical current dipole jp (r) = M · δ (r− r0) can be defined by two mono-
poles, that is one current source and one current sink, which are positioned equally far
away from the dipole location on the axis defined by the vector M.

jp = lim
J→∞
d→0

{
J

(
+
d

2

)
− J

(
−d

2

)}
= lim

J→∞
d→0

J · d (2.38)

In the limit of J →∞ and d→ 0 the dipole moment M = Jd shall be constant.
In addition the divergence of the current density, jp, can, in analogy to Gauß’ law of

electrostatics, be expressed using the current sources Jp.

∇ · jp = Jp (2.39)

Following Venant’s principle, it is not important for the electric fields far away from
the source location, how, in detail, the monopoles are distributed to form a current
dipole. Therefore in the Venant approach, the mathematical dipole can be modelled by
placing current sources and sinks on finite element nodes in the immediate vicinity of
the current dipole. This is done by first finding the FE node which is closest to the
source. Then for this node the neighbouring nodes of the FE mesh are searched. The
current sources and sinks are then distributed on these neighbouring nodes.

How the values of the nodal loads Jk have to be chosen to form a current dipole with
the dipole moment M is described in detail in [5]. In general the first order moment
in the direction of r at node i, n0M r

i , is related to the nodal loads Jk as stated in
equation (2.40).

n0M r
i =

(
∆xr

ik

aref

)n0

Jk (2.40)
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Here ∆xr
ik means the r-component of the distance between node k and the source node

i, n0 is the order of the moment and aref is a reference length, which guarantees that the
series

(
∆xr

ik
aref

)n0

converges to 0 for n0 →∞.

2.5.4 Subtraction Approach for Modelling the Current Dipole

The second approach which is used in this work to model the mathematical current dipole
is the subtraction approach[36]. This approach is based on the fact, that many numerical
difficulties arise from the singularity of the dipole current distribution. Therefore the
conductivity and the potential are split into two parts.

σ = σ∞ + σcorr (2.41)
φ = φ∞ + φcorr (2.42)

σ∞ stands for the conductivity in the region around the current dipole, in which this
conductivity is assumed to be homogeneous. φ∞, the infinity potential is supposed to
deal with the singularity at the dipole location. It is the potential generated by the dipole
in an infinite, homogeneous volume conductor. For this potential the Poisson-equation
(2.43) applies.

∆φ∞ =
∇ · jp
σ∞

(2.43)

As φ∞ does not accurately describe the electric potential in a realistic volume conductor,
the correction potential, φcorr, is introduced to correct the potential with respect to the
volume conductor.

The approaches for φ, equation (2.42), and σ, equation (2.41), can now be inserted
into the quasistatic approximation. The resulting relation can be simplified by using the
Poisson equation for the infinity potential.

∇ · (σ∇φcorr) = −∇ · ((σ − σ∞)∇φ∞) (2.44)

When using these approaches the boundary conditions are no longer homogeneous.

(σ∇φcorr) · n = − (σ∇φ∞) · n on Γ = ∂Ω (2.45)

This relation means that the currents which would flow out of the base domain due to
the potential of a dipole in an unbounded medium have to be compensated by opposite
currents caused by the gradient of the correction potential.

For this partial differential equation an ansatz similar to equation (2.28) is chosen for
the correction and the infinity potential and a matrix equation is derived, again following
Galerkin’s method.

K · ucorr = Jcorr (2.46)

The stiffness matrix is the same as for the finite element method using Venant’s approach.
ucorr is the correction potential vector and Jcorr is defined by equation (2.47).

Jcorr = −Kcorr · u∞ − S · u∞ (2.47)
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The definition of Kcorr and S is given in equation (2.48) respectively (2.49).

Kcorr
ij =

∫
Ω

((σ − σ∞)∇ψi) · (∇ψj) dΩ (2.48)

Sij =
∫
Γ

(σ∞∇ψj) · n (∇ψi) dΓ (2.49)

The ψi are here the node based global ansatz functions. To calculate the total electric
potential at the nodes of the FE mesh, first the potential caused by the dipole in an
infinite, homogeneous medium is analytically computed. Then the correction potential
is computed numerically by solving the system of equations (2.46). Summing up the
inifinity potential and the correction potential yields the total electric potential.

2.5.5 Lead Field Basis Approach

With regard to the inverse problem it is necessary to compute the electric potentials and
magnetic fields for potentially many thousand dipoles. Solving a FE equation system
as in equation (2.32) for each of the dipoles would last a long time. Therefore the asso-
ciativity of the matrix multiplication is exploited in a trick to speed up the simulations.
This method is called the lead field basis approach for EEG[33] and MEG[11, 38].

When solving the inverse problem one is not interested in the electric potential at
every node of the FE mesh, but only in the potential at the EEG electrodes. To extract
the potentials at the electrodes, uEEG, from the potential vector, u, a restriction matrix
R is applied.

uEEG = R · u (2.50)

R is a s× n matrix, where s is the number of sensors and n is the number of FE nodes.
Rij is 1 if the FE node j models the electrode i.

Although the stiffness matrix, because of the usually large number of nodes, cannot
be inverted directly equation (2.50) can still be rewritten formally using equation (2.32).

uEEG = R
(
K−1 J

)
=

(
RK−1

)
J = BEEG J (2.51)

Here BEEG, the lead field basis for the EEG, is introduced. One can see from equa-
tion (2.51) that it is possible to calculate the electric potential at the electrodes by a
simple and fast matrix-vector-multiplication when the lead field basis BEEG is known.

To calculate the lead field basis for the EEG its definition is multiplied with K from the
right side and transposed. In addition the fact that the stiffness matrix K is symmetric
is applied.

KBt
EEG = Rt (2.52)

The rows of BEEG can now be computed by solving the system of equations (2.52) s times
for the column vectors of Rt.

A very similar thing can be done for the calculation of the secondary magnetic flux
for the MEG. The secondary magnetic flux can be written as in equation (2.53).

Φs = Su = S
(
K−1)J

)
= (SK−1)J = BMEG J (2.53)
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Here the lead field basis for the MEG, BMEG, is defined, which allows computing the
secondary magnetic flux with one simple matrix-vector-multiplication. The definition of
the lead field basis can, as above, be multiplied with K from the right and transposed.
The result is equation (2.54).

KBt
MEG = St (2.54)

The lead field basis for the MEG can be computed by solving the above system of
equations for the s column vectors of the transposed secondary magnetic flux integration
matrix, St.

2.6 Mesh Generation

For the simulation of the electric field or the magnetic flux the geometry and the conduc-
tivity profile of the volume conductor have to be represented somehow. For the boundary
element method triangle surface meshes represent the boundaries of the different head
compartments. For the finite element method the head volume has to be represented
with tetrahedra or hexahedra meshes. In this section the generation of these BEM and
FEM meshes shall be described briefly.

In the studies for this work for the generation of a finite element or boundary element
mesh first a MR image of the head was segmented. The results of the segmentation
are surfaces describing the boundaries between the different compartments of the head.
These surfaces are the starting point for the mesh generation.

2.6.1 Generation of the FEM Meshes

Tetrahedra Meshes - Ordinary Delaunay Tetrahedralisation

For the FE simulations tetrahedra meshes that were constructed using two different
approaches were used. The first one uses a simple Delaunay tetrahedralisation[31, 35].

In a first step element nodes, so called vertices, are distributed on the segmented
boundaries of the MR image. Additionally vertices are distributed on surfaces which
are generated by eroding the innermost segmented boundary. Now vertices are spread
across the whole head volume. From these vertices tetrahedra are then constructed by
combining four vertices to form one tetrahedron in such a way that the Delaunay crite-
rion is fulfilled. The Delaunay criterion demands that no vertex lies in the circumcircle
of a tetrahedra. The four vertices of the tetrahedron lie on the circumcircle. Figure
(2.2(a)) illustrates this criterion. In the first method the tetrahedralisation of all the
vertices which fulfils the Delaunay criterion is constructed using an iterative algorithm.
To explain this algorithm it is assumed that already a tetrahedralisation of a part of
the volume exists. All the orientated surface triangles of this tetrahedralisation are now
inserted into a queue. From this queue than the first triangle is taken and the one
vertex is searched, with which the triangle forms a tetrahedron satisfying the Delaunay
criterion. If the surface triangles of the new tetrahedron were already in the queue, they
are deleted from the queue. If they were not yet in the queue they are added to it. In
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(a) The delaunay criterion.
From [35].

(b) The deletion of tetrahedra ly-
ing outside of the volume to be
meshed. From [35].

Figure 2.2: On the tetrahedra mesh generation.

this way from all the triangles in the queue tetrahedra are created, which leads to a
tetrahedralisation of the whole volume.

It can happen that in this way tetrahedra are constructed that lie outside of the
volume, that should be meshed. This situation is shown in figure (2.2(b)). These
tetrahedra are removed by an additional iterative algorithm. This algorithm loops across
all the surface triangles and checks for the tetrahedra the surface triangle belongs to if
they are lying inside or outside the volume. The decision if it lies inside or outside
can be based on several criteria. Two criteria are, for example, if the centre of gravity
respectively the centre of the circumsphere of the tetrahedra lies inside the volume.

Tetrahedra Meshes - Constrained Delaunay Tetrahedralisation

An improved method to generate a FE tetrahedra mesh is the constrained Delaunay
tetrahedralisation[25]. The starting point for this method are surface meshes describing
the boundaries of the compartments. The constrained Delaunay tetrahedralisation now
constructs a tetrahedra mesh, which always respects this boundary. This is no tetrahe-
dron crosses the provided compartment boundaries. This leads to a better geometrical
approximation of the volume conductor.

Furthermore the second approach for tetrahedra mesh generation allows to define
a volume constraint for each compartment and a quality constraint. When a volume
constraint is applied the tetrahedra are iteratively refined by inserting new vertices, so
that the mesh contains no tetrahedra with a larger volume than specified with the volume
constraint. Providing a quality constraint generates tetrahedra meshes with tetrahedra
of a very regular shape. This is important to avoid numerical errors.
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Hexahedra Meshes

To discretise the volume conductor in this work also hexahedra elements were used.
The generation of the hexahedra FEM meshes is more simple than the tetrahedra mesh
generation. Starting from a MR image the voxels of the images are subsampled, that
is a number of voxels is combined to form a larger hexahedron. The hexahedron then
belongs to the compartment to which the majority of its voxels belong.

To smooth the stair-step like surfaces of a regular hexahedra mesh the hexahedra can
be deformed using the nodeshift approach[37] to better represent the smooth boundaries
of the volume conductor. Following this approach for each node lying on the boundary
between two compartments it is counted how many of the eight neighbouring elements
of the node belong to which compartment. If less than four elements belong to one
compartment the node is shifted towards this minority compartment. Figure (2.3) shows
how this method works.

Figure 2.3: The nodeshift approach for hexahedra mesh generation. From [35].

2.6.2 Generation of the BEM Meshes

The starting point for the generation of the BEM meshes is again a segmented boundary
of the MR image. Vertices are then distributed on the boundary. The distance of two
neighbouring vertices on the surface determines the edge length of the surface triangles
that will be constructed. As for the generation of the ordinary Delaunay tetrahedralisa-
tion the boundary is now eroded in several steps to create new boundaries. On all of the
new boundaries vertices are distributed and the ordinary Delaunay tetrahedralisation
for all the vertices is constructed. The surface triangles of the tetrahedralisation of the
volume inside the boundary then form the triangulation of the surface, that is the BEM
mesh.

2.7 Superconducting Quantum Interference Devices

The magnetic fields produced by the currents in the brain are of the order of magnitude
of typically 100 fT, which is many times less than, for example, the magnetic field of
the earth. Therefore very sensitive sensors are needed to measure these extremely small
fields. In commercially available MEG systems superconducting quantum interference
devices (SQUID), which are sensitive enough to detect the magnetic fields generated by
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brain activity, are used. In this section it will be explained how SQUIDs work. To do
this first a few aspects of superconductivity have to be discussed[20].

The phenomenon that in certain substances the electric resistivity drops to values,
which cannot be measured, when the substance is cooled down to temperatures near
absolute zero is called superconductivity. In a microscopic theory the special properties
of a superconductor are explained by the formation of electron pairs, called Cooper pairs.
The formation of the pairs happens by an indirect interaction in which one electron
excites a vibrational state of an atom of the lattice, a phonon, which is immediately
absorbed by a second electron. When assuming that the current density is homogeneous,
that is the momentum of all electron pairs is the same, the Cooper pairs can be described
by one electron pair wave function.

ΨP = Ψei(P·r)/~ (2.55)

P is here the momentum. The current density of the supercurrent is related to this
momentum by equation (2.56).

j =
ensP
2m

(2.56)

e and m are here the charge respectively the mass of an electron and ns is the density
of electrons in the superconducting state. The momentum of the electron pairs in the
superconducting state cannot exceed a certain maximum value. Therefore there also is
a maximum current density for the supercurrent, the critical current. When the current
density is increased above the critical current the specimen goes from the superconduct-
ing state to the state with normal resistivity.

Because the electron pairs in the superconducting state can move through the lattice
of a solid without being scattered, the wave is coherent over a infinite distance and
interference of the wave with other electron pair waves or itself is possible. The coherence
is important, for example for the case of a superconducting loop. The wave function of
the electron pairs propagating through the loop has to be unique. To avoid that the
function gets multivalued the phase difference of the wave after propagating around the
loop must be an integer multiple of 2π.

