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Abstract

The inverse problem in Electro- and Magneto-EncephaloGraphy (EEG/MEG)
aims at reconstructing the underlying current distribution in the human brain us-
ing potential differences and/or magnetic fluxes that are measured non-invasively
directly, or at a close distance, from the head surface. The solution requires re-
peated computation of the forward problem, i.e., the simulation of EEG and MEG
fields for a given dipolar source in the brain using a volume-conduction model
of the head. The associated differential equations are derived from the Maxwell
equations. Not only do various head tissues exhibit different conductivities, some
of them are also anisotropic conductors as, e.g., skull and brain white matter.
To our knowledge, previous work has not extensively investigated the impact
of modeling tissue anisotropy on source reconstruction. Currently, there are no
readily available methods that allow direct conductivity measurements. Further-
more, there is still a lack of sufficiently powerful software packages that would
yield significant reduction of the computation time involved in such complex
models hence satisfying the time-restrictions for the solution of the inverse prob-
lem. In this dissertation, techniques of multimodal Magnetic Resonance Imag-
ing (MRI) are presented in order to generate high-resolution realistically shaped
anisotropic volume conductor models. One focus is the presentation of an im-
proved segmentation of the skull by means of a bimodal T1/PD-MRI approach.
The eigenvectors of the conductivity tensors in anisotropic white matter are deter-
mined using whole head Diffusion-Tensor-MRI. The Finite Element (FE) method
in combination with a parallel algebraic multigrid solver yields a highly efficient
solution of the forward problem. After giving an overview of state-of-the-art in-
verse methods, new regularization concepts are presented. Next, the sensitivity
of inverse methods to tissue anisotropy is tested. The results show that skull
anisotropy affects significantly EEG source reconstruction whereas white matter
anisotropy affects both EEG and MEG source reconstructions. Therefore, high-
resolution FE forward modeling is crucial for an accurate solution of the inverse
problem in EEG and MEG.
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Chapter 1

Introduction

Everything should be made as simple as possible, but not simpler.

The main concern in all scientific work must be the human being himself.
This, one should never forget among all those diagrams and equations.

Albert Einstein

Nowadays devices and tools are available for analyzing and monitoring the
human brain at a high level of detail. These details are necessary, e.g., for suc-
cessful surgery or, more generally, for basic brain research. Rapid advances were
achieved in the fields of functional imaging modalities such as Positron Emission
Tomography (PET), Single Photon Emission Tomography (SPECT), functional
Magnetic Resonance Imaging (fMRI), ElectroEncephaloGraphy (EEG) and Mag-
netoEncephaloGraphy (MEG). Since PET, SPECT, fMRI, EEG and MEG each
have their strengths and weaknesses, the modalities complement each other and
synergetic effects are expected from their integration. Computational methods
are often used in the diagnostic and pre-surgical phase. The field of EEG/MEG
source reconstruction is a representative of such methods. Non-invasive tools are
of course preferable to invasive methods which may be of high risk to patients. In
fundamental brain research, most often there is no other choice besides compu-
tational methods. However, the acceptance of tools depends very much on their
reliability and robustness and on their speed.

1.1 EEG/MEG source reconstruction

It is common practice in cognitive research and in clinical routine and research to
reconstruct current sources in the human brain by means of their electric poten-

1



2 CHAPTER 1. INTRODUCTION

tials, measured with electrodes which are fixed on the scalp (EEG) and/or their
magnetic flux, measured in a distance of a few centimeters from the head surface
(MEG). The first human EEG was recorded in 1924 by Hans Berger, who pub-
lished his results in 1929 [20]. Cohen measured the first MEG, alpha-rhythms of
the brain, in 1968 [38]. The magnetic signal related to alpha-activity is about 107

times weaker than the earth’s magnetic field and its measurement only became
possible with the development of Superconducting QUantum Interference De-
vices (SQUIDS). The activity that is measured in EEG and MEG is the result of
movements of ions, the so-called impressed currents, within activated regions in
the cortex sheet of the human brain. Brazier [27] first had the idea to model an im-
pressed current mathematically by means of a current dipole. The current dipole
causes ohmic return currents to flow through the surrounding medium. The EEG
measures the potential differences from the return currents at the scalp surface,
whereas the MEG measures the magnetic flux of both impressed and return cur-
rents. The reconstruction of the dipole sources is called the inverse problem of
EEG/MEG. Its solution requires the repeated simulation of the field distribution
in the head for a given dipole in the brain, the so-called forward problem. One
of the major advantages of EEG and MEG source reconstruction over the other
brain imaging techniques is its high temporal resolution.

For the forward problem, the volume conductor head has to be modeled. An
overview of the head tissues with different conductivities can be found in Hau-
eisen [77; 103]. It is known that the five head tissue compartments scalp, skull,
cerebro-spinal fluid, brain gray matter and white matter have different conductiv-
ities. If even a finer discrimination is needed, the scalp layer, e.g., may also be di-
vided into the fat and the muscle compartments [103]. The human skull consists
of a soft bone layer (spongiosa) enclosed by two hard bone layers (compacta).
Since the spongiosa have a much higher conductivity than the compacta [3], the
skull shows a direction-dependent (anisotropic) conductivity. A ratio of 1 to 10
has been measured radially to tangentially to the skull surface [197]. It is also
known that brain white matter has an anisotropic conductivity with a ratio of
about 1:9 (normal:parallel to fibers) [165; 77], but still, no direct technique ex-
ists for its robust and non-invasive measurement. However, recently, formalisms
have been described for relating the effective electrical conductivity tensor of
brain tissue to the effective water diffusion tensor as measured by Diffusion Ten-
sor Magnetic Resonance Imaging (DT-MRI) [16; 223; 224].

Different numerical approaches for the forward problem have been used and
the complexity of the corresponding field computations increases with the ac-
curacy of the volume conductor description. Simple models (and still the most
commonly used) describe the head by three spherical layers, representing scalp,
skull and brain. In each of these layers, the conductivity is assumed to be isotropic
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and homogeneous. Some spherical models can also take into account anisotropy
by assigning a constant radial and tangential conductivity value to a layer, e.g., to
better model the skull. Series expansion formulas can then be used to analytically
compute the potential distribution in the multilayer sphere model [49; 52]. In or-
der to better take into account the realistic shape of the scalp, the inner and the
outer skull surface, Boundary Element (BE) head models were developed (see,
e.g., [97; 156; 50; 269; 254; 70]), being adequate for piecewise homogeneous
isotropic compartments. Finite Element (FE) head models, developed by various
research groups (see, e.g., [21; 103; 228; 30; 10; 152]), are able to treat both
realistic geometries and inhomogeneous and anisotropic material parameters.

A relevant question is if it is really necessary to model inhomogeneities and
anisotropies and in which cases less-computationally expensive forward models
give sufficient results. The influence of volume conductor inhomogeneities on
EEG and MEG have been studied by various authors. It was shown that, in cer-
tain cases, holes in the skull [105; 103; 228] (e.g., patients with trepanned skull,
the openings, where the optic nerve enters or the occipital hole, where the brain
stem passes) and skull inhomogeneities [135; 185; 174] (e.g., the accreted su-
tures in adults [185]) have a non-negligible effect on EEG and MEG. Another
interesting field are newborns with open sutures [83; 82]. It was also shown that
it can be important to model inhomogeneities of the brain compartment such as
lesions [228], since simulated fields are especially sensitive to local conductiv-
ity changes around the source [104]. With regard to skull anisotropy, van den
Broek et al. [227; 228] reported a smearing effect on the EEG forward problem
and Marin et al. [151; 152] showed a non-negligible impact on the EEG inverse
problem for certain inverse methods of the distributed source model class. Sen-
sitivity studies of various other inverse methods or source models towards skull
anisotropy, e.g., the continuous single dipole fit, frequently used in many appli-
cations such as epilepsy and brain tumors [81; 195; 110; 237; 111; 48], have
not yet been carried out, mainly because of the high computation amount. White
matter conductivity anisotropy was shown to have an influence on the EEG and
MEG forward problem [106], but no study exists for the sensitivity of the inverse
problem towards white matter anisotropy.

An important question is thus how to handle the high computation amount
of FE-modeling with regard to the inverse problem. Waberski et al. [237], e.g.,
conclude that for the achievement of the final goal in epilepsy source localization,
i.e., the general clinical use, realistically shaped high resolution head models
are necessary and parallel computing has to speed up the computation. For FE
modeling, in general, iterative solvers like the Preconditioned Conjugate Gradient
(PCG) method with conventional preconditioners on single processor machines
have been used for solving the large linear FE equation system. The hundred or
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even thousand times repeated solution of such a system with a constant geometry
or stiffness matrix and varying right hand sides (the sources) is the major time
consuming part within the inverse localization process. These calculation times
limited the resolution of the models or, even worse, the broader application of
anisotropic FE based head modeling to practical source localization problems got
stuck. Geometric MultiGrid (GMG) methods have proved to be of optimal order
with respect to arithmetic costs and memory requirement [91; 93], but they suffer
from their need of a grid hierarchy, which is difficult to generate in our case. In
contrast, Algebraic MultiGrid (AMG) methods use only single grid information
(see, e.g., [196; 26; 120; 189] and for parallel implementations, [57; 128; 238;
88]) while mostly preserving the properties of the geometric version.

The solution of the inverse problem is generally not unique. Many dipole
source configurations can result in the same EEG and MEG. Additional assump-
tions about the sources thus have to be made. As already mentioned, simple
one dipole models and thus quite elementary optimization procedures for the in-
verse problem are often sufficient. It is therefore interesting how sensitive single
dipole fit methods react to model inaccuracies. If multiple dipoles (see, e.g., [200;
161; 260; 259]) or a whole current distribution (see, e.g., [95; 191; 11; 72]) are
assumed to underly the measured fields, the inverse problem remains ill-posed.
The sources, underlying the Early Left Anterior Negativity component (ELAN),
which is interpreted as a phase of language comprehension where the input is
parsed into an initial syntactic structure [66; 65; 67], is an example of such a
complicated source configuration. Small perturbations such as data noise or er-
rors in the forward model may result in a completely different reconstruction.
Regularization of multiple dipole [73; 260; 259] or current distribution model-
ing [95; 191; 11; 72] then gets an important tool, but how sensitive is it towards
anisotropy? A further important question is if an exploitation of the high tem-
poral resolution of EEG/MEG through a further temporal constraint for current
distribution modeling [202; 203] can help in stabilizing the result.

In their review article about the future of EEG and MEG, Wikswo et al. [252]
specify important future issues for EEG/MEG source reconstruction: One of
them is how to gauge “the role of anisotropies in the electrical conductivity of
brain tissues”, a second is “how to incorporate physiological and anatomical con-
straints to inverse calculations”, and a third is “how to treat multiple and extensive
sources”. As described in the following, this thesis tries to give answers to the
above-posed questions.
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1.2 Scope of this thesis

In this thesis, four major topics are investigated. In chapters 2 and 3, the gener-
ation of realistically shaped head models with anisotropic conducting compart-
ments skull and brain white matter and the incorporation of physiological and
anatomical constraints to the inverse problem are described, using multimodal
MRI. The fast solution of the EEG/MEG forward problem using high resolution
FE models of the head is considered in chapters 4 and 5. An overview of different
techniques for solving the inverse problem and new algorithmic developments for
multiple and extensive sources are presented in Chapter 6. Finally, the influence
of tissue anisotropy is explored in the last chapter.

Chapter 2 describes image registration and segmentation methods for the gen-
eration of a multi tissue head model. The chapter focuses on an improved
segmentation of human skull surfaces from bimodal MRI volumes.

Chapter 3 is dedicated to strategies for a realistic modeling of tissue conductiv-
ity anisotropy of the skull and the white matter compartment. White matter
anisotropy is derived from whole-head DT-MRI.

Chapter 4 contains the description of the forward problem. The chapter begins
with the physical modeling, it proceeds with FE meshing and discretization
aspects for EEG and MEG, presents the various volume conductor models
which are used in the following chapters and terminates with simulations
on forward modeling accuracy aspects.

Chapter 5 presents efficient parallel AMG solution strategies for the large linear
equation systems, arising from the FE approach. Fast solver methods are
especially needed with regard to the inverse solution.

Chapter 6 gives an overview of the various inverse EEG/MEG source recon-
struction methods, most of which are used in the last chapter for sensitivity
considerations. A new algorithm for a regularized multi-dipole fit approach
will be described and the application of efficient algorithms for the regu-
larization of spatio-temporal current density reconstructions to source lo-
calization and dynamical electrical impedance tomography is discussed.

Chapter 7 reports on the influence of realistic tissue conductivity anisotropy on
EEG/MEG source localization. The first part describes the influence on
the forward problem. The second part focuses on error estimations for
single dipole fits and for the reconstruction of the ELAN sources. For
the latter, regularized and non-regularized dipole fit methods and various
instantaneous current density reconstruction methods are used.
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Figure 1.1: SEP example dataset: Butterfly plot of averaged EEG data from−0.4
to 0.4 µV . The P22 signal component is marked.

1.3 Overview of applications of source reconstruction

A short overview of well-established application fields of EEG/MEG source re-
construction is given now in order to motivate especially readers, who are not
from the bioelectromagmetism area. For further applications refer to Andrä and
Nowak [6].

A first example is the study of functional cortical organization by means of
Event Related Potentials (ERPs) of the somatosensory system. In the follow-
ing, the Somatosensory Evoked Potential (SEP) experiment of Fuchs et al. [73]
is described. In this study, 31 electrodes were distributed (unevenly in order
to optimize EEG sampling properties) over the right somato-sensory areas (see
Fig. 1.2). Stimulation of the left medianus nerve was done by means of an elec-
tric wrist stimulator with an intensity of twice the motor threshold. The different
evoked signal components of interest in such studies appear during the first 100
ms poststimulus. EEG signals were therefore sampled over periods of 128 ms
pre- and 128 ms post-stimulus with a sampling rate of 1 kHz. Since the compo-
nents are well time-locked and not dependent on the attention of the subjects, the
signal can be averaged over a large number of trials so that the signal components
of interest are obtained with a relatively good Signal-to-Noise Ratio (SNR). In the
study of Fuchs et al. [73], four replications of 1000 epochs each were averaged for
SNR improvement. Figure 1.1 shows the resulting averaged EEG measurements
for the SEP in 31 channel butterfly plot from this study, included as an exam-
ple dataset in the software package CURRY (see Appendix D). As an example
for a medically interesting source reconstruction result, the continuous dipole fit
method, introduced by Scherg and von Cramon [200], with two dipoles at the
peak of the SEP-P22 signal component (“P” stands for Positivity and “22” for an
average peak latency of 22 ms after stimulus) is shown in Fig. 1.2. The result has
been calculated using the example dataset and methods within CURRY.

The non-invasive EEG/MEG-source reconstruction diagnosis method is suc-
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Figure 1.2: SEP source reconstruction example: Results of the continuous dipole
fit method with two dipoles at the peak of the P22 signal component.

cessfully used in clinical research and application. For instance tumors may dis-
tort brain anatomy so that the presurgical localization of sensory or motor areas
on the basis of anatomical landmarks is impossible. In Sutherling et al. [221],
the agreement between invasive and non-invasive methods was evaluated and an
“excellent precision of the source reconstruction results” was found. About 0.25
% of the world population suffers from drug-resistant epilepsy and about 10 to
15 % would profit from a surgical removal of the epileptogenic tissue [6]. As
opposed to alternative invasive diagnostic procedures, i.e., opening the skull and
implanting electrodes near the assumed focus (ECoG surface electrodes or depth
electrodes) which put the patient under a considerable risk and is cost intensive,
source localization procedures are non-invasive and can give a more “global”
overview since the sensors can be placed around the whole head. Waberski et
al. [237], e.g., found a high congruence of source reconstruction and invasive de-
termination of the focus of epileptiform activity using realistically shaped head
models.

Source reconstruction methods have also been introduced to characterize the
generators of signals related to higher cognitive function. An example is a recent
study of Maess et al. [149] showing equivalences between speech and music pro-
cessing in the brain. Further examples are the studies of Knösche et al. [124] and
Friederici et al. [68] for the reconstruction of the ELAN sources.
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Chapter 2

Registration and segmentation of
MRI

2.1 Introduction

A prerequisite for a realistic representation of the volume conductor is the seg-
mentation of head tissues with different conductivity properties.

The exact modeling of the low conducting human skull is of special impor-
tance for EEG/MEG source reconstruction. The skull can be seen as an isolating
layer which leads to a strong decrease and a blurring of the potential distribution
towards the measurement EEG electrodes [42; 43]. For MEG, the modeling of
the small currents in the skull layer (and also skin layer) are often considered to be
negligible in a non-pathological case, i.e. no surgery hole in the skull. However,
a correct segmentation of the boundary between intracranial tissues and skull (in-
ner skull surface) is still important, since superficial sources imply strong return
currents close to that border which contribute to MEG [96]. Strong localization
improvements were reported when using realistically shaped head models com-
pared with spherical analytical approximations [43; 194]. An average error of
about 2cm and a maximal error of up to 4cm appeared in frontal and temporal
areas, where the skull is least spherical.

MRI is known as a safe and non-invasive method for imaging the human head.
Because of high contrasts, T1-weighted MRI (T1-MRI) is well suited for the seg-
mentation of tissue boundaries like white and gray matter, outer skull and skin.
In contrast, the identification of the inner skull surface is problematic. Realistic
head models, which exploit exclusively a T1-MRI, use a segmentation estimation
procedure for this surface where mainly the T1 segmented brain is closed and in-
flated [243; 107; 239]. It is assumed for the convex parts of the brain, that this
estimation is close to the inner skull, but it is also known, that the deviations in

9
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the skull base areas are larger. Nevertheless, the estimation procedure based on
an exclusive use of a T1-MRI modality can be seen as the current standard for
modeling the inner skull surface in the field of EEG/MEG source localization.
Another interesting estimation approach was presented by Rifai et al. [193]. A
deformable model, propagating by means of a level set method and thus allow-
ing topology changes, was used in order to estimate the interface between the
cerebro-spinal fluid and the skull in a T1-MRI, taking the partial volume effect
into account.

Accurate EEG based localization of especially basal frontal and mesial tem-
poral current sources in the human brain are of high importance in epilepsy
surgery. Huiskamp et al. [111] reported EEG localization errors of about 1cm
for those areas. The errors were due to the limited modeling accuracy of the in-
ner skull by means of the T1-MRI based closing and inflation procedure when
compared to skull models from matched sets of Computed Tomography (CT)
and T1-MRI. It was concluded that this imprecision may be detrimental in clin-
ical applications. Furthermore, for pathological cases causing brain atrophy, the
estimation of the cerebro-spinal fluid layer thickness by means of a global infla-
tion parameter in the estimation procedure can locally be far from realistic, so
that the need for a second image modality arises.

CT is of course best suited for imaging bone tissues as the human skull. A
registration of a CT and a T1-MRI [220] enables an exact modeling of the skull.
Nevertheless, in neurological or neuro-psychological brain research, large num-
bers of healthy subjects often take part in statistical experiments and their expo-
sure to ionized radiation is not appropriate. Furthermore, most often a T1-MRI
has to be measured additionally to a CT (e.g., for the segmentation of the brain
surface), an amount of work, which should not be underestimated, so that the
choice of a CT/T1-MRI multimodal approach has to be ruled out for many appli-
cations.

Within this chapter, algorithms for the registration and the segmentation of
bimodal MR data sets will be presented in order to generate a multi-compartment
model of the head. In order to simplify denotation, we will now introduce the ab-
breviations ISS (Inner Skull Surface), EISS (Estimated Inner Skull Surface from
T1-MRI closing and inflation of the brain), OSS (Outer Skull Surface), Cerebro-
Spinal Fluid (CSF), WM (White Matter) and GM (Gray Matter). Since the dif-
ference in the quantity of water protons between intracranial and bone-tissues
is large, a Proton Density MRI (PD-MRI) sequence is well suited as a second
modality for the ISS segmentation. The PD modality can be measured in the
same session as the T1 image, only the protocol has to be adapted, so that the
additional amount of work is in reasonable limits. After the basic definitions and
operations on images and meshes and the acquisition of the T1- and the PD-MRI,
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described in Sections 2.2 and 2.3, resp., the PD-MRI is registered onto the corre-
sponding T1 image in Section 2.4 in order to correct for movement of the subject
and geometrical distortions. The registered PD image enables the segmentation of
the ISS. The methodological segmentation part in Section 2.5 is divided into the
description of the main segmentation components, whose algorithms are shortly
presented as pseudo-codes. A fuzzy segmentation algorithm which compensates
for image intensity inhomogeneities, and an extended region growing approach
are the main components for the generation of an initial guess for a surface which
has to be segmented, followed by an algorithm for segmentation improvement by
means of a deformable model. The segmentation scripts will then be presented in
Section 2.6, i.e., processing chains which consist of a concatenation of the seg-
mentation components in order to achieve the final segmentation results for the
multiple head compartment surfaces. In Section 2.6.2, the accuracy improvement
for the segmentation of the cortex compartment and in Section 2.6.3, the ISS seg-
mentation and its comparison with the EISS are presented, two central results of
this chapter.

2.2 Basic definitions and operations

This section briefly introduces the basic definitions and operations on images and
meshes. Refer, e.g., to the book of Lohmann [140] for a more detailed descrip-
tion.

2.2.1 Definitions of images and meshes

A three dimensional image is composed of a stack of two-dimensional slices,
which are indexed from top (slice 0) to bottom (the orientations are already given
with respect to the measured object, i.e., the human head). Each two dimensional
slice is discretized into rows (front to back) and columns (left to right), resulting
in the image lattice

L = {(s,r,c) ∈ N
3
0|(0≤ s < nslices),(0 ≤ r < nrows),(0 ≤ c < ncolumns)} .

A feature space G represents the set of values of an image intensity function
I : L → G. The feature space is restricted here to the one-dimensional case, so
that each image lattice address (s,r,c) is assigned a one-dimensional intensity
I(s,r,c). Cartesian coordinates x(s,r,c) ∈ R

3 of the lattice address (s,r,c) are cal-
culated by multiplying each component with its discretization size, denoted by
ssize ∈ R, rsize ∈ R and csize ∈ R. A cubic volume element with barycentre
x(s,r,c), cubic edge lengths ssize, rsize and csize and the constant intensity I(s,r,c)
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throughout its volume will be called a voxel. We denote the number of vox-
els with Nx, i.e., Nx = nslices · nrows · ncolumns. In order to simplify indices, a
voxel is identified with its image lattice address, so that denotations like x ∈ L,
x = (s,r,c) and I(x) := I(s,r,c) are used.

Together with the above explanations, the following definition will now be
made:

Definition 2.2.1. A “general 3D image” GI = (L,G, I) consists of the image
lattice L ⊆ N

3
0, a feature space G ⊆ R, also called “gray code” and an intensity

function I : L→ G. The set of all 3D images GI will be denoted by GI .
An image, resulting from a restriction to the set of integer gray codes G =

GMRI = {i|i = 0, . . . ,255} will be denoted by MRI with the corresponding class
M R I . “Black” and “white” are used for the gray codes 0 and 255, respec-
tively, while the intermediate values represent various shades of gray. An image,
resulting from a restriction to the triplet (L,G0,1, I) with the set of boolean gray
codes G0,1 = {i|i = 0,1} will be called a “binary image” or a “binary mask”
and will be denoted by BI with the corresponding class BI . A voxel x with inten-
sity I(x) = 0 will be called a “background” or “black” voxel and with intensity
I(x) = 1 a “foreground” or “white” voxel. An image, resulting from a restric-
tion to the triplet (L,GN0 , I) with GN0 = {i|i ∈ N0} will be called a “positive
integer image” PI with the corresponding class PI . An image, resulting from a
restriction to the triplet (L,GC, I) with GC = {i|i = 0, . . . ,C−1} will be called a
“C-class positive integer image” CPI with the corresponding class CPI .

Definition 2.2.2. The image histogram hMRI : GMRI → GN0
x

with GN0
x

= {i|i =
0, . . . ,Nx} counts the occurrence of each gray code in MRI ∈M R I , i.e., hMRI(g)=
| {x|x ∈ L ∧ I(x) = g} |. A 2D histogram hMRI1,MRI2 : GMRI ×GMRI → GN0

x
for

MRI1,MRI2 ∈M R I with intensity functions I1 and I2, resp., is defined through

hMRI1,MRI2(g1,g2) = | {x | x ∈ L ∧ I1(x) = g1∧ I2(x) = g2} | .

In the following, cuts through a 3D image with fixed value for s will be called
axial, cuts with fixed value for r coronal and with fixed value for c sagittal. Some
basic definitions about neighborhood, adjacency and connectivity in an image
lattice L have to be made, formulated in

Definition 2.2.3. The set of the 6 neighbors of a voxel x in the 3D image lattice
L, differing (by one) in at most one coordinate is called the 6-neighborhood, the
set of those, differing in at most two coordinates is called the 18-neighborhood
and the set of voxels with at most three different coordinates is called the 26-
neighborhood.

Two voxels are said to be n-adjacent, iff both are n-neighbors of one another.
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6-neighborhood 18-neighborhood 26-neighborhood

Figure 2.1: Neighborhoods in 3D from Lohmann [140].

A set of voxels is called n-connected if for any two of them, a sequence of vox-
els (xi1 , . . . ,xik) can be found that are pairwise (i.e., (xi j ,xi j+1), ∀ j = {1, . . . ,k})
n-adjacent.

Figure 2.1 shows the three different neighborhoods in a 3D image lattice.
The gray code of a voxel did not play a role in the above definition. In order

to make sure for BI ∈ BI , that a closed m-connected surface of foreground vox-
els completely encloses a k-connected background component and thus divides
the background into two k-connected components (the one interior to the closed
foreground surface and the one exterior to it, see Figure 2.2, middle, as an illus-
tration in 2D), the restriction to the (m,k) pairs (26,6), (6,26), (18,6) and (6,18)
has to be made [140].

In the following, (m,k) = (26,6) will be used for all BI ∈ BI :

Definition 2.2.4. For BI ∈ BI , two foreground voxels are called adjacent if they
are 26-adjacent and two background voxels are called adjacent if they are 6-
adjacent. A set of foreground voxels is called connected if it is 26-connected and
a set of background voxels is called connected if it is 6-connected.

Definition 2.2.5. For BI ∈ BI , a foreground voxel is called border voxel, iff at
least one of its 6-neighbors is a background voxel.

The Euler number is an important measure for several topological character-
istics [140], so that it will be defined in

Definition 2.2.6. The Euler number of a binary object IN ∈ BI is defined as
the number of connected components plus the number of cavities, i.e., totally
enclosed components of the background, minus the number of handles (imagine
a handle of a tea-cub).

A binary object is topologically equivalent to a sphere, if it has the Euler number
1. The following definition completes the basic nomenclature for 3D images,
defined on a regular lattice:
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Definition 2.2.7. Two markers, STOP and PASS, for an MRI ∈M R I are in-
troduced, offering a possibility to influence image segmentation independently of
the image intensity. Each marker can be seen as a binary image, defined on the
image lattice of its corresponding MRI, so that each lattice point x of the ”ex-
tended”image MRIext has three attributes, a gray value I(x) and a binary value
(0 for ”not set”or deleted and 1 for ”set”) for each of its two markers STOP(x)
and PASS(x). For each x, the setting of one of the markers is automatically fol-
lowed by the deletion of the other, i.e., the combination STOP(x) = PASS(x) = 1
is impossible. The class of extended images MRIext will be denoted by M R I ext

The rest of this subsection is concerned with structures for geometrical mod-
els on irregular grids. A geometrical model is composed of a tuple (v,∆) of ver-
tices v and primitives ∆. To make an example, such a model could be a triangu-
lated surface in 3D, i.e. a 2D manifold with vi the 3D Cartesian coordinates of
the triangle node i and ∆i the description of the ith triangle by means of its three
node points vi1 , vi2 and vi3 .

Definition 2.2.8. A mesh = {(vi,∆ j), i = 1, . . . ,Nv, j = 1, . . . ,Np} consists of a
list of Nv vertices vi ∈R

3 and a list of Np primitives ∆ j ∈ ∆, where each primitive
consists of a subset of vertices of the mesh, i.e., ∆ = {vik |k = 1, . . .∆v}. The
number of vertices ∆v, a primitive is consisting of, depends on its type. A triangle
comprises ∆v = 3, a tetrahedron ∆v = 4 and a cube ∆v = 8 vertices. The class of
all meshes will be denoted by M ESH .

Definition 2.2.9. The Euler characteristic of a triang. mesh is defined as the
number of vertices Nv plus the number of faces Np minus the number of edges Ne.

A triangulated mesh is topologically equivalent to a sphere, if it has the Euler
number 2 [2].

2.2.2 Operations on images and meshes

Operations on 3D images

Within this subsection, those basic operations on 3D images will be presented by
definitions and short explanations which are frequently used later in this chapter.
Refer to [140] for a more detailed description. The first simple operation is

Operation 2.2.10. By means of

OUT = AND(IN1, IN2),

each voxel of IN1 ∈ GI will be taken over to OUT ∈ GI , if it is a foreground
voxel in IN2 ∈ BI . By means of

OUT = OR(IN1, IN2),
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each voxel of IN1 ∈ GI will be taken over to OUT ∈ GI , if its intensity is not
equal to 0 or if it is a foreground voxel in IN2 ∈ BI .

If IN1 is restricted to a binary mask, the operation AND (OR) leads to a binary
mask OUT which is the minimum (maximum) of both input masks.
Remember Definition 2.2.5 for the following operation:

Operation 2.2.11. By means of

OUT = BORDER(IN),

border voxels of IN ∈ BI are detected and written out as the new foreground of
OUT ∈ BI .

Within the algorithm, which realizes the above operation, background voxels will
be searched in the 6-neighborhood of each foreground voxel of IN. As soon as
at least one is found, the examined foreground voxel is successfully detected as a
border voxel.

Operation 2.2.12. By means of

OUT = LABEL(IN),

connected foreground components of IN ∈ BI are detected and labeled in order.
The result is written to OUT ∈ PI . The operation

OUT = SELBIG(IN)

selects the connected component with the most frequent label value of IN ∈ PI .
All voxels of that component become foreground voxels in OUT ∈ BI . The com-
bination

OUT = BIGGESTCOMP(IN) := SELBIG(LABEL(IN))

finds a biggest connected component in IN ∈ BI .

The labeling algorithm begins by selecting an arbitrary foreground voxel and as-
signs the label ”1”to it. It then propagates this label recursively to all adjacent
foreground voxels, until no more foreground voxel connected to any already la-
beled one can be found. The algorithm then tries to find a further foreground
voxel, which has still not been labeled and starts a second round with label ”2”.
The procedure is stopped when all foreground voxels have been labeled [140].
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original euclidean chamfer

Figure 2.2: Original binary mask (left), iso-euclidian distance points (middle)
and iso-chamfer distance points (right).

Operation 2.2.13. The distance transform OUT = DIST (IN) on IN ∈ BI with
OUT ∈ F I attaches a label to each background voxel which encodes the short-
est distance towards the closest foreground voxel. The distance within DIST is
measured by an euclidian metric, whereas the distance transform DIST CHAM
uses a chamfer metric.

The operation DIST CHAM can be seen as a fast method to approximate DIST .
To illustrate the difference: If a binary mask with only one foreground voxel
in the middle of the mask will be transformed, iso-euclidian distance points are
arranged as a circle and iso-chamfer distance points as a hexagon around this
foreground voxel, see Figure 2.2 [140].

Operation 2.2.14. The operation OUT = BINARIZE(IN,min,max) thresholds
IN ∈ GI to produce OUT ∈ BI . The parameter min specifies the minimal and
the parameter max the maximal foreground value.

In Figure 2.2, all foreground voxels in the middle and the right figure have a
distance of 25 to the original foreground voxel, realized by choosing minimal
and maximal foreground value as 25.

Operation 2.2.15. The operation OUT = INVERT(IN) inverts IN ∈BI so that
foreground voxels in IN become background voxels in OUT ∈BI and vice versa.

Based on the last three basic operations, the following morphological basis oper-
ations can be derived:

Operation 2.2.16. The operation OUT = DILATION(IN,rad) with IN,OUT ∈
BI will be defined by thresholding a distance transform, i.e.

DILATION(IN,rad) := BINARIZE(DIST(IN),0,rad).

The operation OUT = EROSION(IN,rad) with IN,OUT ∈ BI will be defined
by

EROSION(IN,rad) := BINARIZE(DIST(INV ERT(IN)),rad,∞)).
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original surface surface after opening surface after closing

Figure 2.3: Visualization of two morphological operations from Lohmann [140].

It should be mentioned that the operations DILATION and EROSION are basi-
cally defined in mathematical morphology and that, in fact, they are only sim-
ulated by the above operations. Nevertheless, if a distance transform with an
euclidian metric is used, the result of the above procedures will be the same
as a morphological filtering with a sphere-shaped structuring element of radius
rad [140].
By means of these two morphological basis operations, we can further define

Operation 2.2.17. The operation OUT = OPENING(IN,rad) with IN,OUT ∈
BI will be defined by

OPENING(IN,rad) := DILATION(EROSION(IN,rad),rad).

The operation OUT = CLOSING(IN,rad) with IN,OUT ∈ BI will be defined
by

CLOSING(IN,rad) := EROSION(DILATION(IN,rad),rad).

The operation OUT = SMOOTHING(IN,rad) with IN,OUT ∈ BI will be de-
fined by

SMOOTHING(IN,rad) := OPENING(CLOSING(IN,rad),rad).

Figure 2.3 illustrates the effect of opening and closing on a brain WM surface.
Thin gyri disappear during opening. The closing operator fills the sulci but does
not cause the gyri to rise.

Two image filters will now be introduced. The first is the well-known op-
eration, which convolves an image with a Gauss filter with standard deviation
σ [113]:

Operation 2.2.18. The operation OUT = GAUSS(IN,σ) applies a Gauss-filter
with standard deviation σ to the image IN ∈M R I in order to produce a smoothed
and noise-reduced OUT ∈M R I .
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The Gauss-filter also smoothes the edges of an image, which is not wanted
for certain applications. Lee filters, also called sigma filters [138], replace each
voxel with the mean value of its surrounding window, where the mean is taken
only from the neighboring voxels whose intensities do not differ by more than a
σ threshold from the value of the current voxel.

Operation 2.2.19. The operation OUT = LEE(IN,σ) applies a sigma filter with
a σ threshold to the image IN ∈M R I and produces an edge-preserved smoothed
and noise-reduced OUT ∈M R I .

In Chapter 3, the following operation is needed for modifying the intensity values
of an MRI:

Operation 2.2.20. The operation

MRImod = MODINT(MRI,BI, Inew)

sets the intensity values of all those lattice points of the image MRI ∈M R I to
the new intensity value Inew ∈ GMRI, which are foreground in the binary mask
BI ∈ BI .

The last two operations are concerned with the image markers.

Operation 2.2.21. The operation

MRIext = INTRODUCE MARKERS(MRI)

extends MRI, i.e., copies the intensity for each lattice point and defines its mark-
ers as ”not set”.

Operation 2.2.22. By means of the operation

MRIext = MARK(MRIext,BI,marker),

the marker = STOP,PASS of all those lattice points of the extended image MRIext ∈
M R I ext will be set, which are foreground in the binary mask BI ∈ BI .