∆φ != n 2π (2.57)

For the discussion how a SQUID works it is, in addition, important to explain how
an applied magnetic field affects the electron pair wave function. Assuming that first
the applied field is zero and then switched on, it induces a circular current in the loop.
In a normally conducting loop this induced current would die away in a short time due
to the resistivity of the loop. For the superconducting loop this is not the case. Here
the induced current flows without being attenuated. If the induced supercurrent is less
than the critical current the supercurrents can generate a magnetic field, so that the
generated magnetic flux cancels out the externally applied magnetic flux.

An applied magnetic field furthermore causes a phase difference of the electron pair
wave. This phase difference for a wave that propagates in a superconductor from point
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X to Y can be written as in equation (2.58).

∆φ (B) =
4πe
h

Y∫
X

A · dl (2.58)

Here A is the magnetic vector potential. For a not too thin closed superconductor loop,
where the phase condition (2.57) has to be met, equation (2.58) indicates that the flux
enclosed by the loop can only have values which are an integer multiple of the magnetic
flux quantum Φ0 = h

2e .
As a final prerequisite it is described what Josephson junctions are and how they influ-

ence the phase of the electron pair wave. Josephson connections are very thin (< 10−9 m)
insulating layers between two superconductors. By an effect called Josephson tunnelling
the Cooper pairs can tunnel through the junction and a resistanceless current can flow.
Between the electron pair waves on both sides of the junction there is a phase difference
which is related to the current through the insulating layer, i, by equation (2.59).

i = ic sin (∆φ (i)) (2.59)

ic is the critical current of the Josephson junction. Currents larger than ic cannot flow
resistanceless through the junction. When a larger current than ic is tunnelling through
the Josephson contact a voltage difference can be measured across the junction. This
voltage difference depends on the total tunnelling current i.

Basically a SQUID consists of a superconducting ring with two Josephson junctions.
The critical current of the junctions is much smaller than that of the superconductor, so
that the current density can be assumed to be low. This means that the momentum of the
electron pairs is small and therefore their wavelength is long. As the wavelength is long
the phase difference between any two points in one superconductor is, in the absence of
a magnetic field, negligible. Furthermore it is assumed that the superconductor is cooled
down below its transition temperature with no external magnetic field applied.

Now a magnetic field is applied and a circular current is induced in the ring. For the
special SQUID that is described here, the assumption that the inductance L is small,
so that L ic � Φ0, is made. This means that the circular currents in the ring can
only generate a flux which is much smaller than the magnetic flux quantum and cannot
compensate the flux produced by the applied magnetic field. The net flux enclosed by the
superconducting loop is then approximately equal to the flux caused by the externally
applied magnetic field.

For the electron pair wave in the ring the phase condition (2.57) must still be ful-
filled. To the total phase difference of the wave the applied magnetic field and the two
Josephson junctions contribute according to equations (2.58) resp. (2.59). This yields
condition (2.60).

∆φ (i) +
1
2

∆φ (B) != n 2π (2.60)

The phase shift due to the Josephson junctions can be positive or negative depending
on the direction of the current i through the superconducting ring. So one can think of
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Figure 2.4: Superconducting ring with two Josephson junctions. A dc bias current is applied.

two currents which fulfil the phase condition. One flowing clockwise through the ring
and the other one flowing counter-clockwise. When increasing the externally applied
magnetic field from Φa = 0 to Φa = 1

2 Φ0 the counter-clockwise current i−, which by
convention produces a negative phase shift, is energetically more favourable. Using the
phase condition (2.60) the magnitude of the counter-clockwise current can be described
by equation (2.61). ∣∣i−∣∣ = ic

∣∣∣∣sin(
π

Φa

Φ0

)∣∣∣∣ (2.61)

For the interval between Φa = 1
2 Φ0 and Φa = Φ0 a clockwise current i+, which produces

a positive phase change is energetically more favourable. The magnitude of the current i+

depending on the externally applied flux is equal to the magnitude of i−.
The current i through the superconducting ring with two Josephson junctions is peri-

odically depending on the applied magnetic flux Φa as can be seen from equation (2.61).
This periodic dependence with very small period Φ0 is the basis for the measurement of
the magnetic flux using a SQUID.

The current through the superconducting ring is not easy to measure. Because of this
in a SQUID the ring is biased with the measurement current I. In the dc-SQUID, which
is discussed here, the ring is biased with a dc-current as it is illustrated in figure (2.4).
Assuming that the ring is symmetric the current I splits up equally along the two arms of
the ring. Now the total current, consisting of the induced current i and the bias current
I, through the Josephson junction at W is different than the total current through the
junction at X. Using the phase condition one can now find the inequality (2.62).

I ≤ 2ic

∣∣∣∣cos
(
π

Φa

Φ0

)∣∣∣∣ (2.62)

If the current I is too large and does not fulfil this condition then not all electrons, which
are carrying the currents, are in the superconducting state. The maximum current still
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fulfilling the inequality (2.62) is called the critical measurement current Ic.

Ic = 2ic

∣∣∣∣cos
(
π

Φa

Φ0

)∣∣∣∣ (2.63)

For currents larger than the critical measurement current a voltage drop across the
SQUID appears. As can be seen from equation (2.63) the critical measurement current
depends periodically on the applied magnetic flux with period Φ0. As the voltage drop
across the SQUID for currents I larger than Ic is directly related to the critical measure-
ment current, the voltage is also changing periodically with changing applied magnetic
flux Φa. The very small period of the voltage change makes it possible to detect changes
of the applied magnetic flux smaller than the magnetic flux quantum Φ0. This voltage
output can be measured directly to measure the applied magnetic flux.

In commercial MEG systems with low Tc-SQUIDs the SQUIDs furthermore do not
directly measure the magnetic flux generated by electric currents in the brain. The
MEG sensors instead consist of superconducting pick-up coils, an input coil and the
SQUID. The pick-up coils are located in the dewar as close as possible to the head. A
few examples of pick-up coil shapes often used can be seen in figure (2.5). Magnetic
flux generated by brain activity induces currents in these pick-up coils. These currents
then flow through the input coil which is very close to the SQUID. The magnetic flux
produced by the currents through the input coil can then be measured by the SQUID.

(a) Magnetometer (b) Axial gradiometer (c) Planar gradiometer

Figure 2.5: Examples of pick-up coil shapes. From [29].

2.8 Noise Rejection with Synthetic, Higher Order Gradiometers

Environmental magnetic noise is a large problem when measuring the fields caused by
brain activity, because these fields are much smaller than the everywhere present fields
generated by sources in the environment for example by the electrical power system.
One mean to reduce the magnetic noise is putting up the MEG machine in a magneti-
cally shielded room which strongly attenuates the fields of outside sources. Nevertheless
there still are magnetic fields penetrating the shielding and in addition there are the
magnetic fields generated by the human body. The strength of the magnetic field the
heart generates, for example, is more than hundred times larger than the typical mag-
netic field caused by brain activity. So another thing one does to only measure the signal
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generated by sources inside the brain is not to measure the absolute magnetic flux using
magnetometers, but the spatial gradient of the flux using gradiometers.

Using magnetometers a distant, but strong source, like for example the human heart,
would still significantly contribute to the measured signal, whereas using gradiometers
the contribution of the distant, but strong source would be much less. The amplitude
of the signal which is caused by a close, but weak source, like the brain activity, is not
attenuated when measuring with gradiometers instead of magnetometers.

This concept of noise rejection by means of measuring the spatial gradient of the
magnetic field can be extended to synthetic gradiometers[28, 29]. To cancel the noise
with higher order, synthetic gradiometers the field is not only measured at the primary,
measurement sensors, but also at a number of reference sensors. Synthetic gradiometers
can now be composed of one measurement sensor and a number of reference sensors by
subtracting a linear combination of the signals measured by the reference sensors from
the signal measured by the measurement sensor.

Φ*, meas
i = Φmeas

i −
∑

j

Cij · Φref
j (2.64)

Here Φ*, meas and Φmeas are the signals of the measurement sensors with respectively
without applied noise rejection and Φref are the signals measured at the reference sensors.
C is the coefficient matrix. With the definitions

B = (I |C) and Φmeas, ref =
(

Φmeas

Φref

)
(2.65)

equation (2.64) can be rewritten as in equation (2.66).

Φmeas = B ·Φmeas, ref (2.66)

The coefficients C for the linear combination of the reference signals are determined in
such a way, that the synthetic gradiometer mimics a hardware gradiometer of the same
order. How this is done shall be shown for a first order synthetic gradiometer following
[28, 29]. The signal for a first order synthetic gradiometer can be composed of the signal
of one primary measurement magnetometer and one reference vector magnetometer. The
vector magnetometer consists of three magnetometers whose orientations are orthogonal
to each other.

When applying a magnetic field B the signal of the measurement magnetometer is

Φmeas = αp B · pmeas ,

where αp is the gain of the primary magnetometer and pmeas is its orientation. The signal
of the reference vector magnetometer can be written as a vector Φref with components

Φref
k = αrefBk .

Here αr is the gain of the vector magnetometers and

Bk = pref, k ·B
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Figure 2.6: Measurement and vector reference magnetometer. Figure from [29].

is the component of the magnetic flux density parallel to the orientation of the k-th
magnetometer of the reference vector magnetometer. Now the magnetic flux density B
is approximated by the first terms of a Taylor series around the center of the measurement
sensor, x0.

B (x) = B0 + G0 (x− x0) +O
(
x2

)
(2.67)

G0 = ∇B (x)|x=x0
denotes the first gradient of the magnetic flux density. With the first

two terms of the Taylor expansion and using equation (2.64) the signal of the synthetic
first order gradiometer can be written as in equation (2.68).

Φ*, meas = αp pmeas ·B0 +
∑

k

C1 k αref pref, k (B0 +G0 · d) (2.68)

The vector pointing from the centre of the measurement magnetometer to the centre of
the reference vector magnetometer is called the baseline d.

The coefficients C1 k are chosen in such a way that the synthetic gradiometer mimics
a real gradiometer. By definition a n-th order gradiometer cancels out the contributions
from gradients of the magnetic flux densities that are of order (n − 1) or below. So in
the case of a homogeneous field the signal of the first order synthetic gradiometer has to
be zero.

αppmeas ·B0 = −
∑

k

C1 kαrefpref, k ·B0 (2.69)

This equation can be solved for the coefficients C1 k using the fact, that the orientations
of the reference magnetometers are orthogonal to each other. Equation (2.70) shows the
solution for the coefficients of a first order synthetic gradiometer.

C1 k = − αp

αref

(
pref, k · pmeas

)
(2.70)
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From this equation it can be seen that the coefficients for first order synthetic gradiome-
ters are the orientations of the reference magnetometers projected onto the orientations
of the measurement magnetometer and normalized to the latter’s gain. The coefficients
for higher order synthetic gradiometers can be derived in a similar way.

Although the synthetic gradiometers mainly cancel out lower gradients of the magnetic
flux density, which are caused by distant, strong sources, that is environmental magnetic
noise, it can also influence a signal produced by brain activity. So when an inverse
method is to be applied to data, to which the discussed noise rejection was applied, the
noise rejection technique also has to be modelled for the forward problem. That is one
has to simulate the magnetic flux not only at the measurement sensors but also at the
reference sensors and then calculate the signal of the higher order synthetic gradiometers
as in equation (2.64). The noise rejection with synthetic higher order gradiometers for the
FEM forward problem was therefore implemented into the software NeuroFEM as a part
of this diploma thesis. This implementation was used for data from the phantom study
(see chapter (4)) and for the source reconstruction on the MEG data of the SEP/SEF
experiment in chapter (6).

2.9 Inverse Methods

The reconstruction of the current density distribution from a measured EEG or MEG is
called the inverse problem. There are a many algorithms for the solution of the inverse
problem. In this thesis two simple algorithms were used for the source reconstruction.
Those will be explained briefly in this section.

2.9.1 Moving Dipole Fit

The first method to reconstruct the underlying sources of a EEG or MEG is the moving
dipole fit[15]. For the moving dipole fit it is assumed, that the current density can be
described by a number of discrete current dipoles. The number of dipoles, p, has to
be chosen using a priori knowledge. The whole current density distribution can now be
described with the locations, orientations and magnitudes of the current dipoles. For
a moving dipole fit first the non-linear location parameters q are chosen. Then the
linear parameters describing the orientation and magnitude that minimize the difference
between the simulated and measured data are determined. This procedure is repeated
until a stop criterion is met.

First it will be explained how to determine the linear parameters for given non-linear
parameters q. The electric potential respectively the magnetic flux is simulated for 3
orthogonal dipoles of unit strength at each dipole location. The simulated data for the
orthogonal dipoles form the columns of the specific 3r × s lead field matrix, Lq, for
the location parameters q. s is here the number of sensors. The lead field matrix can
now be used to calculate the simulated data for dipoles with arbitrary orientations and
magnitudes.

usim = Lq Jq (2.71)
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usim is here the simulated data and Jq is a vector containing the orientation and magni-
tude parameters of the p dipoles. These parameters are optimized linearly to minimize
the difference between the simulated and the measured data of the EEG respectively the
MEG.

H (q) = ‖Lq Jq − umeas‖ != min (2.72)

H (q) is the goal function to be minimized. From equation (2.72) the linear parameters
Jq that minimize H (q) can be found using for example a singular value decomposition.

The non-linear location parameters of the current dipoles are in the studies for this
thesis chosen by a downhill simplex optimizer[16]. To find the global minimum of the cost
function H (q) using a simplex optimizer, the function is not only evaluated at a single
point, or vertex, q in the parameter space, but at a set qi = (q0, . . . , qi + ∆q, . . . , qn) of
vertices. These vertices are forming a simplex. The simplex moves through the parame-
ter space by reflection of the vertex with the highest goal function value. Depending on
certain criteria the simplex can also expand to avoid local minima and when reaching the
global minimum it contracts itself around this global minimum. Because of the simplex
ability to contract and expand it is reliable and often able to find the global minimum.

The moving dipole fit is stopped when one of the stop criteria is met. One stop
criterion is for example the absolute goal function value. If it exceeds a certain value
the moving dipole fit assumes it has found a reasonable dipole configuration and stops.

2.9.2 Goal Function Scan

The second inverse method used in this thesis is the goal function scan. It can only be
used when assuming that the current density distribution can be described by a single
current dipole. As input for the goal function scan a source grid is provided. The vertices,
qi, of the grid are possible locations for a current dipole. Now for every vertex of the
source grid the lead field Lq is calculated and the minimum goal function value H (q) as
defined in equation (2.72) is determined. The output of a goal function scan is then a
goal function value for each of the grid nodes. When reconstructing a dipolar source the
node with the minimum goal function value can be taken as the reconstructed source
location. Often a goal function scan does not deliver the goal function values directly but
values that describe how much of the measured data a dipole at the vertices describes
as in equation (2.73). The best value for H∗ is 1.

H∗ (qi) = 1− H (qi)
‖umeas‖

(2.73)
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3 Validation of the Finite Element Method Based
Forward Computations in Multilayer Sphere
Models

The first step for the validation of the forward computations using the finite element
method is to compare the FEM forward solutions to a known exact reference solution
and determine in this way how accurate FEM can simulate the electric potential and
the magnetic flux. So in this chapter FEM is used to compute the electric potential and
the magnetic flux for dipoles in multilayer spherical volume conductors, for which exact
reference solutions exist. For the EEG the accuracy of FEM is studied for multilayer
sphere models with varying complexity. For the MEG the focus is on the accuracy of
the FEM simulation of the secondary magnetic flux and its contribution to the total
magnetic flux. Additionally the accuracy of the finite element method will be compared
to the accuracy of a boundary element solution.

3.1 Methods

In this section the methods for the EEG and MEG studies in the multilayer sphere models
shall be presented. This includes the description of the studied volume conductors, the
used sensor configurations, the generation of the FEM and BEM meshes and the error
measures used in this work.

3.1.1 Multilayer Sphere Models

Volume Conductors for the EEG Studies
In the EEG studies spherical volume conductors with varying complexity were used.
The most simple volume conductor used is the three layer sphere model with isotropic
skull. Three compartment volume conductors are commonly used to model the head.
Radii and conductivities of the layers can be found in table (3.1).

scalp skull brain

radius 92.0 mm 86.0 mm 80.0 mm

conductivity 0.33 S/m 0.0042 S/m 0.33 S/m

Table 3.1: The three layer sphere model with isotropic skull used in the EEG studies.

When modelling the head as a three compartment volume conductor the tissues brain
and cerebro spinal fluid (CSF) are merged into one compartment with one conductivity
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value. As measurements showed that the CSF is much more conductive than the brain
often four layer volume conductors with an additional CSF compartment are used to
model the head. For this reason in the EEG studies a four layer sphere model with
isotropic skull is used which incorporates the CSF as a separate layer. The radii and
conductivities of the model can be seen from table (3.2).

scalp skull CSF brain

radius 92.0 mm 86.0 mm 80.0 mm 78.0 mm

conductivity 0.33 S/m 0.0042 S/m 1.79 S/m 0.33 S/m

Table 3.2: The four layer sphere model with isotropic skull used in the EEG studies.

Anatomically the skull consists of two layers of compact bone, the compacta, with
a fatty bone layer, the spongiosum, in between. The conductivity of the spongiosa
was measured to be much higher than the conductivity of the bone layers[2]. When
modelling the skull as one compartment as it is usually done this results in an anisotropic
conductivity of the skull where the conductivity in tangential directions is ten times
higher than the conductivity in radial direction. That is the ratio of radial to tangential
conductivity is 1 : 10 [1]. For this reason the accuracy of the FEM simulation of the
EEG was also studied for a four layer sphere model with 1 : 10 anisotropic skull.

To fix the radial and tangential conductivity of the skull in addition to determine a
ratio of radial to tangential conductivity an assumption on the relation to the isotropic
conductivity value has to be made. Four possible ways to fix the anisotropic conduc-
tivities are shown in table (3.3). The first possibility is to only vary the tangential

σrad σtang

[S/m] [S/m]

Tangential
0.0042 0.042

σrad = σiso

Wang’s Constraint
0.00133 0.01328

σrad · σtang = σ2
iso

Volume Constraint
0.00090 0.00905

σrad · σ2
tang = σ3

iso

Radial
0.00042 0.0042

σtang = σiso

Table 3.3: Additional assumptions and radial and tangential conductivity values for the four possible
ways of fixing the radial and tangential conductivity of the skull.

conductivity and assign the isotropic conductivity value to the radial conductivity of the
skull. In the second possibility, following [32], the product of radial and tangential con-
ductivity is assumed to be equal to the square of the isotropic conductivity value. The
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third assumption means that the volume of the conductivity tensors in the anisotropic
case is equal to the volume of the tensor in the isotropic case. Varying only the radial
conductivity and keeping the tangential conductivity fixed to the isotropic value is the
last way to fix the anisotropic conductivities.

The simulated electric potentials for one dipole and all four methods showed that the
effect of the anisotropy is rising according to the position in table (3.3) where the effect
for changing only the tangential conductivity is lowest and the effect for changing only
the radial conductivity is highest. Therefore in the here used sphere model the radial and
tangential conductivities of the skull are set by varying only the tangential conductivity.
Radii and conductivities of the four layer sphere model with anisotropic skull can be
seen from table (3.4).

scalp skull CSF brain

radius 92.0 mm 86.0 mm 80.0 mm 78.0 mm

conductivity radial tangential
0.33 S/m 0.0042 S/m 0.042 S/m 1.79 S/m 0.33 S/m

Table 3.4: The four layer sphere model with anisotropic skull used in the EEG studies.

Volume Conductor for the MEG Studies
As, due to symmetry effects in the sphere, the magnetic fields outside of the head are
not depending on the radii and the conductivities of a multilayer sphere model [21], only
one volume conductor model is used for the MEG studies. The accuracy of the FEM for
the MEG is studied only in a one layer sphere model which radius and conductivity can
be found in table (3.5).

brain

radius 80.0 mm

conductivity 0.33 S/m

Table 3.5: Radius and conductivity of the one layer sphere model used in the MEG studies.

3.1.2 The Sensor Configurations

For the EEG studies the electric potential was computed for 134 electrodes which were
distributed in a most regular way on the surface of the model. Figure (3.1(a)) illustrates
the electrode sensor configuration.

For the MEG studies the magnetic flux was simulated at 3 sets of 258 magnetometers
each. The centres of the sensors were distributed on a sphere with the radius 110 mm in a
most regular way. For the first set of sensors the magnetometers were radially orientated
relative to the sphere model. The magnetometers of the other two sets were orientated
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tangentially. The radial and one of the tangential MEG sensor configurations are shown
in figures (3.1(b)) resp. (3.1(c)).

(a) The used electrode configu-
ration.

(b) The used radial magnetome-
ter configuration.

(c) One of the used tangential
magnetometer configurations.

Figure 3.1: EEG and MEG sensor configurations used for the multilayer sphere studies. The magne-
tometers in the MEG configurations are represented by the FEM nodes with which the sensor coils are
modeled.

3.1.3 Generation of the FEM and BEM Meshes

Generation of the FEM Meshes
When the electric potential or the magnetic flux is to be computed using the finite
element method a FEM mesh of the volume conductor has to be built. This FEM mesh
represents the discretised geometry and conductivity of the volume conductor. The
geometry of the volume conductor can be discretised using different element types. Here
tetrahedra and regular and nodeshifted hexahedra are used.

The first step for the generation of both, the tetrahedra and hexahedra, FEM meshes
of the multilayer sphere models is to create a synthetic magneto resonance image of the
sphere. In this MR image the different compartments are represented by voxels with a
different grey value.

For the creation of the tetrahedra meshes the MRI is then read into the commercial
software CURRY [9]. CURRY then segments the different compartments of the volume
conductor by their grey values in the MR image. Tetrahedra meshes with elements of
varying edge lenth were created as described in section (2.6.1). Table (3.6) lists the used
tetrahedra FEM meshes.

The regular and nodeshifted hexahedra meshes are generated using the software
Vgrid [27] as described in section (2.6.1). Hexahedra meshes with varying element width
were created. Details on the regular and nodeshifted cube meshes can be seen from
table (3.6).

The geometry of the FEM meshes used for the simulations in the four layer, isotropic
and anisotropic volume conductor is identical to those used for the simulations in the
three layer, isotropic volume conductor. The FEM meshes of the three layer sphere
models were derived from the FEM meshes of the four layer, isotropic sphere models
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by simply assigning all CSF elements the conductivity of brain tissue. Furthermore
the FEM meshes for the four layer anisotropic volume conductor were derived from the
meshes for the isotropic four layer sphere by assigning all skull elements an anisotropic
conductivity. Figures (3.1.3) to (3.1.3) show cuts through the tetrahedra, regular hexa-
hedra and nodeshifted hexahedra FEM meshes.

(a) Tetrahedra mesh. (b) Regular hexahedra mesh.

(c) Nodeshifted hexahedra mesh.

For the four layer, anisotropic sphere an additional FEM mesh was used (table (3.6)).
This FEM mesh was built using the constrained Delaunay tetrahedralisation employing
the software tool TetGen[24]. It has got high quality, that is very regular, tetrahedra and
local mesh refinements in the areas where it is important for a good accuracy of the FEM
solution. A small region of a cut through the tetrahedra meshes tet229k 4layer aniso
and tet719k 4layer aniso can be seen in figures (3.2(d)) resp. (3.2(e)).

For the MEG studies only the one layer sphere model had to be meshed. Furthermore
for the MEG the influence of element width on the accuracy is not studied. Therefore
only tetrahedra and hexahedra meshes with an average 2 mm edge length were created.
The FEM meshes used for the MEG studies can also be found in table (3.6).
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(d) tet229k 4layer aniso (e) tet716k 4layer aniso

Figure 3.2: Small region of the cut through the tetrahedra FEM meshes for the four layer, anisotropic
sphere model.

Generation of the BEM meshes

The simulation of the electric potential or magnetic flux using the boundary element
method also needs a mesh representing the interfaces between the compartments with
constant conductivity.

For the EEG studies in this section we generated BEM meshes of a three layer spherical
volume conductor with varying element size and therefore a varying number of elements
and nodes. The mesh generation was done in CURRY in a very similar way as the
generation of the tetrahedra FEM meshes was done in CURRY. A synthetic MR image
of the three layer sphere was segmented. The interfaces were then meshed with triangles
as described in section (2.6.2). The generated BEM meshes with varying triangle size
are listed in table (3.7). For the studies in the MEG one layer sphere model only one
BEM mesh was used (see table (3.7)).

width # nodes # elements

scalp
outer inner
skull skull

EEG

3 layer, isotropic
fine3700 3layer iso 10.0 mm 9.5 mm 8.0 mm 3727 7462
standard2600 3layer iso 12.5 mm 11.5 mm 9.5 mm 2589 5166
coarse2000 3layer iso 14.5 mm 13.5 mm 10.5 mm 2015 4018

MEG

1 layer, isotropic
fine1400 1layer iso n.a. n.a. 8.0 mm 1374 2744

Table 3.7: The used BEM meshes.
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3.1.4 Error Measures

To quantify the errors between the numerical solutions, Phinum, and the (quasi-)analytical
reference solutions, Φref, three different error measures were used. In the following equa-

tions the norm is defined as ‖x‖2 =

√
n∑

i=1
x2

i , where n is the number of sensors.

The first error measure is the relative error (RE ).

RE =

∥∥Φref − Φnum
∥∥

2

‖Φref‖2
(3.1)

The RE is always positive and the best value for the RE is 0. The RE is not bounded
above.

A simple scaling of the electric potential effects the RE in the same way as a difference
in the topography of the electric potential or the magnetic flux does. Therefore Meijs
proposed in [14] two new error measures.

The first error measure he introduced is the relative difference measure (RDM ).

RDM =
∥∥∥∥ Φref

‖Φref‖2
− Φnum

‖Φnum‖2

∥∥∥∥
2

(3.2)

It indicates differences in the topograpy of the potential respectively the flux and it is
not affected by a mere scaling of the values with a constant value. The RDM is always
positive an its best value is 0. The maximum value for the RDM is 2.

Finally there is the magnification error (MAG).

MAG =
‖Φnum‖2
‖Φref‖2

(3.3)

It indicates a constant scaling between the reference and the numerical solutions. The
best value for the MAG is 1. It is not bounded above.

3.2 Results and Discussion

This section presents the results of the studies in the multilayer sphere models. First
the accuracy of the FEM solution for the EEG for spherical volume conductors of vary-
ing complexity is investigated and compared to the accuracy of a BEM solution with
comparable computational complexity. Then the accuracy of the FEM solution for the
MEG is studied. Furthermore the contribution of the primary current and the volume
currents to the total magnetic flux will be discussed for synthetic and a realistic sensor
configurations.