Mesh operations

The later introduced deformable models use mesh representations of surfaces
which are defined as iso-surfaces in digitized volumetric data. It will be focussed
here on the extraction of a border of a binary mask in form of a mesh consisting
of triangle elements (see Def.2.2.8). The marching tetrahedra algorithm [179] is
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Figure 2.4: The two cases for a decomposition of an 8-cell into 5 tetrahedra (two
figures left) and the three cases for the intersection scenarios (three figures right)

now presented as such an extraction method resulting in a closed and oriented tri-
angular surface mesh, i.e., the vertices of each triangle are ordered so that, viewed
from the outside, the vertex-cycle is traversed in counterclockwise ordering.

The starting point within the algorithm is a decomposition of each so-called
8-cell (or cube) into 5 tetrahedra, where the vertices of the cube are the addresses
of 8 neighbored voxels in the image lattice. Two such decompositions are pos-
sible and it must be alternated in a 3D checkerboard fashion between both of
them so that faces and edges of 8-cell tetrahedra match those of neighboring
ones (see Figure 2.4). The second step in the algorithm is an identification of
those tetrahedra with vertices vi1 ,vi2 ,vi3 ,vi4 , intersecting with the iso-surface of
the binary mask. This is controlled by means of a sign-change of I(vik)− I0 with
I0 ∈]0,1[. The intersection points along the edges of a tetrahedron and thus the
vertices of the resulting triangle mesh, are dependent on the used interpolation
basis function. Gueziec and Hummel [85] proposed a bilinear basis function on
an 8-cell, since a linear led to an excessive spikeness of the resulting triangle sur-
face mesh. The bilinear basis function reduces to a linear along the edges of an
8-cell and to a quadratic along 8-cell diagonals. Triangle vertices are calculated
as the zero-crossings of the interpolation function within a tetrahedron. Three
different intersection scenarios have to be distinguished, one of them results in
two triangles for the surface mesh, the other two in one (see Figure 2.4). During
the above process, the first surface triangle will be assigned a correct orientation
by appropriately ordering its vertices. Since any given edge of the mesh has to
be traversed in opposite directions by the vertex-cycles from the two neighboring
triangles, the correct orientation of the surface mesh can then be ensured by a
recursive procedure. The above explanations led to

Operation 2.2.23. The operation OUT = EXTRACT (IN) extracts the border
of IN ∈ BI as a closed and well-oriented triangulated surface mesh OUT ∈
M ESH by means of the marching tetrahedra method.

The extracted mesh generally consists of a large number of triangles. In order
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Nv = 50,000 Nv = 15,000 Nv = 5,000

Figure 2.5: Result of Operation 2.2.24 on a mesh, extracted from a brain mask
for different settings of Nv.

to remove badly shaped ones and to coarsen the mesh in regions of small curva-
ture, a mesh simplification follows the extraction. In Gueziec and Hummel [85],
each edge (vi1 ,vi2) goes through a deletion test and if the tests are positive, it will
be replaced by v = (vi1 + vi2)/2, i.e., former edges to vi1 and vi2 will be replaced
by edges to v and two triangles are removed. If vi3 and vi4 denote the remaining
vertices of the two triangles which contain the edge (vi1 ,vi2), the first demand is,
that the distance between vi1 and vi2 is smaller than the distance between vi3 and
vi4 . A second prerequisite is a limit for the projection distance of vi1 and vi2 on
the resulting surface after the deletion.

Operation 2.2.24. The operation OUT = SIMPLIFY (IN,Nv) with IN,OUT ∈
M ESH simplifies an extracted mesh to Nv vertices by a coarsening in regions
of small curvature and by removing badly shaped triangles.

Figure 2.5 shows the result of Operation 2.2.24 on a mesh with 750,000 vertices,
extracted from a brain mask for different settings of Nv. It can be seen, that 5.000
vertices are no longer sufficient to correctly represent the neocortical surface.

Later in this chapter, the transformation of a triangle mesh into a binary image
is needed. The following operation deals with this problem:

Operation 2.2.25. By means of mask =VOXELIZE(mesh) with mesh∈M ESH
consisting of triangle primitives (∆v = 3), a triangle mesh is transformed into a
binary image mask ∈ BI . Therefore, each voxel of mask becomes a foreground
voxel, if the distance of its lattice point projection onto the closest triangle prim-
itive is smaller than

√
3/2.

Operation 2.2.25 yields a mask, which has to be filled in certain situations. The
filling process is described in Script 2.2.26 and illustrated in Figure 2.6. In the
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cont dilated cont to bg eroded bg mask

Figure 2.6: Example for Script 2.2.26: Filling the ISS mesh.

second step of the script, the contour of the transformed mesh is dilated as the
background component with the parameter d, so that the biggest connected com-
ponent of the resulting mask is the d eroded image background. The dilation is
then canceled by a d erosion and the filled mask is achieved.

2.3 Data acquisition

MR imaging of a healthy 32 year old male subject was performed on a 3 Tesla
whole-body scanner (Medspec 30/100, Bruker, Ettlingen/Germany). The 3D PD-
MRI was acquired using a 3D FLASH protocol with TE=6ms (see Appendix A.4),
a flip angle of 25◦ and TR=11.7ms (A.7). For the T1-MRI, measured in another
session about a week before, an inversion recovery MDEFT sequence [137] was
employed (flip angle of 25◦, TR=11.7ms, TE=6ms, TMD = 1.3s). The readout
gradient was parallel to the z-axis (superior to inferior) and had a strength of
4.3 mT/m. The resolution was 1× 1× 1.5 mm3 in both acquisitions. Both im-
ages were linearly interpolated to image cubes with nslices = 249, nrows = 249

Script 2.2.26. FILL : (mesh ∈M ESH ,d ∈ R)→ (mask ∈ BI ):

1. cont = VOXELIZE(mesh)

2. dilated cond to bg = BINARIZE(DIST(cont),d,∞)

3. eroded bg = BIGGESTCOMP(dilated cond to bg)

4. mask = INV ERT(BINARIZE(DIST(eroded bg),0,d)))
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T1-MRI PD-MRI

Figure 2.7: T1-weighted MRI (left) and non-registered PD-weighted MRI (right).
The outer surface of the head was extracted from the T1 image and visualized on
both data sets.

and ncolumns = 192. A voxel is described by ssize = rsize = csize = 1. Fig-
ures 2.7 (sagittal slice) and 2.8 (axial slice) show the resulting bimodal MR data
set. The spatial deformation between both image acquisition sessions is visu-
alized by means of the head mask, extracted from the T1-MRI and visualized
on both T1- and PD-MRI. In order to exploit both image modalities, it is thus
necessary to register the images.

2.4 Registration

The registration of a bimodal data set is a fundamental step in order to exploit the
information in both images in the segmentation process (see Figures 2.7 and 2.8).
Three different classes of registration algorithms are distinguished in the litera-
ture, the point landmark based, the surface based and the voxel based methods
(see e.g., [75; 214; 148]). The result of point landmark based methods [75] de-
pends strongly on the spatial accuracy of the marker fixation in both modalities
and its accuracy is thus quite limited. Algorithms from the second class regis-
ter by means of corresponding surfaces [214], which first have to be extracted
from both image modalities. Surface segmentation is known to be highly de-
pendent on the quality of the data and often are hard to achieve. Therefore, we
focus our interest on a voxel-similarity based linear registration algorithm without
pre-segmentation, which will be presented within this section. The approach is
inspired by [40; 148; 249], using mutual information as a voxel-based similarity
criterion between the T1 and the PD image.
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T1-MRI T1 histogram PD-MRI PD histogram

Figure 2.8: T1-weighted MRI (left), its histogram hT 1 (left, middle) and non-
registered PD-weighted MRI (right, middle) and its histogram hPD (right). The
outer surface of the head was extracted from the T1 image and visualized on both
data sets.

2.4.1 Transformation

For our purposes, the human head may be assumed as a rigid body, so that the
mapping is described by a concatenation of a 3D rotation matrix

R(φx,φy,φz) = Rz(φz) ·Ry(φy) ·Rx(φx) ∈R
3×3

with Rx ∈ R
3×3, Ry ∈ R

3×3 and Rz ∈ R
3×3 the rotations around x-, y- and z- axis

and a 3D rotation vector r := (φx,φy,φz) ∈ R
3 with rotation angles φx, φy and φz

(in degrees) and a 3D translation vector t := (tx, ty, tz) ∈ R
3 with distances tx, ty

and tz (in millimeters). Such a rigid-body transformation is able to correct for
movement of the subject between the image acquisition sessions. Nevertheless,
static field inhomogeneity in MRI produces geometrical distortions, which re-
strict the applicability of a rigid transformation. De Munck et al. [51] presented a
method to compute the distortions, caused by the difference in magnetic suscep-
tibility between the head and the surrounding air. Using the presented method,
the displacement vector field of the head surface was computed. It was demon-
strated that the MRI distortions can be as large as 3 mm for points just outside
the head and, more important for our following assumption, it was observed that
within the head, the distortion can be described accurately by means of a linear
scaling. We thus include three scaling parameters sx, sy and sz for a modeling of a
linear distortion between T1 and PD image, so that the transformation is uniquely
characterized by means of the parameter vector

P = (tx, ty, tz,φx,φy,φz,sx,sy,sz) ∈ R
9.

The transformation of a floating image lattice point xfloat is thus given by

TP(xfloat) = R ·diag(sx,sy,sz) · (xfloat− cfloat)+ t+ cdest (2.1)
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with cfloat and cdest the image coordinates of the centers of the floating and desti-
nation image, resp., and diag(sx,sy,sz) the diagonal matrix with scaling factors.
The PD image is mostly registered onto the T1-MRI, because often, the former
has a coarser resolution and the latter features more detail and is already pre-
aligned with some reference system, such as the stereotactical coordinate sys-
tem [129]. The PD- is thus the floating and the T1- the destination image during
the determination phase of the transformation parameters P.

2.4.2 The Mutual Information

The basic theory of mutual information will now be summarized, which is used
to measure the adaption of the T1- and the transformed PD-MRI. The description
closely follows [40; 148; 249].

Let hT 1 and hPD be the histograms of the T1- and the PD-MRI, resp. (see
Definition 2.2.2 and Figure 2.8 as an example), hT 1,PD their two-dimensional joint
histogram and let g be a specific intensity value. Please refer to the end of this
subsection for more informations about the calculation of the joint histogram.
With XT1 and XPD, random variables are denoted which are associated to the
intensity values in the images. The marginal probability distributions of these
random variables are then given by

P(XMRI = gMRI) =
hMRI(gMRI)
∑ j hMRI( j)

,MRI = T 1,PD ∈M R I

and the joint probability distribution by

P(XT1 = gT1,XPD = gPD) =
hT1,PD(gT 1,gPD)
∑i, j hT 1,PD(i, j)

.

The two random variables are statistically independent if

P(XT1 = gT 1,XPD = gPD) = P(XT1 = gT 1) ·P(XPD = gPD)

and they are maximally dependent if a one-to-one mapping f : GMRI → GMRI

exists, so that equation

P(XT1 = gT 1,XPD = f (gT 1)) = P(XT1 = gT 1)

holds.
The mutual information MI measures the distance between the joint distri-

bution and the distribution associated to complete independence by means of the
Kullback-Leibler measure

MI(XT1,XPD) :=∑
gT 1

∑
gPD

P(XT1 = gT 1,XPD = gPD) log
P(XT1 = gT1,XPD = gPD)

P(XT1 = gT 1)P(XPD = gPD)
.
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It can be shown, that MI is related to the entropy H(XMRI), i.e., the well-known
measure for the amount of uncertainty about the random variable XMRI (see [187]
for a brief introduction), by

MI(XT1,XPD) = H(XT1)−H(XT1|XPD)

with H(XT1|XPD) the conditional entropy of XT1 given XPD [148]. It is thus the
goal of the registration of the PD- onto the T1-MRI to find transformation param-
eters P, which maximize the mutual information between both images, i.e.,

P∗ := arg max
P∈R9

CXT 1,XPD(P) (2.2)

with
CXT 1,XPD(P) := MI

(
XT1,XTP(PD))

)
(see Equation (2.1) for the definition of TP). This is equivalent to searching for
parameters P, so that the random variable XTP(PD) of the transformed PD image
contains maximal information about XT1, i.e., minimizes H(XT1|XTP(PD)), the un-
certainty in XT1 given XTP(PD). TP(xPD), a transformed image lattice point xPD

of the floating PD image, with gray code gPD(xPD) will generally not coincide
with an image lattice point of the reference T1-MRI, so that the question arises
to which gray code(s) gT 1 in the joint histogram hT 1,TP(PD) it has a contribution
to. Maes et al. [148] discussed three different techniques. The recommended
so-called trilinear Partial Volume distribution Interpolation (PVI) was used here.
PVI distributes the contribution of gPD(xPD) to the joint histogram over the in-
tensity values of all nearest neighbors of TP(xPD) in the T1 image lattice, using
the same weights as for trilinear interpolation. As a consequence, with a varying
parameter vector P, the joint histogram and thus the MI trace change smoothly
and optimization robustness is given [148].

2.4.3 Optimization

As described in the previous subsection (see Equation (2.2)), the optimal trans-
formation parameters are considered to maximize the function CXT 1,XPD : R

N →R

with, in our case, N = 9. Nelder-Mead’s simplex method is an algorithm, which
tries to determine a local extremum in multidimensional space [162]. The con-
cept of the algorithm (see, e.g., [187]) was based on a Freudenthal triangulation,
described by Allgower and Georg [5]

a1 := 0N ∈ R
N

ai+1 := ai + ei, ∀i = 1, . . . ,N,
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Algorithm 1 SIMP:(T 1,PD ∈M R I ,Pstart, l ∈R
9,dstart,dstop ∈R)→ (P∗ ∈R

9)
Initialize: P = Pstart, d = dstart

while d ≥ dstop do
s1 = P /* starting simplex */
si+1 = d · li · ei + si ∀i = 1, . . . ,N
repeat

Determine π ∈ SN+1 with: /* ordering and uphill pivoting */
CXT 1,XPD(sπ(i))≤CXT 1,XPD(sπ(i+1)) ∀i = 1, . . . ,N

for i=1,. . . ,N+1 do
if CXT 1,XPD(refl(sπ(i))) > CXT 1,XPD(sπ(i)) then

sπ(i) = refl(sπ(i))
Leave the for-loop

end if
end for

until No more replacement of any si
P = sπ(N+1), d = d/2 /* translate and contract */

end while
P∗ = P

with ei the ith unit basis vector of R
N , in order to avoid degenerate simplices and

to be successful for the considered application. The resulting method, presented
in Algorithm 1, starts with a simplex with vertices s1, . . . ,sN+1 ∈ R

N , being im-
ages of Freudenthal’s triangulation under an affine map, i.e.,

si = d ·DIAG(l1, . . . , lN) ·ai + Pstart, ∀i = 1, . . . ,N + 1

with the user-given N ×N diagonal matrix of scaling factors li, the resolution
parameter d and the starting transformation vector Pstart. In the next step, a per-
mutation π from the set of all permutations of the integers 1 to N + 1, SN+1,
is determined, arranging the vertices with respect to the corresponding value of
mutual information. The simplex is then pivoted by reflection away from the
minimal vertex value of CXT1,XPD with the reflection function

refl(si) := pre(si)− si + suc(si)

based on the cyclic left/right shift order-relation

pre(si) :=
{

si−1 if i = 2, . . . ,N + 1
sN+1 if i = 1

suc(si) :=
{

si+1 if i = 1, . . . ,N
s1 if i = N + 1
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Algorithm 2 MR REG:(T 1,PD ∈ M R I ,Pstart, l ∈ R
9,M ∈ N,dstart,dstop ∈

R)→ (P∗ ∈ R
9,PDreg ∈M R I )

T 10 = T 1, PD0 = PD, P0
0 = Pstart

for i=1,. . . ,M-1 do
Pi

0 = REDUCE(Pi−1
0 )

T 1i = COARSEN(T1i−1), PDi = COARSEN(PDi−1)
end for
for i=M-1,. . . ,0 do

Pi∗ = SIMP(T 1i,PDi,Pi
0, l,dstart,dstop)

if i > 0 then
Pi−1

0 = EXPAND(Pi∗)
end if

end for
Set P∗ = P0∗ and determine PDreg

for the simplex vertices with suc(si) the successor and pre(si) the predecessor
of si [5]. After pivoting, the algorithm restarts with a new shrunk version of a
simplex at the actual maximum. It terminates, when the resolution parameter d
falls under the predefined resolution bound dstop. The registration process is em-
bedded into a hierarchical framework, shown in Algorithm 2. The general idea
is, that rough estimates of the desired transformation parameters can be calcu-
lated at coarser resolutions using subsampled images. By means of the operation
COARSEN, an image is first Gauss-filtered and then downscaled to half its res-
olution. The downscaling is realized by simply an equidistant sampling of the
original image, i.e., taking over every second voxel. After the calculation of the
transformation parameters Pi∗ on a coarser level i, scaling parameters si∗ and rota-
tion parameters ri∗ can be taken over, but the translation parameters ti∗ have to be
doubled in order to find an appropriate starting vector Pi−1

0 for the finer resolution
i−1. This is denoted with the operation EXPAND. The inverse of this operation,
REDUCE , is needed in order to downscale the starting vector Pstart. The regis-
tered PD image PDreg is then determined in a last step by transforming each point
of its image lattice xPDreg with the inverse transformation T−1

P∗ and interpolating
its intensity by trilinear interpolation in the starting PD image.

2.4.4 Registration results

In order to test the accuracy of the registration and to determine appropriate val-
ues for the free parameters, Algorithm 2 was first applied to five T1/T1 data
sets, where the second T1-modality was subject to a known affine transforma-
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Reference transformation parameters Pref

Translation in voxels Rot. angles in degree Scaling Error
tx ty tz φx φy φz sx sy sz ∆reg

1,59 -17,0 -37,7 -5,62 1,90 -6,02 1,01 0,99 1,02
3,04 0,10 24,14 6,23 -18,5 3,96 0,96 0,95 0,99

-7,14 -4,13 -18,0 -14,2 4,38 7,71 1,03 1,00 1,02
21,94 -7,28 10,30 9,34 -1,29 -10,9 0,99 0,97 1,03
-17,8 19,13 28,45 1,20 -7,30 12,45 1,04 1,02 0,97

Calculated transformation parameters P∗

1,6 -17,0 -37,7 -5,59 1,84 -5,96 1,01 0,99 1,02 0,3
3,1 0,2 24,2 6,27 -18,6 3,96 0,96 0,95 0,99 0,26

-7,2 -4,2 -18,0 -14,2 4,42 7,73 1,03 1,00 1,02 0,08
21,9 -7,3 10,3 9,28 -1,31 -10,9 0,99 0,97 1,03 0,11

-17,8 19,1 28,4 1,15 -7,35 12,44 1,04 1,02 0,97 0,08

Table 2.1: Accuracy test for Algorithm 2: Reference transformation parameters
Pref and calculated transformation parameters P∗ for the five T1/T1 test pairs.

tion of the first. No image noise was added. The chosen parameters Pref for
the reference transformations are shown in Table 2.1. In a second step, the
five transformed (under T−1

Pref ) T1 images were registered onto the reference T1

image, yielding an optimization result P∗ for each transformed image. With
‖T−1

Pref(xref)− T−1
P∗ (xref)‖2 (measured in voxel) as a difference measure for an

image lattice point xref of the reference T1 image, the registration error ∆reg
is defined as the maximal difference over eight lattice points with coordinates
(±100,±100,±100)T relative to the center of the reference image. Since the
considered points were chosen to be located outside the head, the registration er-
ror can be interpreted as a maximal upper error bound for all points lying inside
the imaged object.

Table 2.1 shows the calculated transformation parameters P∗ and the corre-
sponding registration errors of Algorithm 2 for the five T1/T1 test data sets. Er-
rors between 0.08 and 0.30 (in voxels) were measured, demonstrating a subvoxel
precision of the presented method. The execution times were less than 40 min-
utes 1. The choice of the free parameters in Algorithm 2 will now be discussed.
The initial mesh size of the triangulation, dstart, and the scaling, l, are important
for finding the global extremum, they should not be chosen too small. dstop con-
trols the final resolution of the solution. The smaller dstop was chosen, the more
accurate, but also the more computationally expensive. The setting of dstart = 1

1Linux-based, Intel Pentium III, 1Ghz.
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tx ty tz φx φy φz sx sy sz C

l 0.5 0.5 0.5 2.5 2.5 2.5 .03 .03 .03
Pstart 0.0 -6 -15 0.0 0.0 0.0 1.0 1.0 1.0
P2

start 0.0 -1.5 -3.8 0.0 0.0 0.0 1.0 1.0 1.0 .62
P2∗ -0.5 -1.9 -3.6 -4.4 -0.66 2.9 1.0 1.0 1.0 .72

P1
start -1.0 -3.7 -7.1 -4.4 -0.66 2.9 1.0 1.0 1.0 .62
P1∗ -0.9 -3.9 -7.0 -4.5 -0.74 2.8 1.0 1.0 1.0 .63

P0
start -1.8 -7.7 -14 -4.5 -0.74 2.8 1.0 1.0 1.0 .52
P0∗ -1.67 -8.44 -14.2 -4.57 -0.74 2.66 1.01 1.0 1.01 .53

Table 2.2: Registration result of Algorithm 2: Choice of l and Pstart with exploita-
tion of information from visual inspection.

(in mm), a choice of 5.0 (in mm) for all translation, 2.5 (in degrees) for the rota-
tion and 0.03 for the scaling parameters in l and dstop = 0.01 (in mm) was shown
to yield high accuracy (see Table 2.1) in feasible calculation time. A choice of
the identity transformation for Pstart was sufficient for all tested data sets. M = 3
levels for the multiresolution approach enabled high accuracy in short calculation
time. Notice, that each function evaluation on i−1 level is 23 times as expensive
as for the ith level. Burkhardt [31] compared the multiresolution simplex opti-
mization with a genetic optimization, used e.g. in [214], and Powells-Algorithm,
used e.g. in [148]. It was found to be most accurate and efficient.

The registration Algorithm 2 was applied to the measured bimodal MR data
set presented in Section 2.3. Results for two different scenarios of start vectors
Pstart and corresponding scalings l will now be presented, the first exploiting in-
formation from visual inspection of the images to yield a good starting vector
and the second appropriate as an automatic choice for the case where no user-
intervention is possible.

Since only a moderate rotation between both image modalities was present, a
translation of about −6 voxels in y- and of about −15 voxels in z-direction could
be easily estimated by visual inspection of sagittal (see Figure 2.7) and axial (see
Figure 2.8) slices. This led to a choice of Pstart, which is shown in Table 2.2. The
chosen l was considered to be an appropriate guess for the problem’s character-
istic length scale. For each level i, the starting vector Pi

start and the determined
transformation parameters Pi∗ and the value of mutual information C are shown in
the table. It can be observed, that due to the starting vector, already on the coars-
est level a quite good estimate for the transformation is achieved. It seems that
the simplex method already found the global maximum, so that the increase in
mutual information through further optimization on level 1 and 0 is thus minimal.
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tx ty tz φx φy φz sx sy sz C

l 5.0 5.0 5.0 2.5 2.5 2.5 .03 .03 .03
Pstart 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0
P2

start 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 .44
P2∗ -0.8 -1.3 -3.8 -1.0 -0.74 0.0 1.0 1.0 1.0 .66

P1
start -1.6 -2.6 -7.6 -1.0 -0.74 0.0 1.0 1.0 1.0 .55
P1∗ -0.9 -3.4 -7.0 -3.2 -0.62 2.3 1.0 1.0 1.0 .61

P0
start -1.9 -6.9 -14 -3.2 -0.62 2.3 1.0 1.0 1.0 .51
P0∗ -1.64 -8.44 -14.3 -4.53 -0.74 2.62 1.01 1.0 1.01 .53

Table 2.3: Registration result of Algorithm 2: Automatic choice of l and Pstart.

An automatic choice of Pstart and l under the assumption of a moderate mis-
registration is shown in Table 2.3. On the coarsest level 2, the global maximum of
C could not yet be found. The translation parameters were well approximated, but
the rotation parameter error was still significant. Therefore, compared to Tab.2.2,
much more computational work was carried out on level 1. The fine-tuning on
level 0 then resulted in parameters with only a small difference to the parameters
in Table 2.2. The computation time was less than 1 hour when setting up the
2D-histogram in parallel, using 8 processors on an SGI ORIGIN 2000 2. When
comparing the transformed PD image with the image, resulting from Table 2.2,
no difference could be observed. Figure 2.9 presents the configuration of Fig-
ure 2.8 with now the registered PD image, using the transformation parameters
of Table 2.2. In order to show the high accuracy of the approach, the outer surface
of the brain (top, see Script 2.6.3) and of the head (bottom, see Script 2.6.1) were
extracted from the T1 image and visualized on the registered PD modality. No
noticeable registration error could be observed.

2.5 Segmentation of MR-images

In the following, the segmentation components are described, which, together
with the basic components of Section 2.2, are later used as the ingredients for the
segmentation scripts in Sections 2.6. It will be focused on three central methods,
two of them emerged as important voxel-based classification tools, the Adaptive
Fuzzy C-Means (AFCM) algorithm and the Extended Region Growing (ERG)
concept. The third method, a deformable model, is then described as a tool for
segmentation improvement.

2See the description of the SGI ORIGIN 2000 in Chapter 5.
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Axial Coronal Sagittal

Figure 2.9: Registration result: The outer surfaces of the brain (top) and of the
head (bottom), extracted from the T1-, are mapped on the registered PD-MRI.

2.5.1 Unsupervised clustering

Clustering methods classify voxels by feature space partitioning, i.e. voxels
within a certain intensity range are sorted into a common cluster. A clustering
method is called unsupervised, if it automatically determines the intensity ranges
for a user-given number C of clusters Clust j, j = 1, . . . ,C. ISODATA, a represen-
tant of such a method (see, e.g., Lohmann [140]), is shown in Algorithm 3. After
an initialization of the cluster centres c j, e.g., an arbitrary distribution over the
set of gray codes GMRI, new cluster mean values are iteratively computed trying
to minimize the distance towards its cluster members. The algorithm realizes a
minimization of the objective function

JISODATA(c j) =
C−1

∑
j=0

∑
x∈Clust j

|I(x)− c j|.

The output is a C-class positive integer image, where its class index is assigned
to each voxel. The class with the darkest input voxels receives gray code 0 and
the brightest the gray code C−1.
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Algorithm 3 ISODATA : (IN ∈M R I ,C ∈N)→ (OUT ∈ CPI ,ciso
1 , . . . ,ciso

C−1 ∈
GMRI)

l = 0, Initialize c(0)
j , ∀ j = 0, . . . ,C−1

repeat
l = l + 1
for all voxels x of IN do

min = BIGNUM
for j = 0, . . . ,C−1 do

if |I(x)− c j|< min then
k = j, min = |I(x)− c j|

end if
end for
Put x into Clustk

end for
for j = 0, . . . ,C−1 do

cl
j = 1

|Clust j | ∑x∈Clust j
I(x)

end for
until ∑C−1

j=0 |c(l)
j − c(l−1)

j |< ε

ciso
j = c(l)

j , ∀ j = 0, . . . ,C−1

2.5.2 Fuzzy segmentation in the presence of intensity inhomogeneities

The FCM algorithm

Unlike hard classification methods such as the presented ISODATA clustering,
the Fuzzy C-Means (FCM) algorithm [225] does not force a voxel x to belong to
exclusively one class, but assigns a membership value uj(x) for each class with
∑C−1

j=0 uj(x) = 1. FCM minimizes the objective function

JFCM(uj,c j) =∑
x

C−1

∑
j=0

u2
j(x)|I(x)− c j|2,

so that, in contrast to ISODATA, more than one tissue class may be present in
a single voxel. Imaging very fine structures results in partial volume averaging,
which is taken into account by means of fuzzy segmentation. Likewise, a noisy
voxel only changes the classification by a fractional amount and does not influ-
ence the entire segmentation process.
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The AFCM algorithm

Intensity inhomogeneities, i.e., slow gray value variations of voxels of the same
tissue class over the whole image domain can be often observed in T1 and PD
MRI. This phenomenon may be caused by such factors as radio frequency (RF)
excitation field inhomogeneity [155], non-uniform reception coil sensitivity, eddy
currents driven by field gradients [208] as well as RF penetration and stand-
ing wave effects [24]. It is assumed that the inhomogeneities are well modeled
by the product of the original image with a smoothly varying multiplier field
m(x) [47; 248]. A theoretical analysis of the intensity non-uniformity by means
of an analytical approach for an elliptically shaped geometry using circularly po-
larized RF coils was presented by Sled and Pike [209]. The multiplicative and
smooth form of m was proved and a high dependency of the pattern of intensity
variation on the shape of the object was shown for PD images.

The Adaptive Fuzzy-C-Means (AFCM) algorithm, introduced for 2D images
in [181], seeks to compensate the described inhomogeneities while performing a
fuzzy segmentation of the image. AFCM minimizes the objective function

JAFCM(uj,c j,m) = ∑
x

C

∑
j=1

u2
j(x)|I(x)−m(x)c j|2

+λ1∑
x

(
((Dx ∗m)(x))2 +((Dy ∗m)(x))2 +((Dz ∗m)(x))2)

+λ2∑
x

(
((Dxx ∗m)(x))2 +((Dyy ∗m)(x))2 +((Dzz ∗m)(x))2

+2((Dxy ∗m)(x))2 + 2((Dxz ∗m)(x))2

+2((Dxz ∗m)(x))2) , (2.3)

where Di is the first order finite difference along the ith axis of the image vol-
ume, Di j = Di ∗D j is a second-order finite difference and ∗ denotes the discrete
convolution operator. The λ-terms are regularizing the multiplier field m. Their
parameters λi should be set according to magnitude and smoothness of the inho-
mogeneities. The first necessary condition for JAFCM in equation (2.3) to be at
a minimum, i.e., step 1 in Algorithm 4, can be derived using the method of La-
grange multipliers for the minimization of JAFCM towards uj to the constraint that
the sum of membership values is equal to 1. Taking the first derivative of JAFCM

with respect to c j and setting it equal to zero results in step 2 of the algorithm.
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Algorithm 4 AFCM : (MRI ∈ M R I ,C ∈ N,λ1,λ2,ε,δ ∈ R) → (MRIcorr ∈
M R I ,MRIafcm ∈ CPI ,cafcm

1 , . . . ,cafcm
C−1 ∈ N)

Initialize: l = 0, ∀x : m(0)(x) = 1, ∀ j = 0, . . . ,C−1 : c(0)
j = ciso

j
repeat

1. Compute new memberships, ∀ j = 0, . . . ,C−1,∀x:

u(l+1)
j (x) = |I(x)−m(l)(x)c(l)

j |−2

/
C−1

∑
k=0

|I(x)−m(l)(x)c(l)
k |−2

2. Compute new centroids, ∀ j = 0, . . . ,C−1:

c(l+1)
j =∑

x
u(l+1)

j (x)2 m(l)(x)I(x)
/
∑
x

u(l+1)
j (x)2 m(l)(x)2

3. Comp. new mult. field (solve up to relative accuracy δ):

f (x) = w(x)m(l+1)(x)+λ1

(
H1 ∗m(l+1)

)
(x)+λ2

(
H2 ∗m(l+1)

)
(x)

4. l = l + 1
until maxx

{
max j=0,...,C−1 |u(l)

j (x)−u(l−1)
j (x)|

}
< ε

Save �I(x)/m(l)(x)� to MRIcorr(x)
Save {k|u(l)

k (x) = max j=0,...,C−1 u(l)
j (x)} to MRIafcm(x)

Finally, minimization of JAFCM towards m proceeds in algorithm step 3, where

f (x) = I(x)
C−1

∑
j=0

(
u(l+1)

j (x)
)2

c(l+1)
j ,

w(x) =
C−1

∑
j=0

(
u(l+1)

j (x)
)2 (

c(l+1)
j

)2
,

H1 = ∑
i

Di ∗ Ďi,

H2 = ∑
i

(
Dii ∗ Ďii

)
+ 2(Dxy ∗Dxy)+ 2(Dyz ∗Dyz),

(2.4)

using the notation Ď(i) = D(−i) [265]. More detailed informations about the
derivation of the 3D AFCM version can be found in Burkhardt [31].

Input parameters for Algorithm 4 are the MR image MRI, the number of
classes C, which is estimated from the image histogram and the regularization



2.5. SEGMENTATION OF MR-IMAGES 35

parameters λ1 and λ2. Furthermore, the AFCM iteration (top index, l) is denoted
by outer iteration and is terminated when the maximal difference between the
membership values of two successive outer iterations is less than ε (the outer
convergence criterion of Algorithm 4). Another input parameter is the bound
for inner AFCM convergence, δ, discussed below. The algorithm determines
the centroids c j and solves the equation system for m in step 3 up to a relative
residual of δ and extracts the multiplier field from MRI, resulting in the corrected
image MRIcorr. A vector of fuzzy membership values u ∈ R

C is calculated for
each lattice point up to an outer accuracy of ε, from which the hard segmentation
MRIafcm is determined by labeling each lattice point with the index of the class
with maximal membership value. Within our implementation, the centroids are
initialized by means of the ISODATA algorithm. The multipliers m(x) for border-
points with a maximal distance of 2 to the image-border are fixed to 1.0 in order
to define boundary conditions.

Solver for the multiplier field

We will now focus on the solution process of the large sparse linear equation
system Am = b in step 3 of Algorithm 4. Because of its size, A cannot explicitly
be stored as a band matrix and direct solvers cannot be considered for the solution
process. Instead, A is described by means of its star notation (see, e.g., [93,
§2.1.3]) and iterative solvers have to be used. The following two theorems can be
shown for the Successive OverRelaxation method (SOR) for iteratively solving
the equation system:

Theorem 2.5.1. If A is SPD, then SOR will converge monotonically with respect
to the energy norm for any ω ∈]0,2[ and for any initial guess m(0).

Proof: Hackbusch [93, Theorem 4.4.21].

Theorem 2.5.2. If A is symmetric and strictly diagonally dominant with positive
diagonal elements, then A is SPD.

Proof: Hackbusch [93, Lemma 6.4.12].

It is easy to show, that for non-border indices i, A is only diagonally dominant
if wi > 60λ2, since |aii|= wi + 6λ1 + 42λ2 and ∑ j �=i |ai j|= 6λ1 + 102λ2.

Saad [198] pointed out that, in fact, the reverse of the theorem is also true:

Theorem 2.5.3. If A is symmetric with positive diagonal elements and for 0 <
ω< 2, SOR converges for any m(0) if and only if A is positive definite.
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Let χ be the order of the Jacobi-iteration. Then, when choosing the optimal
relaxation parameter, it can be shown for SPD matrices A (fulfilling one further
condition), that the SOR method leads to an order improvement of χ/2 [93, Re-
mark 4.4.26].

Large condition numbers of A have to be expected, which can lead to a spoiled
convergence behavior of iterative solvers. A first substantial improvement can be
often achieved by a simple scaling of A in combination with a Conjugate Gra-
dient (CG) solver method [206, pp.257f]. For the algorithm and its convergence
properties see Section 5.2 and especially Theorem 5.2.1. It can be shown, that
the scaling does not influence the convergence of the SOR method [206, p.258].
Therefore, a parallel scaled CG method was implemented for AFCM and tested
against SOR. Let us denote the solver iteration (bottom index, j) by inner itera-
tion and let us define the inner convergence in step 3 by means of

d(l)
( j) :=

‖Am(l)
( j)−b‖

‖Am(1)
(0)−b‖

< δ, (2.5)

i.e., as the residual (rescaled in order to allow the comparison to the SOR solver)
of the actual jth inner iteration, divided by the (rescaled) residual, calculated for
the identity starting vector (i.e., j = 0) within the first outer iteration (i.e., l = 1),
parameterized with δ. Since in our implementation, the multiplier field m(l) is
exploited as a starting vector for the iterative calculation of m(l+1), the number of
inner iterations decreases with increasing number of outer iterations. In case of
only a small change of membership values and centroids in the first two AFCM
steps, it is thus possible that inner convergence is achieved without any inner
iteration, leading to outer convergence of the AFCM.

2.5.3 Contextual segmentation

Clustering techniques like ISODATA and AFCM do not use adjacency relations
for the classification (see Definition 2.2.4). Contextual segmentation algorithms
bring together adjacency and classification by feature space partitioning. The
latter means that a voxel x becomes foreground voxel if its gray value is in a
given range, i.e. Imin ≤ I(x)≤ Imax. The region growing algorithm [12], a simple
method of contextual segmentation, starts at a seedpoint, whose intensity value is
in the given range, and inspects its neighborhood. Voxels, ”similar”enough, are
recursively added to the region. Here, the ”similarity”criterion for a voxel x of
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the 6-neighborhood is concretized by the boolean function

Inside(x) =


true :


PASS(x) = 1

∨ [PASS(x) = STOP(x) = 0
∧ (Imin ≤ I(x)≤ Imax)]

,

f alse : otherwise

using the markers PASS and STOP from Definition 2.2.7. In order to segment a
three dimensional connected component V and simultaneously identify the cor-
responding two dimensional surface S, the region growing concept has to be ex-
tended so that not only the region, but also the corresponding one voxel thick re-
gion surface is growing (extended region growing (ERG), see [239; 241]). When
looking back to Figure 2.2 (middle), S can be seen as the 26-connected fore-
ground circle, where a foreground voxel is now a voxel, which fulfills the simi-
larity criterion. V can be seen as the 6-connected background which is interior
to the circle in the figure. The surface voxels are thus 26-connected within S
and 6-connected to at least one element of V . The above is formalized by in-
troducing the pair of binary arrays (S,V ) with S,V : L → G0,1. Each voxel x is
either a surface- (S(x) = 1) or (exclusive) a volume- V (x) = 1 or (exclusive) a
background-voxel V (x) = S(x) = 0.

A pseudocode for the resulting ERG concept is shown in Algorithm 5. The
abort criterion is tuned with the parameter elastic, whose default is elastic = 0.
Increasing this parameter results in a higher elasticity so that the algorithm is
able to grow into thin regions. This can be important, e.g., for the segmentation
of the outer skull surface, if a very thin low-contrast compacta skull layer is lying
between high-contrast spongiosa and skin, see Figure 2.19.

2.5.4 Refinement by means of a deformable model

Much research has been done in the field of deformable (or active contour) mod-
els [119; 222; 39; 139; 154; 7]. Unlike voxel-based segmentation methods, a
deformable contour model moves an extracted mesh of an initial surface contin-
uously through the spatial domain of a 3D image with the goal of improving the
initial segmentation by means of a minimization of a suitable energy functional.
The success of this method is strongly dependent on the quality of the mask, from
which the initial mesh is extracted. Active contour models take the partial volume
effect into account and they are insensitive w.r.t. image noise to some degree.
Generally, the energy functional consists of two forces, the internal smoothing
force Fint and the external repulsive or attractive force Fext, acting perpendicular
to the surface mesh and seeking to constrain the final surface to fit the given data.
An overview of various definitions of forces in deformable models was given by
McInerney and Terzopoulos [154]. Many successful applications are reported for
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Algorithm 5 ERG : (IN ∈M R I ext,elastic ∈ G0,1, Imin, Imax ∈ GMRI)→ OUT ∈
BI
∀x : V (x) = S(x) = OUT(x) = 0, Put seedpoint to empty queue
while queue �= /0 do

Set counter = 0 and take xakt out of queue
for each 6-neighbor xi of xakt do

if (Inside(xi) = f alse) then
counter = counter + 1

end if
end for
if (counter > elastic) then

S(xakt) = 1
else

V (xakt) = 1
for each 6-neighbor xi of xakt do

if V (xi) = S(xi) = 0 then
Put xi to queue

end if
end for

end if
end while
∀x with ((V (x) = 1)∨ (S(x) = 1)): OUT (x) = 1

the segmentation of the human cortex [44; 46; 265; 130], whereas only one study
for the skull was found [193]. Davatzikos and Bryan [46] reported the impor-
tance of the quality of the initial guess for the cortex application. It was shown,
that deformable models may have difficulties in progressing into the sulci, when
simply initialized from an elliptically shaped surface outside the cortex.

Algorithm 6 shows a pseudo-code of the active contour model, that is used
in the following for the skull segmentation improvement. The model closely
follows the descriptions of Kruggel and von Cramon [130], based on ideas of
Dale and Sereno [44] and Xu et al. [265]. In a first step, EXTRACT (see Op-
eration 2.2.23) extracts a triangle mesh from a given binary initial mask. The
operation SIMPLIFY (see Operation 2.2.24) is then applied to achieve a reduc-
tion in the vertex count to Nv vertices, while retaining the shape of the surface.
Output are the mesh vertices v0, its normal vectors n0 and the triangle elements ∆,
where the normal vector for each vertex was calculated as the arithmetic mean of
the neighboring triangle normals. The internal force Fint(vi) for a vertex in the ith

iteration, vi, generally an expression of the surface curvature at vi [265; 193], is
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Algorithm 6 DEFORM : (MRI ∈ M R I , INI ∈ BI ,Nv ∈ N, Ilim,ωint,ωext,τ ∈
R)→ (mesh ∈M ESH )

(v0,n0,∆) = SIMPLIFY (EXTRACT(INI),Nv), i = 0, κ= 1/3
repeat

for each of the Nv vertices vi do
Fint(vi) = 0 /* calculate smoothing force */
for each of the N edge-connected neighbors vi

j of vi do

Fint(vi) = Fint(vi)+ 1
N

(
vi

j−vi
)

end for
Fext,1(vi) = 〈−∇Ig(vi),ni〉 /* magnitude of gradient force */
Fext,2(vi) = tanh

(
κ(I(vi)− Ilim)

)
/* magn. of capturing force */

vi+1 = vi +ωintFint(vi)+ωext
(
Fext,1(vi)Fext,2(vi)+ Fext,2(vi)

)
ni

end for
i = i+ 1

until 1
Nv
∑vi ‖vi−vi−1‖< τ

mesh = (vi,ni,∆)

chosen as a force, which pulls the vertex to the centroid of its N edge-connected
neighbor vertices [44; 130]. The magnitude of the external force, acting along
the vertex normal ni, is divided into two parts [265; 130]. The first, Fext,1, is
attached to the local intensity value gradient of the Gauss smoothed input MR
image (see Operation 2.2.18), ∇Ig, while the second term, Fext,2, captures the sur-
face within a narrow range around an image intensity Ilim. The parameter κ ∈ R

defines the capturing range, which is related to the amount of noise in the MR
data. It was fixed to κ = 1/3, following [130]. With τ we denote the bound for
the convergence of the deformable model.

2.5.5 Segmentation results

The performance of ISODATA and AFCM will now be compared within a model
study and for the bimodal data set from Section 2.3. The contextual segmentation
and the deformable model are applied in the next section.

Studies in a three layer sphere model

In order to test the implemented AFCM code and the defined convergence criteria
from Section 2.5.2, a three layer sphere model was generated with gray code 50
for background and middle layer and 150 for inner and outer layer. Sinusoidal
inhomogeneities were overlayed onto this reference image. The resulting model
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Model Model histo ISODATA AFCM(SOR)

AFCM(PCG) AFCM(PCG) histo Multiplier residual

Figure 2.10: Comparison of segmentation results of Algorithms 3 and 4 for a
sphere model with sinusoidal intensity inhomogeneities. Top row: The model
(left), its histogram (middle, left), the classification result of ISODATA (mid-
dle, right) and the AFCM (SOR) intensity corrected model (right). Bottom row:
AFCM (PCG) intensity corrected model (left), its histogram (middle) and the rel-

ative residuals d(1)
( j) (see (2.5)) for the first 5000 inner iterations of the PCG and

the SOR (for various ω) solver.

is shown in Figure 2.10 (top, left). Voxel x = (63,18,64) with a strong intensity
inhomogeneity of m(x) = 0.513, leading to a gray code of I(x) = 77 is marked in
the model. The number of classes C = 2 was estimated by means of the number of
maxima in the image histogram (top, middle left). ISODATA unsupervised clus-
tering determined the class centers ciso

0 = 50, ciso
1 = 149 in good agreement with

the histogram, but the sinusoidal inhomogeneities led to large misclassifications
(top, middle right). AFCM showed a fairly robustness towards the regularization
parameters and the choice of λ1 = 20,000 and λ2 = 200,000 gave good results
for all tested applications, in agreement with [181] for 2D images.

Let us first look at the results of AFCM, based on the scaled CG solver. The
convergence bounds were chosen as ε= 0.01 and δ= 0.1. Three outer iterations
were necessary for outer convergence and the scaled CG solver needed 193 in-
ner iterations within the first, 99 within the second and 57 within the last outer
iteration, then achieving the ε bound. The result is visualized by means of the
corrected image (bottom, left) and its histogram (bottom, middle). When tak-
ing into account, that the multiplier field was only roughly approximated with
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ISODATA AFCM (PCG) AFCM (SOR) Multiplier residuals

Figure 2.11: PD-MRI: Comparison of segmentation results of Algorithms 3 (left)
and 4 with scaled CG solver (left middle) and with SOR solver (right middle) and
the relative residuals d(1)

( j) (see (2.5)) for the first 1500 inner iterations of PCG
and SOR (for various ω) solver (right).

δ= 0.1, the inhomogeneities were already well extracted, shown by means of the
sharp peaks at the class centers in the histogram. For x = (63,18,64), m(x) was
determined as 0.538, leading to the corrected intensity I(x) = 143 (bottom, left).
Certainly, the choice δ = 0.001 led to the better result I(x) = 145 and to even a
bit sharper peaks in the histogram, but the sum of inner iterations increased by
more than a factor 3 (not shown). The scaled CG method was able to reduce
the relative residual (2.5) to any tested inner convergence bound, e.g., 683 inner
iterations were needed for δ= 10−6, shown in Figure 2.10 (bottom, right).

The SOR residuals in the first outer iteration for ω = 0.3 (underrelaxation),
ω = 1.0 (Gauss-Seidel) and ω = 1.75 (overrelaxation) are shown in the same
figure. Within 5000 iterations, SOR was not able to reduce residual (2.5) below
δ≈ 10−3, even if the necessary condition, that ‖m(l)

j+1−m(l)
j ‖ is a sequence in j,

tending to zero for all l, was fulfilled. The result of the AFCM corrected image
with ε= 0.01 and an upper bound of 5000 SOR iterations with ω= 0.3 is shown
in Figure 2.10 (top, right). A relative residual of d(l)

(5000) ≈ 0.2 was not sufficient
to correctly extract the inhomogeneities, for x = (63,18,64), m(x) = 0.777 only
led to I(x) = 99.

Segmenting the PD-MRI

The comparison of Algorithms 3 and 4, applied to the PD-MRI is shown in Fig-
ure 2.11. Motivated by the histogram in Figure 2.8, the number of classes was
chosen as C = 2. As a goal, skull (compacta and spongiosa) voxels should belong
to class 0 and scalp, skin fat and intracranial tissue voxels to class 1. ISODATA
found the centers ciso

0 = 16 and ciso
1 = 167 in good agreement with the histogram,

so that class 0 consists of voxels with intensities up to 91. Because large parts of
scalp and skin fat voxels, especially in the frontal area, have lower intensities than
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voxels from the same tissues in more occipital parts, the ISODATA algorithm
misclassified them to the skull class, resulting in large holes in the segmented
scalp and even skin fat layer (Figure 2.11, left). As Figure 2.11, middle left,
shows, the AFCM (PCG) method interprets the intensity variations as scanner
inhomogeneities, which may be compensated. Thus, most of the remaining holes
were small. The break-off criteria were set to ε= 0.01 and δ= 0.1. The number
of inner iterations and the starting residual was continuously decreased from 428
and d(1)

(0) = 1.0 up to 64 and d(5)
(0) = 0.12, resp., in the 5th outer iteration. Because

of d(6)
(0) < δ, the 6th iteration led to outer convergence. A moderate continuous

down shift of the centroid with highest intensity from c(2)
1 = 164.7 to c(5)

1 = 162
prevented the AFCM to naturally converge with the ε bound. The scaled CG
method was again able to reduce the relative residual (2.5) to any tested inner
convergence bound, e.g., 2283 inner iterations for δ = 10−6. The SOR solver

for AFCM was, with no tested ω, able to reduce d(l)
( j) below 0.34 (ω = 0.3, 2093

iterations). It was observed, that SOR converged up to a certain iteration bound,
depending on ω. During the subsequent iterations, the relative residual (2.5) was
continuously increased up to a plateau. For ω = 1.75, this plateau at about 0.75
was reached after about 3000 iterations (Figure 2.11, right). The AFCM (SOR)
classification result with break-off after 4 outer and 1000 SOR inner iterations is
shown in Figure 2.11, middle right.

Segmenting the T1-MRI

For the T1-image, the number of classes was chosen as C = 3 according to its his-
togram in Figure 2.8. It is assumed, that skull compacta and CSF voxels should
belong to the class with lowest intensity, scalp and gray matter voxels to the mid-
dle and white matter and skin fat voxels to the highest intensity class. ISODATA
determined the centroids ciso

0 = 13, ciso
1 = 93 and ciso

2 = 191 in good agreement
with the maxima of the histogram. Nevertheless, parts of scalp and even skin
fat voxels were misclassified to class 0, leading again to holes in those layers,
whereas the AFCM (PCG) segmented scalp and skin fat layer was mostly closed
(see especially Figure 2.12, top row, middle and right). Furthermore, ISODATA
misclassified certain WM voxels to class 1 (Figure 2.12, middle). The thickness
of the cortical layer would thus measure about 8 mm at the presented location,
being far from realistic (see Section 2.6.2 for more information). Concerning
scaled CG and SOR solver for AFCM, comparable results were observed as for
the PD-MRI, so that the discussion will be limited to the remarks, that the scaled
CG method was again able to reduce d(l)

( j) to any tested inner convergence bound

(e.g., 2117 inner iterations for δ = 10−6) and that the SOR solver was, with no
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T1-MRI ISODATA AFCM (PCG)

Figure 2.12: T1-MRI (left): Comparison of segmentation results of Algorithms 3
(middle) and 4 with scaled CG solver (right). Magnification of axial (top) and
coronal (bottom) cut through an area with larger segmentation differences.

tested ω, able to reduce residual (2.5) below 0.27 (ω = 0.3, 1355 iters). The fol-
lowing discussion will thus only concern the AFCM on the basis of the scaled
CG. As Figure 2.12, right, shows, the AFCM interpretes the intensity variation
as scanner inhomogeneities and extracts them during the segmentation. The skin
layer is closed and the WM seems to be well segmented, especially when com-
pared with the original T1 image in the coronal cut (bottom row). This results in
a cortex layer with a thickness of 4 mm at the presented location. Refer to Fig-
ure 2.15 in Section 2.6.2 for a visualization of the overall cortical layer difference
between AFCM and ISODATA results. With break-off criteria of ε = 0.01 and
δ= 0.1, the number of inner iterations and the starting residual was continuously
decreased from 472 and d(1)

(0) = 1.0 up to 35 and d(14)
(0) = 0.101, resp., in the 14th

outer iteration. Because of d15
(0) < δ, the 15th iteration led to outer convergence.

Again, a moderate continuous down shift of the centroid with highest intensity
from c(8)

2 = 169 to c(14)
2 = 161 prevented the AFCM to naturally converge with

the ε bound, whereas the centroids c0 and c1 were stable. This led to the observa-
tion, that with increased number of outer iterations, the skin layer gets more and
more accurate, but on the other hand, more and more gray matter voxels are mis-
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classified to the WM class. Since the same effect was observed for δ= 10−2, the
problem can only be attributed to model limitations when applying the AFCM to
the measured data set from Section 2.3. The best results were achieved with the
limitation to 4 outer iterations, presented in Figure 2.12 (right). On one processor
of the SGI ORIGIN 2000, this calculation took 2 : 18 hours, a period of time,
which can be linearly reduced through parallel computing.

Discussion and conclusion for AFCM

With the presented studies, the AFCM was shown to considerably improve the
segmentation of MR images in the presence of intensity inhomogeneities when
compared to unsupervised clustering methods like the ISODATA algorithm. Con-
cerning the solver method for step 3 of the AFCM, it was observed that SOR was
not converging, but that a scaled CG solver reduced the residual to any tested
bound. An explanation could be that, since the diagonal entries in A are clustered
with the size of the centroids (see definition of w in (2.4)), the scaling decreases
the difference of corresponding eigenvalue clusters and already leads to an ac-
ceptable improvement of the condition number (see also Section 5.2.1). Since it
was observed that moderate solution accuracies are sufficient, a simple scaled CG
solver already led to satisfying results. It should be mentioned with a reference
to Chapter 5 that solvers, based on multigrid approaches[181] or the embedding
of a simple preconditioned solver like the scaled CG into a multiresolution ap-
proach as presented for the registration in Section 2.4.3, would still considerably
speed up the computation time. Nevertheless, with the newest 2 GB processor
generation, the current implementation is satisfactory also for an application with
a larger number of data sets.

2.6 Scripts for multicompartment head modeling

2.6.1 Extraction of the head surface

As presented in Section 2.5.5, a basis for the generation of the head mask is the
compensation of intensity inhomogeneities while classifying the MR image. It
was shown for both image modalities, that unsupervised clustering of such noise-
flawed images can lead to large holes in scalp and skin fat layers, so that AFCM is
an important ingredient within the head mask generation process. The extraction
is described by Script 2.6.1. In the first step, AFCM is applied to the input MR
image. The number of classes is fixed dependent on the modality, C = 2 for a PD-
and C = 3 for a T1-MRI. With g1(2) = g2(2) = 1 or g1(3) = 1 and g2(3) = 2,
the classification result MRIafcm is first binarized into segm bin. Parameter d1

closes remaining holes or hollows in the segmented scalp and skin fat layers with
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Script 2.6.1. HEAD : (MRI ∈ M R I ,C ∈ N,λ1,λ2,ε,δ ∈ R,d1,d2,d3 ∈
N0,OSS ∈ BI )→ (HEAD,SCALP∈ BI )

1. (MRIcorr,MRIafcm,ca f cm
j ) = AFCM(MRI,C,λ1,λ2,ε,δ) /* class. */

2. segm bin = BINARIZE(MRIafcm,g1(C),g2(C)) /* fusion */

3. borders = BORDER(BIGGESTCOMP(segm bin)) /* closing holes */

4. eroded bg = BIGGESTCOMP(BINARIZE(DIST(borders),d1 ,∞))

5. back dilated = BINARIZE(DIST(eroded bg),d1,∞)

6. HEAD = SMOOT HING(back dilated,d2) /* smoothing */

7. SCALP = AND(HEAD,DILATE(OSS,d3)) /* for multi-tissue model */

a maximal size of 2d1 within the next block of the script (steps 3-5), before a
smoothing for the case of stronger background noise terminates the generation of
the head mask.

In EEG/MEG-source reconstruction, it is assumed that the weak volume cur-
rents outside the skull and far away from EEG and MEG sensors have a negligible
influence on the measurements. Therefore, it is generally accepted that the parts
of the head mask, lying outside the d3 dilated outer skull surface mask, OSS, can
be cut away when generating a volume conductor model (see, e.g., [239]). This
concerns especially large parts of the face. Truncation of the head mask strongly
reduces the computation amount when solving the inverse problem. The gener-
ation of the SCALP, i.e. the outer mask for a multi-tissue model, is thus the last
step of Script 2.6.1. Please refer to Section 2.6.4 for OSS generation.

Results

Since the basic AFCM classification and its parameter tuning was already pre-
sented in Section 2.5.5, only the discussion of d1, d2 and d3 remains. Burkhardt
[31] tested different settings and found d1 = 4 to be well suited for filling re-
maining hollows/holes in the segmented scalp and skin fat layers in a study with
5 different data sets. It was observed that a subsequent smoothing with d2 = 5
could generally improve the head mask, especially for images with stronger back-
ground noise. The truncation of the head mask for the multi-compartment model
was carried out by means of a parameter choice d3 = 10. Intermediate results of
Script 2.6.1 for the T1-MRI are shown in Figure 2.13.
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T 1corr segm bin borders

eroded bg back dilated HEAD

Figure 2.13: Intermediate results for the generation of the head mask.

2.6.2 Generation of brain and white matter masks

Peeling the brain

A first step in the generation process of the GM- and the WM- mask is the sepa-
ration of the brain from its outer hulls, the so-called brain peeling. The border of
the GM- and WM-mask models the boundary between CSF/GM and GM/WM,
resp.. Peeling the brain is an important problem in the analysis of medical images
and a large number of articles was published so far. It will not be discussed in
full detail, only the key ingredients are presented here. Refer to [29; 129] for
further informations. Script 2.6.2 describes the peeling process. After prepro-
cessing the T1 image by means of a Lee-filter (Operation 2.2.19), a fast segmen-
tation into two classes is carried out. The key ingredients of the peeling are the
application-specific morphological erosion and dilation operations. Generally,
they are implemented like the Operations 2.2.16, but it has to be taken special
care of the anatomical connections between the brain and its outer hulls, i.e., the
optic nerves and the brainstem. After pre-segmentation of eyes and brainstem,
Operation 2.2.16 is adapted by locally increasing parameter d1 around those crit-
ical points in order to successfully remove the outer hulls from the eroded brain in
steps 4 and 5. A closing with large radius terminates the peeling, so that cavities
and handles are filled and the surface of the mask is smoothed (see Figure 2.3).
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Script 2.6.2. PEELING : (T 1 ∈M R I ,d1,d2 ∈R)→ (PEEL ∈ BI )

1. t1 f ilt = LEE(t1) /* binarize filtered T1 */

2. bin = BINARIZE(ISODATA(t1 f ilt,2),1,1)

3. and1 = AND(bin,EROSION SPEC(BORDER(bin),d1)) /* erode */

4. big = BIGGESTCOMP(OPENING(and1,3)) /* extract */

5. and2 = AND(bin,DILATION SPEC(big,d2)) /* inflate */

6. PEEL = CLOSING(and2,12)

Results

The peeled brain with a parameter setting d1 = 2 and d2 = 4 is shown in Fig-
ures 2.14 (left) and 2.16. Using an algorithm described by Lohmann [140], the
Euler number (Definition 2.2.6) of the peeling mask PEEL was controlled to be
1, i.e., equivalent to the topology of a sphere.

The brain mask

When the peeling mask is successfully determined, the brain mask, whose border
models the GM/CSF boundary, can be generated quite easily. This process is
described in Script 2.6.3. In the first step, the AFCM segmented brain is peeled
from its outer hulls and binarized so that gray and WM classes are assembled as
the image foreground in the intermediate binary mask bin. Image degradations at
the border of the peeled brain are extracted in a second step. The binary mask bin
is eroded using a parameter d, so that the brain is separated from the degradations,
and the biggest component is then dilated with the same parameter.

Script 2.6.3. GEN BRAIN : (PEEL ∈ BI ,d ∈ N)→ (BRAIN ∈ BI ):

1. bin = BINARIZE(AND(T1afcm,PEEL),1,2)

2. BRAIN = DILATION(BIGGESTCOMP(EROSION(bin,d)),d)
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AND(T1afcm,PEEL) bin BRAIN

Figure 2.14: Intermediate results of Script 2.6.3.

Results

The free parameter was fixed to d1 = 2 and the Script 2.6.3 was executed. In-
termediate results are shown in Figure 2.14. Figure 2.16 shows the border of
the resulting mask on the peeled brain. It was also already presented on the un-
derlying registered PD image in Figure 2.9, indicating the accuracy of both the
registration and the above segmentation. Note, that the resulting brain mask does
no longer have the topology of a sphere, since a larger number of cavities and
handles was introduced (Euler number 98). Furthermore, a 3D rendering of the
brain surface after extraction of a mesh and its optimization to 100,000 nodes is
shown in Figure 2.20.

The white matter mask

The problem of segmenting the human cortex (GM) will be addressed now. The
neocortex, a 1.5 up to 4.5mm thick layer at the outer surface of both brain hemi-
spheres, contains about 80% of the neurons of the central nervous system [22],
whereas the rest of GM can be found in deeper structures such as basal ganglia
or the thalamus. The extraction of the GM from the brain leads to the WM mask
for the multicompartment model.

When evaluating the T1 image segmentation results of the ISODATA clus-
tering (Figure 2.12), unrealistic thicknesses of the GM were observed, whereas
the compensation of intensity inhomogeneities by means of the AFCM yielded a
more realistic cortical layer. Thus, one idea for the generation of the WM mask
would be simply the extraction of all voxels with centroid cafcm

2 of the peeled and
segmented brain, T 1afcm, i.e.,

W Mafcm := V BINARIZE(AND(T1afcm,PEEL),2,2).
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Axial Coronal Sagittal

Figure 2.15: Difference between the cortical layer thicknesses of the ISODATA
and the AFCM segmentation results.

If we denote

WMiso := V BINARIZE(AND(T1iso,PEEL),2,2),

the result of the operation AND(VINV ERT(WMiso),W Mafcm), shown in Fig-
ure 2.15, underlines again the difference between the cortical layer thicknesses of
the AFCM and the ISODATA segmentation results. Since the inverse procedure,
inverting WMafcm and masking it with WMiso, was observed to be empty (not
shown), it can be concluded that ISODATA leads to a much thicker cortical layer.

Stimulated by the results of Lohmann et al. [141], a second way of generating
a WM mask will be presented now, which better exploits anatomical knowledge
about the cortex and which is not sensitive to remaining intensity differences
between distant cortical areas in the corrected image T 1corr. The WM mask is
generated through the call

WM = GEN WHITE(AND(T1corr,PEEL),BRAIN,min,α),

and Algorithm 7 presents the procedure as pseudocode. In the preprocessing
steps, the voxels of the binary mask BRAIN (being assigned to the “update” ver-
sion of the WM mask, WMupd) are labeled (from outside to inside) and sorted by
depth. Maximal global background and minimal global WM intensities and the
parameter for statistics, Ilow, Iup and α, resp., are determined from the image his-
togram of the peeled intensity corrected MRI of the brain, BRAINcorr. Under the
assumption of a minimal cortical thickness min and in order to build a sufficient
local statistic,

Iloc(x,α) := Iµ(x)+αIσ(x)
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Algorithm 7 GEN WHITE(BRAINcorr ∈ M R I ,W Mupd ∈ BI ,min ∈ N,α ∈
R)→ (W M ∈ BI )

label = DIST (INV ERT(W Mupd))
Sort label by depth, Determine Ilow and Iup from hMRI(BRAINcorr)
for depth d = 1 to MAXDEPTH do

ndelete = 1
while ndelete ≥ 0 do

ndelete = 0
for all x of label at depth d do

if (label(x)≤min ∨ I(x)≤ Iloc(x,α)∨ I(x)≤ Ilow ∨ Iup≤ I(x)) then
Delete x from WMupd and from label
ndelete = ndelete+ 1

end if
end for

end while
end for
WM = BIGGESTCOMP(WMupd)

with Iµ the mean intensity and Iσ its standard deviation over all already deleted
voxels in a local neighborhood of x, the algorithm starts by removing the outer-
most min layers of voxels. A voxel x within subsequent layers is only removed,
if its intensity is not brighter than Iloc(x,α), otherwise it is assumed to be a WM
voxel.

Results

The generation of the WM mask was carried out with the choice for the minimal
cortical thickness of min = 1 and with the parameter setting α= 1.0. Figure 2.16
shows the inner border of the resulting mask on the underlying peeled brain of
the T1-MRI. Accurate segmentation of the WM/GM boundary was observed. A
3D rendering of the WM surface after extraction of a mesh and its optimization
to 100,000 nodes is shown in Figure 2.20.

Discussion for the generation approach of the WM mask

Since the statistics for Iloc are based on local gray codes, Algorithm 7 can be
seen as a segmentation strategy for the WM surface dealing with the problem
of intensity inhomogeneities in the image and, in fact, this was one reason to
develop it [141]. A comparison to the result of GEN WHITE with the peeled
brain from the uncorrected T1 image, AND(T1,PEEL), was thus carried out,
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Figure 2.16: Results for inner and outer cortical surface on underlying peeled
brain.

leading to slightly thicker gyral crowns and slightly thinner sulcal basins. Never-
theless, since the AFCM takes into account the problem of partial volume effect
while dealing with intensity inhomogeneities, WM was found to have a slightly
superior quality, but more data sets need to be analyzed to confirm this sugges-
tion. Many other interesting approaches for the segmentation of the cortex can
be found in the literature. In [44; 265; 130], a mesh was extracted from a preseg-
mented GM/WM boundary, yielding a good initial surface, which is then refined
using a deformable model, similar to the descriptions in Section 2.5.4. Such
energy-minimizing deformable models generally preserve the topology of the
initial surface. If it has the topology of a sphere (Euler number 2, see Defini-
tion 2.2.9), the deformation result has the same topology. This feature was used
by Dale and Sereno [44] to computationally flatten the cortex after deformation
in order to ease interpretations of source reconstruction results. In contrast to
such classical “snake” models obtained via energy minimization, intrinsic ones
derived from curvature based flows and implementing the surface propagation
by level set approaches automatically handle topology changes if, e.g., pieces of
the boundary merge or break. A theoretical link between such approaches and
the classical models was developed by Caselles et al. [36]. High elasticity of the
intrinsic models, being able to grow into sharp corners or cusps, and a lower sen-
sitivity to the choice of the initial surface were reported by Malladi et al. [150].
Zeng et al. [272] applied a level set approach to the problem of cortex segmenta-
tion, yielding promising results.

2.6.3 Improved segmentation of the inner skull surface

As explained in the introduction to this chapter, the accurate segmentation of the
boundary between the skull and the intracranial tissues is considered to be of
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Script 2.6.4. ISS : (T 1,PDreg ∈ M R I ,λ1,λ2,Nv ∈ N,ε,δ,ωint ,ωext ,τ,d ∈
R)→ (ISS ∈ BI )

1. (PDcorr,PDa f cm,cPD
0 ,cPD

1 ) = AFCM(PDreg,2,λ1,λ2,ε,δ) /* class. */

2. segm bin = BIGGESTCOMP(BINARIZE(PDa f cm,1,1)) /* peeling */

3. small inner = BIGGESTCOMP(EROSION(segm bin,6))

4. too large inner = DILATION(small inner,8)

5. peeled inner = AND(segm bin, too large inner)

6. del iso points = BIGGESTCOMP(peeled inner) /* cleaning */

7. IN = INV ERT(BIGGESTCOMP(INVERT(del iso points)))

8. IS = (DEFORM(PDcorr, IN,Nv,
cPD

0 +cPD
1

2 ,ωint ,ωext ,τ)) /* Improve */

9. ISS = FILL(IS,d) /* fill */

special importance for both EEG [194; 42; 43; 111; 185] and MEG [96] source
reconstruction. Since therefore, the additional information in the registered PD
modality is exploited, the generation of the ISS can be seen as the central result
of this chapter. Within the following, the scripts for the generation of ISS and
EISS are presented and a segmentation accuracy comparison is carried out.

Exploiting the registered PD-MRI

Script 2.6.4 describes the process of exploiting PDreg, the result of the PD image
registration onto the corresponding T1 modality (see Algorithm 2), for an accu-
rate segmentation of the inner skull surface. The script begins in step 1 with a
basic classification of the voxels. The fixed number of classes C = 2 is motivated
by the two clear maxima in the PD image histograms, the first for skull voxels
and the second for the proton-rich other tissues (see histogram hPD in Figure 2.8).
Within the next block of the script (steps 2-5), the peeled inner mask (intracra-
nial tissues) is peeled from its outer hulls, i.e., from water proton rich extracranial
tissues, a process, which is comparable to the brain peeling in Script 2.6.2. Two
parameters were fixed within this processing chain, the first one to 6 and the sec-
ond to 8. This choice led to a satisfactory peeling for all tested data sets. After
deletion of isolated points in step 6 and filling of cavities in step 7, a deformable
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Script 2.6.5. EISS : (T 1 ∈ M R I ,BRAIN ∈ BI ,λ1,λ2 ∈ N,ε,δ,d1,d2 ∈
R, Imin, Imax ∈ GMRI)→ (EISS ∈ BI )

1. (T 1corr,T 1a f cm,cT 1
0 ,cT 1

1 ,cT 1
2 ) = AFCM(T 1,3,λ1,λ2,ε,δ) /* class. */

2. close = CLOSING(BRAIN,d1) /* Generate minimal inner mask */

3. min inner = DILATION(close,d2)

4. max inner = DILATION(min inner,2) /* Gen. maximal inner mask */

5. T 1corr
ext = INTRODUCE MARKERS(T1corr) /* extend MRI */

6. T 1corr
ext = MARK(T1corr

ext ,min inner,PASS) /* Meninges/skull segm. */

7. T 1corr
ext = MARK(T1corr

ext , INVERT(max inner),ST OP)

8. meninges = ERG(T 1corr
ext ,0, Imin, Imax)

9. EISS = OR(SMOOTHING(meninges,20),min inner) /* Smoothing */

model is applied in the last step, which extracts a mesh from the initial inner skull
mask IN, simplifies it to Nv vertices and refines this surface by means of the reg-
istered intensity corrected image PDcorr. Ilim is chosen as the arithmetic mean of
the centroids cPD

0 and cPD
1 . In a last step, the mesh IS is filled using Script 2.2.26,

resulting in the final binary mask for the inner skull surface, ISS.

Estimation procedure based on an exclusive use of a T1-MRI

In Wagner et al. [243; 239], a procedure was presented for estimating the inner
skull by means of closing and inflating the brain surface, using only a T1-MRI. It
can be seen as the standard for inner skull modeling in EEG/MEG source recon-
struction. Script 2.6.5 describes the estimation process. A basic classification of
the T1 image into three tissue classes is carried out in the first step, where C = 3
is motivated by the three maxima in the T1 image histogram (see histogram hT 1

in Figure 2.8). The generation of the minimal inner skull mask in steps 2 and 3,
i.e., the d1 closing of the brain mask and the subsequent inflation under the as-
sumption of a CSF minimal thickness of d2 are the main ingredients. Therefore,
these operations were highlighted in the script. Since in T1-MRI, thick meninges
can form a contrast to the skull tissues, the rest of the script (steps 4-9) is devoted
to the segmentation of the meninges/skull boundary, making use of the extended
region growing segmentation, presented in Algorithm 5. The minimal and maxi-
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mal intensities of the meninges, Imin and Imax, resp., are estimated from the image
histogram between min inner and max inner.

Results and comparison

Script 2.6.4 was applied to various dual echo data sets (see also [31]). The pa-
rameter tuning and the results for the first step were described in detail in Sec-
tion 2.5.5. Here, the choice of parameters for the active contour model and the
filling process are discussed. The number of vertices is reduced to Nv = 30,000,
since the inner skull surface is only moderately curved. For the test sets, it
was found that the weights ωint = 0.06 for the smoothing internal force and
ωext = 0.01 for the external force led to the best results and should thus be recom-
mended. Nevertheless, for the presented data set, the binary mask IN was quite
strongly flawed by imaging noise in the areas of the venae diploicae and granula-
tiones arachnoideales (Pacchioni), so that better results of the deformable model
were achieved by means of a stronger smoothing with ωint = 0.09 while choosing
a moderate ωext = 0.002. For τ= 10−2, the deformable model converged within
118 iterations. The choice of d = 2 was sufficient to get an Euler number of 1
for ISS. A 3D rendering of the resulting mesh IS is shown in Figure 2.20. Fig-
ure 2.6 shows the filling process within the last step of the script and Figure 2.21
visualizes the final result for the multicompartment head model.