3.2.1 Results of the EEG Studies

The first volume conductor used in this work is the most simple one used to model the
human head: the three layer sphere model with isotropic conductivities. (See table (3.1)
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for details on the volume conductor.) The electric potential at the 134 surface electrodes
in the three layer model was calculated for radial and tangential dipoles at positions from
the centre of the spheres in 1mm steps along the z-axis until 4 mm below the interface
between the brain and skull compartment. As realistic sources in the human brain are
situated in the middle of the approx. 4 mm thick cortex layer and as the thickness of the
CSF layer can be estimated to be 2 mm it is reasonable to assume that realistic sources
do not come closer to the inner skull than 4mm. The eccentricity of the dipoles was
defined to be 1 for the most superior dipole.

To generate a reference solution the electric potential for these dipoles was calculated
using de Munck’s formula described in section (2.3.1). The electric potential for the set
of dipoles was then calculated using the finite element method and the meshes for the
three layer, isotropic volume conductor described in table (3.6). The current dipole was
modelled using Venant’s approach. Furthermore the potential was calculated employing
the boundary element method using the meshes listed in table (3.7). To quantify the
errors of the numerical methods the RDM and the MAG between the numerical and the
analytical solutions is calculated.

Figures (3.3), (3.4) and (3.5) show the RDM and MAG against the dipole eccen-
tricity of the FEM solutions for tetrahedra, regular cube and nodeshifted cube meshes
respectively with different element sizes.
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Figure 3.3: RDM and MAG for the FEM solutions in tetrahedra meshes of the three layer, isotropic
sphere model with varying element size.

In figure (3.6) the RDM and MAG for the BEM solution in meshes with varying
element size is presented.

The error curves for the FEM solutions in meshes with varying element size show that
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Figure 3.4: RDM and MAG for the FEM solutions in regular cube meshes of the three layer, isotropic
sphere model with varying element size.
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Figure 3.5: RDM and MAG for the FEM solutions in nodeshifted cube meshes of the three layer, isotropic
sphere model with varying element size.
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Figure 3.6: RDM and MAG for the BEM solutions in meshes of the three layer, isotropic sphere with
varying element size.

the FEM solution is converging towards the analytical solution. The errors decrease for
all element types when decreasing the element width throughout the whole mesh, that
is when globally refining the mesh. Convergence towards the analytical solution is also
found for the BEM solutions in meshes with decreasing element size.

In figure (3.7) the accuracy of the FEM solutions for the different element types is
compared to the accuracy of BEM for a standard BEM mesh. The computational effort
needed for the BEM solution is comparable to the computational effort for the FEM
solutions in the meshes with 2 mm element size.

The RDM for the FEM solutions in the 2 mm meshes is below 0.04 and the MAG lies
between 0.95 and 1.15 for the whole range of dipole eccentricities. It can be observed,
that the RDM for all meshes increases for increasing eccentricity. In addition the plots
show that oscillations are superimposed on the error curves, especially for tangential
dipoles. In the error curves a decrease of the MAG for high eccentricities can be noticed
for radial dipoles, but not for tangential ones. Comparing the element types the FEM
solution in the nodeshifted hexahedra meshes is most accurate, followed by the solution
in the tetrahedra mesh, which is only for high eccentricities less accurate. The regular
hexahedra mesh delivers the worst results.

The RDM for the BEM solution is everywhere below 0.05 and the MAG lies between
0.7 and 1.0. For high eccentricities the RDM strongly increases and the MAG decreases
away from the ideal value of the MAG.

When comparing the accuracy of the potentials calculated using BEM and FEM one
can find that the FEM solution for the three layer, isotropic sphere model is, for dipoles
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Figure 3.7: RDM and MAG for the BEM solution and for the FEM solutions for different element types
in the three layer, isotropic sphere model.

at realistic eccentricities ' 0.7, more accurate than the BEM solution, when nodeshifted
hexahedra meshes are used. But BEM performs better, when compared to FEM in the
regular hexahedra mesh.

As discussed above the three layer sphere model reflects the head compartments scalp,
skull and brain, but it ignores the highly conducting CSF layer between the skull and
the brain. Therefore very often the four layer sphere model is used to model the human
head. Details about the radii and the conductivities of the sphere shells can be found in
table (3.2). The reference solution was generated using the (quasi-)analytical solution
for a four layer spherical volume conductor. The electric potential was simulated for the
same set of dipoles as for the three layer sphere model. The FEM meshes of the four
layer isotropic sphere model can be found in table (3.6). As before the current dipole
for the finite element method was modelled using Venant’s approach.

The BEM calculations were performed only for meshes with three compartments. In
general it is possible to model a four layer volume conductor in BEM, but for realistic
models this cannot be done with reasonable computational effort. This is because the
surface of the cortex with its deep sulci has to be meshed with very fine triangles. That
would strongly increase the number of nodes and therefore the computation time needed.

To compare the accuracy of the BEM and the FEM solution for the different element
types RDM and MAG error curves for the numerical solutions are presented in figures
(3.8) for radial dipoles and (3.9) for tangential dipoles. The figures furthermore show the
error between the analytical solution in the three layer sphere and the analytical solution
in the four layer sphere. This curve indicates the error which is caused by ignoring the
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CSF layer.
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Figure 3.8: RDM and MAG for the BEM solution in the three layer, isotropic sphere model and for the
FEM solutions for different element types in the four layer, isotropic sphere model. Radial Dipoles.

The RDM for the FEM solutions for the four layer, isotropic sphere model is ev-
erywhere below 0.05 and the MAG lies between 1.0 and 1.15. The RDMs are again
increasing for higher eccentricities. Comparing the accuracies for the different element
types it can be observed, that the regular hexahedra as in the three layer sphere are least
accurate. Using nodeshifted hexahedra meshes yields slightly larger errors for the four
layer sphere model than for the three layer sphere model. So in the four layer sphere
model the tetrahedra mesh performs best.

The RDM for the BEM solution in a three layer sphere model reaches 0.09 for radial
dipoles and 0.06 for tangential dipoles. One can observe that the RDM for the BEM
solution is nearly everywhere below the error caused by ignoring the CSF layer.

Comparing BEM and FEM one can see that the errors of the FEM solution in the
nodeshifted hexahedra and the tetrahedra mesh are, for realistic dipole eccentricities, less
than the errors for the BEM solution. For the FEM solution in the regular hexahedra
mesh this is only true for eccentricities higher than 0.9.

In section (3.1.1) it was already mentioned that the conductivity of the skull is
anisotropic. This anisotropy is taken into account for the four layer, anisotropic sphere
model described in detail in table (3.2). The reference solution was created using de
Munck’s formula, which allows radial to tangential anisotropy in each of the layers. In
the FEM solution the anisotropy of the skull was taken into account using anisotropic
FEM meshes. Venant’s approach was used to model the current dipole in FEM. As
BEM is only able to handle one isotropic conductivity value per compartment the BEM
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Figure 3.9: RDM and MAG for the BEM solution in the three layer, isotropic sphere model and for the
FEM solutions for different element types in the four layer, isotropic sphere model. Tangential Dipoles.

solutions were calculated for the three layer, isotropic head models already used above.
Figures (3.10) and (3.11) show the error curves for the FEM solutions for different

element types and the BEM solution for radial resp. tangential dipoles. Additionally
the RDMs and MAGs between the analytical solution in a three layer, isotropic sphere
and the quasi-analytical solution in a four layer, anisotropic sphere are shown. This last
curve indicates the effect of neglecting the CSF layer and the anisotropy of the skull.

The RDM errors of the FEM solutions are everywhere less than 0.09 and the MAG
lies between 1.0 and 1.3. Compared to the errors in the isotropic four layer sphere the
errors here are nearly twice as large. Looking at the differences in the errors between
the element types a similar finding as for the three layer sphere can be made. The
nodeshifted hexahedra mesh performs best, followed by the tetrahedra and the regular
hexahedra mesh.

For the BEM solution the RDM gets as large as 0.17 for radial dipoles and as large as
0.10 for tangential dipoles. As in the four layer sphere it can be observed, that the BEM
errors are less than the model error caused by ignoring the CSF layer and the anisotropy
of the skull.

The comparison of BEM and FEM errors shows that the errors for FEM are clearly less
than the BEM errors for radial dipoles at eccentricities higher than 0.85. For tangential
dipoles the FEM errors are less than the BEM errors only for eccentricities larger than
approx. 0.9.

As the RDM for the tetrahedra mesh tet229k 4layer aniso in the four layer, anisotropic
sphere reaches values of up to 0.08, the FEM solution was calculated for the additional
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Figure 3.10: RDM and MAG for the BEM solution in the three layer, isotropic sphere model and for the
FEM solution for different element types in the four layer, anisotropic sphere model. Radial Dipoles.
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Figure 3.11: RDM and MAG for the BEM solution in the three layer, isotropic sphere model and for the
FEM solution for different element types in the four layer, anisotropic sphere model. Tangential Dipoles.
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tetrahedra mesh tet716k 4layer aniso. It can be seen from figures (3.2(d)) and (3.2(e))
that the tet716k 4layer aniso mesh is finer in the skull, the brain compartment and
below the surface of the brain and that the tetrahedra in the tet229k 4layer aniso mesh
are less regular than those in the tet716k 4layer aniso mesh. In addition figure (3.2(d))
shows that the only 2 mm thick CSF layer is not closed in the tet229k 4layer aniso
mesh. There are tetrahedra from the brain compartment which are directly connected
to elements from the skull compartment. Although the new tetrahedra mesh has more
nodes it is with regard to the computation time need for solving the inverse problem still
comparable with the BEM mesh. (3.12) shows how this differences in the FEM meshes
affect the accuracy of the FEM simulation in a four layer, anisotropic sphere.
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Figure 3.12: RDM and MAG for the FEM solution in two different tetrahedra meshes.

It can be observed that the new, locally refined tetrahedra mesh is much more accurate
than the previously used one. The errors of the new mesh are now also clearly less than
the errors of the BEM solution.

As the last study in this section the accuracies of the Venant approach, which was
used for all FEM simulations up to this point, shall be compared to the accuracies of
the subtraction approach. The comparison of the accuracies of both approaches for
the tet716k 4layer aniso-mesh can be seen in figure (3.13). The most obvious difference
between the RDM curves is that the error curve for the subtraction approach is smooth
and does not oscillate. For most eccentricities the RDMs of Venant’s approach and
subtraction approach do not differ much, but for high eccentricities the errors of the
subtraction approach rise stronger than that of Venant’s approach.

For a reasonable comparison of BEM and FEM the computational effort of both
methods must be comparable. In table (3.8) the computation times for the BEM solution
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Figure 3.13: Accuracies of the FEM solution for the electric potential using Venant’s approach and the
subtraction approach.

and for the most accurate FEM solutions are shown.1 BEM and FEM both need a
constant time, listed in the first column, for setting up the simulations. In this time
for BEM the inverse electric system matrix and for FEM the electric lead field basis is
computed. After that one forward computation of the electric potential can be done
quite fast. In the last column the times for calculating a typical lead field matrix are
presented. The time for the computation of the lead field matrix is equal to the sum of
the set-up time and the time needed for 30000 forward computations.

setup
one forward lead field,
computation 30000 sources

fine3700 3layer iso 70 min 59.62 s 26.6 ms 84min 16.40 s

cubens426k 3layer iso 29 min 14.30 s 1.1 ms 30min 28.14 s

tet716k 4layer aniso 56min 31.64 s 2.6 ms 57min 50.15 s

Table 3.8: Computation times for BEM and the most accurate FEM meshes.

1The computations were performed on a workstation equipped with a Intel Xeon 5130 CPU running
at 2.0GHz and 8GB of memory.
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3.2.2 Discussion of the Results of the EEG Studies

The results for FEM meshes with varying element size show that the FEM solution
converges towards the analytical solution. The 2 mm meshes produce the best results.
So global mesh refinement is one method to improve the accuracy of the FEM solution.
This was also found e.g. in [18].

The increase of the FEM errors when the dipole approaches a compartment boundary
can be explained by the large potential gradient of a dipole close to a discontinuity of the
conductivity, which cannot be represented by the finite element ansatz functions when
there are only a few finite elements between the source and the discontinuity. Increasing
the number of elements in the vicinity of a conductivity jump can therefore increase the
accuracy.

That the accuracy of the FEM solution using nodeshifted hexahedra meshes is better
than the accuracy using regular hexahedra is due to the better approximation of the
smooth sphere surfaces with the nodeshifted hexahedra and has also been shown in [37].

For the FEM solutions it was noticed that oscillation overlaid the error curves. These
oscillations are characteristic for the Venant approach. When using Venant’s approach
the accuracy of the FEM solution depends on the position of the dipole relative to the
next FE node. The solutions are most accurate when the source is lying on a node. For
the BEM solution a strong increase of the errors was found, when the dipole comes close
to the surface of the innermost sphere, which was also confirmed in e.g. [6]. Due to the
numerical problems of BEM with sources close to a discontinuity of the conductivity the
FEM solutions in nodeshifted hexahedra and tetrahedra meshes are more accurate for
realistic sources at higher eccentricities.

The accuracies of the FEM simulations in the four layer, isotropic sphere models are
comparable to those in the three layer, isotropic sphere model. Only for the nodeshifted
hexahedra meshes the errors are slightly larger. This is probably because it is very hard
to model the only 2mm thin CSF layer with hexahedra elements of 2 mm size. Figure
(3.1.3) shows that the CSF layer is not well approximated in the nodeshifted hexahedra
mesh.