Script 2.6.5 was then used for the generation of the EISS. The global param-
eters were set to d1 = 18 and d2 = 0, leading to the best “overall” results for the
EISS.
Figure 2.17 presents the borders of ISS and EISS for the example data set. The
ISS models well the boundary between intracranial and skull tissues, only a small
inaccuracy at the cerebrum/skull boundary due to smoothing in the deformation
algorithm remained. Because of the strong d1 closing, the EISS is lying outside
the ISS in especially the concave parts, i.e., the areas of temporal, sphenoidal and
occipital skull base, as it can be seen in the saggital slice in Fig.2.17. Moreover,
due to the meninges/skull-segmentation block in Script 2.6.5 (steps 5-9), misin-
terpreting skull spongiosa as meninges voxels, the EISS is lying outside the ISS
in a small frontal area of the neurocranial roof. A more moderate choice of the
closing parameter d1 improves the result at the skull base, but causes an even
worse closing of the cortex layer at the neurocranial roof, discussed in the fol-
lowing. The estimated surface is lying inside the ISS in parietal and large parts
of the frontal areas of the neurocranial roof, partly caused by an underestimation
of the CSF layer by means of the parameter choice d2 = 0.

In Fig.2.18, the parietal area in the neurocranial roof with the largest error in
the coronal slice of Fig. 2.17 was magnified. Notice the high registration accu-
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Figure 2.17: Comparison of the inner skull segmentation results, using the bi-
modal data set and Script 2.6.4 (border of ISS, yellow) or exclusively the T1
image and Script 2.6.5 (border of EISS, red).

racy, which can be made out again. In this area, the CSF layer was much thicker
than estimated using the T1 MRI and d2 = 0. It can be seen that the EISS is
6 voxels in diagonal direction, i.e., 8.49mm, away from the realistic inner skull
boundary. The choice d2 = 2 improved the EISS in parietal and large parts of the
frontal roof and led to a reduction of the maximal error to 5.6mm in the magni-
fied area in Fig. 2.17, but pushed the boundary so far outside a realistic one at
especially the skull base, that a subsequent accurate OSS determination (see next
subsection) is difficult. Comparable results were found for the other data sets.

With regard to EEG/MEG source localization, d2 = 2 is considered to be the
better choice, if sources in the upper frontal, parietal or occipital areas should be
localized, whereas d2 = 0 is better suited for mesial-temporal and basal frontal
sources. The presented results are in agreement with those, reported by Huiskamp
et al. [111], where a matched set of CT and MR were compared with the estima-
tion procedure.
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EISS on T1 EISS on PD ISS on T1 ISS on PD

Figure 2.18: Magnification of the parietal area of the neurocranial roof where the
CSF layer is thicker than being estimated by means of the T1-MRI based EISS,
as the PD image and the border of the ISS show.

2.6.4 Modeling the outer skull surface

With regard to EEG source reconstruction, an exact modeling of skull shape and
thickness and thus an accurate segmentation of the OSS is important. This was
reported in [58; 135; 185; 228; 174]. In contrast, an exact OSS modeling is
not necessary, if exclusively MEG data is used and the skull layer is closed (no
surgery hole). In that case, the volume currents outside the ISS boundary are so
weak, that they are assumed to be negligible for magnetic field simulations [97;
103].

As seen in Section 2.5.5, the compensation for scanner inhomogeneities led to
strong segmentation improvements for especially the skull/skin boundary, whereas
large holes in the skin layer resulted from the use of simple clustering methods
like ISODATA. Therefore, the intensity corrected images are used here for a con-
trast enhancement. The corrected PD image can not only be used for the ISS
segmentation, but also for the outer skull surface. Nevertheless, the OSS segmen-
tation on the basis of the PD image can be seen as being a subset of the script for
the segmentation of the T1 image, since the skull spongiosa do not complicate
the process as much as for the T1 image.

The processing chain for the OSS generation from the T1 image is presented
in Script 2.6.6. One ingredient for this script is the mask of the head surface,
HEAD, which was already generated in Section 2.6.1. The script begins with the
extension of the intensity corrected T1 image using Operation 2.2.21. In step 2, a
minimal mask min for the outer skull is generated under the assumption of a min-
imal skull thickness of 3 voxels. Notice, that generally, parts of the border of min
will still be inside the spongiosa, whereas other parts will be already well-located
in the outer compacta layer of the 3-layered (compacta/spongiosa/compacta) skull.
In step 3, a maximal outer mask max is determined, so that min and max enclose
the boundary that has to be segmented. Image markers are set in steps 4 and
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Script 2.6.6. OSS : (T 1corr ∈ M R I , ISS,HEAD ∈ BI ,elastic ∈
G0,1, Imin, Imax,Nv,c

afcm
0 ,cafcm

1 ∈ N,ωint ,ωext ,τ ∈ R)→ (OSS ∈ BI )

1. T 1corr
ext = INTRODUCE MARKERS(T1corr) /* extend MRI */

2. min = DILATION(ISS,3) /* minimal outer mask */

3. max = AND(DILATION(min,6),HEAD) /* maximal outer mask */

4. T 1corr
ext = MARK(T1corr

ext ,min,PASS) /* segm. initial mask */

5. T 1corr
ext = MARK(T1corr

ext , INVERT(max),ST OP)

6. OSS in = OR(SMOOTHING(ERG(T 1corr
ext ,elastic, Imin , Imax),6),min)

7. OS = DEFORM(T 1corr,OSS in,Nv,
cafcm

0 +cafcm
1

2 ,ωint ,ωext ,τ) /* Improve */

8. OSS = FILL(OS,1)

5 (Operation 2.2.22). In step 6, beginning from a seedpoint inside min and us-
ing Algorithm 5, the region grows towards the skull/skin-boundary. Subsequent
smoothing of the resulting mask while respecting the assumption of a minimal
skull thickness yields the initial outer skull mask OSS in. Minimal and maxi-
mal intensities for the skull compacta, Imin and Imax, resp., are estimated from
the image histogram between the masks min and max. An active contour model
is then applied, which extracts a mesh from OSS in, simplifies it to Nv vertices
and refines this surface by means of the intensity corrected image T 1corr. Ilim is
chosen as the arithmetic mean of the centroids cafcm

0 and cafcm
1 of the T1 image

classification. In a last step, the mesh OS is filled using Script 2.2.26, resulting in
the final binary mask, OSS.

Results and discussion

Intermediate results and parameter choices of Script 2.6.6 are now discussed.
Figure 2.19 (middle left) shows the resulting surface S of Algorithm 5 for high
elasticity (elastic = 1). The subsequent smoothing yielded the initial outer skull
mask OSS in, which is located outside the skull spongiosa, as Figure 2.19 (middle
right) shows. Most spongiosa voxels have a higher gray value than estimated
for Imax, the maximal intensity of the skull compacta. Therefore, elastic = 1
is needed in order to enable a surface-growing into the thin cleft between the
spongiosa and the skin. Low elasticity (elastic = 0) is not sufficient in order to
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elastic = 0 elastic = 1 OSS in OSS

Figure 2.19: Results of script 2.6.6: ERG surface results for low (left) and higher
(left middle) elasticity, border of OSS in (right middle) and of OSS (right) on
underlying T1 image for high elasticity.

generate a mask OSS in as a suitable initialization of the deformable model from
outside the spongiosa. This is shown with the resulting surface S of Algorithm 5
for elastic = 0 (Fig.2.19, left). In order to refine the initial mesh, a deformable
model is applied. The choice of ωint = 0.05 and ωext = 0.01 was appropriate
for the presented data set and with τ = 10−2, convergence was achieved within
99 iterations. The active contour model compensated especially for a remaining
outer skull surface error in the area of the sinus sphenoidales (see Fig.2.19, right).
The mesh OS is shown in Figure 2.20 and Figure 2.21 shows the final result in
the multicompartment head model. The Euler number of OSS was controlled to
be 1.

However, one problem has to be discussed for the used MR data sets with
regard to the OSS segmentation. Since fat hydrogen protons have a different
magnetic resonance than those of water, they could be shifted relative to water
in the readout gradient direction, i.,e., for the presented data set, in the superior
to inferior direction. For a 1.5 Tesla scanner, this could mean a fat shift of up to
1mm, while for the used 3 Tesla scanner, the shift could amount up to 2mm in
superior to inferior direction. A possibility to avoid such errors may be the use of
separate fat/water MR sequences.

2.6.5 Generation of multi compartment head models

In Figure 2.20, 3D renderings of the multicompartment model tissue boundaries
are shown. The mesh for the scalp was extracted from the corresponding mask
SCALP and appropriately simplified for visualization. The rendering for the ven-
tricles was produced by means of an extended region growing and a subsequent
extraction of the surface mesh.
The generation of the multicompartment model of the class CPI is now straight-
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ventricles white matter brain

inner skull outer skull scalp

Figure 2.20: 3D rendering of tissue boundaries in multicompartment head model.

forward. Each voxel is labeled with regard to its membership as a skin, skull,
CSF, GM or WM voxel. This yields the 5 tissue head model, which is shown in
Figure 2.21.

Following recent conductivity measurements of Akhtari et al. [3], the skull
has to be seen as a three-layer model with strongly differing conductivities for
the compartments Outer Skull Compacta (OSC), skull spongiosa and inner skull
compacta. This is visualized in Figure 2.22 [182]. The OSC compartment was
observed to have a relatively constant thickness of about 2mm and the lowest
measured conductivity of all three layers, while the relative thicknesses of the
two layers of the Remaining part of the Skull (RS), i.e., spongiosa to inner com-
pacta, are location dependent (see [3; 240] and Section 4.8.4). Together with
the fact, that the MRI contrast is insufficient, a further decomposition of the RS
compartment into its two layers is not possible here. The skull was thus further
decomposed by means of eroding the OSS with a distance of 2mm, resulting into
the mask for the remaining skull,

RS = EROSION(OSS,2). (2.6)

On this way, the 6 tissue head model is obtained.
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Axial Coronal Sagittal

Figure 2.21: The 5 tissue head model.

2.7 Summary and Conclusions

Within this chapter, methods were presented for the generation of a realistic 5 or
6 compartment model of the human head, based on bimodal T1/PD MR data sets.
It was focused on an improved segmentation of the inner skull surface. Scripts
were presented for the segmentation of scalp, outer and inner skull and brain and
white matter surfaces.

Many studies can be found in the literature, reporting large errors of EEG-
based [42; 43; 110; 111] or MEG-based [96; 97] source reconstruction proce-
dures due to misspecifications of skull shape or incorrect modeling of the inner
skull surface, resp.. When a CT image cannot be attained because the neces-
sary radiation cannot be justified, then the current standard approach for skull
surface modeling is based only on a T1-MRI. A T1 MR image is well suited
for the segmentation of surfaces like white and gray matter and scalp, as shown
in this chapter, but poses problems in the identification of the inner skull sur-
face. In order to overcome this problem, estimation procedures were presented in
[243; 107; 239; 193] for a T1-MRI based approximation. In [243; 107; 239], the
T1 segmented brain surface was closed and inflated in order to approximate the
inner skull surface. Nevertheless, errors in the EEG-based localization of current
sources in the human brain of up to 1cm were reported [111]. The errors were
arising from skull models with estimated inner surface when compared with mod-
els from a matched set of CT/T1-MRI and appeared in mesial-temporal and basal
frontal areas, especially important in the area of epilepsy surgery. Furthermore,
in pathological cases with brain atrophy, the local estimation of the CSF layer
thickness by means of the global inflation parameter in the estimation procedure
is far from realistic. With modifications, the T1-MRI based inner skull estimation
procedure of Wagner el al. [243; 239] was used in order to compare segmentation
results for the inner skull surface.
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Figure 2.22: The human skull: Suture lines and the tri-layeredness [182].

With the presented approach, the PD image, measured together with the T1
image in a single session, fills the information gap for accurate inner skull surface
segmentation. As a first step of the script, a voxel-similarity based affine regis-
tration of the PD onto the corresponding T1 image is carried out, correcting for
movement of the subject and geometrical distortions. The presented implemen-
tation showed subvoxel accuracies in the registration results. An initial mask,
whose surface is a good guess for the boundary between intracranial and bone
tissues, is then generated using a 3D implementation of an AFCM algorithm, and
a combination of basic image operations. In a last step, a mesh is extracted from
the initial mask, simplified to a coarser vertex count and refined by means of a de-
formable model, yielding a smooth and accurate, memory efficient representation
of the inner skull surface.

When comparing the result of the presented approach with the result of the
T1-MRI based estimation procedure, strong segmentation improvements were
found at the skull base in especially frontal and temporal areas. The results are in
agreement with [111]. A more moderate choice of the global closing parameter
in the estimation procedure improved its segmentation result at the skull base, but
led to larger errors at the neurocranial roof. Additionally, we found segmentation
discrepancies in those upper parietal and frontal areas, where the thickness of
the CSF layer was underestimated. If the closed brain surface is not globally
inflated, an error of the estimation procedure of up to 8.5mm was found for the
presented data set in a parietal area of the neurocranial roof. The assumption of



62 CHAPTER 2. REGISTRATION AND SEGMENTATION OF MRI

a global minimal CSF layer thickness of 2 voxels reduced the error in this area
to 5.6mm, whereas an even increased error in the skull base had to be accepted.
This shows, that an optimal tuning of the global closing and inflation parameters
of the estimation procedure to all local needs is difficult, whereas such problems
do not exist for the presented approach.

Under the assumption of a minimal skull thickness, the presented outer skull
segmentation script uses the dilated inner skull surface as a starting point for a
high elastic extended region growing algorithm. A high elasticity is needed to en-
able the growing into the thin skull compacta cleft between spongiosa and skin.
An initial guess outside the skull spongiosa resulted, an important prerequisite. A
subsequent application of the active contour model refined to the outer skull sur-
face, improving the initial guess especially in the skull base area around the sinus
sphenoidales. Nevertheless, the possibility of using separate fat/water sequences
should be discussed to avoid the chemical fat shift, which may spoil the repre-
sentation accuracy of the outer skull surface modeling, especially on a 3 Tesla
scanner.

The presented segmentation scripts provide a nearly automatic, individual
and improved modeling of the various head compartments, using the information
of non-invasive MR protocols. Only the weighting for inner and outer forces of
the deformable model for the inner skull surface had to be adapted for one of the
five tested data sets, since its PD image was locally noise-flawed. Nevertheless,
both MR protocols do not give a contrast between bone tissues and air, so that the
presented approach is unable to delineate the frontal sinuses or the sinus sphe-
noidales, which are erroneously addressed as bone. Moreover, the assumption of
a minimal skull thickness in the segmentation script for the outer skull surface is
incorrect at the foramen magnum, the foramen jugulare and the optic nerve and
sphenoidal tract, where the skull has openings.

However, in EEG/MEG the sensors are far from the above mentioned areas,
so that an exact modeling of those parts of the skull is not necessary for source
localization and the openings are generally filled [73; 111; 237].

The 3D AFCM implementation was shown to improve the segmentation of
MR images in the presence of intensity inhomogeneities when compared to unsu-
pervised clustering methods like the ISODATA algorithm. Preconditioning solver
techniques yielded the necessary accuracy in extracting the multiplier field from
the noise-flawed images. The AFCM led to an improved segmentation of the cor-
tex layer and to a closed skin surface and the intensity corrected images build an
important basis for the generation of the initial outer skull surface guess. For im-
ages, flawed with stronger intensity inhomogeneities, presented e.g. in [181], one
could imagine an ERG growing into the skin layer or even into the background, if
the nonuniformities were not taken into account. Strong inhomogeneities could
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also spoil an initial guess for the inner skull surface. This underlines the impor-
tance of the chosen AFCM classification as a basic segmentation component for
multicompartment modeling. The improved cortex segmentation through AFCM
can be exploited for an incorporation of physiological and anatomical constraints
to inverse source reconstruction, i.e., a better representation of the influence space
(see Section 6.2).

The new results of this chapter have been published in Wolters et al. [261;
255] and Burkhardt et al. [31; 32]. A further manuscript is in the review pro-
cess [33].



64 CHAPTER 2. REGISTRATION AND SEGMENTATION OF MRI



Chapter 3

Modeling tissue conductivity
anisotropy

3.1 Introduction

The particular importance of an exact modeling of the skull shape for EEG- and
of the inner skull surface for MEG-source reconstruction was pointed out in the
last chapter. From a macroscopic point of view, the head compartment skull has
to be regarded as one unit consisting of a soft bone layer (the well-conducting
spongiosa, visualized as the layer with small liquid-filled holes in Fig. 2.22) en-
closed by two hard bone layers (the low-conducting outer and inner compacta).
Its conductivity then shows an anisotropy with a ratio of about 1 to 10 (radially
to tangentially to the skull surface) [197; 49; 52; 228; 152]. This is due to the
fact, that in the radial direction the three layers are connected in series whereas
they are connected parallel in both tangential directions. First results show that
neglecting this anisotropy in the forward problem can lead to spurious errors in
the inverse current reconstruction result [227; 151; 228; 152].

Conductivity anisotropy with a ratio of about 1 to 9 (normal to parallel to
fibers) has also been measured for brain WM by Nicholson [165], but still, its
robust and non-invasive direct measurement seems to be impossible. Neverthe-
less, a formalism has been described recently for relating the effective electrical
conductivity tensor to the effective water diffusion tensor in brain WM (Tuch et
al. [223; 224]). Water diffusion can be measured non-invasively by DT-MRI.
Fig. 3.1 shows a WM fiber orientation map from a DT-MRI experiment [261].
The mutual restriction of both the ionic and the water mobility by the geometry
of the porous medium (the WM fibers) builds the basis for the described rela-
tionship. The assumption is not, of course, that a fundamental relation exists
between the free mobility of ionic and water particles. The claim is rather that

65
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Figure 3.1: Fiber orientation map from a DT-MRI experiment. Eigenvector ori-
entations corresponding to the largest eigenvalue are projected onto the imaging
plane, and overlaid on a T1 weighted MRI. Eigenvector directions were sup-
pressed in voxels with FA < 0.2 (see Definition for FA in Equation (3.16))

the restricted mobilities are related through the geometry. Basser et al. [16] in-
troduced the assumption that the conductivity tensor shares the eigenvectors with
the water diffusion tensor.

This chapter describes the modeling of realistic skull and WM conductivity
anisotropy, exploited in the next chapter for the generation of realistic anisotropic
high-resolution volume conductor models of the head.

3.2 Notion of a tensor

We will now closely follow Danielson [45] for the notion of a tensor.
Tensors defined: We begin with a tensor of order zero, which is defined as being
simply another name for a scalar [45].

A given vector a may be dotted into any vector v to produce a scalar a ·v. The
combination a· is a linear function, since it is

a · (cu + v) = ca ·u + a ·v
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for all scalars c and vectors u and v. A tensor of order one is a linear function
that maps every vector into a scalar [45]. Any combination a· is thus a tensor of
order one.

A pair of vectors ab is called a dyad. A dyad is defined through the mapping
rules

ab ·v := a(b ·v) u ·ab := (u ·a)b.

Dyads have linear properties. A tensor of order two is a linear function that maps
every vector into a vector [45]. Any combination ab· is thus a tensor of order
two.
Some properties: Every second order tensor S has a unique transpose Str, obey-
ing v ·Str = S · v for all vectors v ((ab)tr = ba). A tensor is called symmetric if
Str ·v = S ·v for all v. In a 3-dimensional space every second order tensor S maps
certain vectors into scalar multiples of themselves, i.e., S ·v = λv. λ is called an
eigenvalue and v is called an eigenvector corresponding to λ.
Tensor components: Any tensor can be expressed in terms of components along
an orthonormal basis. The components of a tensor are completely determined by
its action on the base vectors. If a tensor of order one is considered, denoted by
f, and the Cartesian components of f are defined by ai := f(ei), then it is

f(v) =
3

∑
i=1

f(viei) =
3

∑
i=1

vif(ei) = a ·v ∀v,

since it is a linear function. Therefore, any tensor f of order one can be repre-
sented by a vector a. Consider now a tensor of order two, S. Define the nine
Cartesian components of S by S[i j] := ei ·S · e j. We then find

u ·S ·v =
3

∑
i, j=1

uiS
[i j]vi =

3

∑
i, j=1

u · (S[i j]eie j) ·v ∀u,v,

so that it follows S = ∑3
i, j=1 S[i j]eie j, i.e., any second order tensor can be decom-

posed into a linear combination of the dyads (called dyadic) formed from the
base vectors. Therefore, a 3× 3 matrix can be formed from the Cartesian com-
ponents of the tensor of order two, the so-called matrix of the tensor (relative to
the given basis), and all the components can then be manipulated with standard
techniques of matrix algebra. It follows, that S is a symmetric tensor if and only
if S[i j] = S[ ji], i.e., its matrix is symmetric.
Eigenvector representation: A symmetric tensor S has three real eigenvalues,
s1,s2,s3 ∈R, which can be determined by means of the characteristic polynomial
of the tensor [45] (the determination procedure is well-known for the matrix of the
tensor). The corresponding eigenvectors, ê1, ê2, ê3, are mutually orthogonal. The
principal axis of S are the Cartesian axes in the direction of its eigenvectors. Since
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it is S · êi = siêi, and when dotting this relation from the left with the eigenvectors
and exploiting the symmetry relation S = Str, then the following equations can
be derived [45]

(s1− s2)ê1 · ê2 = 0 (s1− s3)ê1 · ê3 = 0 (s2− s3)ê2 · ê3 = 0.

With regard to skull and WM tensors, two different cases are important:

• If s1 �= s2 �= s3, then ê1 · ê2 = ê1 · ê3 = ê2 · ê3 = 0, so the eigenvectors are
orthogonal.

• If s1 = s2 �= s3, then ê1 · ê3 = ê2 · ê3 = 0, so ê1 and ê2 may be chosen mutually
orthogonal with any orientation in a plane normal to ê3.

A symmetric tensor S can be represented by the dyadic S =∑3
i=1 siêiêi [45], called

the spectral representation of S. When the principle axes of S are chosen for the
coordinates (v̂1, v̂2, v̂3) of a vector v̂ (i.e., v̂ = ∑3

i=1 v̂iêi), the spectral representa-
tion of S produces a diagonal quadratic form

v̂ ·S · v̂ =
3

∑
i=1

siv̂
2
i .

The equation v̂ ·S · v̂ = 1 defines a quadric surface, whose equation in the principle
axis of S is

s1v̂2
1 + s2v̂2

2 + s3v̂2
3 = 1.

The signs of the eigenvalues of S determine the type of surface, given by this
equation. If S is positive definite, i.e., its eigenvalues are all positive, then the
quadric surface is an ellipsoid.

The later considered self-diffusion and conductivity tensors are Symmetric
Positive Definite (SPD). For the diffusion tensor, e.g., symmetry follows from
the microscopic reversibility of the particle trajectories [15] and positivity of the
eigenvalues from the second law of thermodynamics [126].

In our case, it was sufficient to define tensors along dyads of base vectors that
are orthonormal. Note as a final remark for the notion of tensors that the more
general definition of the so-called covariant and contravariant tensors [271; 45]
does not necessarily assume an orthonormal system.

3.3 Modeling the skull conductivity anisotropy

As mentioned in the introduction, the human skull shows a conductivity anisotropy
with high resistance in the radial direction (series connection of a high, a low
and a high resistor) and with much lower resistance in both tangential directions
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Script 3.3.1. ANI : (T 1corr ∈ M R I , ISS,OSS,RS ∈ BI ,Nv ∈
N, Ilim,ωint ,ωext ,τ ∈ R)→ (SSSM ∈M ESH )

1. T 1corr
mod = MODINT(T 1corr, ISS,255) /* force SSSM to skull */

2. T 1corr
mod = MODINT(T 1corr

mod, INV ERT(OSS),255)

3. SSSM = DEFORM(T 1corr
mod,RS,Nv, Ilim,ωint ,ωext ,τ) /* smooth */

(parallel connection of the three resistors). Our first assumption is that the skull
tensor eigenvalues in both tangential directions are identical. As a consequence it
is sufficient to determine the eigenvector in radial direction and exploit the vector
product for both tangential ones.

The determination of the radial skull eigenvector is described in the first part
of this section. The second part then focuses on modeling the eigenvalues.

3.3.1 Determination of the tensor eigenvectors

Marin et al.[151; 152] pointed out the importance of well-defined skull conduc-
tivity tensor eigenvectors and reported larger errors for the EEG potential in the
case of an erroneous modeling. We therefore base our determination on the re-
sulting mesh of a discrete deformable surface model, whose pseudo-code was
presented in Section 2.5.4. The deformable model is applied here in order to
generate a Smooth Surface Spongiosa Model (SSSM), i.e., a strongly smoothed
triangular mesh, which is shrunken from the RS mask (see (2.6)) onto the outer
spongiosa surface. In order to extract the radial direction of the skull by means
of the surface normals of this mesh, the following requirements are made for the
SSSM:

• The mesh has to be located inside the skull compartment.

• The mesh has to approximate the outer surface of the skull spongiosa.

• The mesh has to be smooth, so that radial directions are not changing too
strongly for neighbored points in the skull.

Script 3.3.1 is considered to be appropriate for fulfilling the above require-
ments. In the first two steps, in order to force the SSSM to remain inside the
segmented skull compartment, the gray values of all voxels of the intensity cor-
rected T1 image inside the inner skull mask, ISS, and outside the outer skull
surface are set to the highest MRI gray value (see Operation 2.2.20), resulting
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Figure 3.2: 3D rendering of the resulting SSSM for the determination of radial
skull anisotropy directions.

in the modified intensity corrected T1 image, T 1corr
mod. An active contour model

is applied in the last step, which extracts a mesh from the RS mask, simplifies it
to Nv vertices and smoothes this surface and refines it onto the outer spongiosa
exploiting the modified intensity corrected T1 image. For each point in the skull
layer, the radial skull direction is then modeled by means of the normal vector nk

of the SSSM vertex with minimal distance, vk. The two tangential directions are
chosen mutually orthogonal in the plane normal to nk using the vector product.

Result

Script 3.3.1 was applied with Nv = 30,000, a good choice for only moderately
curved surfaces. For the presented data set, it was chosen a strong weighting of
the smoothing force, ωint = 0.07, a moderate weighting for the external force,
ωext = 0.002, and with τ= 10−2, convergence was achieved within less than 100
iterations. Figure 3.2 shows a 3D rendering of the SSSM. The border of the mask,
resulting from the application of Operation 2.2.25 to the SSSM is shown on the
underlying T1 image in Fig. 3.3.

3.3.2 Determination of the tensor eigenvalues

Later in this thesis, SPD conductivity tensors in the barycenters of each skull
finite element, in diagonalized form σ = S diag(σtang,σtang,σrad) ST , are used
when defining the FE volume conductor models. S denotes the orthogonal eigen-



3.3. MODELING THE SKULL CONDUCTIVITY ANISOTROPY 71

Axial Coronal Saggital

Figure 3.3: Visualization of the SSSM for the determination of radial skull
anisotropy directions onto the underlying T1-MRI.

vector matrix, build of the two tangential and the radial skull tensor eigenvectors
as described above, and σtang ∈ R

+ and σrad ∈ R
+ are the corresponding tangen-

tial and radial eigenvalues.

Simulated eigenvalues using the volume and Wang’s constraint

Realistic modeling of the eigenvalues is a difficult task, not only because the
thicknesses of spongiosa and inner compacta layers are varying and their inner
boundary is difficult to segment, but especially because of skull resistivity inho-
mogeneities [135; 185; 174]. Therefore, while exploiting measured anisotropy
ratios from the literature [197], the eigenvalues will be simulated within this the-
sis. For a given anisotropy ratio, σrad : σtang, radial and tangential eigenvalues are
calculated, obeying two different constraints: A first constraint,

σrad ·σtang != σ2
skull, (3.1)

with σskull ∈ R
+ the skull’s isotropic bulk conductivity value (see Table 4.2) is

denoted by Wang’s constraint [245; 227]. The second, the volume constraint,
retains the geometric mean of the eigenvalues and thus the volume of the conduc-
tivity tensor, i.e.,

4
3
πσrad(σtang)2 !=

4
3
πσ3

skull. (3.2)

The eigenvalues in a simplified 3-layer skull model

The following subsection should be considered as an additional remark concern-
ing the determination of the skull’s conductivity eigenvalues in the case of a sim-
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Figure 3.4: Two-dimensional variant of a simple 3x3x3 model of the three-layer
skull with “o”, “s” and “i” denoting “hexahedral elements” of outer compacta,
spongiosa and inner compacta layers, resp. (Wagner et al. [240]).

plified skull model (see Wagner et al. [240]). Figure 3.4 shows a two-dimensional
variant of a simple 3x3x3 model of a three-layer skull. Let us now assume that
the assumptions inherent in this model, i.e., modeling the skull by means of an
extracted piece and thus the assumption of constant thickness of each layer over
the whole skull, are not too restrictive. In this case, radial and tangential conduc-
tivity eigenvalues σrad and σtang can be computed from measured conductivities
σi and thicknesses lrad

i (see Akhtari et al. [3]) of each individual layer, as will be
described in the following. The three equations

Rrad = R1 + R2 + R3
1

Rtang =
1

R1

1
R2

1
R3

Ri =
li
σiAi

.

describe the basic relations for resistors in series and resistors in parallel and
the relationship between conductivity σi and resistance Ri of the ith layer with
thickness li and surface Ai [127, p.17,p.69]. When making use of the relation
Arad = Arad

i (see Fig. 3.4), the equation

lrad

σrad =
3

∑
i=1

li
σi

with lrad =
3

∑
i=1

li (3.3)

can be derived for the radial conductivity eigenvalue σrad, whereas the use of
ltang = ltang

i (see Fig. 3.4) yields the equation for the tangential conductivity eigen-
value σtang,

Atangσtang =
3

∑
i=1

Atang
i σi with Atang =

3

∑
i=1

Atang
i . (3.4)

3.4 Modeling white matter conductivity anisotropy

The relationship between the effective electrical conductivity tensor and the ef-
fective water diffusion tensor will now be worked out. Water diffusion in the
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brain is non-invasively measured by DT-MRI, as described in Appendix A.9.
The Section begins with the definition and the properties of the self-diffusion
tensor. Based on a self-consistent differential effective medium approach in the
porous brain medium, presented in Section 3.4.2, a linear relationship between
the eigenvalues of both tensors for small intracellular diffusion and high resistiv-
ity of the cell membrane will be derived in Section 3.4.3. The last section is then
concerned with the generation of a realistic anisotropic WM compartment, using
whole-head DT-MRI measurements.

3.4.1 Definition of the self-diffusion tensor

All molecules and ions in the body fluids, including both water molecules and
dissolved substances, are in constant random molecular motion due to thermal en-
ergy, the so-called Brownian motion. Diffusion, a result of this motion, is the pro-
cess by which matter is transported from one part of the system to another [41].
In a fluid system with two types of non-uniformly distributed molecules, the
molecule concentrations change with time until the equilibrium, i.e, both con-
centrations have the same value throughout the system, is reached. This pro-
cess is also called transport diffusion. If the fluid consists of only one type of
molecules, a part of them considered as being labeled, the process of transla-
tional motion is generally called self-diffusion. We will deal with self-diffusion
throughout the rest of this thesis. In a paper of Einstein [56], the path of a dif-
fusing molecule was modeled as a “random walk” and a proportionality relation,
referred to as Einstein’s equation, was derived between the mean square displace-
ment of a particle, < s2(t) >, and the diffusion coefficient D and diffusion time t
for free diffusion,

< s2(t) >= 6Dt. (3.5)

In bounded systems, e.g., in biological systems, where cell membranes limit the
free motion of the particles, the mean-squared displacement is usually reduced
from that predicted by the Einstein relation and thus equation (3.5) does not
strictly apply [108]. The effect experienced by diffusing water molecules will
depend upon the diffusion time, i.e., as the molecules diffuse for a longer pe-
riod of time, more restricting barriers will generally be encountered. An effective
diffusion coefficient is commonly defined dependent on the observation time t
as [126]

Deff(t) =
< s2(t) >

6t
.

For small t, it is Deff = D and for long observation times, the mean displacement
is bounded by the cell size so that Deff goes to 0. In brain WM, diffusion is
heterogeneous (i.e., depends upon position) at a microscopic length scale but is
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homogeneous and anisotropic at a macroscopic length scale [16]. Therefore, an
SPD (see Section 3.2) effective diffusion tensor, Deff, has to be used [15].

3.4.2 The differential effective medium approach

In the following, the differential Effective Medium Approach (EMA) will be pre-
sented which relates both the conductivity tensor eigenvalues and the diffusion
tensor eigenvalues to the geometry of the medium. Following Stratton [217], the
dielectric constant ε∗CE(η) of a coated ellipsoid (in the presented application a
cylindrical WM fiber surrounded by extracellular medium) with volume fraction
η can be computed as

ε∗CE(η) = ε∗e

[
ε∗e +(ε∗i − ε∗e)(η+(1−η)Lv)

ε∗e + Lv(1−η)(ε∗i − ε∗e)
]
, ∀ν= 1,2,3, (3.6)

with ε∗e and ε∗i the dielectric constants of the extra- and the intracellular medium,
resp., and Lv the electromagnetic depolarization factor, which captures the con-
tribution of the cell geometry to the bulk conductivity. The depolarization factors
for a conducting ellipsoid have been derived by Landau and Lifshitz [131, p.19–
25]. For a medium, made up of coated ellipsoids (in the presented application
the WM compartment), Sen et al. [207] computed the dielectric constant ε∗ from
the dielectric constant of the assumed homogeneous medium, ε∗0, plus the fluctu-

ations through the jth coated ellipsoid, ε∗( j)
CE (η j)− ε∗0, using a multiple scattering

formalism from solid state physics for disordered systems,

ε∗ = ε∗0

(
1+ 2∑

j

f j
ε∗( j)

CE (η j)− ε∗0
ε∗( j)

CE (η j)+ 2ε∗0

)(
1−∑

j

f j
ε∗( j)

CE (η j)− ε∗0
ε∗( j)

CE (η j)+ 2ε∗0

)−1

. (3.7)

f j is the volume fraction of the jth coated ellipsoid to the whole medium. In
a next step, the self-consistent approximation ε∗ = ε∗0 was made, so that (3.7)
transformed to

∑
j

f j
ε∗( j)

CE (η j)− ε∗
ε∗( j)

CE (η j)+ 2ε∗
= 0. (3.8)

In general, f j and η j are unrelated. The simplest case arises under the assumption
that the volume fraction is the same for all coated ellipsoids, η j = 1− φ with φ
the porosity of the medium. In this case, Equation (3.8) simply collapses to the
simple case ε∗ = ε∗CE , so that the following result was achieved [207]

ε∗ − ε∗e
Lvε∗+(1−Lv)ε∗e

= (1−φ) ε∗i − ε∗e
Lvε∗i +(1−Lv)ε∗e

(3.9)
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The above equation only holds for a dilute suspension of cells. In order to take
into account an increasing concentration, Sen et al. [207] used a differential effec-
tive medium approximation of this equation. Their approach starts from a dilute
suspension and in each step a small amount of cells is added and the dielectric
constant is determined self-consistently, using (3.9). If ε∗k is the dielectric con-
stant of the mixture at step k and an additional amount ∆Ik of cells is added to the
suspension, the self-consistent dielectric constant ε∗k+1 is then determined by

ε∗k+1− ε∗k
Lvε∗k+1 +(1−Lv)ε∗k

=
(

∆Ik

E + I

)(
ε∗i − ε∗k

Lvε∗i +(1−Lv)ε∗k

)
(3.10)

with E and I the total amount of the extracellular and the cell volume, resp.. If
we define Ψ := I/(E + I) with the derivative dΨ/dI = (1−Ψ)/(E + I) and we
consider the limit k→ ∞, Equation (3.10) transforms to

dε∗

ε∗
Lvε∗i +(1−Lv)ε∗

ε∗i − ε∗
=

dΨ
1−Ψ .

When integrating this equation from 0 up to 1−φ and when respecting the bound-
ary conditions ε∗(0) = ε∗e and ε∗(1−φ) = ε∗, we get

ln(φ−1) =
1−φZ

0

dΨ
1−Ψ = Lvε∗i

1−φZ

0

1
(ε∗i − ε∗)ε∗

dε∗+(1−Lv)
1−φZ

0

1
ε∗i − ε∗

dε∗

= ln

{(
ε∗

ε∗e

)Lv
(
ε∗i − ε∗e
ε∗i − ε∗

)}
,

so that, for the considered low-frequency range, where only the real part of ε∗, the
conductivity σ, is considered, the tensor eigenvalues, σv (∀v = 1,2,3), are related
to the geometry of the medium by means of the final differential EMA(

σi−σv

σi−σe

)(
σe

σv

)Lv

= φ ∀v = 1,2,3, (3.11)

where σe and σi denote the conductivities of the extra- and the intracellular
medium, resp..

Latour et al. [133] derived a similar differential EMA formula, which re-
lates the effective water diffusion tensor eigenvalues, dv, to the geometry of the
medium, (

di−dv

di−de

)(
de

dv

)Lv

= φ ∀v = 1,2,3, (3.12)

with de and di the diffusion of the extra- and the intracellular medium, resp..
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3.4.3 Relating conductivity and diffusion tensor eigenvalues

Tuch et al. [223] coupled both EMA-formulae (3.11) and (3.12) through the
unknown porosity variable. Together with the assumption that the intracellular
phase is electrically shielded by the high resistivity of the cell membrane so that
σi = 0 and the assumption that the cell membrane water permeability is negligi-
ble, they derived the following formula for the conductivity tensor eigenvalues:

σv = σe

[
dv−di

de−di

(
de

dv

)Lv
]1/(1−Lv)

∀v = 1,2,3 (3.13)

In order to determine the depolarization factors Lv, the normalization condition
3
∑

v=1
Lv = 1 [131, p.24] was exploited. If we define

fv(Lv) := ln

(
dv−di

de−di

)
+ Lv ln

(
de

dv

)
,

a formula of the depolarization factor, e.g., L2(d1,d2,d3,di,de), can be derived on
the following way: First, a formula of L3(L2) is derived exploiting the relation
f3(L3) = ln(φ) = f2(L2). In a second step, L3(L2) is substituted into the relation
f1(1− L2− L3) = f1(L1) = ln(φ) = f2(L2). The second relation thus exploits
the normalization condition. Refer to [223] for the resulting formulas for the
depolarization factors Lv.

In order to validate the approach, Tuch et al. [223] carried out DT-MRI mea-
surements and compared the results of the effective medium approximation (3.13)
to electrical conductivity measurements collated from the literature. Good agree-
ments were found.

Under the further assumption of small intracellular diffusion, Tuch et al. [224]
later worked out the simple linear relationship

σv =
σe

de
(dv−di) ∀v = 1,2,3. (3.14)

3.4.4 Generation of realistic white matter conductor models

Whole head DT-MRI measurements

Whole-head-DT-MRI was performed using a 4-slice displaced Ultra-Fast Low
Angle RARE (U-FLARE) protocol with centric phase-encoding [168]. Refer to
Appendix A.9 for the basics of the DT-MRI technique. Diffusion weighting was
implemented as a Stejskal-Tanner type spin-echo preparation [126]. Although
Echo Planar Imaging (EPI) is being widely applied for DT-MRI purposes, U-
FLARE was preferred to EPI in order to avoid spatial misregistration between
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Axial Coronal Saggital

Figure 3.5: trace(D) of the 8 registered DT-MRI sessions. Water diffusion coeffi-
cients in CSF (white) are much larger than in the brain, allowing a quality check
of the registration.

the DT-MRI data and the 3D data sets due to magnetic field inhomogeneities.
The effective echo time was TE = 120ms, and TR = 11s. The diffusion weight-
ing gradient pulses had a duration of δ=22ms, and their onset was separated by
∆=40ms (see Fig. A.3). Four different b (see Chapter A.9) with evenly spaced
trace b between 50 and 800 s/mm2 were applied through variation of the gradi-
ent strength [126]. The slices were axially oriented and 5mm thick. In-plane
resolution was 2× 2 mm2. In order to increase the signal-to-noise ratio, 5 to 16
images (depending on b) with identical diffusion weighting were averaged. Due
to the long measurement time (50 min for 4 slices) data acquisition was split into
8 sessions. Diffusion tensor calculation [14] was based on a multivariate regres-
sion algorithm in IDL (Interactive Data Language, Research Scientific, Bolder,
Colorado/USA). Figure 3.1 shows a detail of an axial slice of the measured DT-
MRI data with 2×2 mm2 resolution on an underlying coregistered T1-MRI. The
coregistered T1 images of the same slices allowed the registration of the DT-
MRI data on the 3D T1 data set. The registered DT data were then resampled to
1× 1× 1 mm3. In order to handle the orientation information in the registered
DT images appropriately, the matrix of each diffusion tensor, Deff ∈ R

3×3, was
rotated with the rotation matrix R ∈ R

3×3 of the respective registration process
via the similarity transform D = RDeffRT ∈ R

3×3 [4].
Figure 3.5 shows trace(D), i.e., the sum of the diagonal tensor elements, of

the 8 registered DT-MRI sessions. Since water diffusion coefficients in CSF are
much larger than in the brain, a large contrast is achieved at the brain surface,
which allows a quality check of the registration. As the figure shows, the regis-
tered DT-MRI slices are not exactly parallel. Later in this thesis, with regard to
the generation of FE volume conductor models, the gaps were filled with isotropic
WM conductivity tensors.



78 CHAPTER 3. MODELING TISSUE CONDUCTIVITY ANISOTROPY

Axial Coronal Saggital

Figure 3.6: Fractional anisotropy index, FA (see Equation (3.16)), of the DT-
MRI, masked with the WM mask.

When extracting the anisotropic part of the matrix of the diffusion tensor,
A ∈R

3×3, by means of

A := D− trace D
3

Id, (3.15)

the fractional anisotropy index FA is defined as [17]

FA :=

√
3
2

√
A : A√
D : D

with B : C≡
3

∑
i, j=1

B[i j]C[i j]. (3.16)

Figure 3.6 shows a map of the fractional anisotropy index of the registered DT
data, masked with the WM mask. With FA = 0.74, the highest value for fractional
anisotropy was found in the splenium of the corpus callosum. Note also the strong
anisotropy of the pyramidal tract in the figure.

Modeling the WM conductivity eigenvectors

It is assumed that the conductivity and the measured diffusion tensor share the
eigenvectors, following the proposition of Basser et al. [16]. Let us thus consider
the WM conductivity tensors in diagonalized form,

σ= S diag(σlong,σtrans,σtrans) ST ,

with S the orthogonal matrix of eigenvectors of the measured diffusion tensors
and σlong ∈ R

+ and σtrans ∈ R
+ the eigenvalues parallel (longitudinal) and per-

pendicular (transverse) to the fiber directions, resp..

Simulated eigenvalues using the volume and Wang’s constraint

Again, Wang’s (see Equation (3.1)) and the volume constraint (see Equation
(3.2)) will be used for the simulation of the WM conductivity tensor eigenvalues,
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Figure 3.7: Detail of the projection of the conductivity tensor ellipsoids σ onto a
coronal cut of the T1-MRI through the Commissura anterior. The gap, where no
measurement data was available, is not yet filled with isotropic conductivity ten-
sors. Top right: Fibers going up to the Gyrus frontalis superior; top left: Fibers
going up to the Gyrus frontalis medius; bottom right: Fibers going through the
Truncus corporis callosi; bottom left: Fibers going up to the Gyrus precentralis
and down to Gyrus frontalis inferior, pars opercularis.

σlong and σtrans, while exploiting measured values for the anisotropy ratio [165].
Figure 3.7 shows a detail of the projection of the conductivity tensor ellipsoids
for 1:10 anisotropy (transverse:longitudinal) onto a coronal slice of the T1-MRI.
The gap, where no measurement data was available, is not yet filled with isotropic
conductivity tensors. Tensor validation and visualization was carried out with the
software tool VM (Visualization Module), developed within the project SimBio
(see Appendix D).

Effective medium approach for WM conductivity tensor eigenvalues

The second approach for the determination of the WM conductivity tensor eigen-
values uses the differential EMA, i.e., Equation (3.14). Following Haueisen et
al. [106], the intracellular diffusion di was assumed to be negligible. The factor
σe/de in (3.14) was chosen so that the average volume of the computed con-
ductivity tensors was equal to the volume generated by an isotropic tensor with
the isotropic WM bulk conductivity as eigenvalues (see Table 4.2). Note that
the EMA is still insufficiently validated for the considered application, only the
study of Tuch et al. [224] is known. Furthermore, in our DT measurements the
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maximal ratio of largest to smallest DT eigenvalue was much lower than the ratio
of about 1:9, reported for direct measurements of conductivity anisotropy in the
WM compartment [165]. Therefore, most of the computations in this thesis are
based on simulated eigenvalues as described above.

3.5 Summary and Conclusions

Within this chapter, possibilities for a realistic modeling of skull and WM aniso-
tropy were presented. First, the notion of a tensor of order two was given.

For the determination of conductivity tensor eigenvectors in radial skull di-
rection, the surface normals of a strongly smoothed triangular mesh, shrunken
onto the outer spongiosa surface, were exploited. Since both tangential eigenval-
ues are assumed to be identical, the vector product was used for the generation of
both tensor eigenvectors in tangential skull direction. Following the assumption
of Basser et al. [16], the water diffusion tensor eigenvectors in brain WM, mea-
sured by means of whole-head DT-MRI, were taken over as the eigenvectors for
the corresponding conductivity tensor.

Two constraints for the simulation of skull and WM tensor eigenvalues, the
volume and Wang’s constraint, were introduced. For a given anisotropy ratio, the
volume constraint retains the volume between the anisotropic and the correspond-
ing isotropic tensor. This eigenvalue simulation will be mainly used throughout
the thesis. As a second possibility, formulas for radial and tangential eigenvalues
in a simplified 3-layer skull model were presented. A self-consistent differential
effective medium approach in the porous WM medium was described as a further
model to determine the brain WM conductivity eigenvalues. Therefore, a linear
relationship was derived to the corresponding water diffusion tensor eigenvalues
as measured by DT-MRI.



Chapter 4

The forward problem

The book of nature is written in the language of mathematics.

Galileo Galilei

4.1 Introduction

In this chapter the differential equations together with the boundary conditions
are derived which describe the forward problem, i.e., the relationship between the
primary currents in the brain, which are directly driven by the neuronal processes,
and the measured potentials and magnetic fields at the head surface. Therefore,
the volume conductor head has to be modeled.

The nowadays standard for head modeling are BE models, which can take
into account the realistic geometry of the surfaces skin, outer and inner skull and
which are adequate for piecewise homogeneous isotropic compartments. Some
further historical remarks to BE models are made in the following. For the
BE method, a Fredholm-type integral equation of the second kind is exploited
which can be derived from the Poisson equation by means of the integral equa-
tion method using double layer potential, as described in Wolters [254]. The
numerical accuracy of the BEM forward computation can be increased using
the isolated-problem approach, presented by Hämäläinen and Sarvas [97] and
by Meijs et al. [156], the analytical expressions for the solution of the surface in-
tegral of the BEM kernel function (de Munck [50], implemented and tested, e.g.,
in [254]), the virtual triangle refinement (Fuchs et al. [70]) and using local mesh
refinement around superficial sources (Yvert et al. [267]).

This thesis focuses on the FE method, since it is able to treat both realistic
geometry and tissue anisotropy. In the first sections of this chapter, the physical

81
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modeling based on Maxwell’s equations, the mathematical formulation for the
primary current sources and the description of the EEG and the MEG forward
problem are presented. A summary of series expansion formulas for the potential
distribution of a dipolar current source in a multilayer sphere volume conductor
is then given. These formulas are later used for numerical validation purposes.
In Section 4.7, an FE formulation for the Poisson equation is presented and FE
meshing and discretization aspects are discussed. Diverse FE models, which are
used later in the thesis, as well as numerical error criteria are then defined. The
last section is concerned with numerical studies for FE forward problem accuracy.

4.2 The Maxwell equations

The electric and magnetic fields are described by the Maxwell equations

divD = ρ (Coulomb)

curl E = −δtB (Faraday)

curl H = j+δtD

divB = 0

with D the electric displacement, ρ the electric free charge density, H and B the
magnetic field and induction, resp., E the electric field and j the electric current
density (see, e.g., Nolting [167]). Since biological tissue mainly behaves as an
electrolyte (Plonsey and Heppner [183]), the material equations

D = εE

B = µH

are used with ε and µ the electric and magnetic permeability, resp.. In the con-
sidered low frequency band (frequencies below 1000 Hz), the capacitive com-
ponent of tissue impedance, the inductive effect and the electromagnetic prop-
agation effect and thus the temporal derivatives can be neglected in the above
formulas [183; 254]. It can be assumed, that the magnetic permeability µ is con-
stant over the whole volume and equal to the permeability of vacuum [183; 254].
Therefore, Maxwell’s equations reduce to

divD = ρ

curl E = 0

curl B = µj (4.1)

divB = 0 (4.2)
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Figure 4.1: Distribution of negative and positive current monopoles of an excited
pyramidal cell (from Andrä and Nowak [6]).

and the electric field can be expressed as a negative gradient of a scalar potential,

E =−grad u. (4.3)

The current density is generally divided into two parts [183], the so-called pri-
mary or impressed current, jp, and the secondary or return currents, σE,

j = jp +σE, (4.4)

where σ denotes the 3×3 conductivity tensor.

4.3 The primary currents

The sources to be localized during the inverse problem and to be modeled in
the forward problem, the primary currents, are movements of ions within the
dendrites of the large pyramidal cells of activated regions in the cortex sheet
of the human brain. Stimulus-induced activation of a large number of excitatory
synapses of a whole pattern of neurons leads to negative current monopoles under
the brain surface and to positive monopoles quite closely underneath [6; 170].
This is shown in Fig. 4.1, taken from Andrä and Nowak [6].

One source model is Feynman’s dipole [170; 184], consisting of a monopolar
source at xso ∈R

3 and a closely neighbored sink at xsi ∈ R
3, i.e.,

Jp
Fey(x) := Mmon (δ(x−xso)−δ(x−xsi)) (4.5)

with Mmon ∈R the scalar monopolar strength. A distance of about 2 mm between
source and sink can be seen as realistic (see, e.g., Nunez [170]). Nolting [167]
claimed for the “δ function”

Z
Ω
δ(x−x′)dx =

{
1, if x′ ∈Ω
0, otherwise

δ(x−x′) = 0 ∀ x �= x′.
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Note, that δ is not a function in the mathematical sense, but a distribution, i.e., a
continuous linear functional (see, e.g., Jantscher [114]).

It is surely more realistic to assume δn ∈C∞
0 (Ω) instead of a distribution with

Tr(δn(x)) = {|x| ≤ 1
n} and

R
ΩδndΩ= 1 (see discussion in [254, §5.4]).

The neurogenesis of evoked fields was studied with isolated turtle brains by
Okada [172]. Okada’s measurements showed that at already small distances equal
to the size of the activated region only the dipolar moment of the source term is
visible. The so-called mathematical dipole jp

Math := Mδ(x−x0) at the position
x0 ∈ R

3 with the moment M ∈ R
3 can be formulated as

Jp
Math(x) = div jp

Math (x) := divMδ(x−x0) . (4.6)

The mathematical dipole has been shown to be an adequate model for the syn-
chronous polarization of a cortical surface of about 30mm2 [53].

4.4 The electric forward problem

Taking the divergence of Equation (4.1) (divergence of a curl of a vector is zero)
and using Equations (4.3) and (4.4) gives the Poisson equation

−div
(
σgrad u

)
=−div jp =−Jp in Ω, (4.7)

which describes the potential distribution in the head domain Ω due to a primary
current jp in the brain. The boundary condition(

σ
1

grad u1,n
)∣∣∣

at surface
=
(
σ

2
grad u2,n

)∣∣∣
at surface

with n the unit surface normal expresses the continuity of the current density
across any surface between regions of different conductivity. We find homoge-
neous Neumann conditions on the head surface Γ= ∂Ω,(

σgrad u,n
)∣∣∣

Γ
= 0, (4.8)

and, additionally, a reference electrode with given potential, i.e.,

uref = 0 . (4.9)

A compatibility condition has to be respected, i.e., following Gauss’ theorem, the
condition Z

Ω

JpdΩ= 0 (4.10)

has to be fulfilled (see, e.g., Hackbusch [92, Example 7.4.8] or Braess [25, p.45]).
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4.4.1 The subtraction approach

Strong singularities of the source model can be treated with the so-called sub-
traction method [10; 227; 151; 201; 236; 184]. The subtraction method splits the
total potential u into two parts, the singularity potential, u∞, and the correction
potential, ucorr,

u = u∞+ ucorr. (4.11)

The singularity potential is the solution for a dipole in an unbounded homoge-
neous conductor with constant conductivity σ

0
= σ0 Id (the isotropic tensor at

the dipole location x0, σ0 ∈ R
+ the scalar conductivity value). Therefore, the

solution of Poisson’s equation

∆u∞ = Jp/σ0 (4.12)

can be given by (Sarvas [199])

u∞(x) =
1

4πσ0

Z

Ω

Jp(x′)
|x−x′|dx′.

For Feynman’s dipole model (4.5), we thus get

u∞Fey(x) =
Mmon

4πσ0

(
1

|x−xso| −
1

|x−xsi|
)

. (4.13)

For the mathematical dipole (4.6), the use of the vector identity

div′(jp
Math(x

′)|x−x′|−1) = |x−x′|−1 div′ jp
Math(x

′)+ jp
Math(x

′) ·grad |x−x′|−1

and, since it is
R
Γ jp

Math(x
′)|x− x′|−1dx′ = 0, the application of Gauss’ theorem

leads to [199]

u∞Math(x) =
1

4πσ0

(M,(x−x0))

|x−x0|3
. (4.14)

Subtracting (4.12) from (4.7) yields the following equation for the correction
potential

−div
(
σgrad ucorr

)
= div

((
σ−σ

0

)
gradu∞

)
in Ω (4.15)

and the inhomogeneous Neumann boundary conditions at the surface

σ
∂ucorr

∂n

∣∣∣∣
Γ

=− σ
∂u∞

∂n

∣∣∣∣
Γ
. (4.16)

When solving this towards ucorr, the unknown scalar potential u can then be cal-
culated using (4.11).



86 CHAPTER 4. THE FORWARD PROBLEM

4.4.2 The direct approach

A smoother current term than the one used for the mathematical dipole (4.6)
is surely more realistic. The so-called blurred dipole, proposed by Buchner et
al. [30], has those smoothness properties. The dipole moment is approximated
by a whole collection of closely neighbored sources and sinks. Since the blurred
dipole is mesh-dependent, it will be discussed in Section 4.7.4.

The direct method then consists of solving Equation (4.7) with Neumann
boundary conditions (4.8) and a fixed reference potential (4.9) in combination
with the blurred dipole.

4.5 The magnetic forward problem

Since the divergence of B is zero (see Maxwell equation (4.2)) and the head
domain is convex, a magnetic potential A with B = curlA can be introduced and,
using Coulomb’s gauge divA = 0, Maxwell’s equation (4.1) transforms to

µ
(

jp−σgrad u
)

= curl (curl A) = grad(divA)−∆A =−∆A.

The source term is vanishing outside the volume conductor, so that the solution
of this Poisson equation is given by [167]

A(x) =
µ

4π

Z

Ω

jp(y)−σ(y)grad u(y)
|x−y| dy.

The magnetic flux Ψ through an MEG magnetometer flux transformer ϒ (see
Figure 4.5) is determined as a surface integral over the magnetic induction for the
coil area F enclosed by ϒ, or, using Stokes theorem [167; 271], as

Ψ=
Z

F

BdF =
I

ϒ

A(x)dx.

If we consider the mathematical dipole (4.6) and define

C(y) =
I

ϒ

1
|x−y|dx, (4.17)

the final equations for primary magnetic flux, Ψp, and secondary magnetic flux,
Ψs, emerging from primary and secondary (return) currents, resp., are given by

Ψp
(4.6)
=

µ
4π

(M,C(x0)) (4.18)

Ψs = − µ
4π

Z

Ω

(σ(y)grad u(y),C(y))dy (4.19)

Ψ = Ψp +Ψs.
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Figure 4.2: The multilayer sphere model.

4.6 The potential in a multilayer sphere model

De Munck [49] and de Munck and Peters [52] derived series expansion formulas
for the direct problem (4.7) with boundary condition (4.8) and reference potential
(4.9) for a mathematical dipole in a multilayer sphere model. The series expan-
sions are used later in this thesis for numerical validation purposes. Therefore,
a rough overview of the formulas will now be given. Refer to Appendix B for a
more detailed derivation or to the original literature.

The model consists of shells N up to 1 with radii rN < rN−1 < .. . < r1

and constant radial, σrad(r) = σrad
j ∈ R

+, and tangential conductivity, σtang(r) =
σtang

j ∈ R
+, within each layer r j+1 < r < r j. It is assumed in the following, that

the source at position x0 with radial coordinate r0 ∈ R is in a more interior layer
than the measurement electrode at position xe ∈ R

3 on the outer surface with ra-
dial coordinate re = r1 ∈ R and r0 < rJ0 ≤ re. The multilayer sphere model is
shown in Figure 4.2.
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4.6.1 Series expansion formulas for a monopole source

The potential for a monopole source, Jp(x) = δ(x−x0), can be expressed by the
spherical harmonics expansion

4πumon =
∞

∑
n=0

(2n+ 1)Rn(r0,re)Pn(cosω0e) (4.20)

with ω0e the angular distance between source and electrode as shown in Fig-
ure 4.2, Pn the Legendre polynomials [271] and Rn the solution of the inhomoge-
neous differential equation

∂
∂r

(
r2σrad(r)

∂
∂r

Rn(r0,r)
)
−n(n+ 1)σtang(r)Rn(r0,r) = δ(r0− r). (4.21)

As will be shown in Appendix B.1, the solution of the above equation, i.e., the
coefficients Rn, can be computed analytically and the series (4.20) converges.

4.6.2 Series expansion formulas for a dipole source

The spherical harmonics expansion for the mathematical dipole (4.6) was ex-
pressed in terms of the gradient of the monopole potential (4.20) with respect to
the source point x0 [49; 52],

u(x0,xe) = (M,grad0 umon(x0,xe)).

With the help of

grad0 r0 =
x0

r0
= x̂0 grad0 cosω0e = grad0

(x0,xe)
r0re

=
1
r0

(x̂e− cosω0ex̂0),

a simple substitution yields the dipole potential

4πu(x0,xe) = (M,S0x̂e +(S1− cosω0eS0)x̂0)

with

S0 =
1
r0

∞

∑
n=1

(2n+ 1)Rn(r0,re)P′n(cosω0e) (4.22)

and

S1 =
∞

∑
n=1

(2n+ 1)R′n(r0,re)Pn(cosω0e). (4.23)

The derivative of the Legendre polynomial can be computed by means of the
recursion

P′n(cosω)≡ d
d cosω

Pn(cosω) = nPn−1(cosω)+ cosωP′n−1(cosω).
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The computation of R′n(r0,re) can again be performed analytically, as shown in
Appendix B.2.

A low convergence speed of the series (4.22) and (4.23) is found if the source
approaches the electrode (see Appendix B.2). Therefore, an asymptotic approxi-
mation was proposed [52], yielding the series of differences

S0 =
F0

r0

Λ
R3 +

1
r0

∞

∑
n=1

{(2n+ 1)Rn(r0,re)−F0Λ
n}P′n(cosω0e) (4.24)

and

S1 = F1
Λcosω0e−Λ2

R3 +
∞

∑
n=1

{
(2n+ 1)R′n(r0,re)−F1nΛn}Pn(cosω0e) (4.25)

with a higher speed of convergence. Refer to Appendix B.2 or to the original
literature for the definition of F0, F1, Λ and R (all those terms are independent of
n and can be computed from the given radii and conductivities of layers between
source and electrode and of the radial coordinate of the source) and for a deriva-
tion of the above series of differences. The computation of the series (4.24) and
(4.25) are stopped after the k’s term, if the following criterion is fulfilled

tk
t0
≤ υ, tk := (2k + 1)R′k−F1kΛk. (4.26)

4.7 FE formulation and discretization aspects

Numerical methods are needed for field simulations in realistically shaped vol-
ume conductors. As described in the introduction to this chapter, the nowadays
standard for realistic head modeling are three compartment BE models. Within
this thesis, the FE method is used because of its ability to treat geometries of arbi-
trary shape and inhomogeneous and anisotropic material parameters. FE models
for the electromagnetic field simulation in the head have been developed by vari-
ous research groups (see e.g. [21; 103; 227; 30; 10; 152]).

In the following, the basic Poisson equation is first transformed into a vari-
ational formulation, which is then discretized using a Ritz-Galerkin approach.
FE meshing aspects are then discussed and EEG and MEG forward modeling is
described.

4.7.1 Variational formulation

We will consider the direct approach described in Section 4.4.2, i.e., PDE (4.7)
with Neumann boundary conditions (4.8) and the assumption of a smooth source
load. Here, we assume Jp ∈ L2(Ω). In order to derive an FE formulation for the
direct approach, the problem has to be transformed into a variational formulation.
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Definition 4.7.1. The bilinear form a(·, ·) and the functional l(·) for problem
(4.7) with Neumann boundary conditions (4.8) are defined as follows:

a(u,v) :=
Z
Ω

grad u σ grad v dΩ

l(v) =< l,v > := −
Z
Ω

JpvdΩ

We assume here, that u ∈ H1(Ω) (for the definition of Sobolev-spaces see, e.g.,
Adams [1]) and we further define

H1
U := {v ∈H1(Ω),

Z
Ω

vdΩ= 0}

For the following theorems, certain properties of a(·, ·) and l(·) are necessary,
whose validity were proved by Wolters [254]. Continuity in H1(Ω)×H1(Ω) and
ellipticity in H1

U was shown for a(·, ·) with the aid of Cauchy-Schwarz’ inequality
and a variant of Friedrich’s inequality, resp.. l(·) was shown to be bounded in
H1(Ω), so that l ∈ (H1

U)′. Let us define V := H1
U(Ω) and H := H1(Ω) for the

following theorem:

Theorem 4.7.2 (Existence and Uniqueness). Let Ω be a bounded domain and
Γ a sufficiently smooth boundary. Let V be a closed convex set in a Hilbert space
H and a : V×V→ R an elliptic bilinear form. The variational problem

Var(v) :=
1
2

a(v,v)− < l,v >→ min! (4.27)

then has one and only one solution in V for each l ∈V
′. In particular, the solution

u is characterized through

a(u,v) =< l,v > ∀v ∈ V. (4.28)

Because of the compatibility condition (4.10), (4.28) is also valid for v = const
and therefore ∀v ∈ H.

Proof: Theorem of Lax-Milgram, Characterization theorem, see, e.g.,[25; 254].

Theorem 4.7.3. If the conductivities are discontinuous, the solution u of Equa-
tion (4.27) is generally not a classical solution, i.e., u /∈ C2(Ω)∩C1(Ω̄), but it
has discontinuous derivatives on each boundary with jumping conductivity. Only
the tangential derivatives along those boundaries can be continuous.

Proof: Hackbusch [92, Chapter 10.1.1].
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4.7.2 Ritz-Galerkin approach

In practice, H1
U is difficult to discretize (see Hackbusch [92, Theorem 8.3.23])

and the uniqueness of the potential distribution can easier be realized by means
of the Dirichlet condition (4.9) (see, e.g., Schwarz [206, Chapter 3.1.3]). Af-
ter FE discretization with, from now on, V = H1(Ω), the reference potential is
implemented in the linear equation system using a row-column-deletion [206].

Let us now consider the following problem: We are searching for u ∈ V, so
that

a(u,v) =< l,v > ∀v ∈ V. (4.29)

For the numerical solution, we choose a finite dimensional subspace Vh ⊂ V

with dimension dimVh = Nh and basis ψ1, . . . ,ψNh . The subscript h denotes the
average mesh-size and Nh = O(h−3) is the number of unknowns. We now ap-
proximate u using a Ritz-Galerkin approach:
Search uh ∈ Vh, so that

a(uh,vh) = l(vh) ∀vh ∈ Vh. (4.30)

For each coefficient vector uh ∈Vh with Vh := R
Nh , we define P : Vh → Vh with

uh(x) = Puh :=
Nh

∑
i=1

u
[i]
h ψi(x),

where u
[i]
h denotes the ith component of the vector uh. The discrete variational

problem (4.30) can thus be transformed into a linear equation system

Khuh = j
h

(4.31)

with

K
[i j]
h := a(ψ j,ψi) ∀1≤ i, j ≤ Nh (4.32)

j
[i]
h := l(ψi) ∀1≤ i≤ Nh.

The matrix Kh is SPD, where the positive definiteness follows from the ellipticity
of the bilinear form a(·, ·) for all uh ∈ Vh\{1},

utr
h Khuh =∑

i, j

u
[ j]
h K

[i j]
h u

[i]
h = a(∑

j

u
[ j]
h ψ j,∑

i

u
[i]
h ψi) = a(uh,uh)≥ α‖uh‖2

1,

with α> 0 the ellipticity constant and from the comments of Schwarz [206, Chap-
ter 3.1.3] concerning the implementation of the Dirichlet condition. Let us cite
the following convergence theorem:
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Theorem 4.7.4 (Convergence). Let V
i
h ⊂ V (i ∈ N) be a sequence of subspaces

with
lim
i→∞

d(u,Vi
h) = 0 ∀u ∈ V, (4.33)

where d is an appropriate distance function. Let a(·, ·) be a continuous and V-
elliptic bilinear form. The Ritz-Galerkin approximation ui

h ∈ V
i
h is then converg-

ing against u:

||u−ui
h||V i→∞−→ 0.

A sufficient condition for (4.33) is

V1 ⊂ V2 ⊂ . . .⊂ V,
∞[

i=1

Vi dense in V.

Proof: Hackbusch [92, Theorem 8.2.2,Lemma 6.5.7].
For the numerical realization, the volume conductor Ω is decomposed into

finite elements. As an example, the subspace Vh ⊂ V can be chosen as the sub-
space of piecewise linear functions:

Vh := {uh ∈C0(Ω); uh linear on each finite element} (4.34)

As a basis, we then find the Lagrange FE functions with ψi(x j) = δi j (1 ≤ i, j ≤
Nh) with x j the jth FE vertex. The dimension Nh = dimVh is equal to the number
of vertices.

Let us discuss estimates for the FE-approximation uh ∈ Vh of the form

||u−uh||V ≤ O(hk)

with largest possible order k. Generally, the order depends on the regularity of
the solution, on the degree of the FE Ansatz-functions ψi, on the chosen Sobolev
norm and on the approximation properties of the triangulation to the geome-
try. For our problem with jumping coefficients, we can only assume u ∈ H1(Ω).
Following Hackbusch [92, Chapter 10.1.2], we can hope, that the general error
bounds ||u− uh||1 = O(h) and ||u− uh||0 = O(h2) can be achieved by means of
isoparametric, i.e., geometry conforming, finite elements. However, we do not
make use of such elements here.

4.7.3 Volume conductor FE mesh generation

An essential prerequisite for FE modeling is the generation of a mesh which
represents the geometric and electric properties of the head volume conductor.
Two different approaches were used and will be summarized now, a tetrahedra
and a nodeshift cube mesh generation approach.
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a) b) c)

Figure 4.3: Illustrations for tetrahedrization algorithm (Wagner [239]): a) The
delaunay criterion: no vertex remains in the circumsphere of a tetrahedron. b) A
maximal 3D circumsphere of an oriented triangle with given radius rmax. c) The
tetrahedra A and B wouldn’t have been generated during tetrahedrization, since
the radii of their circumspheres are larger than rmax. The tetrahedra C up to F
are spurious tetrahedra, being deleted in the last step of the algorithm.

Tetrahedra mesh generation

The first approach uses a surface-based tetrahedral tessellation of the segmented
six compartments skin, OSC, RS, CSF (ventricular system included), GM and
WM. A possibility for the generation of compact and regular tetrahedra is the
application of the Delaunay-criterion [239], which is shown in Fig. 4.3a.
Vertex generation: As described by Wagner [239, Chapter 4.2], the first step of
the tetrahedra mesh generation process consists of the computation of FE vertices
on the six segmented surfaces, using the thinning-distance parameter dcomp

min for the
compartment surfaces. The algorithm begins with a seed-point on the segmented
surface and deletes all neighbored vertices with a distance (defined on the sur-
face) smaller dcomp

min , then repeating this process recursively. This leads to vertex
distances between dcomp

min and dcomp
max =

√
3dcomp

min [239]. Auxiliary surfaces are then
generated using erosions of the compartment surfaces. The first erosion and the
consequent thinning of the generated auxiliary surface is done with dcomp

min . Fur-
ther erosions and consequent thinnings are carried out with daux

min = WIDER ∗dcomp
min

while preventing an erosion inside a more interior compartment border. The pro-
cess leads to a set of layered surfaces containing the vertices of the model.
Tetrahedrization: The kernel procedure of the subsequent tetrahedrization of
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the vertices consists of the following steps ([239, Chapter 6.3]): A seed tri-
angle (p1,p2,p3) with pi ∈ R

3 is build using three neighbored vertices of a
thinned surface. This triangle as well as the seed triangle with inverted ori-
entation, (p1,p3,p2), are put into a queue Q. As long as Q is not empty, a
triangle (pa,pb,pc) is taken out of it and its maximal (correctly oriented) 3D-
circumsphere with fixed radius rmax, SPHEREmax(pa,pb,pc,rmax), is computed.
This is shown in Fig. 4.3b. rmax is a function of dcomp

max or daux
max, dependent on the

location of (pa,pb,pc) on a compartment surface or an auxiliary surface, resp..
The fourth vertex pd is then determined from all possible fourth vertices, which
reside inside SPHEREmax and on the correct side of the triangle (the “search vol-
ume” in Fig. 4.3b). Therefore, the center point cd of its tetrahedron circumsphere,
cd = SPHERE CENTER(pa,pb,pc,pd), has to have minimal distance from the
oriented triangle. If such a vertex pd could be determined, the tetrahedron is taken
into the tessellation T and its three new surface triangles, (pa,pb,pd), (pa,pd,pc)
and (pb,pc,pd) are put into Q. If no pd could be determined, triangle (pa,pb,pc)
is a surface triangle and goes into the queue Qs. The tetrahedra A and B in
Fig. 4.3c wouldn’t have been generated, since the radii of their circumspheres
would have been larger than rmax.
Deletion of spurious tetrahedra: Since the outer surface of the model has con-
cavities, spurious tetrahedra spanning vertices around such concavities have to
be deleted in a last step of the tetrahedra mesh generation process (see Fig. 4.3c)
([239, Chapter 6.4]). Therefore, as long as Qs is not empty, a surface trian-
gle (pa,pb,pc) is taken out of it and the associated tetrahedron (pa,pb,pc,pd)
is determined. If the tetrahedron is lying outside the model, it is deleted and
(pa,pb,pd), (pa,pd,pc) and (pb,pc,pd) are put into Qs.