It is at first sight surprising that the error between the three layer BEM mesh and the
analytical solution for the four layer, isotropic and anisotropic sphere model is less than
the model error caused by ignoring the CSF layer respectively the CSF layer and the
anisotropy of the skull. The reason for this is that the numerical errors of the boundary
element method and the model error by accident do not add up, but partly cancel each
other. One can not expect that this will always be the case when modelling a four layer,
isotropic or anisotropic sphere model using a three layer, isotropic BEM mesh.

From the study in the four layer, anisotropic sphere one can see, that the errors of
the FEM simulations with an anisotropic skull are nearly twice as large as the errors
for an isotropic skull. This is most likely due to the not fine enough discretisation of
the skull. The comparison between the tet229k 4layer aniso tetrahedra mesh and the
tet716k 4layer aniso tetrahedra mesh, where the skull, was locally refined, confirms this.
In addition the area close to the border of the brain compartment was refined in the
new mesh. As already above discussed small elements in this region are necessary for an
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accurate simulation of eccentric dipoles. It can be seen in figure (3.12) that the errors for
a four layer, anisotropic sphere model can be reduced by a factor 3 to 4 by locally refining
the skull and the area below the interface between the brain and the CSF compartment.
For realistic head models it can be expected that a FEM mesh which was refined in a
similar way will produce similar accuracies, because the accuracy of the finite element
method does not depend on the geometry[36]. So for the studies of FEM in a realistic
volume conductor the FEM solution for such a locally refined mesh can be taken as a
very accurate reference solution.

Regarding the errors of the tet716k 4layer aniso mesh one can state that it is possible
to simulate the EEG in a four layer, anisotropic sphere model much more accurate using
the finite element method than using the boundary element method.

For high eccentricities near the border of the brain compartment the subtraction ap-
proach is not as good as the Venant approach. In [36] it was proven, that the subtraction
approach gets less accurate when a dipole comes close to a discontinuity of the conduc-
tivity. It is nevertheless suspected that the higher errors of the subtraction approach
for high excentricities are partly caused by a not optimal implemenation of the method.
In the implementation of the subtraction approach used here the analytically computed
potential φ∞ is approximated with linear finite element ansatz functions. This does not
seem to be sufficient for sources close to conductivity jumps. In an improved imple-
mentation it was already shown that approximating φ∞ with higher order polynomials
increases the accuracy for these sources.

The computation times needed for the most accurate FEM meshes are comparable to
the computation time needed for the BEM solution. Even for a large number of forward
computations the set-up time is dominating the overall time needed. With regard to
the application the set-up time is not very critical, because the computations for the
set-up only have to be done once for each mesh. The results, that is the inverted system
matrix for BEM and the lead field basis for FEM, can be stored and reused for a fast
solution of the inverse problem. The time for one forward computation is for FEM
shorter than for BEM. In BEM and FEM after the set-up the electric potential can
be computed by multiplying the source vector to the inverted electric system matrix
respectively the electric lead field matrix. Both matrices have s rows, where s is the
number of sensors. So the time for the matrix-vector-multiplication is determined by
the number of multiplications needed for multiplying a row vector of the matrix to the
source vector. For BEM this number is equal to the number of nodes of the BEM mesh.
Using the Venant approach for FEM the source vector is not fully populated, but there
are only as many non-zero entries in the source vector as there are neighbouring nodes
to the node, which is closest to the current dipole. Typically the source vector has,
depending on the element type, around 30 non-zero entries. So using FEM only around
30 multiplications are needed for the multiplication of the row vector of the lead field
matrix and the source vector instead of a few thousand using BEM.
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3.2.3 Results of the MEG Studies

The MEG studies were carried out using the one layer, isotropic volume conductor
described in table (3.5). The magnetic flux was calculated for each of the three sets of
magnetometers described in section (3.1.1) and for 79 dipoles at the same positions as in
the EEG studies. Because radial dipoles in a sphere do not produce any magnetic field
outside[21], only tangentially orientated dipoles were used. The analytical solution was
computed using Sarvas formula[21] and the numerical solutions were computed using
BEM and FEM with Venant’s approach.

It was pointed out before, that the magnetic flux due to brain activity can be separated
into two parts. The first one, here called the primary magnetic flux, describing the
contribution of the primary or impressed current and the second part, the secondary
magnetic flux, describing the contribution of the secondary or volume currents. In
the numerical methods BEM and FEM the two contributions are treated in a very
different way. The primary flux can always be computed analytically, that is nearly
exact. Whereas the secondary flux is computed numerically. That is why below the
errors not only for the total magnetic flux, but also for the primary and secondary
magnetic flux were calculated.

Radial Magnetometers
First radially orientated magnetometers will be discussed. Figure (3.14) shows the L2-
norm of the primary and secondary magnetic flux relative to the L2-norm of the total
magnetic flux for the set of radial magnetometers and for the 79 dipoles with varying
eccentricity. Primary, secondary and total magnetic flux were computed analytically.
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Figure 3.14: The L2-norm of the primary and secondary magnetic flux relative to the L2-norm of the
total magnetic flux for radial magnetometers.

The relative L2-norm of the primary magnetic flux is everywhere 1, whereas the rela-
tive L2-norm of the secondary magnetic flux is everywhere 0.

The total strength of the magnetic flux depending on the dipole eccentricity can be
seen in figure (3.15) where the L2-norm of the total magnetic flux is plotted against
the dipole eccentricity. It can be seen that the strength of the magnetic flux which can
be measured outside the head decreases when the dipole approaches the centre of the
spheres. A dipole in the centre of the sphere would not generate any magnetic flux
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outside of the sphere.
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Figure 3.15: The L2-norm of the total magnetic flux for radial magnetometers normalised to its maxi-
mum.

For the errors between the numerically and analytically computed primary magnetic
flux, values that were less than 10−4 for the RDM and for |MAG− 1| were found. The
errors of the primary magnetic flux are always very small not depending on whether
FEM or BEM was used, not depending on the meshes used for FEM and BEM and not
depending on the orientation of the magnetometers.

The errors of the numerically computed secondary magnetic flux measured with radial
magnetometers are very large. The RDM reaches values of more than 1 and the MAG
is always larger than 100.

Figure (3.16) shows the error curves of the FEM and BEM solutions for the total
magnetic flux for radial magnetometers.

For reasonable eccentricities ' 0.3 the RDM of the FEM and BEM solutions is less
than 0.25 and the MAG lies between 0.98 and 1.05. For lower eccentricities, that is when
the dipole comes closer to the centre of the spheres, the errors sharply rise.

Tangential Magnetometers

The contribution of the primary and secondary magnetic flux to the total magnetic flux
for the second set of tangentially orientated magnetometers is shown in figure (3.17). The
plot for the second set of tangential magnetometers looks very similar and is omitted.

The dependence of the total strength of the magnetic flux on the dipole eccentricity
is for the tangential magnetometers very similar to that for the radial magnetometers.
Therefore the plot for the L2-norm of the total magnetic flux for the tangential magne-
tometers is not shown here. In addition the errors for the primary magnetic flux can be
neglected for the tangential magnetometers, too.

In figures (3.18) and (3.19) the RDM and MAG of the numerically computed secondary
magnetic flux for the first respectively second set of magnetometers is presented.

The RDM for the FEM solutions is nearly everywhere and for both magnetometer
configurations below 0.04 and the MAG lies between 0.98 and 1.03. As for the EEG the
error curves are oscillating, but here the amplitudes of this oscillations especially for the
tetrahedra mesh are larger.
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Figure 3.16: RDM and MAG of the BEM and FEM solutions for the total magnetic flux for the radial
magnetometers.
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Figure 3.17: The L2-norm of the primary and secondary magnetic flux relative to the L2-norm of the
total magnetic flux for the first set of tangential magnetometers.
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Figure 3.18: RDM and MAG for the BEM and FEM solutions of the secondary magnetic flux for the
first set of tangential magnetometers.
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Figure 3.19: RDM and MAG for the BEM and FEM solutions of the secondary magnetic flux for the
second set of tangential magnetometers.

55



3 Validation of FEM in Multilayer Sphere Models

When comparing the element types one can see, that the hexahedra models are approx.
equally accurate. Due to the large oscillations the tetrahedra model performs worse for
a few dipoles.

For the BEM solution for eccentricities up to 0.9 the RDM is below 0.02 and the MAG
is between 0.98 and 1.0, but for higher eccentricities the RDM rises towards a value of
≈ 0.04 and the MAG decreases until 0.97.

Finally figures (3.20) and (3.21) show the errors of the total magnetic flux.
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Figure 3.20: RDM and MAG for the BEM and FEM solutions for the total magnetic flux for the first
set of tangential magnetometers.

As for the secondary magnetic flux the hexahedra meshes produce better results with
higher accuracies. For the FEM simulations in hexahedra meshes the maximum RDM
for reasonable eccentricities is below 0.05 and the MAG lies between 0.95 and 1.05. The
error curves for the tetrahedra mesh are strongly oscillating, so that the maximum RDM
for reasonable eccentricities is 0.10 and the MAG lies approx. between 0.95 and 1.05.
Just like seen before, for dipoles close to the centre of the spheres the errors for all
numeric methods get worse. The RDM for the BEM solution is at the maximum ≈ 0.08
and the MAG lies between 0.97 and 1.03.

For the second set of tangential magnetometers, where the volume currents signif-
icantly contribute to the total magnetic flux and where the errors for the secondary
magnetic flux are getting important, the secondary and total magnetic flux are also
computed using the subtraction approach. In figure (3.22) the accuracies of the subtrac-
tion approach for the secondary and total magnetic flux are compared to the accuracies
of Venant’s approach. It is here even more obvious than for the EEG that the accuracies
of the subtraction approach do not oscillate. In addition the subtraction approach is
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Figure 3.21: RDM and MAG for the BEM and FEM solutions for the total magnetic flux for the second
set of tangential magnetometers.

everywhere more accurate than Venant’s approach.
As for the EEG studies the computation times needed for BEM and for the most

accurate FEM meshes are compared. Again both methods first need some time for
setting up the simulations. Using BEM for the MEG in this time the inverted electric
system matrix and the magnetic system matrix are computed. In the set-up for the
MEG simulations using FEM first the secondary magnetic flux integration matrix and
then the magnetic lead field matrix has to computed. The table (3.9) in addition shows
the time for one forward computation and the time for the computation of a typical lead
field, which is the set-up time plus the time needed for 30000 forward computations.

setup
one forward lead field,
computation 30000 sources

fine1400 1layer iso 2 min 48.26 s 21.1 ms 13min 22.06 s

cubens282k 1layer iso 24 min 54.96 s 1.0 ms 25min 26.31 s

tet649k 1layer iso 122min 6.10 s 2.8 ms 125min 10.44 s

Table 3.9: Computation times for BEM and the most accurate FEM meshes.

Realistic Sensor Configuration

In the sections above the strength of the total magnetic flux and the contribution of the
primary and secondary magnetic flux were already studied, but only for synthetic sensor
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Figure 3.22: Accuracies of the FEM solution for the secondary and total magnetic flux using Venant’s
approach and the subtraction approach.

configurations with completely radial respectively completely tangential sensors. In this
section these two points will be studied for the realistic sensor configuration of the MEG
machine at the Institute for Biomagnetism and Biosignalanalysis (IBB). Primary, sec-
ondary and total magnetic flux generated by tangential dipoles distributed regularly on
the surface of a concentric sphere with radius 76 mm were calculated using FEM and the
Venant approach in the cubens282k 1layer iso mesh. Simulations were performed using
no noise rejection by means of higher order synthetic gradiometers. Figures (3.23(a))
and (3.23(b)) show the strength of the total magnetic flux respectively the difference
between the L2 norm of the primary and secondary magnetic flux depending on the
location of the source.

The total magnetic flux is maximal for dipoles on the left or the right of the sphere
and on top of the sphere. For dipoles at the bottom of the sphere the flux is weakest.
When looking at the relative difference between the strength of the primary magnetic
flux and the secondary magnetic flux it can be observed that the primary flux is for all
dipoles stronger. Especially on the left and on the right of the sphere. The contribution
of the secondary magnetic flux is largest for dipoles at the bottom of the sphere.

3.2.4 Discussion of the Results of the MEG Studies

Radial Magnetometers

From figure (3.14) one can see, that the secondary magnetic flux is exactly zero and does
not contribute to the total magnetic flux for the case of radial magnetometers. This is
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consistent with [21], where it is shown that, for a sphere, the radial magnetic field is
produced exclusively by the primary currents. The secondary currents in a sphere do
not contribute to the radial component of the magnetic field outside.

Very small errors were observed for the primary magnetic flux and radial sensors.
These can be explained by the fact that the primary magnetic flux is computed analyt-
ically even when using BEM or FEM.

For the secondary magnetic flux very large errors were observed. This is because
the numerically computed magnetic flux for radial magnetometers is not exactly zero,
but still has a very small absolute value. When comparing this very small secondary
magnetic flux to the analytically computed secondary magnetic flux, which is nearly
exactly zero, this results in large relative errors.

The small, absolute errors of the numerically computed secondary magnetic flux also
influence the error of the total magnetic flux. These small, absolute errors of the sec-
ondary magnetic flux get especially important for sources close to the centre of the
spheres. For these deep sources the strength of the total magnetic flux decreases and the
small, absolute error of the secondary magnetic flux gets more important and causes a
larger, relative error.

Tangential Magnetometers

In figure (3.17), showing the relative strength of the primary and secondary magnetic
flux, it can be observed that the strength of the primary and secondary magnetic flux
is larger than the strength of the total magnetic flux. In addition it can be noticed that
the strength of the contributions from the primary currents and secondary currents are
nearly equal. These facts indicate that the primary and secondary magnetic flux nearly
cancel out each other. The total magnetic flux is then the small difference between
primary and secondary magnetic flux. This is important for the way the small absolute
errors affect the relative error of the total magnetic flux.

Oscillations in the error curves for the secondary magnetic flux calculated using FEM
were observed. These have the same reason as in the EEG. In general it can be said
that because of equation (2.37) the accuracy of the secondary magnetic flux is directly
related to the accuracy of the electric potentials.

As the primary flux can be calculated analytically and therefore exact also for tan-
gential magnetometers, the errors of the total magnetic flux are dominated by the errors
of the secondary magnetic flux. The peaks of the RDM for the tetrahedra mesh are, for
example, for the total magnetic flux at the exact same position as for the secondary mag-
netic flux. But there is a difference in the magnitude of the errors. The small absolute
errors of the secondary magnetic flux get more significant relative to the total magnetic
flux, which has especially for deep dipoles a small total strength. The BEM solution is
except for the most superficial sources at least as accurate as the FEM solution.

For the MEG the subtraction approach can clearly improve the RDM and the MAG
for the whole range of eccentricities.

Comparing the computation times for BEM and FEM for the MEG yields a different
picture as for the EEG. The lead field computation is faster using BEM than using
FEM. This is due to the fact that the setup of the BEM simulations is very fast for a
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one layer BEM model. Calculating the secondary magnetic flux integration matrix and
the magnetic lead field does not depend on the number of layers, but on the number
of nodes. And the number of nodes for the one layer models is not much less than the
number of nodes for the three or four layer models used in the EEG studies. As for the
EEG it can still be observed that the main time for the computation of a lead field using
FEM is needed for the set-up, which is not a problem in the application.
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4 The Phantom Study

In this chapter the MEG forward computation using FEM shall be validated by solving
the inverse problem for measured data, where the underlying current distribution is
known. Therefore the MEG for a set of current dipoles in a phantom head is measured.
The positions and orientations of the dipoles are then reconstructed by solving the
inverse problem using FEM for the forward computations. The reconstruction results
are compared to the real position and orientation of the dipole, which can be measured
directly at the phantom. Furthermore the reconstruction results are compared to the
reconstruction results of a well tested software, which uses an analytical solution to solve
the forward problem.

4.1 Methods

In this section the methods of the phantom study shall be presented. This includes the
description of the head phantom, the MEG machine and the details on the measurement
procedure. In addition details on the used FEM meshes and the inverse procedures are
provided.

4.1.1 Head Phantom

The head phantom consists of a plastic sphere, which is filled with NaCl solution. The
measures of the sphere can be seen in figure (4.1). The concentration of NaCl in the
solution is known to be c = 0.14 mol/l. Therefore the conductivity of the solution can
be estimated as σ = 1.73 S/mm. To measure the position of the phantom relative to the

154.5 mm

130.0 mm

Scale

Pointer

Dipoles

Figure 4.1: The phantom head model. From [30].
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dewar of the MEG machine, fiducial coils have to be attached to the phantom. The coils
can be attached to the four mounts which are equally distributed along the equatorial
line of the phantom model.

The electric activity of the brain is simulated in the phantom with current dipoles.
These dipoles consist of two gold globes at a distance of 9mm to each other. The dipole
is attached to a plastic rod which is inserted into the phantom through one of several
holes in the lower area of the plastic sphere. By choosing different holes the position of
the dipole in x and y direction can be varied. The position of the dipole in z direction
can be varied continuously by sliding the rod in or out of the sphere. A electric potential
between the two globes of the dipole is applied by the data acquisition software and
controlled in such a way that a given dipole moment is met.

4.1.2 MEG Machine

The MEG machine is a Omega 2005 from the manufacturer VSM Medtech Ltd.. It is
equipped with 275 measurement sensors. The measurement sensors are axial gradiome-
ters with a baseline of 50mm. The coils of the gradiometers have a radius of 9mm. For
the noise rejection technique described in section (2.8) the magnetic flux is furthermore
measured at 29 reference sensors which are situated in the dewar above the measurement
sensors. The reference sensors are magnetometers and axial and planar gradiometers.
The radii of the coils differ between 7.76 and 17.27 mm. The baseline of the reference
gradiometers is always 78.74 mm. Figure (4.2) shows the FEM nodes which are used to
model the measurement and reference sensors.

Figure 4.2: FEM nodes that were used to model the CTF MEG sensor configuration. Including mea-
surement and reference sensors.

4.1.3 Measurement Procedure

During the measurement an sinusoidal electric potential at a frequency of ν = 5 Hz is
applied between the two globes of the dipole. The amplitude of the potential is chosen
in such a way that the amplitude of the resulting electric current between the globes
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is I = 100µA. As the distance of the globes is d = 9 mm the resulting moment of the
dipole is M = I · d = 900 nAm.

The MEG was recorded for dipoles at 5 positions along an axis parallel to the z-axis,
but 3.61 cm displaced in direction of the y-axis. The dipoles were placed on that axis in
steps of 1 cm whereas the lowest dipole is at the same height as the centre of the sphere.
The dipoles were orientated in x-direction.

The signal at the sensors is sampled at a frequency of f = 600Hz. The measurement
of the magnetic flux generated by the dipole is divided into 100 trials. Each trial lasts
1 s. The start of each trial is fixed to the phase of the sinusoidal dipole current. Already
during acquisition, i.e. on-line, a baseline correction, a low pass filter at 40 Hz, a notch
filter at the frequency of the electrical system, 50Hz, and noise rejection with synthetic
3rd order gradiometers is applied to the data. Finally, to improve the signal to noise
ratio the 100 trials are averaged.

4.1.4 Generation of the FEM Meshes

For the computation of the electric potentials and the magnetic flux, a FEM mesh has
to be created, which represents the geometry and the electric conductivity of the volume
conductor.

As the phantom is a sphere the FEM meshes can be created as they were used to be
created in the multilayer sphere validation studies (chapter (3)). First a synthetic MR
image of a sphere with the measures of the phantom is created. For the tetrahedra meshes
this image is then segmented in CURRY[9]. The creation of the tetrahedra FEM mesh is
also done in CURRY (see section (2.6.1)). Furthermore a regular and a nodeshifted cube
mesh were generated by segmenting the synthetic MR image and building the mesh with
VGRID[27] as explained in section (2.6.1). Because the phantom as a volume conductor
is homogeneous and isotropic the isotropic conductivity σiso = 1.73 S/m is assigned to
all elements of the FEM meshes. Details on the three used FEM meshes can be found
in table (4.1).

element type element size # nodes # elements

tet131k phantom tetrahedra 2.0 mm 131902 795245

cube153k phantom
hexahedra,

2.0 mm 153104 143017
regular

cubens153k phantom
hexahedra,

2.0 mm 153104 143017
nodeshifted

Table 4.1: The FEM meshes used for the phantom study.

4.1.5 Inverse Methods

To find the current distribution which caused the magnetic flux measured in the phantom
study two inverse methods were applied to the data: a goal function scan and a moving
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dipole fit (2.9).
The grid on which the goal function scan was performed was identical to the respective

FEM mesh used for the forward computations. As the grid contains several thousand
nodes the lead field basis approach is used to speed up the simulation of the magnetic
flux. As reference data for the goal function scan the data with and without applied
noise rejection by means of higher order synthetic gradiometers was used.

The second inverse method that was used is the moving dipole fit. The initial source
position was arbitrarily fixed for all dipoles to (x, y, z) = (0.0, 37.0, 0.0) mm. For the
optimization of the dipole position a simplex optimizer was used. The optimizer was
given a very low final residue of 0.1 to aim for and the maximum number of iterations
was set to 1000. The dipole was fitted to data with and without applied noise rejection
technique.

When applying the goal function scan or the moving dipole fit to the data with ap-
plied noise rejection the noise rejection was of course taken into account in the forward
computations.

The reconstruction results of the goal function scans and the moving dipole fits are
compared to two sets of reference dipole parameters. The first reference is the position
and orientation of the dipole measured directly at the phantom head model. During
the measurements a slackness in the guideway of the dipole was observed. Due to this
imperfection of the phantom the directly measured x- and y-coordinates of the dipole
have got a quite large uncertainty of 3 mm.

Because of this uncertainty in the directly measured dipole position, the reconstruction
result of the commercial software from CTF, the manufacturer of the MEG machine,
was chosen as another reference. The software uses the exact analytical solution in a
sphere for the forward computations. As the phantom model has a spherical geometry
and as the inverse algorithms implemented in this commercial software were thoroughly
tested, it can be assumed, that the reconstruction results of this software are the most
accurate results, that can be achieved for the phantom data.

4.2 Results and Discussion

In this section the results of the phantom study, first the reconstruction results of the
goal function scans and then the reconstruction results of the moving dipole fits, are
presented.

4.2.1 Results of the Goal Function Scans

In each of the three FEM meshes and for all five dipole positions a goal function scan
was performed. As the reference data for the goal function scan the measured data with
and without noise rejection by means of 3rd order synthetic gradiometers was chosen.
As a result of the scan one goal function value for each node of the mesh is obtained.
An example of the result of a goal function scan can be seen in figure (4.3).

The position of the node with the highest goal function value is then chosen as the
reconstructed dipole position. Figures (4.4) and (4.5) show the reconstruction results
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Figure 4.3: The result of a goal function scan in the cube153k phantom FEM mesh for the dipole at
z = 20mm. The goal function values are displayed on three orthogonal planes which intersect in the
dipole position, which was directly measured at the phantom. Note that the colour scale is shifted.

of the goal function scan on data with and without noise rejection projected on the
x-z-plane respectively the y-z-plane in comparison to the two reference solutions.

To quantify the mislocalisations the euclidean distance between the reconstructed posi-
tions from the goal function scan and the reference positions is calculated. In figure (4.6)
the distance between the reconstructed dipole positions and the directly measured dipole
position is presented. And in figure (4.7) the localisation errors of the goal function scans
relative to the CTF reconstruction results are shown. From these figures one can observe
that the maximum distance of the reconstruction results from the goal function scan to
the directly measured dipole positions is below 6.0 mm and the maximum distance to
the CTF reconstruction results is even below 5.0 mm. The average mislocalisation across
all dipoles is approx. 3.0 to 4.0 mm relative to the directly measured dipole position and
in the range between 1.5 and 3.0 mm relative to the CTF reconstruction results.

4.2.2 Discussion of the Goal Function Scan Results

The localisation errors of the goal function scans for all FEM meshes and for data
with and without noise rejection are very low. When comparing finite element types
no significant differences can be found for the localisation errors relative to the directly
measured dipole positions. For the localisation errors relative to the CTF reconstruction
results the nodeshifted hexahedra mesh performs slightly better than the tetrahedra and
the regular hexahedra. This is consistent with the accuracies of the different element
types in the multilayer sphere studies in chapter (3).

The noise rejection technique obviously does only improve reconstruction accuracy for
deep dipoles. For more superficial dipoles using 3rd order synthetic gradiometers slightly
impairs the localisation errors. This is due to the fact, that for 3rd order synthetic
gradiometers the contribution of the secondary magnetic flux is larger, because the
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Figure 4.4: Localisation results for the goal function scans on data with and without applied noise
rejection in the three FEM meshes projected on the x-z-plane. The label real marks the directly measured
dipole positions. The label CTF marks the CTF reconstruction results.
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Figure 4.5: Localisation results for the goal function scans on data with and without noise rejection in
the three FEM meshes projected on the y-z-plane. The label real marks the directly measured dipole
positions. The label CTF marks the CTF reconstruction results.
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Figure 4.6: Euclidean distance between the reconstruction results from the goal function scans and the
directly measured dipole position.
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Figure 4.7: Euclidean distance between the reconstruction results from the goal function scans and the
reconstruction results from the CTF software.
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reference sensors also measure the tangential component of the magnetic field outside
the head. In this way the numerical error of the secondary magnetic flux contributes
more to the error of the total magnetic flux. And the higher numerical error causes
larger localisation errors. In the average across all five dipoles there is no significant
difference in the accuracies with and without noise rejection.

4.2.3 Results of the Moving Dipole Fits

The second inverse method applied to the phantom data is the moving dipole fit. As
reference data the measured data with and without noise rejection by means of 3rd order
synthetic gradiometers is used. To use an inverse method on data with applied noise
rejection this noise rejection has to be taken into account in the forward computation of
the magnetic flux. Therefore the CTF noise rejection technique first had to be imple-
mented into the FEM forward computation in NeuroFEM, which was part of the work
for this diploma thesis.

The projections on the x-z-plane and the y-z-plane of the reconstruction results for
the moving dipole fit with and without applied noise rejection in comparison to the two
reference dipole positions are shown in figures (4.8) respectively (4.9).
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Figure 4.8: Localisation results for moving dipole fits on data with and without noise rejection in the
three FEM meshes projected on the x-z-plane. The label real marks the directly measured dipole
positions. The label CTF marks the CTF reconstruction results.