Nodeshift cube mesh generation

The second mesh generation approach takes advantage of the spatial discretiza-
tion inherent in MRI images [255; 102].
Hexahedrization: The voxel-based approach directly converts image voxels to
eight-noded hexahedral or cube elements. In order to keep the computation
amount for the FE method in reasonable limit, lower resolutions with edge lengths
of e times the edge length of a voxel-sized cube can be chosen for the final ele-
ments. In this case, the generated cube is assigned the most frequent label of its
e3 interior voxels.
Nodeshifting: Material interfaces of cubic models are characterized by abrupt
transitions and right angles. Camacho et al. [35] proposed a nodeshift approach in
order to smooth these irregular boundaries. For a biomechanical application in a
circular ring model, where an analytical solution for Von Mises stress exists, they
found a decreased error in nodeshift smoothed circular ring models compared to
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Figure 4.4: Concept of the nodeshift approach, taken from Hartmann and
Kruggel [102].

models with unsmoothed surfaces at various tested mesh densities.
The nodeshift approach is presented in Fig. 4.4 and consists of the following

steps: For each node, the material types of all eight elements (or 4 in 2D) sharing
the node are determined. If more than one material type is present, the node is a
material interface node and the following smoothing procedure is applied. If less
than four (2 in 2D) of the eight (4 in 2D) elements share the same material type,
they are designated as the minority elements. Relative to the considered material
interface node, the spatial position of the centroid of the minority elements is
determined (Fig. 4.4, left, exemplarily shown for 2 interface nodes) and assigned
the coordinates (x,y,z). The node is then displaced by the vector

(∆x,∆y,∆z) = (ns∗ x,ns∗ y,ns∗ z)

with the user-defined nodeshift factor ns ∈ [0,0.49] (Fig. 4.4, right).

4.7.4 FE formulation for EEG forward problem

As in Section 4.4, direct and subtraction approach will again be distinguished
for the FE formulation of the EEG forward problem. Before discussing the FE
formulation for the direct method of Section 4.4.2, the mesh-dependent blurred
dipole model will be presented.

The blurred dipole model

The blurred dipole model is made up from a monopole source vector j
l
∈ R

K

with entries j[k]l , calculated for all k ∈ {1, . . . ,K} neighboring FE mesh nodes xk

around the location xl (not necessarily an FE mesh node), so that the moment M
of a mathematical dipole at location xl , denoted by Ml , is approximated as well as
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possible and the source load is smoother than the one of the mathematical dipole.
The visualization of the blurred dipole can then still be carried out by means of

the vector Ml . The calculation of the j[k]l is explained in the following.
Schönen et al. [205] reported the following basic relation for a dipole moment

Tl ∈R
3,

Tl =
Z
Ω
(x−xl)Jp(x)dx

(see also [167, p.88] and [170]). When assuming discrete sources on only neigh-
boring FE mesh nodes, the equation is transformed in

Tl =
K

∑
k=1

∆xkl j[k]
l

with ∆xkl denoting the vector from node k to node l. This equation is well known
from mechanical engineering, where small forces in combination with long lever
arms have the same effect on the system as large forces in combination with short
lever arms.

The use of higher dipole orders was proposed by Rienäcker et al. [190]. They
introduced the dipole moment at xl of rth (r = 1,2,3) Cartesian direction and nth

order (n ∈ N) by means of the higher dipole order vector T̄ r
l ∈ R

n0+1, (n0 ∈ N,
generally, it is n0 = 1,2), with

(
T̄ r

l

)[n] =
(
T̄ r

l

)[n] ( j
l
) :=

K

∑
k=1

(∆x̄r
kl)

n j[k]
l

∀n = 0, . . . ,n0. (4.35)

The bar indicates a scaling with a reference length aref, so that

∆x̄r
kl = ∆xr

kl/aref
!
< 1 (4.36)

is dimensionless and the physical dimension of the resultant scaled nth order mo-

ment,
(
T̄ r

l

)[n]
, is that of a current (i.e., A, Ampère). If we now define the matrix

X̄ r
l ∈ R

(n0+1)×K, the vector M̄r
l ∈ R

n0+1, computed from the given Ml, and the
diagonal source weighting matrix W̄ r

l ∈ R
K×K by [190; 30]

(X̄ r
l )[nk] := (∆x̄r

kl)
n (

M̄r
l

)[n]
:= Mr

l

(
1

2aref

)n

(1− (−1)n)

W̄ r
l := DIAG((∆x̄r

1l)
s , . . . ,(∆x̄r

Kl)
s) (4.37)

with s = 0 or s = 1, then we have to solve the minimization problem

Fλ( j
l
) = ‖M̄r

l − T̄ r
l ( j

l
)‖2

2 +λ‖W̄ r
l j

l
‖2

2 = ||M̄r
l − X̄ r

l j
l
||22 +λ‖W̄ r

l j
l
‖2

2
!= min.
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The first part of the functional Fλ ensures a minimal difference between the re-
sultant higher moments of the blurred dipole and the ones of the mathematical
dipole, while the second part, a Tikhonov-Phillips regularizer (see Section 6.5.1)
with λ the dipole regularization parameter, smoothes the monopole distribution
and enables a unique minimum for Fλ. The solution of the minimization problem
is given by (

(X̄ r
l )trX̄ r

l +λ(W̄ r
l )trW̄ r

l

)
j
l
= (X̄ r

l )
trM̄r

l

(see Theorem 6.5.2), so that the final solution for the monopole source vector j
l

of the blurred dipole with moment Ml is given by

3

∑
r=1

{
X̄ r

l )
trX̄ r

l +λ(W̄ r
l )trW̄ r

l

}
j
l
=

3

∑
r=1

{
(X̄ r

l )
trM̄r

l

}
(4.38)

The highest order is generally chosen as n0 = 1 or n0 = 2, where the latter effects
a spatial concentration of loads in the dipole axis. Furthermore, s = 1 stresses the
spatial concentration of loads around the dipole.

The direct approach exploiting the blurred dipole model

The direct application of variational and FE techniques to Equation (4.7) with
boundary conditions (4.8) and reference potential (4.9) together with the above
described blurred dipole model thus yields the system of linear equations (4.31)
with the stiffness or geometry matrix (4.32), i.e.,

K
[i j]
h =

Z
Ω

gradψ j σ gradψi dΩ ∀1≤ i, j ≤ Nh (4.39)

and the right hand side vector j
h
, determined by

j
[i]
h :=

{
j[k]l i f ∃k ∈ {1, . . . ,K} : i = GLOB(k)
0 otherwise,

(4.40)

for a source at location xl , where the function GLOB determines the global index
i to each of the local indices k.

The subtraction approach

The subtraction method in Section 4.4.1 led to the differential equation (4.15)
with inhomogeneous Neumann conditions (4.16) and thus to an equation system

Khu
corr
h = j∞

h
(4.41)
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Figure 4.5: A typical magnetometer flux transformer.

with the same stiffness matrix as in the direct approach (see 4.39), but with a right
hand side vector with entries

(j∞
h
)[i] = −

Nh

∑
j=1

[Z
Ω

gradψ j

(
σ−σ

0

)
gradψidΩ (4.42)

+
Z
Γ
σ̄0(gradψ j,n)ψidΓ

]
u∞(x j),

where u∞(x j) is the evaluation of the function for the singularity potential at the
FE mesh node x j, i.e., the evaluation of either Equation (4.13) or Equation (4.14),
dependent on the chosen source model.

The solution vector ucorr
h is the FE approximation of the correction potential,

the total potential can then be computed using Equation (4.11). Note, that since
the stiffness matrix is the same for the direct and the subtraction approach, the
FE solver performance results presented in the next chapter are equally valid for
the subtraction approach. In theory, the performance results are independent of
the right hand side of the equation system.

4.7.5 FE formulation for MEG forward computation

For the magnetic forward problem, i.e., the computation of primary (Equation
(4.18)) and secondary (Equation (4.19)) magnetic flux, the flux transformers of
the MEG device have to be modeled (see Equation (4.17)). A typical magne-
tometer coil ϒ is shown in Figure 4.5. Pohlmeier [184] modeled such a coil by
means of a thin, closed conductor loop, using isoparametric quadratic row ele-
ments. Errors slightly below the data noise between this realistic and a point-like
representation were reported, showing the necessity of the chosen approach. With
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regard to these results, equation (4.17) was discretized by means of

C(y) =∑
n

1Z

−1

1
| ∑

i(n)
χi(ξ)xi−y|∑

i(n)

∂χi(ξ)
∂ξ

xidξ, (4.43)

where n is the index for the row element and an isoparametric FE Ansatz with
quadratic Ansatz-functions χi was made for the coil position vector,

x(ξ) =∑
i

χi(ξ)xi,

with xi the vertices of the row element. The determination of the primary flux Ψp

in Equation (4.18) is straight-forward. After the FE calculation of the potential
distribution, the secondary flux Ψs in Equation (4.19) is computed using a Gauss
integration, where the integrand consists of the interpolated functions in the FE
space. For more detailed information, refer to Pohlmeier [184].

4.8 Definition of forward models and error criteria

4.8.1 Summary of former validations

Buchner et al. [30] validated the blurred dipole model in combination with the
direct method in a one layer sphere model (radius R), where an analytical formula
for the potential of two closely neighbored monopoles, a source and a sink, exists
(Smythe [211]).

The correlation C in Fig. 4.6 [30] is defined as

C =
R
Γ uhuanadΓR
Γ uanauanadΓ

with uana denoting the analytically computed potential of Smythe. The figure
shows high correlation values for practically interesting dipole eccentricities of
ε= r/R < 0.8 with r the distance of the radial dipole to the sphere center. Note,
that the mesh resolution is very low compared to the resolution, used later in this
thesis. As a second validation, Buchner et al. [30] performed forward potential
calculations for 64 electrodes in a four layer sphere FE model with 17196 ver-
tices and an average edge length of 4mm for various radially and tangentially
oriented blurred dipole sources. Inverse dipole fits were then carried out based
on series expansion formulas in the corresponding analytical sphere model, using
the software package CURRY. Mislocalizations were below 2mm in most cases
and never exceeded 3mm [30].
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Figure 4.6: Correlation of surface potentials with the analytical solution from
Smythe for typical dipole model parameters from Buchner et al. [30].

A preliminary examination of the subtraction method using Feynman’s dipole
(4.5) was carried out by Pohlmeier [184], who validated the approach in a one
layer sphere model, where an analytical solution for the magnetic flux density
of a mathematical dipole exists. For dipoles with an eccentricity below 0.8, the
subtraction method yielded slightly better results for the magnetic flux density
than the blurred dipole.

In Section 4.9, further validations of both forward approaches together with
the nodeshift hexahedra mesh generation approach will be carried out.

4.8.2 Simulated sources

Except for Section 4.9.2, the blurred dipole in combination with the direct method
will be used throughout this thesis. This approach was sufficiently validated, as
shown above and as will be shown in Section 4.9.

Exploiting Fig. 4.6 and the simulation results of Rienäcker et al. [190], the
parameters of the blurred dipole were chosen as follows throughout this thesis:
The maximal dipole order n0 (Equation (4.35)) and the scaling reference length
aref (Equation (4.36)) were set to n0 = 2 and aref = 20.0mm, resp.. Since the
chosen mesh size (see next subsection) is about a factor 10 times smaller than
the reference length, the second order term

(
∆x̄r

ki

)2
is already very small and the

model focuses on fulfilling the dipole moments of the zeros and first order. The
exponent of the source weighting matrix in (4.37) was fixed to s = 1 and the
regularization parameter in (4.38) was chosen as λ= 10−6. The settings effected
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Somato(tang) Somato(rad) Thal(rad) Mesial-Temp

Figure 4.7: Simulated sources on underlying T1-MRI, used throughout this thesis.

a spatial concentration of the monopole loads in the dipole axis around the dipole
location and are considered to well model the realistic primary currents [30].

Later in the thesis, forward simulation studies will be carried out with four
dipole sources at three different locations in the brain (see Figure 4.7). The first
two sources, one of them almost tangentially oriented (in y-direction, left) and the
other radially (in z-direction, middle left), were chosen in the right somatosensory
cortex as an example for eccentric, i.e., superficial sources. The second location
was chosen in the left thalamus as an example for deeper sources, where the
orientation is always almost radial (middle right). The third source was placed in
the mesial-temporal lobe (right), since this area is of special interest in epilepsy
surgery [111].

4.8.3 The modeled EEG and MEG sensors

For the EEG forward computation, 71 electrodes were placed interactively on the
head surface according to the international 10/20 system [178]. The electrode
configuration is shown in Fig. 4.8 (top row). The sensors were projected onto
the FE head models, i.e., the electrode potential is modeled with the value of
the closest neighboring FE mesh node. For visualization, the software packages
CURRY (Fig. 4.8, top left) and SimBio-VM (Fig. 4.8, top right) were used (see
Appendix D).

The Max-Planck-Institute of Cognitive Neuroscience Leipzig is equipped
with a BTI 148 channel whole-head MEG system. Each magnetometer flux trans-
former of this system (see Figure 4.5) was modeled by means of a thin, closed
conductor loop with a diameter of 11.5 mm, using 8 isoparametric quadratic finite
row elements. In Figure 4.8 (bottom row), the position of the 148 magnetometer
coils, each represented by its row elements, are visualized together with the outer
surface of the head model, using the software package EIPP (see Appendix D).
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Figure 4.8: EEG and MEG sensors: Top row: 71 electrodes of the chosen EEG
system on underlying outer model surface (left) and on underlying cut 5 tissue
model (right). Electrode size was enlarged for visualization purposes. Bottom
row: The chosen whole head BTI-148-channel MEG system together with the
outer surface of the head model.

4.8.4 Definition of the FE volume conductor models

Mesh generation

For the tetrahedra mesh generation approach (see 4.7.3), the 6 tissue head model
from Section 2.6.5 builds the basis for the generation of the FE Models 1 and 3,
shown in Table 4.1. dcomp

min = 2 mm enabled a very exact representation of the six
compartments. In order to keep the computation amount in reasonable limit with
regard to the inverse problem, a factor WIDER = 1.3 was chosen for auxiliary
surfaces. The meshed compartments skin, OSC and RS were visualized and in-
spected to be closed and free of holes. The vertex generation process resulted in
147287 nodes and the tetrahedrization in 895611 elements. 3496 spurious surface
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Model Type Parameter Compartments Nodes Elements
settings

1 tet dcomp
min = 2 Skin, Skull, CSF 147287 892115

WIDER = 1.3 GM, WM
2 cube e=2 Skin, Skull, CSF 385901 366043

ns 0.49 GM, WM
3 tet dcomp

min = 2 Skin, OSC, RS 147287 892115
WIDER = 1.3 CSF, GM, WM

Table 4.1: Realistically shaped volume conductor models: The model reference,
the FE type, the parameter settings during mesh generation, the compartment
labels and the resulting number of nodes and elements.

tetrahedra were deleted in the last step. The program package CURRY was used
for tetrahedrization (App. D). Model 1 will not distinguish between elements in
the OSC and RS compartments. A cut through this model is shown in Fig. 4.9a.
For visualization, the software tool SimBio-VM was used (App. D). Model 3
uses the same FE mesh geometry as Model 1, but a distinction is drawn between
OSC and RS elements.

Concerning cube meshing, it was found for a biomechanical application that
a minimum of 2-4 cube elements is required across the thickness of relevant
structures in order to produce solutions with less than 10% error in Von Mises
stress [35]. Therefore, the 5 tissue head model from Section 2.6.5 is used for
a nodeshift cube mesh generation approach (see 4.7.3). For Model 2, a mesh
resolution of e = 2 was chosen and the nodeshift was applied with ns = 0.49.
The meshed compartments skin and skull were visualized (see Fig. 4.9b) and in-
spected, no holes were found. For the hexahedra mesh generation, the program
VGRID from the Simbio project was used (App. D).

Isotropic bulk conductivity labeling

The finite elements were then labeled according to their compartment member-
ship. Table 4.2 illustrates the chosen isotropic bulk values. For the conductivities
of skin-, GM and WM elements, refer to Haueisen [103; 77], while the value for

Compartment Skin Skull OSC RS CSF GM WM
Cond.(1/Ωm) 0.33 0.0042 0.00118 0.061 1.79 0.33 0.14

Table 4.2: Isotropic bulk conductivity labels for the volume conductor compart-
ments.
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a) b)

Figure 4.9: Mesh generation: a) Axial cut through the 5 tissue tetrahedra Model
1 from Table 4.1. b) Axial slice of a cut through the skull compartment of the
nodeshift cube Model 2 from Table 4.1.

CSF is taken from the measurements of Baumann [18]. In source localization,
the skull is generally regarded as one unit with the indicated bulk conductivity
value σskull, resulting in the well-known conductivity ratio of about 1 : 80 be-
tween skull and skin compartment (see, e.g., [227; 73]). This is surely only a
rough approximation of its resistor properties. As discussed in Section 2.6.5,
Akhtari et al. [3] reported for the OSC compartment an approximately constant
thickness of lOSC = 2mm and the indicated bulk conductivity value σOSC. The
value for σRS in Table 4.2 was then determined using Equation (3.3) under the
(rough) assumption lRS = 5.5mm, i.e., using

lRS

σRS
=

lskull

σskull
− lOSC

σOSC
.

Anisotropic conductivity labeling for the skull

The Models 1 and 2 from Table 4.1 are considered now. For both models, the
conductivity tensor eigenvectors in the barycenters of finite elements in the skull
were determined by means of the procedure, described in Section 3.3.1. The
corresponding eigenvalues were simulated under Wang’s (Equation (3.1)) or the
volume constraint (Equation (3.2)). Table 4.3 shows the 5 chosen anisotropy ra-
tios and the calculated eigenvalues under constraint of the respective approach.
Anisotropy ratios of 1:2, 1:5, 1:10 and 1:100 were chosen, where the last should
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Volume constraint Wang’s constraint
σrad : σtang σrad σtang σrad σtang

1:1 (iso) 0.0042 0.0042 0.0042 0.0042
1:2 0.0026 0.0053 0.003 0.0058
1:5 0.00143 0.0072 0.00188 0.00938

1:10 0.000905 0.00905 0.00133 0.01326
1:100 0.000195 0.0195 0.00042 0.042

Table 4.3: Simulated values for the skull conductivity tensor eigenvalues: The ra-
tio was given and the eigenvalues were computed under the respective constraint.

Volume constraint Wang’s constraint
σtrans : σlong σtrans σlong σtrans σlong

1:1 (iso) 0.14 0.14 0.14 0.14
1:2 0.111 0.222 0.099 0.19798
1:5 0.0818 0.41 0.0626 0.31309

1:10 0.065 0.65 0.04427 0.4427
1:100 0.03016 3.016 0.014 1.4

Table 4.4: Simulated values for the WM conductivity tensor eigenvalues: The ra-
tio was given and the eigenvalues were computed under the respective constraint.

be considered to be out of the realistic range. According to Rush and Driscoll [197],
the skull has a ratio of 1:10 and this ratio is used by most authors for skull
anisotropy simulations [49; 180; 52; 227; 152]. Note, that under the assump-
tion of a simplified 3x3x3 model of the skull as in Fig. 3.4 and when using the
Equations (3.3) for the radial and (3.4) for the tangential skull conductivity eigen-
value with values for thicknesses and conductivities of the three skull layers as
measured by Akhtari et al. [3], a ratio of about 1:3 results. Figure 4.10 shows the
conductivity tensors of the skull roof (left) and of an axial cut through the skull
model on the underlying T1-MRI (right). Tensor validation and visualization was
again carried out using SimBio-VM (App. D).

Anisotropic conductivity labeling for the WM compartment

The procedure for modeling the WM conductivity tensors was described in Sec-
tion 3.4.4. The eigenvectors of the measured diffusion tensors in the barycenters
of finite elements in the WM compartment were taken as the conductivity tensor
eigenvectors.

For the Models 1 and 2 from Table 4.1, the eigenvalues were simulated as
shown in Table 4.4. In the literature, measured ratios between 1:6 and 1:10
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a) b)

Figure 4.10: Conductivity tensor ellipsoids in the barycenters of skull elements
of Model 1 from Table 4.1 with 1:5 skull anisotropy: a) Tensors of the skull roof.
b) Tensors of an axial cut through the skull model on the underlying T1-MRI. A
stronger scaling of the eigenvalues of the tensors was chosen in a) compared to
b).

were found [165; 77]. Fig. 4.11 presents the conductivity tensor ellipsoids in the
barycenters of the WM finite elements of Model 1 from Table 4.1 with 1:10 WM
anisotropy on the underlying T1 MRI. Note the strong left-right and top-bottom
anisotropy of the corpus callosum and the pyramidal tract, resp.. SimBio-VM
was again exploited for tensor validation and visualization (App. D).

For the determination of eigenvalues for Model 3 from Table 4.1, the differ-
ential EMA was used as described in Section 3.4.4.

4.8.5 Error criteria for forward simulation accuracy

We now define the two error criteria, which shall describe the influence of skull
and WM anisotropy on the field distribution. These criteria were introduced for
BE calculations [156]. The first, the Relative Difference Measure (RDM), is
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Figure 4.11: Conductivity tensor ellipsoids in the barycenters of the WM elements
of Model 1 from Table 4.1 with 1:10 WM anisotropy on underlying T1-MRI.

defined as

RDM =

√√√√√√√ m

∑
i=1

 φ[i]
iso√

m
∑

i=1

(
φ[i]

iso

)2
− φ[i]

ani√
m
∑

i=1

(
φ[i]

ani

)2


2

, (4.44)

where m denotes the number of sensors and φ
iso
∈ R

m and φ
ani
∈ R

m the mea-
surement vector in the isotropic and the anisotropic case, resp.. The RDM is a
measure for the topography error (Minimal error: RDM = 0). The second error
measure, the MAGnification factor (MAG), defined as

MAG =

√
m
∑

i=1

(
φ[i]

ani

)2

√
m
∑

i=1

(
φ[i]

iso

)2
, (4.45)
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Type Parameter Compartments Nodes Elements
settings Cond.(1/Ωm)

tet dcomp
min = 2 Skin Skull Brain 133332 793950

WIDER = 1.3 0.33 0.0042 0.33
cube e=2 Skin Skull Brain 385901 366043

ns ∈ {0.0,0.35,0.49} 0.33 0.0042 0.33

Table 4.5: The realistically shaped 3 compartment models used for nodeshift
validation and discretization error studies.

gives an indication of errors in the magnitude (Minimal error: MAG = 1).

4.9 Numerical studies

4.9.1 Studies on discretization error and mesh quality

In order to validate the nodeshift approach for cubic FE meshes and to study
the discretization error with regard to especially skull layer and skin surface,
EEG and MEG simulation results were compared in the realistically shaped three
compartment models, shown in Table 4.5. For the hexahedrization, three differ-
ent nodeshift values were chosen. The meshed compartments skin and skull of all
models were visually inspected to be free of holes. The electrodes were modeled
with 71 finite row elements with a conductivity of 1.0 between exact electrode
position and closest mesh node. For the cube models, the mean row element
length was 1.1mm, 0.9mm and 0.8mm for ns = 0.0, ns = 0.35 and ns = 0.49,
resp.. This can be seen as a first nodeshift validation with respect to a better
representation of the smooth skin surface. The accuracy studies were carried out
with the somatosensory source with both tangential and radial orientation and
the mesial-temporal source (see Section 4.8.2), using the blurred dipole model
and the direct approach. The former source is close to a convex, whereas the
latter is close to a concave part of the skull. Since the tetrahedra mesh genera-
tion approach better represents the smooth skin and especially the skull surfaces,
the model was treated as the reference. RDM and MAG error at the 71 elec-
trode locations and 148 MEG sensors for the chosen sources between reference
and nodeshift cube models were computed. The results are shown in Table 4.6.
The errors are generally acceptable relative to other inaccuracies such as material
property uncertainty, as will be shown in the last chapter. For the somatosen-
sory source (for both orientations), the nodeshift reduced RDM and MAG errors
for both EEG and MEG. Nevertheless, for the EEG modality and the mesial-
temporal source, a strong smoothing with ns = 0.49 seems to reduce the skull’s
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Source Mod. ns = 0.0 ns = 0.35 ns = 0.49
RDM MAG RDM MAG RDM MAG

Somato(tang) EEG 3.3% 1.10 2.9% 1.03 2.9% 1.01
MEG 0.4% 1.00 0.4% 1.00 0.3% 1.00

Somato(rad) EEG 5.1% 1.10 4.1% 1.01 4.1% 1.00
MEG 0.5% 0.99 0.5% 0.99 0.5% 0.99

Mesial-Temp EEG 4.4% 1.05 4.2% 0.98 4.1% 0.96
MEG 2.5% 0.95 2.6% 0.96 2.7% 0.96

Table 4.6: Realistically shaped 3 compartment models: RDM and MAG error
between the tetrahedra model and the cube models with different nodeshift factors
for EEG and MEG and various sources.

Type Parameter Radii of comp. (mm) Nodes Elements
settings Cond.(1/Ωm)

cube e=2 100 90 80 70 521062 544802
ns ∈ {0.0,0.49} 0.33 0.0042 1.0 0.33

Table 4.7: The finite element 4 layer sphere models for numerical accuracy stud-
ies.

thickness leading to an increased MAG error when compared to the more mod-
erate nodeshift of 0.35. A reason could be the concavity of the skull close to that
source. Note, that the vertices of the tetrahedra model are image lattice points
of the corresponding MRI, whereas, when considering a cube model with e = 1,
the image lattice points are barycenters of cube elements. This means, that the
representation of a surface in the tetrahedra model is shifted by half a voxels size
compared to its representation in the cube model.

4.9.2 Further validation in multilayer sphere model

In Section 4.8.2, first validations from Buchner et al. [30] and Pohlmeier [184]
of both the direct and the subtraction method were summarized. In order to vali-
date both approaches with regard to the nodeshift hexahedra mesh generation ap-
proach, finite element four layer sphere models were generated (Table 4.7). The
distance between source and sink in Feynman’s source model (Equation (4.5))
was chosen to be 1mm. A tangentially oriented dipolar source with eccentric-
ity ε = 50mm/70mm was placed in the model and the surface potentials were
evaluated at six electrodes (plus one reference electrode) at all extreme sphere
surface positions. Fig. 4.12 shows the computed potential distributions for the
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a) b) c)

Figure 4.12: Isopotential lines in nodeshift-model: a) Feynman’s singularity po-
tential from -0.5 to 0.5 µV b) FE correction potential from -0.5 to 0.5 µV c) total
potential from -1 to 1 µV.

Source numerical ns = 0.0 ns = 0.49
model approach RDM MAG RDM MAG
blurred direct 2.8% 1.11 1.7% 1.04

Feynman subtraction 2.7% 1.11 2.3% 1.05

Table 4.8: EEG RDM and MAG error between reference solution and numerical
solution in cube models without and with nodeshift surface smoothing.

subtraction method in combination with Feynman’s source model, the singularity
potential u∞Fey (left, see Equation (4.13)), the numerically computed correction
potential ucorr

h (middle, see (4.41)) and the total potential uh = u∞Fey +ucorr
h (right,

see (4.11)). RDM and MAG errors were then computed between reference and
numerical solutions. The results are presented in Table 4.8. The reference is
the analytically computed potential, using the series expansion formulas, pre-
sented in Section 4.6 (see Appendix D concerning the software). The compu-
tation of the series, formulas (4.24) and (4.25), was controlled by means of the
criterion (4.26) with υ= 10−6. No more than 30 terms were then needed for the
series computation for each electrode when using the asymptotic expansion. The
nodeshift approach improved the numerical accuracy for both source models and
corresponding numerical approaches. The blurred dipole better approximated
the mathematical dipole, RDM and MAG were closer to the optimum when com-
pared to Feynman’s source model in combination with the subtraction method.
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4.10 Summary and Conclusions

In the first sections of this chapter, a mathematical formulation for the primary
current source was given and the Poisson equation was presented for modeling
the potential distribution in the volume conductor. The Biot-Savart’s law was ex-
ploited for the magnetic field. A variational formulation for the forward problem
was then derived and FE discretization aspects were discussed. For FE meshing,
a surface-based tetrahedral tessellation, using the Delaunay-criterion, and hex-
ahedra mesh generation approaches were presented. A nodeshift approach for
hexahedra meshes was used in order to smooth the boundaries of standard cu-
bic meshes at material interfaces. Various forward models, used throughout the
thesis, were then defined. This included the definition of sources which are later
used for forward sensitivity considerations, the EEG and MEG sensor configu-
rations and various isotropic and anisotropic tetrahedra and hexahedra volume
conductor models. Furthermore, the RDM and MAG error criteria for forward
modeling accuracy were defined.

Numerical validation studies were carried out in the last section. It was shown
in a realistically shaped 3-compartment model that the nodeshift generally de-
creased the discretization error between tetrahedra and cube models. Further-
more, it improved the numerical accuracy in a four layer sphere model when
compared to the analytical results of the series expansion formulas. It was also
shown that a mesh-dependent blurred dipole model in combination with a di-
rect solution of the forward problem better approximated the analytical results
for a mathematical dipole than the subtraction approach together with Feynman’s
dipole. The blurred dipole in combination with the direct solution technique is
used throughout the following chapters.
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Chapter 5

Efficient FE solver methods

5.1 Introduction

The solution of hundreds or even thousands of large scale systems of equations
(4.31) with identical stiffness matrix (4.32) and varying right hand sides is the
major time consuming part within the inverse source localization process. There-
fore, fast solver methods in combination with parallel computing platforms are
needed.

Saad [198] mentioned in the introduction to his book that memory and com-
putational requirements for solving large scale 3D systems of equations stem-
ming from PDE discretizations may seriously challenge the most efficient di-
rect solvers available today. He pointed out that iterative methods, especially
Krylov subspace iterations in combination with preconditioning methods, could
provide efficient procedures and are almost mandatory for such problems. This
chapter will therefore focus on such iterative techniques. Note that also mod-
ern approaches based on hierarchical matrices exist [94], which could be very
interesting with regard to the presented application.

Large condition numbers are the reason for slow convergence of common
iterative solvers such as Krylov subspace methods [93; 198]. The spectral condi-
tion (condition belonging to the Euclidean norm) of the SPD matrix Kh is equal
to

κ2(Kh) =
λmax

λmin

with λmax the largest and λmin the smallest eigenvalue of Kh [93, §2.10]. It be-
haves asymptotically like O(h−2). Table 5.1 shows condition numbers1 of the

1Courtesy of A.Basermann, C&C Research Laboratories, NEC Europe Ltd.. To solve the large
sparse symmetric eigenvalue problems, a Jacobi-Davidson method was applied (Basermann [13]).
The iterative process was carried out up to a maximal l2 relative residual of 10−10.

113
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FE volume conductor λ κ2

model max min number

Model 1, isotropic 327.96 0.1133∗10−4 2.894∗107

Model 1, 1:10 anisotropic 328.02 0.1117∗10−4 2.936∗107

Model 2, isotropic 15.165 0.1722∗10−5 8.806∗106

Model 2, 1:10 anisotropic 15.167 0.1711∗10−5 8.864∗106

Table 5.1: Eigenvalues and condition numbers of the Models 1 and 2 of Table 4.1
with isotropic (Table 4.2) and 1:10 anisotropic layers skull and WM as defined in
the Tables 4.3 and 4.4 (volume constraint).

Models 1 and 2 of Table 4.1 with isotropic (Table 4.2) and 1:10 anisotropic
layers skull and WM (Tables 4.3 and 4.4 {volume constraint}). These models
will be used throughout this chapter. The presented large condition numbers can
cause severe accuracy and performance problems for Krylov subspace methods.
These problems will be recovered by the application of appropriate precondi-
tioners such that the condition number of the resulting preconditioned stiffness
matrix gets small. The results in Table 5.1 show a minor influence of the mo-
deled anisotropy on the condition number. A minor influence of the nodeshift on
the condition number was reported in Wolters et al. [255]. Note that, in theory,
the convergence speed is independent on the right-hand side of the linear equa-
tion system [93, §3.4], so that the results of this chapter are valid for both the
direct and the subtraction approach (see Section 4.7.4) and all possible source
configurations.

The chapter begins with the description of the algorithm for the precondi-
tioned CG method and the presentation of different preconditioners, appropriate
for the considered application. The different approaches will be compared within
solver performance tests on a single processor. A parallelization strategy for the
most successful method will then be developed. Further performance tests on a
multi-processor machine terminate the chapter. All numerical solver studies were
carried out on an SGI ORIGIN 2000 with 16 processors 2, a main memory size of
6 Gbytes 3, an instruction cache size of 32 Kbytes, a data cache size of 32 Kbytes
and a secondary unified instruction/data cache size of 4 Mbytes.

2195MHZ, IP27, CPU: MIPS R10000, proc. chip rev.: 2.6, FPU: MIPS R10010, rev.: 0.0.
3The SGI Origin is a high performance computer of the MIMD (Multiple Instruction Multiple

Data) class [63]. The MIMD class can be divided into distributed and shared memory architectures.
Since all processors have access to the whole address space, the SGI-Origin belongs in a first
approximation to the shared memory class. In order to speed-up computation, each processor has
faster access to a certain sub-address space. This is why the SGI-Origin is also called a distributed
shared memory computer.
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5.2 The preconditioned conjugate gradient method

Algorithm 8 (Par.) PCG algorithm PCG(Kh,uh, jh,Ch)

rh ← j
h
−Khuh

wh ⇐ C−1
h · rh

sh ←wh

γ⇐ (wh, rh)
repeat

vh ← Kh · sh

α⇐ γ/(sh,vh)
uh ← uh +αsh
rh ← rh−αvh
wh ⇐ C−1

h · rh
γ⇐ (wh, rh)
β← γ/γOLD , γOLD ← γ
sh ←wh +βsh

until TERMINATION

The Krylov subspace of dimension n is defined as

Kryn(Kh, r0) = span{r0,Khr0, . . . ,K
n−1
h r0}

with r0 the initial residual. The CG method for solving SPD linear systems is
a realization of an orthogonal projection technique onto Kryn. Saad [198] de-
rived the CG algorithm from a full orthogonalization method (Arnoldi’s method
for linear systems), using simplifications resulting from the three-term Lanczos
recurrence for symmetric matrices.

The goal of a preconditioner, Ch ∈ R
Nh×Nh , is the reduction of κ2(C−1

h Kh)
for the preconditioned equation system C−1

h Khuh = C−1
h j

h
. Further requirements

are that it is cheap with regard to arithmetic and memory costs to solve linear
systems Chwh = rh with wh the residual for the preconditioned system and that
this operation can well be parallelized. The PCG method (see, e.g.,[93; 198;
206]) is shown in Algorithm 8.

Theorem 5.2.1 (Error estimate for PCG method). Let Kh and Ch be positive
definite. If u∗h denotes the exact solution of the equation system, then the k’s iterate
of the PCG method uk

h fulfills the following energy norm estimate

‖uk
h−u∗h‖Kh ≤ ck 2

1+ c2k ‖u0
h−u∗h‖Kh , c :=

√
κ2(C−1

h Kh)−1√
κ2(C−1

h Kh)+ 1
.
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The theorem was proven by, e.g., Hackbusch [93, Theorem 9.4.14]. Note that
the above error estimate is only an upper bound that may be too pessimistic. In
fact, the convergence of the PCG method is influenced by the whole spectrum of
C−1

h Kh and superconvergence results are known [93, Remark 9.4.13].