Again, to quantify the localisation results, the euclidean distance to the references is
calculated. These mislocalisations relative to the directly measured dipole positions are
presented in figure (4.10). The distances between the FEM reconstruction results and
the CTF reconstruction results can be found in figure (4.11). The maximum distance
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Figure 4.9: Localisation results for the moving dipole fits on data with and without noise rejection in
the three FEM meshes projected on the y-z-plane. The label real marks the directly measured dipole
positions. The label CTF marks the CTF reconstruction results.
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Figure 4.10: Euclidean distance between the reconstruction results from the moving dipole fits and the
directly measured dipole position.
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Figure 4.11: Euclidean distance between the reconstruction results from the moving dipole fits and and
the reconstruction results from the CTF software.

between the reconstruction results from the moving dipole fits and the directly measured
dipole positions is below 5.0 mm. The maximum distance to the CTF results is, except
for one outlier, even below 4.0 mm. The mean localisation errors are around 3.0 mm
relative to the directly measured dipole positions and below 2.5 mm relative to the CTF
reconstruction results.

For the moving dipole fits not only the reconstructed positions of the dipoles, but also
the reconstruction results for the dipole orientations will be presented. The orientation
is given by the two angles ϕ and ϑ. ϕ is the angle between the projection of the dipole
orientation vector on the x-y-plane and the x-axis. And ϑ is the angle between the dipole
orientation vector and the z-axis. Figures (4.12) and (4.13) show the absolut values of
the differences between the angles from the moving dipole fit and the angles measured
directly at the phantom. Again, the reconstruction results from the commercial and
well tested software from CTF is used as another reference for the moving dipole fit
results. In figures (4.14) and (4.15) the absolute values of the differences between the
by CTF reconstructed results and the angles from the moving dipole fits are shown.
The maximum of the difference between the moving dipole fit reconstruction results for
ϕ and the directly measured angle ϕ is approx. 6◦, the difference to the CTF result is
except for an outlier at 8◦ even below 5◦. The mean values for the differences to the
directly measured angle ϕ is below 3.5◦ and to the CTF results below 2.5◦.

For the angle ϑ the maximum of the differences to the directly measured angle is
around 6.5◦ and the difference to the CTF result is less than 3◦. The average value of
the differences of ϑ to the directly measured angle is around 3.5◦ and the average value
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Figure 4.12: Absolute values of the differences between the directly measured angles ϕ and the moving
dipole fit results for ϕ.
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Figure 4.13: Absolute values of the differences between the directly measured angles ϑ and the moving
dipole fit results for ϑ.
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Figure 4.14: Absolute values of the differences between the CTF reconstruction results for ϕ and the
moving dipole fit results for ϕ.
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Figure 4.15: Absolute valuse of the differences between the CTF reconstruction results for ϑ and the
moving dipole fit results for ϑ.
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of the differences to the reconstruction results by CTF is below 1.5◦.

4.2.4 Discussion of the Moving Dipole Fit Results

The localisation errors for the moving dipole fits are even lower than the errors of the
goal function scans. One reason for this is that the resulting dipole positions for a goal
function scan can only lie on a node of the finite element mesh. For the moving dipole
fit the position of the dipole is continously optimized. In agreement with the results of
the multilayer sphere studies the nodeshifted hexahedra mesh allows the most accurate
results for the moving dipole fits. But tetrahedra and regular hexahedra perform only
slightly worse.

As for the results of the goal function scans using 3rd order synthetic gradiometers
does only improve the localisation errors for deep dipoles. The average localisation er-
rors across all five dipoles are nearly the same with and without noise rejection. This
result, that the noise rejection using 3rd order synthetic gradiometers does not improve
the localisation accuracy, can hardly be transfered to realistic measurements. Realis-
tic measurements are affected by brain noise and other noise generated by the human
body. Furthermore often only a few trials, much less than the 100 trials of the phantom
study, can be recorded and averaged. So for a realistic measurement the higher noise
level when not using noise rejection with 3rd order synthetic gradiometers could cause
higher localisation errors than the location errors caused by higher numerical error in
the forward computation of the signal for the synthetic 3rd order gradiometers.

The orientations of the current dipoles could be accurately reconstructed in the moving
dipole fits, although it is widely known that the reconstruction of the dipole orientation
is hard using only MEG data, because a radial dipole in a nearly spherical volume
conductor generates only a very small field[3].
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5 Validation in a Realistic Head Model

In chapter (3) the forward computations in a multilayer sphere model using the finite ele-
ment method were validated and compared to another numerical solution, the boundary
element method. In the application of EEG and MEG source reconstruction the forward
problem has to be solved for more complex volume conductors than only spheres. The
big advantage of FEM is that it is not limited to simple geometries, but it can handle
arbitrary complex volume conductors. That this can be done with high accuracy will
be shown in this chapter by applying the finite element method to the forward and the
inverse problem in a realistic volume conductor. In addition the accuracy of the FEM
solutions will be compared to the accuracy of the competing boundary element method.

5.1 Methods

This section describes the methods used for the validation of FEM on forward and inverse
computations in the realistic head model. The dipoles, chosen for the simulations, and
the sensor configurations will be presented briefly. In addition it is described how the
FEM and BEM meshes were generated.

5.1.1 Current Dipoles and Sensor Configurations

For the finite element validation studies in the realistic volume conductor dipole sources
at 16 locations were used. The locations were chosen manually in different anatomical
regions of the brain. Dipoles were placed in the frontal, the temporal, the parietal and
the occipital lobe of both hemispheres. For every lobe one dipole was in a gyrus and
another one was placed in a sulcus. The dipoles were lying on a surface approx. 3mm
below the surface of the cortex. In the multilayer sphere studies the dipole orientations
were chosen radially and tangentially to the surface of the volume conductor.

For a realistic volume conductor in general no radial or tangential direction can be
defined. So the orientations of the dipole were chosen in another way. First the magnetic
flux density at the 275 measurement sensors was simulated for 3 orthogonal dipoles ori-
entated along the coordinate axes with unit strength at one of the 16 locations. The sim-
ulations were performed using FEM and the Venant approach in the tet802k 4layer aniso
mesh. A lead field matrix L can now be constructed from the simulated magnetic flux.
The element Lij of the lead field matrix is the flux simulated at the i-th sensor for the
j-th dipole. A singular value decomposition (SVD) is then applied to the lead field ma-
trix. This yields singular values σi and main axes ui. A current dipole orientated in the
direction of the main axis uj which belongs to the smallest singular value σj produces
the weakest signal at the sensors compared with all other directions. Whereas a dipole
pointing in the direction of the main axis with the highest singular value generates the
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strongest magnetic flux at the sensors. For the MEG it is known that a radial dipole
in a spherical volume conductor produces the weakest field outside of the sphere, that
is none at all. So the direction of the main axis with the smallest eigenvalue is defined
as quasi-radial. The directions of the other two orthogonal axes are then called quasi-
tangential. In the validation studies for the realistic head model a quasi-radial dipole
and two quasi-tangential dipoles at each of the above described 16 locations were used.
All the dipoles are shown in figure (5.1).

Figure 5.1: The dipoles used for the validation studies in the realistic head model. View on the right
hemisphere. Some dipoles are hidden in the sulci.

The realistic volume conductor which is used for this study was taken from the ex-
periment on somatosensory evoked potentials respectively fields (SEP respectively SEF)
described in chapter (6). Therefore the EEG and MEG configuration for this study was
also taken from that experiment. In figure (5.2(a)) the 63 electrodes are shown together
with the potential distribution on the scalp of the realistic head model simulated for a
dipole in the left occipital lobe. In figure (5.2(b)) the centres of the inner coils of the
measurement gradiometers of the used MEG configuration can be seen. Isopotential lines
indicate the magnetic flux density simulated for a dipole in the left occipital lobe. As
for the EEG the realistic MEG configuration was taken from the SEP/SEF experiment.

5.1.2 Generation of the FEM and BEM Meshes

The realistic volume conductor used in this study is assumed to consist of four com-
partments with different conductivities: the scalp, the skull, the liquor and the brain.
Scalp, liquor and brain are modelled with the isotropic conductivity values 0.33 S/m,
1.79 S/m and 0.33 S/m respectively. According to recent measurements[1] the tangential
conductivity of the skull is chosen ten times larger than the radial skull conductivity.
So the radial conductivity of the skull is 0.0042 S/m and the tangential conductivity is
0.042 S/m.
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5 Validation in a Realistic Head Model

To simulate the electric potential and the magnetic flux for sources in the realistic
head model using FEM first the geometry of the volume conductor was discretised. As
in the previous studies different element types were used.

To create the tetrahedra model tet178k 4layer aniso first a real subjects MR image was
segmented in CURRY. Then a tetrahedra mesh with tetrahedra of an average edge length
of approx. 2 mm was generated using a ordinary Delaunay tetrahedralisation which was
described in section (2.6.1). A regular, cube386k 4layer aniso, and a nodeshifted hex-
ahedra mesh, cubens386k 4layer aniso, were built using VGRID. As for the tetrahedra
mesh the first step for the hexahedra mesh generation is to segment a MR image. The
cube meshes are then built using the procedure explained in section (2.6.1).

It was shown in the validation studies for the multilayer sphere models that in a locally
refined mesh with high quality tetrahedra elements more accurate FE simulations can
be performed. This is why also for the realistic head model such a mesh was built. The
mesh, tet802k 4layer aniso, was generated by first segmenting the MR image and creat-
ing triangle meshes of the compartment boundaries in CURRY. With the software tool
TetGen then a tetrahedra mesh was constructed employing the constrained Delaunay
tetrahedralisation (see section (2.6.1)). The simulation results for the in this way gen-
erated mesh using FEM and the Venant approach can be expected to be most accurate
and are therefore chosen as the reference solution for this section.

A difficult point in the generation of all FEM meshes is the determination of the
anisotropic conductivity tensors of the skull[35]. To determine the conductivity tensor
for a skull element first the directions (quasi-)radial and (quasi-)tangential to the skull
surface have to be known. These are calculated as follows: A smooth and fine triangle
surface mesh lying in-between the inner and the outer skull surface is constructed. For
each of the skull elements then the triangle of the mesh is searched which barycentre
is closest to the barycentre of the skull element. The (quasi-)radial direction at the
location of the finite element is then defined as the normal of this closest triangle. The
(quasi-)tangential directions are chosen to form a right handed coordinate system. The
diagonal conductivity tensor can finally be transformed into this coordinate system.

For the EEG and MEG simulations the same FEM meshes were used. Details on all
the used FEM meshes can be found in table (5.1). In addition cuts through the FEM
meshes are presented in figures (5.3(a)) to (5.3(d)).

The simulation of the electric potential and the magnetic flux using the boundary
element method needs triangle meshes representing the compartment interfaces. For
the EEG a three layer isotropic BEM model, with the boundaries scalp, outer skull
and inner skull, was built to approximate the volume conductor. From the outside to
the inside the conductivities 0.33 S/m, 1.79 S/m and 0.33 S/m are assigned to the three
BEM compartments. Anisotropy cannot be modelled with BEM. Furthermore with
common BEM simulators it is, due to the computational effort which would be needed,
not possible to simulate the EEG or MEG in a four layer BEM model. The MEG was
simulated with BEM using a one layer model. The surface of the one layer model is the
inner skull surface and the conductivity of the brain is chosen to be 0.33 S/m.

For the BEM mesh generation CURRY was used to first segment the MR image and
then build the triangle surface meshes using the procedure outlined in section (2.6.2).
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(a) tet802k 4layer aniso

(b) tet178k 4layer aniso

(c) cube386k 4layer aniso

(d) cubens386k 4layer aniso

Figure 5.3: Cuts through the FEM meshes. Figures show x-, y- and z-section from left to right.
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element element # nodes # elements
type size

EEG/MEG

tet802k 4layer aniso tetrahedra n.a. 802480 5073061
tet178k 4layer aniso tetrahedra 2.0 mm 177762 1084103

cube386k 4layer aniso
hexahedra,

2.0 mm 385901 366043
regular

cubens386k 4layer aniso
hexahedra,

2.0 mm 385901 366043
nodeshifted

Table 5.1: The FEM meshes of the realistic head model.

element width # nodes # elements

scalp
outer inner
skull skull

EEG

BEM4000 3layer iso 10.0 mm 9.0 mm 7.0 mm 3970 7982

MEG

BEM1600 1layer iso n.a. n.a. 7.0 mm 1596 3188

Table 5.2: The BEM meshes of the realistic head model.

Details on the used BEM meshes can be found in table (5.2).

5.2 Validation on the Forward Problem

To validate the FEM solutions for a realistic head model the electric potential and the
magnetic flux is simulated for the different FEM meshes using Venant’s approach. The
simulated fields and potentials are then compared to a reference solution. Unlike for
the multilayer sphere validation studies for the realistic head model no real reference
solution exists. For this reason the solution which proved to be most accurate in the
multilayer sphere studies, that is the FEM solution in a locally refined mesh with high
quality tetrahedra, is chosen as the reference solution. In addition BEM simulations were
performed using BEM models that are similar fine as the BEM models which delivered
the most accurate results in the multilayer sphere models.

5.2.1 Results and Discussion of the Validation on the Forward Problem

Figures (5.4) and (5.6) show the RDMs and figures (5.5) and (5.7) show the MAGs
between the reference solution in the tet802k 4layer aniso mesh and the solutions for
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the other FEM meshes and BEM. The errors are not shown separately for all 48 dipoles.
First the errors of the solutions for the two tangential dipoles at one location were
averaged. And in addition the errors of the solutions for dipoles at symmetrical positions
were averaged. So only the influence of the placement of a dipole on a gyrus or in a
sulcus and of the used element types and numerical methods on the RDM and MAG are
studied.