5.2.1 Jacobi preconditioning or scaling

It can be shown, that the smallest (largest) eigenvalue of a symmetric matrix is at
most (at least) as large as the smallest (largest) diagonal element, so that the con-
dition number is at least as large as the quotient of maximal and minimal diagonal
element (Schwarz, [206, p.258]). Diagonal entries in Kh of FE nodes from inside
the skull are much smaller than from outside (jumping conductivity coefficients).
The simplest preconditioner is thus the scaling or Jacobi-preconditioning ([198,
pp.265f], [206, pp.257f]), where

Ch := D2
h, Dh := DIAG(

√
K

[11]
h , . . . ,

√
K

[NhNh]
h ).

When splitting the Jacobi-preconditioner between left and right (row and column
scaling), we have to solve K̃hvh = D−1

h j
h

with K̃h = D−1
h KhD−tr

h and uh = D−tr
h vh.

Row and column scaling preserves symmetry, so that the scaled matrix K̃h is
again SPD with unit diagonal entries. The scaling may therefore lead to a first
substantial condition improvement. Hackbusch [93, Theorem 8.3.3] mentioned
the following theorem:

Theorem 5.2.2. Let Kh be SPD and Ch := D2
h the Jacobi-preconditioner. Assume

that each row of Kh does not contain more than d nonzero entries. Then, for all
diagonal matrices D̃−1

h , it is

κ2(C−1
h Kh)≤ d κ2(D̃−1

h Kh),

i.e., the chosen diagonal preconditioner is close to the optimal one.

5.2.2 Incomplete factorization preconditioners

The second class are the incomplete factorization preconditioners. The first pre-
sented one, the IC0, is an approximation to the Cholesky-decomposition Kh =
LhLtr

h (see Algorithm 9, Schwarz [206, pp.209f]). The second, the ILDLT, ap-
proximates an LDLT-decomposition Kh = LhDhLtr

h (Golub and Van Loan [79,
p.139]). Scaling of the equation system is performed before incomplete factor-
ization preconditioning in the PCG solution process. For incomplete factoriza-
tions, the preconditioning operation Chwh = rh in Algorithm 8 is solved by a
forward-back sweep.
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Algorithm 9 Cholesky decomposition Kh = LhLtr
h

for p = 1, . . . ,Nh do

L[pp]
h =

√
K

[pp]
h

for i = (p+ 1), . . . ,Nh do
L[ip]

h = K
[ip]
h /L[pp]

h
for k = (p+ 1), . . . , i do

K
[ik]
h = K

[ik]
h −L[ip]

h /L[kp]
h

end for
end for

end for

IC0-factorization: The IC0-factorization preconditioner exploits an incomplete
Cholesky-decomposition Ch := L0Ltr

0 with zero fill-in, i.e., L0 has the same non-
zero-pattern as the lower triangular part of K̃h. The principle for the first step
of IC0 is presented in Figure 5.1. The figure shows the nonzero pattern of the
start matrix K̆h ∈ R

Nh×Nh (left) (generally a copy of the scaled stiffness matrix),
the situation after the first step of Algorithm 9 (fill-in is marked with *) and
the situation after the first step of IC0 (fill-in rejected). Note, that the Cholesky
decomposition is carried out on the memory space of K̆h.

The existence of IC0 is not necessarily guaranteed for general SPD matri-
ces while it can be proven, e.g., for the subclass of symmetric M-matrices [93,
Theorem 8.5.10]. Therefore, a reduction of non-diagonal stiffness matrix en-
tries has to be carried out in certain applications before IC0 computation is pos-
sible [206, p.266]. If the scaled geometry matrix is decomposed by means of
K̃h = Eh + IdNh +Etr

h with Eh ∈ R
Nh×Nh its strict lower triangular part, the reduc-

tion can be formulated as

K̆h = IdNh +
1

1+ ς
(Eh + Etr

h ). (5.1)

For sufficiently large ς∈R
+
0 , the existence of IC0 is guaranteed, but with increas-

ing ς, the preconditioning effect decreases.
Note that for certain special cases a condition improvement to O(h−1) can

be proven as, e.g., when using a modified ILUω-preconditioning with ω = −1
(in the symmetric case, the ILU0 is equal to the ICO) for diagonally dominant
symmetric matrices arising from a 5-point discretization of a 2D Poisson equation
(Hackbusch [93, Theorem 8.5.15 and Remarks 8.5.16,17]).
ILDLT-factorization with threshold: Jacobi-preconditioning and IC0 factoriza-
tions are “blind” to numerical values. Elements that are dropped in IC0 depend
only on the non-zero pattern of Kh. Therefore, as a second class of incomplete
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Figure 5.1: Principle of IC0 (taken from Schwarz [206]): nonzero matrix pattern
(left), situation after first step of Algorithm 9 (fill-in is marked with *), situation
after the first step of IC0.

factorization methods, a threshold-technique, as it is the incomplete LDLtr fac-
torization with threshold value ε, ILDLT(ε) [198; 13], are studied where elements
are dropped according to their magnitudes rather than their locations. With such
techniques, the zero pattern (elements smaller ε) is determined dynamically dur-
ing preconditioner construction.

5.2.3 Theoretical considerations to multigrid iterations

The above preconditioning methods have the disadvantage that the convergence
rate, i.e., the factor by which the error is reduced in each iteration, is still depen-
dent on the mesh size h. With decreasing mesh size and thus increasing order
of the equation system, the convergence rate tends to 1 from below, so that the
number of iterations needed to achieve a given accuracy increases.

A solver method is called asymptotically optimal with respect to the operation
count and memory demand, if both are proportional to Nh. The Geometric Multi-
Grid (GMG) method can be shown to be asymptotically optimal, requiring an
order of O(Nh) arithmetical operations per iteration [93, Theorem 10.4.2] and a
memory demand of O(Nh).

h-independent convergence with respect to the spectral norm can be shown
for the W-cycle GMG method even for unsymmetric and indefinite sparse linear
systems of equations [93, Theorem 10.6.25]. The assumptions for such proofs
are that the so-called smoothing [93, §10.6.2] and approximation properties [93,
§10.6.3] are fulfilled, the number of smoothing steps is sufficiently large and the
mesh size on the coarsest level is not too coarse. A detailed description of GMG
is given in [91].

We now make use of the conditions that the system matrix is SPD, the restric-
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tion is adjoint to the prolongation (Equation (5.4)), the post-smoother adjoint to
the pre-smoother and the Galerkin product property (Equation (5.5)) is valid. In
this case, the GMG method can be designed as a symmetric iteration [93, §4.8,
Lemma 10.7.1]. If we denote with Mh the MG iteration matrix (see, e.g., [93,
Theorem 10.4.5]), monotone convergence with respect to the energy norm and
an h-independent convergence rate

ρ := ρ(Mh) = ||Mh||Kh < 1

can be shown using the same assumptions as above [93, §10.7.2]. In particular,
if with Ch we now denote the matrix of the third normal form (see [93, §3.2])
of the iteration resulting from m steps of the GMG method (note that m steps of
the GMG method yield the rate ρm), the condition number of the m-step GMG-
preconditioned equation system fulfills

κ2(C−1
h Kh)≤ 1

1−ρm , (5.2)

i.e., it is h-independent, too, and thus of an order O(1) [93, Lemma 10.7.1]. If,
furthermore, a symmetric smoothing iteration is chosen, h-independent monotone
convergence with respect to the energy norm can even be proven for the V-cycle
GMG for all smoothing step numbers larger zero without any restriction to the
coarsest mesh size [93, Theorem 10.7.15].

5.2.4 The multigrid-preconditioned CG method

For our application, it is not easy to generate the necessary grid hierarchy and
to choose the MG components (smoothing, prolongation etc.) so that the rate
observed is really small (e.g., ρ≤ 0.1). A robust method which provides a small
convergence rate for a wide class of real-life problems is given by exploiting
the MG-method as a basis for the CG method (see, e.g., [93; 115; 219]). With
MG(m)-CG, we will now denote the MG-preconditioned CG method with m the
number of MG iterations for the CG preconditioning step.

Theorem 5.2.3. The exact solution of the preconditioning equation Chwh = rh
for MG(m)-CG is equivalent to the application of m MG cycles to the so-called a
priori preconditioning equation

Khwh = rh. (5.3)

Proof: The preconditioner has the special form

C−1
h =

(
IdNh−(Mh)m)K−1

h
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[93, Theorem 3.2.2, Remark 3.2.4]. If the linear MG iteration is applied to (5.3)
with the zero start vector w0

h = 0Nh , it produces iterates of the form

wm
h = (Mh)mw0

h +
m−1

∑
i=0

{
(Mh)i (IdNh−Mh

)}
K−1

h rh =
(
IdNh−(Mh)m)K−1

h rh

[93, Theorem 3.2.5]. �

Using Theorem 5.2.1 and Equation (5.2), an error estimate of

‖uk
h−u∗h‖Kh ≤ ck(ρ)

2
1+ c2k(ρ)

‖u0
h−u∗h‖Kh

with

c(ρ) =

√
κ2(C−1

h Kh)−1√
κ2(C−1

h Kh)+ 1
=

1−√1−ρm

1+
√

1−ρm

can be derived for the k’s iterate uk
h of GMG(m)-CG. If ρ is considered to be

small, then c(ρ)≈ ρ/4+O(ρ2) can be achieved by means of a Taylor expansion.
This means that the convergence ρ of the pure GMG-method can be accelerated
to ρ/4 by means of the CG method [93, §10.8.3]. Nevertheless, in practice, ρ
is relatively unfavorable. In this case, Jung and Langer carried out the operation
count for standard boundary value problems and showed that GMG(1)-CG is
more efficient than the pure GMG solver for ρ∈ [0.4,1) (see [115] and references
therein).

5.2.5 Algebraic multigrid preconditioners

In contrast to GMG, where a grid hierarchy is required explicitly, AMG is able to
construct matrix hierarchy and corresponding transfer operators by only knowing
the entries in the geometry matrix Kh (see, e.g., [196; 26; 219; 189]). It is well
known, that the classical AMG works robust for M-matrices and, with regard to
our application, that small positive off-diagonal entries are admissible [196; 219;
189]. The method is especially suited for our problem with discontinuous and
anisotropic coefficients, where an optimal tuning of the GMG is difficult or even
impossible ([196, §4.1,4.6.4],[219, §4.1]).

Feuchter et al. [59] recently presented another interesting approach that should
be mentioned here, since it bridges in a certain way the gap between GMG and
AMG. As in AMG, their approach only needs the finest grid and the correspond-
ing system matrix in order to generate the coarser grids and to set up the pro-
longation and restriction operators in a “black-box fashion”. All grids between
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the coarsest and the second finest level are nested so that the general GMG con-
vergence theory can be exploited. Only the embedding of the second finest grid
into the given finest grid is “non-nested”. Feuchter et al. elaborate a convergence
theory for the non-nested case and present numerical results for complicated 2D
domains.

Nevertheless, this work focuses on an AMG approach. Ruge and Stüben [196]
have proven AMG V-cycle convergence for SPD matrices when assuming that the
interpolation operators have full rank, the Equations (5.4) for the restriction and
(5.5) for the coarse grid operators are fulfilled and an algebraic smoothing and an
algebraic approximation property are supposed to hold [196, §4.3]. The smooth-
ing property could be proven under quite general circumstances [196, §4.4], while
the approximation property presented the most problems. Therefore, a weaker
condition was introduced with which uniform two-level convergence could be
proven [196, Theorem 5.2], but which was not sufficient to guarantee a level-
independent V-cycle convergence rate [196, §4.5.5]. Nevertheless, the weaker
condition is necessary for the approximation property and implies a useful prop-
erty for the prolongation operator to be constructed, i.e., that the prolongation has
to preserve the kernel of Kh ([196, §4.5.5] and [189, §3.4]).

Stand-alone AMG will hardly ever be optimal. There may be some very
specific error components which are reduced significantly less efficient, causing
a few eigenvalues of the AMG iteration matrix to be much closer to 1 than all the
rest [219, §3.3]. In such a case, acceleration by means of using AMG as a basis
for the CG method (see Section 5.2.4) eliminates these particular frequencies
very efficiently.

As in GMG, the basic idea in AMG is to reduce high and low frequency
components of the error by the efficient interplay of smoothing and coarse grid
correction, respectively. In analogy to GMG, the denotation “coarse grids” will
be used, although these are purely virtual and do not have to be constructed ex-
plicitly as coarse FE meshes. The diagonal entry of the ith row of Kh is considered
as being related to a grid point in ωh (the index set of nodes) and an off-diagonal
entry is related to an edge in an FE grid.

A description of AMG will now be given for a symmetric two grid method
where h is related to the fine grid and H to the coarse grid. Each AMG algorithm
consists of the following components:

(a) Coarsening: define the splitting ωh =ωC∪ωF of ωh into sets of coarse and
fine grid nodes ωC and ωF , respectively.

(b) Transfer operators: prolongation Ph,H : VH �→Vh (Vh = R
Nh , Section 4.7.2)

and the adjoint as the restriction

RH,h := Ptr
h,H . (5.4)
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coarse grid node
fine grid node

“fine grid” “coarse grid”

Figure 5.2: Illustration of a two grid method.

(c) Definition of the coarse matrix by Galerkin’s method, i.e.,

KH := RH,hKhPh,H . (5.5)

Because of (b), KH ∈ R
NH×NH is again SPD.

(d) Appropriate smoother for the considered problem class: In order to achieve
a symmetric method, e.g., a forward Gauss-Seidel method for pre-smoothing
and the adjoint, a backward Gauss-Seidel method for post-smoothing [93,
§4.8.3,§10.7.1,2]. For the Gauss-Seidel method, the algebraic smoothing
property can be proven for sparse SPD matrices so that it is generally cho-
sen for smoothing in AMG [196, §4.4].

Coarsening: The coarsening process has the task to reduce the nodes such that
NH = |ωC| < Nh = |ωh|. Here, |ω| denotes the number of elements in the set
ω. Motivated from Figure 5.2, the grid points ωh can be split into two disjoint
subsets ωC (coarse grid nodes) and ωF (fine grid nodes), i.e., ωh = ωC ∪ωF and
ωC ∩ωF = /0 such that there are (almost) no direct connections between any two
coarse grid nodes and the resulting number of coarse grid nodes is as large as
possible [219, p.12]. Instead of considering all connections between nodes as
being of the same rank, the following sets are introduced

Ni
h =

{
j | |K[i j]

h | ≥ ζ|K[i,i]
h |, i �= j

}
(5.6)

Si
h =

{
j ∈ Ni

h | |K[i j]
h |> coarse(i, j,Kh)

}
Si,T

h =
{

j ∈ Ni
h | i ∈ S j

h)
}

(5.7)

where Ni
h is the index set of neighbors (a pre-selection is carried out by the

threshold-parameter ζ ∈ R
+
0 ), Si

h denotes the index set of nodes with a “strong
connection” from node i and Si,T

h is related to the index set of nodes with a “strong
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Algorithm 10 : COARSE:({Si,T
h },ωh)→ (ωC,ωF)

ωC ← /0, ωF ← /0
while ωC ∪ωF �= ωh do

i← PICK(ωh \ (ωC ∪ωF))
if |Si,T

h |+ |Si,T
h ∩ωF |= 0 then

ωF ← ωh \ωC

else
ωC ← ωC ∪{i}
ωF ← ωF ∪ (Si,T

h \ωC)
end if

end while

connection” to node i. In addition coarse(i, j,Kh) is an appropriate cut-off (coars-
ening) function, e.g.,

coarse(i, j,Kh) := α ·max
j, j �=i

{|K[i j]
h |} , (5.8)

with α ∈ [0,1] (see, e.g., [196, §4.6.1]). With those definitions a splitting into
coarse and fine grid nodes can be done. For our application, a modified splitting
algorithm of Ruge and Stüben [196, §4.6] was used, which is shown in Algo-
rithm 10. Therein, the function

i← PICK(ωh \ (ωC ∪ωF))

returns a node i where the number |Si,T
h |+ |Si,T

h ∩ωF | is maximal. Note, that
tissue conductivity inhomogeneity and anisotropy is taken into account within
the coarsening algorithm.
Prolongation: Next the prolongation operator Ph,H : VH �→Vh has to be defined
correctly. As already mentioned, the weakened algebraic approximation property
implies that the kernel of Kh has to be preserved by Ph,H ([196, §4.5.5] and [189,
§3.4]). In our case, if Vh is chosen as the subspace of piecewise linear functions
(4.34), the kernel simply consists of the constant potential distributions. Another
important property is, that Ph,H has full rank. Reitzinger [189, Corollary 4.1.2]
showed that a full rank prolongation operator, which satisfies

NH

∑
j=1

P
[i j]
h,H = 1 ∀i = 1, . . . ,Nh,

fulfills the above necessary conditions. There are a lot of possibilities to define
such transfer operators with pure algebraic information. The simplest is given
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Algorithm 11 (Parallel) V (νF ,νB)-cycle MG(Kh,uh, jh)

if COARSEGRID then
uh ⇐ DIRECTSOLVE (Kh ·uh = j

h
)

else
ũh ⇐ νF TIMES SMOOTH FORWARD(Kh,uh, jh)
dh ← Kh · ũh− j

h
dH ←Ptr

h,H ·dh
wH ← 0
wH ⇐ MG(KH ,wH ,dH)
wh ←Ph,H ·wH

ûh ← ũh−wh

uh ⇐ νB TIMES SMOOTH BACKWARD(Kh, ûh, jh)
end if

by a piecewise constant interpolation [26]. Another possible setting and the one
which turned out to be the most efficient for the presented application was pro-
posed by Kickinger [120] and is given by

P
[i j]
h,H =


1 i = j ∈ ωC

1/|Si,T
h ∩ωC| i ∈ ωF , j ∈ Si,T

h ∩ωC

0 else .

(5.9)

Ruge and Stüben [196, §4.5.4] (for a good motivation see also [89]) proposed
the discrete harmonic extension for Ph,H . This is the best interpolation proposed
here but it suffers from the fact that Ph,H has more nonzero entries so that cycling
gets more expensive. In our application, its numerical work per cycle (see [196,
§4.6.3] or a general definition in [93, §3.3]) was increased compared to the ap-
proach in (5.9).
AMG-CG: After the proper definition of the prolongation and coarse grid opera-
tors a matrix hierarchy can be setup in a recursive way. Finally, a multigrid cycle
can be assembled, shown in Algorithm 11. Therein the variable COARSEGRID

denotes the level where a direct solver is applied. For an m-V (νF ,νB)-cycle AMG
preconditioned CG method, the operation wh ⇐ C−1

h · rh in Algorithm 8 is real-
ized by m calls of MG(Kh,wh, rh) (see Theorem 5.2.3).

5.3 Performance studies on a single processor

In the following, the performance of the different solver methods will be com-
pared on a single processor for Model 2 of Table 4.1 with isotropic and 1:10
anisotropic layers skull and WM. Comparable results were achieved for Model 1.
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Isotropic nodeshifted 2mm cube model,

385901 nodes
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1:10 Anisotropic nodeshifted 2mm cube model,
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Figure 5.3: Model 2 of Table 4.1: l2-relative residual against wall clock time on
1 processor for the solver part of different solver methods up to an accuracy of
10−8.

Solver parameter settings, used throughout this chapter, are now discussed.
The FE space Vh consisted of the piecewise linear Ansatz-functions (see Equation
(4.34)). The selected values of ς for the IC0, ε for the ILDLT and ζ (see (5.6)) for
the AMG are indicated behind the preconditioner in the solver performance fig-
ures. The setup-times for the preconditioners were neglected in the figures since
this has to be performed only once with regard to the inverse problem. All solvers
were started with the zero potential vector. For the AMG-CG, the 1-V (1,1)-cycle
AMG-preconditioner was used. Even if the W-cycle has a smaller convergence
rate, the V-cycle was found to be cheaper in practice (see [93, §3.3] for a defini-
tion of effectiveness). Equation (5.8) was taken as the cut-off coarsening function
with α = 0.01 and the prolongation was chosen as in (5.9). The factorization in
Algorithm 11 was carried out, if the size of the coarsest grid (COARSEGRID) in
the preconditioner-setup was below 1000 for the cube models. The coarse system
was solved using a Cholesky-factorization (Algorithm 9).

In order to take advantage of the large number of zero elements, special
schemes are implemented to store the sparse stiffness matrix and the sparse pre-
conditioners. All presented methods use the Compressed Sparse Row (CSR)
format (see Saad [198, pp.84f]). Symmetry in IC0 and ILDLT is exploited by
storing only the lower triangular part of those preconditioners. Nevertheless, in
the implementation of sym-IC0-CG, also the stiffness matrix is stored in sym-
metric CSR format (this explains the prefix “sym”, see Schwarz [206, pp.268f]),
while, with regard to their parallelization, Jacobi-CG, ILDLT-CG and AMG-CG
memorize the full stiffness matrix. This implies, that a stiffness matrix-vector
multiplication in the PCG Algorithm 8 will be computed faster by sym-IC0-CG
than by the other solvers.

Figure 5.3 shows the required time of the different solver methods in order to
reduce the initial l2 residual by a factor of 10−8 for the isotropic cube model (left)
and the anisotropic cube model (right). For the isotropic model, the performance
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of the pure Krylov-method was presented additionally to the PCG results. The
number of iterations are marked behind the Krylov-method. Note, that the peaks
in the residuals are due to the fact that the Krylov-method minimizes the Kh-
energy-norm instead of the l2-norm, visualized in the above figures.

For relative residuals in the range 10−3 up to 10−8, AMG-CG is the fastest
solver due to its superior preconditioning properties. Because of the strong poten-
tial decrease from the source through the low-conducting skull to the electrodes,
the interesting residuals begin at about 10−6. As will be seen in Chapter 7, the
accurate reconstruction of multiple dipolar sources can even necessitate relative
residuals of about 10−8. For 10−6, AMG-CG is about a factor 3 times faster
than the class of incomplete factorization PCG methods for both isotropic and
anisotropic model. For 10−8, it is a factor 9 (12) times faster than the Jacobi-CG
for the isotropic (anisotropic) model. The factor between AMG-preconditioned
CG and the pure Krylov approach is about 22 for the isotropic model. Com-
pared to ILDLT(1e-2)-CG, where 175 (175) iterations with 5375551 (5483394)
incomplete factorization non-zeros were required for the isotropic (anisotropic)
model, the ILDLT(1e-3)-CG needed only 80 (81) iterations. Nevertheless, this
advantage is lost since, with 17091344 (16616026) non-zeros, ILDLT(1e-3)-CG
iterations are computationally more expensive. Note again, that sym-IC0-CG
is only faster than the ILDLT-threshold solvers because of the different imple-
mentations of the stiffness matrix storage. IC0 had about the same amount of
non-zeros than ILDLT(1e-2), so that, with regard to its parallelization, IC0-CG
would be 219/175 (227/175) times slower than ILDLT(1e-2)-CG for the isotropic
(anisotropic) model. To give an impression about the time for the computation of
the preconditioners, the setup for the isotropic cube model took 128 seconds (s)
for the AMG, 53 s for ILDLT(1e-3) and 12 s for ILDLT(1e-2) and IC0.

ILDLT- and AMG-preconditioners take conductivity inhomogeneity and an-
isotropy into account, symIC0- and Jacobi-CG only do to a minor degree. Note
that with 850 to 650 iterations, the Jacobi-CG is a factor 1.3 slower in the anisotropic
case and refer to the discussion about the influence of anisotropy onto the solver
times in Section 5.5.2.

5.4 Parallelization of FE solver methods

If the inverse problem has to be solved with many calls to FE forward simula-
tions, the results cannot be produced within an acceptable time on one proces-
sor. However, a parallel computer may provide sufficient capacity such that time
limitation can be fulfilled. In Haase et al. [88] it has been shown for a Pois-
son equation on the geometry of a simplified crank shaft that AMG-CG solvers
exhibit high speed-ups on parallel computers including PC clusters and an SGI
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ORIGIN 2000. The speed-up was especially good (superlinear) for the solver-
part of the algorithm. Within this Section, the data partitioning aspects and the
concepts of the parallel solver approaches will be presented, which mainly rely
on ideas reported by Haase, Kuhn and Reitzinger in [87; 88; 189]. The parallel
solvers will be applied to source localization problems and their performance will
be compared in realistic head volume conductor models.

5.4.1 Data Partitioning

The aim of parallelization is to split both data and operations to the P ∈ N pro-
cessors available. The consistency of the algorithms is preserved by message
passing. In our case, the parallelization is based on a non-overlapping domain
decomposition, i.e., we decompose Ω into P subdomains Ωs such that

Ω=
P[

s=1

Ωs

with
Ωs∩Ωq = /0 ∀q �= s, s,q = 1, . . . ,P

holds. Each subdomain Ωs is discretized by a mesh τh,s such that the whole
decomposition

τh =
P[

s=1

τh,s

of Ω forms a conforming mesh. A global FE space Vh is defined with respect
to τh and the local spaces Vh,s are restrictions of Vh onto τh,s. The index set of
nodes in Ωs is denoted by ωs. Note, that

ωh =
P[

s=1

ωs but Nh = |ωh| ≤
P

∑
s=1

|ωs|=:
P

∑
s=1

Ns

holds, i.e., different subdomains may share unknowns although elements from
different subdomains do not overlap. “Interface nodes” are those nodes which
belong to at least two processors, whereas “inner nodes” only belong to one.

The mesh partitioning of realistic FE head geometries with unstructured me-
shes is critical for the efficiency of the parallel solver method, described in the
next subsection. The distribution must be done so that the number of elements
assigned to each processor is the same and the number of adjacent elements
assigned to different processors is minimized in order to balance the computa-
tion amount among the processors and to minimize the communication between
them, resp.. Therefore, graph partitioning algorithms are used which model the
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FE mesh by a graph (V,E) with vertices V and edges E . The interest is in an
“element-wise-” [87; 88; 189] in contrast to a “node-wise-” [13] distribution, i.e.,
the dual graph of the FE mesh is partitioned. The finite elements are the vertices
of the dual graph and adjacent elements are the corresponding edges. A balanced
k-way partitioning is used (Karypis and Kumar [118]), minimizing the number
of edges which straddle partitions. The algorithm is based on a multilevel ap-
proach, first reducing the size of the dual graph by collapsing vertices and edges,
then partitioning the dual graph on the lowest level and further refine during the
uncoarsening steps.

5.4.2 Data types and basic operations

Data types

A subdomain connectivity matrix As,h ∈ R
Ns×Nh

A [i j]
s,h :=

{
1 if j = LOC2GLOB(i)
0 else

∀i ∈ ωs , ∀ j ∈ ωh,

(LOC2GLOB(·) maps a local index to the global one) symbolically represents the
mapping of a vector uh ∈R

Nh in global numbering onto a local vector us ∈R
Ns in

subdomain Ωs, while the transpose maps a local vector back onto the global one.

The index set of all those subdomains to which an unknown u[ j]
h , j ∈ ωh belongs,

is denoted by

Σ j := {s |u[ j]
h ∈ ωs} . (5.10)

The data related to the ith node is stored in the subdomain Ωs, if s ∈ Σi . This
approach results in local data denoted by index s of two types [87]: accumulated
data (vectors uh, sh and wh, matrix Mh ∈ R

Nh×Nh) represented by

us := As,h ·uh , Ms := As,h ·Mh ·A tr
s,h

with Ms ∈ R
Ns×Ns and distributed data (vectors j

h
, vh, rh, dh, matrix Kh) repre-

sented by

dh =
P

∑
s=1

A tr
s,h ·ds, Kh :=

P

∑
s=1

A tr
s,h ·Ks ·As,h.

The local FE accumulation with respect to Vh,s produces automatically distributed
matrices Ks.
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Basic operations

The inner product of different type vectors only requires one global reduce ope-
ration of the local inner products, since it is

(wh, rh) = wtr
h

P

∑
s=1

A tr
s,hrs =

P

∑
s=1

(As,hwh)
tr rs =

P

∑
s=1

(ws, rs).

It can be further shown that the multiplication of a distributed matrix Kh with the
accumulated vector sh results in a distributed vector vh:

Kh · sh =
P

∑
s=1

A tr
s,hKsAs,h · sh =

P

∑
s=1

A tr
s,h (Ks · ss) =

P

∑
s=1

A tr
s,hvs = vh

The realization requires no communication at all because vs = Ks · ss only has to
be computed locally.

Theorem 5.4.1 (Admissible interpolation pattern). If an accumulated matrix
Mh,H ∈ R

Nh×NH fulfills the condition

∀i ∈ ωh, j ∈ ωC : Σi �⊆ Σ j =⇒ M
[i j]
h,H = 0, (5.11)

then the operations

wh = Mh,H ·wH , dH = Mtr
h,H ·dh, KH = Mtr

h,HKhMh,H (5.12)

can be performed locally without any communication.

Proof: Haase [87, Theorems 5.1,5.2].

5.4.3 Parallel algebraic multigrid

Now it can be observed that Algorithms 8 and 11 are also the appropriate paral-
lel formulations, where double-line arrows “⇐” indicate that communication is
required for the corresponding operation. In Algorithm 11, the coarse grid sys-
tem is accumulated globally once in the setup phase. During the iteration only
a vector has to be assembled (indicated by “⇐”) for computing the coarse grid
solution.

In AMG the coarsening and prolongation operators are components which
can be chosen. The main idea in the design of parallel AMG is to choose these
components such that the resulting prolongation operators Ph,H are of accumu-
lated type, satisfying the pattern condition (5.11). The operations (5.12) can then
be performed locally without any communication. Therefore, the sets of strong
connections {Si,T

h } have to be controlled in the coarsening step, which will be
described in the following.
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Figure 5.4: Four non-overlapping subdomains with triangular mesh and row-
wise numbering, taken from Haase et al. [88].

Ordering of communication groups

Haase et al. [88] introduced a “communication group” Σk as being the subset of
processors, which are involved in a next neighbor communication. They ordered
these groups uniquely by means of their cardinality

1. |Σk|> |Σ�| ⇒ k < � ,

2. |Σk|= |Σ�| and Σk lexicographically smaller than Σ� ⇒ k < � .

The ordering guarantees the consistency of local and global ordering and prevents
communication deadlocks in the algorithm. The nodes ωs of subdomain Ωs were
then locally grouped into four classes with respect to a certain communication
group Σk :

1. active nodes: ωa := {i ∈ ωs : Σi ≡ Σk}

2. visible nodes: ωv := {i ∈ ωs : Σi ⊂ Σk}

3. grouped nodes: ωg := {i ∈ ωs : Σi ⊃ Σk}

4. invisible nodes : ωs \ (ωa∪ωv∪ωg)

Let ncs be the number of communication groups of subdomain Ωs. The following
example helps in understanding the above definitions:
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Example 5.4.2. In the 2D model in Figure 5.4, subdomain Ω2 possesses the
nc2 = 4 communication groups Σ1 = {1,2,3,4}, Σ2 = {1,2}, Σ3 = {2,4} and
Σ4 = {2}, where the last one does not require any communication, but simplifies
the parallel coarsening algorithm. It is Σ1 = Σ25, Σ2 = Σ18, Σ3 =Σ26 and Σ4 = Σ7.
For Ω2 and Σ2 = {1,2}, it is ωa = {4,11,18}, ωv = {5,6,7,12,13,14,19,20,21}
and ωg = {25}. Invisible nodes are 26, 27 and 28.

Parallel coarsening and prolongation

For the parallel coarsening and the determination of the prolongation weights, the
admissible interpolation pattern (5.11) has to be respected for the prolongation
matrix Ph,H . Therefore, Haase et al. [88] proposed the following three steps:

1. The geometry matrices Ks are locally compiled in parallel for each subdo-
main Ωs. In order to determine the strong connections to each node i ∈ωh,
i.e., Si,T

h (see (5.7)), the system matrix has to be globally accumulated. A
first step to control (5.11) consists in a special accumulated matrix

K̃ =
P

∑
s=1

A tr
s,hK̃sAs,h

with

K̃
[i j]
s =

{
K

[i j]
s iff Σi ⊆ Σ j ∨ Σi ⊇ Σ j

0 else
, (5.13)

which is locally stored as K̃s = As,hK̃A tr
s,h . For the example in Figure 5.4,

this means, e.g., that K̃[18,26] = K̃[26,18] = 0, i.e., nodes from different in-
terfaces will not be interpolated from each other. The preliminary sets of
strong connections Si,T

h can then be computed using the matrix K̃s instead
of Kh in Equations (5.7) and (5.8).

2. The second step exploits the ordering of the communication groups by sub-
sequently performing a local coarsening on the active nodes ωa (see “step
two” in the routine PARCOARSE in Algorithm 12). It has to be guaran-
teed that the decomposition of interface nodes into coarse and fine nodes is
coherent over all processes of the respective communication group. There-
fore, the coarsening is carried out only on Σk’s root process, the result is
broadcasted to the waiting group, which then proceeds with its coarsening
while respecting the marked coarse nodes ωm. The coarsening parts are
handled by the routine COARSEP (see Algorithm 13), which is derived
from the sequential coarsening routine from Algorithm 10. The sequential
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Algorithm 12 : PARCOARSE:({Si,T
h },ωC,s,ωF,s)→ ({Si,T

h },ωC,s,ωF,s)
Determine communication groups [Σk]k=1,...,ncs

, ωC,s ← /0, ωF,s ← /0.
for all k = 1, . . . ,ncs do

/* Step two */
Determine ωa,ωv and ωg

if s ==ROOT(Σk) then
(ωC,s,ωF,s)← COARSEP({Si,T

h },ωa,ωa,ωv,ωC,s,ωF,s)
ωm ← ωC,s∩ωa

end if
ωm ⇐ BROADCAST(Σk,ωm)
if s �=ROOT(Σk) then

(ωC,s,ωF,s)← COARSEP ({Si,T
h },ωm,ωa,ωv,ωC,s,ωF,s)

end if
/* Step three */
for all i ∈ ωa do

if i ∈ ωF,s then
Si,T

h ← Si,T
h ∩ (ωa∪ωg)

else
Si,T

h ← Si,T
h ∩ (ωa∪ωv)

end if
end for

end for

routine is contained in the parallel one via the call

(ωC,ωF)← COARSEP({Si,T
h },ωh,ωh,ωh,ωC,ωF) ,

with ωC = ωF = /0 as initial parameters.

3. Step three (see Algorithm 12) restricts the strong connections with regard
to the prolongation such that no fine node from the active set has connec-
tions to the visible nodes. Fine interface nodes are thus only allowed to be
interpolated from neighboring coarse nodes from the same interface and
not from inner nodes.

Parallel smoothing

Finally, the parallel smoother in Algorithm 11 requires communication and has
to be adapted appropriately. A Gauss-Seidel smoother for the inner nodes and
an ω-Jacobi smoother for the interface nodes was used. The ω-Jacobi-smoother
involves a vector conversion from distributed to accumulated type, i.e., one next
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Algorithm 13 : COARSEP:({Si,T
h },ωm,ωa,ωv,ωC,ωF)→ (ωC,ωF)

while ωC ∪ωF �⊇ ωa do
i← PICK({Sk,T

h },ωm \ (ωC ∪ωF),ωF)
if |Si,T

h |+ |Si,T
h ∩ωF |= 0 then

ωF ← ωF ∪ (ωa \ωC)
else
ωC ← ωC ∪{i}
ωF ← ωF ∪

(
(Si,T

h \ωC)∩ (ωa∪ωv)
)

end if
end while

neighbor communication across interfaces is required per smoothing step. The
exact algorithm for the parallel smoother can be found in Haase [87, Alg.6.10].