Obviously the errors of the numerical forward simulations in a realistic head model are
larger than the errors that were found for the multilayer sphere models at a comparable
eccentricity. One reason for this is that for the realistic head model no exact reference
solution exists. It is clear that there is a error between the here used reference solution
and the unknown real solution. So the RDM and MAG values have to be interpreted
carefully. This even gets more obvious when looking at the cuts through the FE meshes
in figures (5.3(a)) to (5.3(d)). The figures indicate that the deep sulci of the cortex
are not accurately described by the tet802k 4layer aniso reference mesh, which could
cause additional errors between the reference solution and the other FEM solutions. An
influence of this error in modelling the CSF can especially be observed in the RDMs and
MAGs for the EEG.

When comparing the RDMs and MAGs of the EEG solutions for dipoles located in a
gyrus and in a sulcus then it can be observed that for the vast majority of dipoles the
errors are larger for dipoles lying on a gyrus. This is because these dipoles are closer to
the conductivity jump between the CSF and the skull. As seen in the multilayer sphere
studies for dipoles close to a discontinuity of the conductivity the errors increase.

For the comparison of the different FEM and BEM EEG solutions it can be stated
that FEM, not depending on the element type, is more accurate. This is very obvious
when looking at the average magnitude error. The larger errors for BEM result from
the fact that for the BEM simulations the CSF layer and the anisotropy of the skull is
ignored. It was already shown in the multilayer sphere studies that this causes errors at
approximately the same level as observed here. From all FEM solutions the solution in
the nodeshifted hexahedra model delivers the best results. This, too, is consistent with
the results from the simulations in the spherical volume conductors.

The errors for the MEG are in general lower than those observed for the EEG and
at approx. the same level as in the multilayer sphere MEG studies. Apparently the
primary magnetic flux, which does not depend on the shape or conductivity profile of the
volume conductor, still dominates the total magnetic flux simulated at the gradiometers
which is understandable as it was shown in section (3.2.3) for the here used MEG sensor
configuration that the primary magnetic flux still contributes more to the total magnetic
flux than the secondary magnetic flux. Like for the EEG the errors for dipoles in sulci
and in gyri can be compared. But unlike for the EEG there is no significant difference
between the errors for dipoles at the two locations. Again this can be explained by the
dominating primary magnetic flux which is not sensitive for the conductivity profile of
the volume conductor. For the MEG simulations in the realistic head model it can be
noticed that the errors of the FEM simulations are at an equal level. The BEM solution
is less accurate, but the difference is not as large as for the EEG.
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Figure 5.4: The RDMs of the FEM and BEM EEG solutions.
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Figure 5.5: The MAGs of the FEM and BEM EEG solutions.
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Figure 5.6: The RDMs of the FEM and BEM MEG solutions.
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Figure 5.7: The MAGs of the FEM and BEM MEG solutions.
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5.3 Validation on the Inverse Problem

For the realistic head model not only the errors of the forward solutions are studied. But
also moving dipole fits using the FEM solutions in the different meshes and the BEM
solution were applied to synthetic reference data. The synthetic reference data was
produced by simulating the electric potential and the magnetic flux for the 48 dipoles
at 16 locations presented above using the finite element method and Venant’s approach
in the locally refined, high quality tetrahedra mesh tet802k 4layer aniso.

The moving dipole fits were performed as described in section (2.9). To reliably find
the source distribution which best explains the measured data the moving dipole fit for
each dipole was repeated using four different sets of initial parameters, i.e. locations, for
the optimizer. These starting points were distributed in the left and right hemisphere
and in the front and back of the brain. The result of the moving dipole fits which best
explains the measured data is then chosen as the reconstruction result.

5.3.1 Results and Discussion of the Validation on the Inverse Problem

As above the reconstruction results are not discussed separately for all 48 dipoles. But
the results for the (quasi-)tangential directions and symmetrical positions in the brain
are averaged. The solution of the inverse problem with FEM and BEM in the different
meshes is then validated by looking at the euclidean distance between the reconstructed
dipole position and the reference dipole position. The reference dipole position is the
position of the dipole the synthetic reference data was simulated for. Figures (5.8) and
(5.9) show the localisation errors of the moving dipole fits that were found for the EEG
respectively the MEG.

When comparing the errors of the reconstruction results for the MEG and the EEG it
can be observed, that the localisation errors for the MEG are 2 to 3 times smaller than
the localisation errors for the EEG. This is consistent with the results of the studies on
the forward problem in the realistic head model. There it could be seen that the RDMs
for the EEG are larger than those for the MEG.

For the EEG the comparison between the localisation errors of the FEM solutions
using different element types and the BEM solution shows that the FEM solution in the
nodeshifted hexahedra mesh is able to most accurately reconstruct the dipole position.
The mislocalisations of the other solutions are at least twice as large. BEM produces
for the EEG localisation errors that are comparable to those of the FEM solution in the
tet178k 4layer aniso mesh.

Looking at the results of the moving dipole fits on the MEG data one can see that
the three FEM solutions perform at a similar level of accuracy. Only the BEM solution
estimates the dipole location around twice as far away from the reference position.

All these findings for the comparison of the element types and BEM and FEM very
well confirm what was observed for the RDMs in the forward simulations for the realistic
head model. This indicates that the RDM of the forward simulations is correlated to
the localisation errors of the moving dipole fits.
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Figure 5.8: The localisation errors for the moving dipole fits on the synthetic EEG reference data.
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Figure 5.9: The localisation errors for the moving dipole fits on the synthetic MEG reference data.
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6 Application of the Finite Element Method to a
SEP/SEF Experiment

After having the finite element method validated on more or less artificial data in the pre-
vious chapters, now the method is applied to data recorded for a real neurophysiological
experiment. Moving dipole fits on the EEG and MEG measured during a somatosen-
sory experiment using the finite element method for the forward computations are used
to solve the inverse problem. It is then evaluated if the reconstructed current density
distributions are anatomically reasonable to see if the finite element method can be used
to solve the inverse problem for realistic data.

6.1 Methods

First of all in this section the somatosensory experiment will be described. Then data
acquisition and preprocessing will be explained. Finally information on the used sensors
and FEM meshes will be given.

6.1.1 The Somatosensory Experiment

In the somatosensory experiment the index finger of the subject’s right hand was stim-
ulated. This stimulation was done by a pneumatically driven membrane which pressed
the finger when triggered. While the stimulation was delivered to the subject the EEG
and MEG were recorded with a sampling rate of 1.2 kHz. In addition the time when the
stimulation was triggered was recorded. One measurement run consisted of 62 trials, i.e.
62 repetitions of the stimulus. For the MEG one and for the EEG three runs were done.

A problem in EEG measurement are movements of the eyes. The muscles moving the
eyes cause large artefacts. For this reason the activitiy of the eye muscles is measured
with two additional electrodes which are placed on the skin directly above the muscled
responsible for the horizontal and vertical movement of one eye. The signal of these
electrodes was then monitored for eye movements and trials contaminated with artifacts
were rejected.

All the trials of one run were then averaged to get a EEG and MEG signal with a good
signal to noise ratio. For the EEG the signal was in addition averaged across the three
recorded runs. After the averaging a lowpass filter at 45 Hz was applied. Furthermore
a constant baseline correction is applied. In this way a EEG and MEG dataset with a
signal to noise ratio of 19.9 respectively 16.6 are obtained. These averaged and filtered
signals are shown in figures (6.1(a)) and (6.1(b)).
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(a) EEG

(b) MEG

Figure 6.1: The averaged and filtered EEG and MEG signals from the somatosensory experiment.

6.1.2 Sensor Configurations and FEM Meshes

The 63 channel EEG and the 275 channel MEG sensor configurations can be seen in
figures (6.2(a)) and (6.2(b)). The electric potential resp. the magnetic flux measured at
34.5 ms, when the signal is at a maximum, are also shown in the figures.

6.1.3 Solving the Inverse Problem

For the SEP/SEF data it is assumed that the source distribution in the brain can be
described by only one current dipole. Then a moving dipole fit is used to estimate the
position, the moment and the magnitude of the dipole. The dipole fits were performed for
four different starting points. From the four sets of dipole parameters that are obtained
by the four fits the one set of parameters is chosen that best explains the data. The
search volume for the fits was not constrained and the moving dipole fits on the EEG
and MEG data were treated separately. The fits were used on the one sample of the
data at 34.5 ms where the signal of the EEG and MEG is at a maximum.

6.2 Results and Discussion

The positions and orientations obtained from the moving dipole fits on the EEG data
and the MEG data are illustrated in figure (6.3(a)) resp. (6.3(b)). It can be observed
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6 Application of the Finite Element Method to a SEP/SEF Experiment

that the fits for all the FEM meshes yield plausible locations for the current dipoles.
Although the search volume for the moving dipole fits was not constrained the dipoles
are all lying inside the brain. In addition their locations are very close to or even in
the cortex, where the activity of the brain for processing a somatosensory stimulus is
expected.

When comparing the reconstruction results obtained from using the different FE
meshes it can be noticed that there is a maximum mutual distance of 10.6 mm between
the FEM EEG reconstruction results. For the MEG this maximum mutual distance be-
tween the reconstruction results is only 1.2 mm. Furthermore it is obvious for the EEG
that the dipole location delivered by the fit using FEM in the nodeshifted hexahedra
mesh is closest to the fit result using the locally refined, high quality tetrahedra mesh.
These two observations are confirmed by the findings in the previous chapter. There
it was shown that the localisation errors for the synthetic EEG data were higher than
those for the MEG. And it was observed in the same study that the localisation error in
the nodeshifted hexahedra mesh were smallest.

In figures (6.4(a)) and (6.4(b)) the localisation results for the EEG and the MEG
using FEM in the cubens386k 4layer aniso mesh respectively the tet802k 4layer aniso
mesh are compared. It is obvious that the moving dipole fits for the EEG and MEG do
not reconstruct the current dipole at the same position. Between the two reconstruction
results there is distance of 4.7 mm for the locally refined tetrahedra mesh and 3.9 mm
for the nodeshifted hexahedra mesh. A possible reason for this could be an error in the
modelling of the conductivity profile of the volume conductor. This will have a larger
effect on the EEG than on the MEG, as the MEG is only weakly affected by small
conductivity variations.

All in all it can be stated that from the data from the somatosensory experiment very
well a resonable current density distribution could be reconstructed.
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7 Conclusion

In chapter (3) it was first shown that for the simulation of the EEG the FEM and BEM
solutions converge with decreasing element width towards the exact solution. In general
very low errors between the FEM solutions and the reference solutions were found for
the EEG. The accuracies of the FEM solution for different element types were compared
and it was found that nodeshifted hexahedra meshes and locally refined, high quality
tetrahedra meshes are most accurate when simulating the electric potentials. Regarding
the comparison to BEM FEM proved to be more accurate especially for multilayer sphere
models with four layers and an anisotropic skull. In addition it can be stated from the
results of the EEG multilayer sphere studies that the subtraction approach can be used
to eliminate the oscillations of the errors which were observed for the Venant approach.

In the MEG studies it was confirmed that the secondary magnetic flux does not
contribute to the radial component of the magnetic field produced by a dipole in a
sphere. But it was shown that it does contribute to the tangential components. The
errors of the numerical solutions for the secondary magnetic flux were studied and found
to be very low. Furthermore it was shown that for tangential mangetometers primarily
the errors of the secondary magnetic flux are responsible for the errors of the total
magnetic flux. So especially for sensors which measure tangential components of the
magnetic field it is important to accurately simulate the secondary magnetic flux. For
the MEG the subtraction approach showed to significantly improve the accuracy of the
FEM solution for the secondary magnetic flux and therefore the accuracy of the total
magnetic flux.

Finally it can be concluded that the computation times needed for both numerical
methods are comparable and acceptable short for an application in EEG and MEG
source reconstruction.

In the study on the source reconstruction from MEG data recorded for current dipoles
in phantom head model in chapter (4) the dipole locations and orientations could be
accurately, that is with an average error around 3 mm resp. 3.5◦, reconstructed using the
finite element method. For the solution of the inverse problem both inverse methods, the
moving dipole fit and the goal function scan, proved to be capable. It was furthermore
shown that the noise rejection with 3rd order synthetic gradiometers is able to improve
the source reconstruction for deep sources.

The same high accuracies for the EEG and MEG forward computations with FEM
as in the multilayer sphere study could also be observed in the realistic head model
(chapter 5). And comparing the accuracy for the different element types it was here,
too, found that FEM in the nodeshifted hexahedra mesh delivers the best results. The
low errors of the simulated electric potentials and magnetic fields directly translated to
small localisation errors of the moving dipole fits on synthetic data in the realistic volume
conductor. For the comparison between BEM and FEM it was again obvious that BEM
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7 Conclusion

because its limitation on only three compartments and isotropic conductivities cannot
be as accurate as FEM.

The results from chapter (6) finally showed that the finite element method can be
applied to realistic data from neurophysiological experiments to realiably solve the in-
verse problem. The moving dipole fits on the realistic data using FEM for the forward
computations delivered resonable locations and orientations of the current dipole source.

It can be concluded from all the studies that the finite element method can be em-
ployed to accurately solve the forward and therefore the inverse problem of EEG and
MEG source reconstruction. It even outperforms other today still widely used numer-
ical methods like the boundary element method. Using the subtraction approach for
modelling the mathematical current dipole and using high quality and locally refined
tetrahedra meshes can greatly improve the accuracy. For neurophysiological experiments
FEM could help to more accurately determine the brain regions which are responsible
for a certain task and in the epilepsy research, e.g., defective areas could be located more
precisely.
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