5.5 Numerical studies on multiple processors

Parallel solver performance studies were carried out for the Models 1 and 2 of
Table 4.1 with isotropic and 1:10 anisotropic layers skull and WM.

5.5.1 Data partitioning

The FE meshes were partitioned into 2, 4, 6, 8, 10 and 12 subdomains for parallel
computations. For the balanced k-way partitioning (Section 5.4.1), no weighting
of the graphs edges (the finite elements), e.g., with regard to jumping conductivi-
ties between elements at tissue-boundaries, was carried out. The partitioning pro-
cess thus only exploited the pure mesh geometry, not the conductivity labels. The
software package METIS [117] was used for data partitioning. The results were
achieved in a few seconds on a single processor. A first examination of the par-
titioning results was carried out by means of zooming, rotating, translating, scal-
ing, and applying explosion factors, using the visualization tool PMVIS [176].
Figure 5.5 shows the partitioned geometries of the tetrahedra and the nodeshifted
hexahedra models. Later, the number of interface and inner nodes and the number
of elements were controlled during the parallel computations (see Figure 5.8). In
all cases, the quality of the partitioning results was very satisfactory.

5.5.2 Comparison of parallel preconditioners

On multiple processors, the parallel AMG-CG was compared with the parallel
Jacobi-CG. Most parameter settings were already discussed in Section 5.3. For



134 CHAPTER 5. EFFICIENT FE SOLVER METHODS

Figure 5.5: Realistic FE head models partitioned with METIS and visualized with
PMVIS: Top row: Model 1 from Table 4.1, partitioned for 4 processors (left) and
for 12 processors (right). Bottom row: Model 2 from Table 4.1, partitioned for 2
processors (left) and for 12 processors (right).

the tetrahedra models, the factorization in Algorithm 11 was carried out, if the
size of the coarsest grid (COARSEGRID) in the preconditioner-setup was below
800. The influence of the coarse grid size towards the solver times was observed
to be small, when, e.g., increasing from 800 to 1000, the value, chosen for the
cube models. Pattern condition (5.11) was respected during the coarsening and
the construction of the prolongation operator, using the three-step algorithm pre-
sented in Section 5.4.3. The parallel solver process was stopped after the ith

iteration if the relative error in the controllable KhC
−1
h Kh-energy norm was below

ε= 10−8, i.e.,
〈wi, ri〉
〈w0, r0〉 ≤ ε2.

The process of determining the index set (5.10) for each node and scattering
the data to the processors, both of which are carried out by the root processor,
and the local arrangement of nodes to groups according to their index-set and
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Figure 5.6: SGI ORIGIN: Wall clock times from 1 to 12 processors for the solver
part of the parallel AMG(ζ)-CG (for ζ see (5.6)) compared to the parallel Jacobi-
CG up to an accuracy of 10−8 for the isotropic (left) and the anisotropic (right)
Model 1 (top row) and Model 2 (bottom row) from Table 4.1. The numbers of
iterations are shown over the curves.

the allocation of corresponding communicator groups takes about half a minute.
The accumulation of the geometry matrix Ks on 1 processor took about 225 s,
parallelized on 12 processors a local matrix generation time of 19 s and thus a
speed-up of about 12 was achieved (the times were nearly identical for all four
models). The setup of the AMG on 1 processor took about 39 s for the tetrahedra
and 135 s for the cube models, parallelized on 12 processors about 8 s and 30 s,
resp.. The above computation times can be neglected with regard to the inverse
problem since these processes have to be performed only once per head geometry.

Figure 5.6 shows the wall clock time of the parallel AMG(ζ)-CG solver (for ζ
see (5.6)) compared to the parallel Jacobi-CG. The number of iterations for both
solver methods, necessary for the required accuracy, is shown over the curves. If
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Isotropic tetrahedra model
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1:10 Anisotropic tetrahedra model
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Isotropic nodeshifted 2mm cube model
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1:10 Anisotropic nodeshifted 2mm

cube model
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Figure 5.7: SGI ORIGIN: Speed-up results from 1 to 12 processors for the
isotropic (left) and the anisotropic (right) Model 1 (top row) and Model 2 (bottom
row) from Table 4.1.

the Jacobi-CG on one processor, which can be seen as the standard solver method
in FE-based EEG/MEG source reconstruction, is taken as the reference, using
361 s for the 1:10 anisotropic Model 1, then the parallel AMG-CG method on 12
processors, using 3.8 s, was a factor of about 95 faster (9.3 through MG precon-
ditioning and 10.2 through parallelization on 12 processors). For the anisotropic
nodeshifted cube model, the Jacobi-CG on one processor needed 1231 s, while
the parallel AMG-CG on 12 processors only 10.3 s. This is a factor of even
119 (10.9 through MG preconditioning and 10.9 through parallelization on 12
processors).

The speed-up results from 1 to 12 processors are shown in Figure 5.7. The
matrix generation is purely local and gives the reference curve for the quasi op-
timal speed-up. This curve can also be seen as an indicator for the quality of
the mesh partitioning, described in Section 5.5.1. The speed-ups for the parallel
AMG-CG solver, for one iteration of this solver and for the parallel Jacobi-CG
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Figure 5.8: Relation interface nodes to all nodes (interface plus inner nodes) on
the five levels of the AMG, exemplarily for the decompositions for 2, 6 and 12
processors for the anisotropic Model 1 (left) and the anisotropic Model 2 (right)
from Table 4.1.

solver are compared for all four head models. Nearly linear speed-ups for AMG-
CG can be observed in the figure.

The quality of the smoother, the coarse grids and the prolongation matrices
depend on the mesh partitioning and a strongly increasing number of interface-
nodes would spoil the preconditioning effect. Therefore, it is interesting to have
a look at the relation of interface nodes to all nodes (interface plus inner nodes)
on the different levels of the AMG. Figure 5.8 shows these relations exemplar-
ily for 2, 6 and 12 processors for the anisotropic models. For the anisotropic
tetrahedra model, the decomposition into two domains led to 3084 and thus 2%
interface nodes on the finest level. On the 4th level (there is no more smoothing
and restriction on the coarsest level), 120 out of 1022 nodes were interface nodes
and thus a percentage of 12%. On 12 processors, 12462 and thus 8% were inter-
face nodes on the finest level and on the fourth level, 443 out of 1066, i.e., 42%.
For the anisotropic nodeshifted cube model and for both corresponding isotropic
models (not shown), about the same percentages of interface nodes to all nodes
were observed.

The parallel AMG-preconditioner takes conductivity inhomogeneity and an-
isotropy into account, while the parallel Jacobi-CG mainly ignores anisotropy.
This could be one reason for the fact that, in the anisotropic case, the AMG is
still a stable preconditioner and the large difference in the preconditioning effect



138 CHAPTER 5. EFFICIENT FE SOLVER METHODS

between AMG and Jacobi remains. Nevertheless, in Section 5.3, it was found
that a factor 1.3 more iterations were needed for the anisotropic cube model than
for the corresponding isotropic volume conductor. With 967 to 923 iterations
(Jacobi-CG, one processor), the inverse can now be observed for the tetrahedra
model. Fewer iterations are needed for the anisotropic model. It can thus be
concluded from the small difference in the condition numbers between isotropic
and anisotropic models in Table 5.1 and from the observed solver results that the
iteration count differences are only of an order O(1). It thus seems that realistic
conductivity anisotropy with a ratio of up to 1:10 does not spoil the convergence
behavior of both solvers. Nevertheless, it may be, that this is only the case for the
AMG preconditioner since it deals with the inhomogeneity and anisotropy during
coarsening and set up of the interpolation operators.

5.6 Summary and Conclusions

High resolution FE head modeling allows the inclusion of head tissue conducti-
vity inhomogeneities and anisotropies. The bottleneck for a broader application
of FE modeling in EEG/MEG source reconstruction is the time for solving the
large linear equation system with hundreds or even thousands of different right
hand sides arising from the FE discretization. Within this chapter, an efficient
and memory-economical way was presented to face this problem. Very short cal-
culation times were achieved through the combination of AMG preconditioning
techniques and the parallelization on distributed memory platforms.

On one processor, AMG-, IC- and Jacobi-preconditioners were compared.
For the class of IC-preconditioners, a variant without fill-in, the IC0, and a thre-
shold-based ILDLT method were tested, where the latter allows fill-in during pre-
conditioner construction. From relative residuals of 10−4 up to 10−8, the AMG-
preconditioned CG method was the fastest for all tested models. For the 2mm
nodeshifted cube model and for a relative residual of 10−8, it was a factor 2.5
times faster than the class of IC-preconditioned CG methods for both the isotropic
and the 1:10 anisotropic model. It was faster by a factor of 8.5 in the isotropic
and a factor of 11 in the anisotropic model than the Jacobi-preconditioned-CG
method. Because of the loss of digits for the potential from the source to the
electrodes, the interesting residuals begin at about 10−6. As will be seen in
Chapter 7.3.2, the accurate reconstruction of multiple dipolar sources can even
necessitate relative residuals of about 10−10.

On multiple processors, the parallel AMG-CG was compared with the par-
allel Jacobi-CG. If the Jacobi-CG on a single processor is taken as a reference,
a speed-up of 95 was achieved for a realistically shaped high resolution 1:10
anisotropic tetrahedra head model with 118299 nodes when comparing to the
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parallel AMG-CG on 12 processors, 9.3 through multigrid preconditioning and
10.2 through parallelization on 12 processors. The factor for the realistically
shaped high resolution 1:10 anisotropic cube model with 325384 nodes was even
119, 10.9 through multigrid preconditioning and 10.9 through parallelization on
12 processors. On 12 processors, the parallel AMG-CG was a factor 7.4 faster
than the parallel Jacobi-CG for the tetrahedra model and a factor 8.9 for the cube
model. The required relative solution accuracy was 10−8. For a solution accu-
racy of 10−6 with respect to the limitations within the inverse problem (e.g. data
noise), factors in the same range were found.

The solver process was shown to be stable with respect to realistic tissue
anisotropy. The partitioning of the dual graph of a convex head geometry gen-
erally leads to a relatively large percentage of interface nodes. Nevertheless,
for the examined moderate processor numbers between 1 and 12, the AMG-
preconditioner was found to be stable, i.e., a sensible increase of the number
of subdomains did not result in a deterioration of the AMG-preconditioner and
thus an increasing need for iterations. It was shown that the latter is true both
for the isotropic and for the anisotropic models. Nevertheless, in our application,
the parallel AMG-CG solver process for single right-hand-sides does not show
superlinear speed-ups as reported by Haase et al. [88] for a Poisson equation on
the geometry of a simplified crank shaft. This is because the partitioning of the
long and thin crank shaft only leads to very few interface nodes, the communi-
cation need is thus lower and superlinear speed-ups result from a more efficient
use of the cache memories since the local problem size decreases with increasing
number of subdomains. However, for our application superlinear speed-ups will
finally be achieved through a simultaneous treatment of a moderate number of
right-hand-sides within a single parallel AMG-CG solver process [8].

The chosen modern numerical approach in combination with high perfor-
mance computing on a parallel machine was shown to yield computation times,
which should push high resolution realistically shaped anisotropic forward mod-
eling within the EEG/MEG inverse problem into the application fields. A first
performance test of the NeuroFEM software on a Linux PC-cluster with a simple
ethernet showed acceptable parallelization speed-ups and, because of the 1 GB
processors, a strongly reduced computation time compared to the presented re-
sults on the SGI ORIGIN 2000 [61]. The presented algorithms can thus be used
on a simple (modern) PC-cluster.

The new results of this chapter have been published in Wolters et al. [261;
255; 258; 263; 262] and Fingberg et al. [61]. A further manuscript is in an
advanced state [8].
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Chapter 6

The inverse problem

6.1 Introduction

Source localization of cerebral activity with respect to the individual anatomy is
a prominent goal of EEG and MEG. The non-uniqueness of the inverse problem
implies that assumptions on the source model, as well as anatomical and physi-
ological a-priori knowledge about the source region and sometimes even results
from other techniques like fMRI [158; 175] should be taken into account to obtain
a unique solution. Different source models for continuous and discrete source pa-
rameter spaces have been proposed during the last years [230; 264; 95; 200; 161;
242; 30; 122; 191; 72; 259; 203; 204].

One possibility is the restriction to a limited number of dipoles, the focal
source model [230; 200; 161; 259]. The various spatio-temporal focal source
models differ in the manner in which they describe the time dependence of the
data. Generally, they are grouped into three classes, the unconstrained dipole
model (so-called moving dipole), dipoles with temporally fixed location (rotating
dipole) and dipoles with fixed location and fixed orientation (fixed dipole). If
only one single time “snapshot” is taken into account, the three classes merge in
a spatial dipole model, the so-called instantaneous state dipole model [264].

Another proposition is the distributed source model, where the restriction
to a limited number of focal sources is abolished. The non-uniqueness of the
resulting problem is compensated by the assumption that the dipole distribution
should be minimal with regard to a specific norm. Different norms have been
proposed, such as the L2-norm [95], leading to a smooth current distribution with
minimal source energy and the L1-norm [191; 242], which results in a more focal
distribution [72]. Most distributed source models are instantaneous models, but
newest developments show, that spatio-temporal approaches can help stabilizing
the inverse reconstruction process [202; 203; 204].

141
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This chapter begins with the definition of the EEG/MEG lead-field matrix
and the node-oriented EEG lead-field basis. Once, the lead-field is computed,
the inverse methods are provided with fast forward solutions. The reconstruc-
tion algorithms are then divided into two classes, the first class contains inverse
methods for the focal source model while the second deals with current density
reconstructions for distributed source models.

6.2 The EEG/MEG lead-field matrix for discrete param-
eter space

A physiological a-priori information about the source region (influence space)
is the assumption that the generators must be located on the folded surface of
the brain inside the cortex, ignoring white matter and deeper structures such as
basal ganglia, brain stem and cerebellum. If convolutions of the cortical sur-
face are appropriately modeled by the segmentation procedure, another addition
is the anatomical information that the generators are perpendicular to this sur-
face [143; 170]. This limitation to normally oriented dipoles is called the normal-
constraint. Because a mathematical dipole models an active source region with
a certain extent and the resolution of the inverse current reconstruction by means
of noisy EEG- or MEG-data is limited, most inverse methods are based on a
discretized influence space, represented for example by the vertices of a cortical
triangulation when using the physiological constraint. Other approaches use reg-
ular 3D discretizations of the whole brain volume. The so-called influence nodes
are the ninf vertices of the discretized influence space.

Let us introduce the denotation xi for the ith column of an arbitrary matrix X.
Since the differential equation is linear, it is possible to set up a so-called influ-
ence or lead-field matrix L∈R

m×r. A column of L is established by calculating a
forward solution at the m EEG/MEG measurement sensors for a dipole on one of
the ninf influence nodes with unit strength in one Cartesian direction. If the phys-
iological a-priori information and the normal-constraint are applied, there is only
one possible dipole direction for each influence node and thus every dipole loca-
tion i ∈ {1, . . . ,ninf} is represented by only one column in the lead-field matrix
(the column li), i.e., r = ninf. For the unconstrained case, three columns in L rep-
resent the three orthogonal unit dipoles at a specific location, i.e., r = 3ninf. Let us
assume for the latter case, that the columns of L are ordered blockwise according
to the Cartesian coordinate, i.e., the columns li, li+ninf

and li+2ninf
represent the

forward results for a unit dipole at influence node i in x, y and z direction, resp..
For an arbitrary dipole source configuration at T timepoints with dipole strength
matrix J ∈ R

r×T , the resulting simulated EEG/MEG fields, Uc ∈ R
m×T , can then
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be inexpensively calculated by
Uc = LJ.

If once, the discretization of the influence space has been fixed, the block of
the r right-hand sides for which generally a computation expensive EEG/MEG
FE forward problem has to be solved, is known. The lead-field matrix L can then
be computed using the parallel solver techniques presented in Chapter 5. The
parallel solvers can be combined with techniques for multiple right hand sides to
speed up the calculation using the fast cache memory [37; 90; 8]. The lead-field
matrix L can then be used for the whole variety of inverse reconstruction methods
which are based on the underlying influence space discretization. Note that the
interpolation techniques proposed by Yvert et al. [268] also enable the use of the
discrete lead-field matrix for inverse methods in continuous parameter space.

6.3 Node-oriented EEG lead-field basis

If all m measurement sensors are EEG electrodes, i.e., no MEG modeling is re-
quired, then the so-called node-oriented EEG lead-field basis proposed by Wein-
stein et al. [247] can be computed, which strongly reduces computational work.

Let us consider the equation system Khuh = j
h

of Section 4.7.4 with the stiff-
ness matrix Kh ∈ R

Nh×Nh as defined in (4.39), the FE solution for the electric
potential at all FE nodes, uh ∈R

Nh , and the right-hand side vector j
h
∈R

Nh as de-
fined in (4.40) (or (4.42)). If the only interest is the computation of the potentials
for an arbitrary source at the m− 1 non-reference EEG sensors, uEEG

h ∈ R
m−1,

then we can make use of the relation

uEEG
h = Ruh = RK−1

h j
h

(6.1)

for efficiently computing the node-oriented EEG lead-field basis RK−1
h ∈R

(m−1)×Nh .
Each of the m−1 rows of matrix R ∈R

(m−1)×Nh has only one non-zero entry, the
value 1.0 at the column corresponding to the FE node index for that electrode,
denoted by i in the following. Therefore, only the ith row of K−1

h , or, since K−1
h

is symmetric, its ith column, denoted by k−1
i ∈ R

Nh , is needed, which can be
computed by means of

Khk−1
i = ei ∀i ∈ {GLOBEL(1), . . . ,GLOBEL(m−1)}

with the function GLOBEL determining the global FE index i to each of the local
electrode indices, and with ei ∈R

Nh being the ith unit vector. The computation of
the EEG lead-field basis RK−1

h thus only needs m−1 instead of r fast parallel FE
forward solutions. Certain source models yield vectors j

h
with only few non-zero
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entries at known indices, e.g., the blurred dipole (4.40). The forward computation
(6.1) for such source models can thus even exploit the sparse structure of the
right-hand side vector. Note that the EEG lead-field basis can be exploited by
inverse methods in discrete and continuous parameter space.

6.4 Reconstruction of focal sources

Mosher et al. [161] showed how a common linear algebraic framework can be
formulated for the three spatio-temporal focal source models, described in the in-
troduction to this chapter. One can conclude from this formulation that measured
fields depend nonlinearly on dipole location (and, for the fixed dipole, the fixed
orientation) and linearly on dipole moment strength. Thus, after having chosen
the number of sources, nonlinear algorithms should determine their locations (and
possibly fixed orientations) and embedded linear methods their moment strength.

It is thus the goal to find an influence node location tuple q for a chosen
number of p dipoles (in practice from p = 1 up to p = 4) and the corresponding
r×T strength matrix Jq such that

H(q) = ||Uc−Ume||2F = ||LqJq−Ume||2F != min (6.2)

where the m× r matrix Lq is the overdetermined lead-field matrix (thus m > r),
corresponding to the location tuple q, the m× T matrix Ume are the noise-free
measurements (EEG/MEG) and || · ||F is the Frobenius-norm. Using the normal-
constraint, the number r of columns of Lq and rows of Jq equals the number p of
dipoles, without this constraint it is r = 3p.

The minimization task can thus be split into two problems. The first problem
is to find the dipole location tuple q which gives a good approximation of the
global minimum of H in a feasible calculation time. Second, a physiologically
and mathematically suitable model should be developed for the shape of the func-
tional graph H . Every evaluation of H for a given location tuple q contains the
construction of the corresponding lead-field matrix Lq and the subsequent deter-
mination of the dipole direction and strength matrix Jq with respect to the noise
Uε in the measured data Ume

ε = Ume + Uε.

6.4.1 A downhill simplex optimizer in continuous parameter space

Nelder and Mead’s simplex method [162], formulated as an uphill approach in
Section 2.4.3 (Algorithm 1), was described as a nonlinear optimization approach
for the maximization of the mutual information between two MR images within
the registration process. The concept of the Continuous Downhill Simplex (CDS)
method used here is quite comparable. The CDS is used for the determination of
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the nonlinear parameters for simple focal source models in continuous parame-
ter space, e.g., the continuous one dipole model (see the application in the next
chapter). Main differences to Algorithm 1 are that the ordering is reversed and a
downhill pivoting based on H instead of an uphill pivoting based on the mutual
information is carried out. Furthermore, in order to speed up the optimization,
the restriction to a Freudenthal triangulation was abolished. After each simplex
reflection, which is still constructed to conserve the volume of the simplex and
thus avoid degeneracy, the possibility of a moderate expansion in order to take
larger steps was implemented.

The CDS method generally cannot exploit the lead-field approach, discussed
in Section 6.2. For a computed source configuration q, the corresponding matrix
Lq of Equation (6.2) has to be determined during the inverse optimization by
means of FE forward computations. To alleviate the computation amount, the
mentioned lead-field interpolation techniques for inverse methods in continuous
parameter space may be used [268].

The CDS optimizer needs a-priori chosen seedpoints and, dependent on the
seed dipoles, it can converge to local minima. This was shown for brain-stem au-
ditory evoked potentials by Gerson et al. [78], where the CDS produced larger er-
rors for even a simple one dipole model. Huang et al. [109] examined a multi-start
CDS in order to imitate a global optimization technique for fitting multidipole,
spatio-temporal MEG data.

6.4.2 A simulated annealing algorithm on discretized influence space

The second presented optimization approach for the nonlinear source parameters
tries to globally minimize the cost function H in a discretized parameter space
and does not need any seedpoints. Theoretically, it would be possible to test all(

ninf

p

)
=

ninf!
(ninf−p)! p!

combinations of a choice of p source locations without repetition out of ninf influ-
ence nodes for their functional value H . In practice, this is generally not senseful
because the number of elements in the configuration space is too large and can-
not be explored exhaustively. The method of Simulated Annealing (SA) utilizes
concepts of combinatorial optimization for searching the minimum of H in ac-
ceptable time [187; 19; 30; 78; 99; 259]. It simulates the process of a slow cool-
ing (annealing) of a melted solid. If the annealing process is carried out slowly
enough, then the crystal lattice of the solid finds the most regular and stress-free
state, i.e., the state of lowest energy. If the heated solid is frozen too fast, then
it can be that only a local energy minimum is achieved and stress remains in
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Algorithm 14 SA:(H, p,MAX ∈N, tstep,TOL ∈ R)→ qopt

DETERMINE tstart CHOOSE qutd, dutd = dopt = BIGNUM, t = tstart, nsum = 0
while ((dutd > TOL)∧ (nsum < MAX)) do

ncount = naccept = 0
while

(
(naccept < ninf)∧ (ncount < 10∗ninf)

)
do

qtmp = RANDOM(qutd), ncount = ncount + 1
dtmp = H(qtmp)
if dtmp < dopt then

qopt = qtmp, dopt = dtmp

end if
if dif = (dtmp−dutd) > 0 then

a = RANDOM([0,1]) /* Metropolis */
if e−dif/t > a then

qutd = qtmp, dutd = dtmp, naccept = naccept + 1
end if

else
qutd = qtmp, dutd = dtmp, naccept = naccept + 1

end if
end while
t = t− tstep,nsum = nsum + ncount

end while

the crystal lattice. Analogous to the described annealing, the final state of the
SA is determined by control parameters in the minimization algorithm. If the
cooling is slow enough, the global minimum of the considered process will be
found [112]. At high temperatures, the atomic mobility of the solid and therefore
the probability of a displacement is increased. The mobility is lost proportionally
to the cooling. In the minimization algorithm, this process is simulated with the
Metropolis-criterion [159].

The transfer of the SA algorithm into the application field of the focal in-
verse source reconstruction is shown in Algorithm 14, following Beckmann [19].
Within the inner loop, one source location of the up-to-date combination qutd

is randomly changed by the function RANDOM and saved in qtmp, the tempo-
rary source combination. The functional H is then evaluated for the temporary
sources. If the residual dtmp is smaller than the current optimum, dopt, then the
sources are saved as the new optimal combination together with its discrepancy
to the data. The temporary combination becomes the up-to-date one, if its defect
to the data is smaller than dutd. Especially for the case of high system tempera-
ture, also a deterioration with regard to the defect is accepted. The coupling of
the acceptance of a less favored source configuration to the temperature of the
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system is controlled by the Metropolis criterion. If the criterion is fulfilled, the
less-favored source configuration becomes the up-to-date one. The starting high
temperature results in a high probability of accepting a less favored configuration
in order not to get stuck in a local extremum. The temperature is decreased by
means of tstep, if either the number of accepted configurations, naccept, reaches the
number of influence nodes, or the number of all tested source tuples, ncount, gets
larger than many times the number of ninf. At the beginning of the algorithm,
the starting temperature has to be determined. Therefore, an initial value for tstart

is chosen and this value is increased during initial SA iterations as long as the
condition naccept/ncount < 0.99 is true. The algorithm thus adapts itself to the size
of the influence space and, concerning the starting temperature, to the different
scaling of EEG and MEG data. SA is terminated, if either the defect is falling
under a given tolerance or a maximum of source configurations has been tested.

6.4.3 Determination of the linear parameters

Assuming that a dipole location tuple q has been proposed, the problem (6.2) with
noisy data Ume

ε should then be solved in order to compute the dipole strengths.
Linear least square methods have to yield the “best” (will be defined) fit between
measured and simulated fields. Refer to Zeidler [270, Chapter 37] or Lawson
and Hansen [136] for a survey. If dipole components are proposed which “nu-
merically” (nearly) project into the data null space, the corresponding lead-field
matrix becomes ill-conditioned. In combination with noisy data, simple least
square algorithms such as the generalized inverse can yield physiologically un-
explainable results for dipole moment strengths, especially when overestimating
the number of active sources. This problem can be alleviated with dipole fit reg-
ularization methods as shown in the following.

Singular Value Decomposition and Generalized Inverse

The first three presented methods to solve the linear least square problem (6.2) do
not take the noise in the measured data into account. They are based on different
decompositions of the overdetermined m× r (m > r) lead-field matrix Lq. The
first two methods, the QR decomposition and the Complete Orthogonal Factor-
ization (COF), are discussed in Appendix C. The third strategy is based on the
Singular Value Decomposition (SVD) of the lead-field matrix

Lq = VSWtr = (v1, . . . ,vm)
(

Σ
0m−r

)
(w1, . . . ,wr)

tr

with the orthogonal m×m matrix V, the m×r matrix S with Σ= DIAG(ς1, . . .ςr)
and the orthogonal r× r matrix W [250]. ς2

i ∈R are the eigenvalues and vi ∈ R
m
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the eigenvectors of LqLtr
q and ς2

i the eigenvalues and wi ∈ R
r the eigenvectors of

Ltr
q Lq. Furthermore, it is

Lqwi = ςivi i = 1, . . . ,r, (6.3)

and

vtr
i Lq = ςiw

tr
i , i = 1, . . . ,r,

vtr
i Lq = (0r)tr , i = r + 1, . . . ,m.

Thus, the space spanned by {v1, . . . ,vr} is called the column space and
span{vr+1, . . . ,vm} is the so-called left null space of Lq. The singular values ςi

are automatically arranged by the SVD such that ς1 ≥ ς2 ≥ . . . ≥ ςr > 0, if full
rank of Lq has been assumed. In practice, the right singular vectors wi and the
left singular vectors vi are both arranged with increasing spatial frequency. In
vector notation, the SVD can be written in the form

Lq j
q
=

r

∑
i=1

ςi( j
q
,wi)vi.

Without respect to the noise in the data and using the above SVD, the least
square problem (6.2) can be solved by means of the generalized inverse of the
lead-field matrix, in matrix form

L+
q Ume

ε =
(
Ltr

q Lq
)−1

Ltr
q Ume

ε = WS+VtrUme
ε

= (w1, . . . ,wr)
(
Σ−1 0

)
(v1, . . . ,vm)tr Ume

ε ,

or, in vector notation,

L+
q ume

ε =
r

∑
i=1

1
ςi

(ume + uε,vi)wi. (6.4)

As with the QR and the COF decomposition (see Appendix C), the only goal
of the generalized inverse is to minimize the residual variance to the noisy data.
Non-regularized dipole fit methods use this algorithm to solve the linear least
square problems embedded in the nonlinear optimization process.

Note the following as an additional remark. With Vr := (v1, . . . ,vr) ∈ R
m×r,

the matrix PL := LqL+
q ∈ R

m×m projects data u ∈ R
m onto the column space of

Lq,

PLu = LqL+
q u

(6.4)
= Lq

r

∑
i=1

1
ςi

(u,vi)wi
(6.3)
=

r

∑
i=1

(u,vi)vi = VrV
tr
r u.



6.4. RECONSTRUCTION OF FOCAL SOURCES 149

Mosher et al. [161] presented an efficient form of calculating H(q), which is
based on an SVD of the data matrix Ume

ε = VuSuWtr
u (orthogonal Vu ∈ R

m×m,
Su ∈ R

m×T and orthogonal Wu ∈R
T×T ):

H(q) = ||Ume
ε −Lq(L+

q Ume
ε )||2F = ||Ume

ε ||2F −||PLUme
ε ||2F

= ||VuSuWtr
u ||2F −||VrV

tr
r VuSuWtr

u ||2F = ||Su||2F −||Vtr
r VuSu||2F

Orthogonal matrices were dropped in the derivation since they preserve the Fro-
benius-norm. When using SVD-versions of the lead-field matrix, in which only
the left singular vectors Vr are iteratively calculated and when r is small rela-
tive to m, this procedure of calculating H(q) will outperform methods based on
noniterative QR-decompositions.

Truncated singular value decomposition

In practice, Lq often suffers from large condition numbers cond2(Lq) = ς1
ςr

during
the SA-optimization process. Thus, the singular values, ςi, get very small and the
high spatial frequency components of the noise in the data in Equation (6.4) can
be extremely amplified. This has an effect on those spatial dipole components,
which “numerically” (nearly) lie in the kernel of Lq. It can lead to source config-
urations, where dipoles with a large strength nearly cancel each other with regard
to their surface field distribution and only explain noise (for both EEG and MEG
inverse problem), the so-called ghost sources. When considering the MEG in-
verse problem, radial dipoles are such ghosts and they can get a big strength only
to explain MEG noise. Both problems especially appear if the number of active
sources is overestimated. The problem can be alleviated with a regularization Tλ
of the generalized inverse

jλ
q

= Tλume
ε :=

r

∑
i=1

1
ςi

Fλ(ςi)(ume
ε ,vi)wi,

where Fλ is called a filter, as described by Louis [145].
The choice of

Fλ(ς) =
ς2

ς2 +λ2

leads to the so-called Tikhonov-Phillips regularization, where the high spatial
frequency components in the source space, strongly influenced by the noise in
the data space, are attenuated. As discussed with more detail in Section 6.5.1,
Tikhonov-Phillips regularization amounts to minimizing the functional

||Lq j
q
−ume

ε ||22 +λ2|| j
q
||22,
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or, in equivalent denotation,

||L̄q j
q
− ūme

ε ||22

with

L̄q =
(

Lq

λ Idr

)
and ūme

ε =
(

ume
ε

0r

)
.

As shown by Hämmerlin and Hoffmann [98], the condition number of the Tikhonov
regularized least square problem is then ameliorated to

cond2(L̄q) =

√
ς2

1 +λ2

ς2
r +λ2 ,

This regularization concept for nonlinear dipole fit methods has recently been ap-
plied to source localization by Fuchs et al. [73].

Another way is to choose the filter

Fλ(ς) =
{

1, if ς≥ λ
0, if ς< λ

,

leading to a regularization called the Truncated Singular Value Decomposition
(TSVD), which was proposed for source localization by Wolters et al. [256]. This
algorithm is simple to implement and has the effect of a lowpass filter. The high
spatial frequency components of the data, ςi(·,wi)vi, are lying below the noise
level and as a consequence, the high spatial frequency components in the source
space cannot be reconstructed. Using regularization, information will be lost but
otherwise the amplification of the high frequency data components would have a
more negative effect on the solution, especially in combination with an overes-
timation of the number of active sources. Like Tikhonov-Phillips regularization,
the TSVD ameliorates the condition of the problem.

The SA-TSVD algorithm, published in Wolters et al. [260; 259] and de-
scribed in the following, is an iterative procedure. In every step of the SA op-
timization, Lq is changing and thus the condition of the least square problem.
Therefore, an automatic determination of the regularization parameter λ is es-
sential. One possibility is provided by the so-called discrepancy principle (see,
e.g., the overview article of Hanke and Hansen [100]) where the defect d to the
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measured data

d := ||(I−LqTλ)ume
ε ||22 = ||ume

ε −
r

∑
i=1

Fλ(ςi)(ume
ε ,vi)vi||22

= ||ume
ε ||22−

r

∑
i=1

Fλ(ςi)|(ume
ε ,vi)|2

TSVD= ||ume
ε ||22− ∑

ςi>λ

|(ume
ε ,vi)|2

is not only minimized, but chosen in dependence of the condition number of Lq

and of the noise uε in the data.
Let C be the m×m sample noise covariance matrix, determined e.g. from the

signal-free pre-stimulus interval of the measurements, averaged over all epochs.
This matrix reflects the spatial distribution and correlation of the measurement
noise. C is a symmetric and positive definite matrix, which can be decomposed
into C = DDtr by means of a singular value decomposition. If the noise statistics
are known, i.e., if the number of epochs is sufficiently high in order to obtain a
good estimate of the noise covariance matrix, the process of data pre-whitening
can be used, as described by Knösche et al. [123]. Thus, we can restrict the theory
to spatially uncorrelated noise where D is a diagonal weighting matrix.

If we consider only one time point and Gaussian distributed and heteroscedas-
tic (different in each channel) noise with zero mean, every channel i should be
weighted according to its own noise standard deviation εi = |(uε)[i] | using the
diagonal weighting matrix D−1 with entries 1/εi. We thus get the weighted least
square problem

Hw(q) = ||Lq j
q
−ume

ε ||2C−1 = ||D−1(Lq j
q
−ume

ε )||22 != min,

the weighted regularized inverse

jw
λ

= T w
λ D−1ume

ε :=
r

∑
i=1

1
ςw

i
Fλ(ςw

i )(D−1ume
ε ,vw

i )ww
i ,

where {ςw
i ,vw

i ,ww
i } is the singular system of the weighted lead-field matrix D−1Lq

and the weighted defect

dw = ||(I−D−1LqT w
λ

)
D−1ume

ε ||22 TSVD= ||D−1ume
ε ||22− ∑

ςw
i >λ

|(D−1ume
ε ,vw

i )|2.

The instantaneous state (T = 1, αi is a scalar) TSVD regularization procedure
with so-called a-posteriori regularization parameter choice [145; 147], exploiting
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Algorithm 15 TSVD:(R)→ d

jw
λ

= 0, i = 0, d̄ = ‖D−1ume
ε ‖2

2

Compute {ςw
i ,vw

i ,ww
i }= SVD(D−1Lq)

while (i≤ r)∧ (d̄ > R2) do
i = i+ 1
αi = (vw

i )trD−1ume
ε

jw
λ

= jw
λ

+ 1
ςw

i
ww

i αi, d̄ = d̄−αtr
i αi

end while
d = d̄

the discrepancy principle, is presented in Algorithm 15. Within this algorithm,
the regularization parameter is coded by the free parameter R. The TSVD can be
shown to be an order optimal regularization procedure [226; 145]. The larger R
is chosen, the stronger the regularization will be. Because of the small number r
of source components, good experience has been made with a choice of R = 1.0.

The extension of the SA-TSVD to spatio-temporal modeling (T > 1) is straight-
forward for the moving and for the rotating dipole model. In these cases, αi is the
1×T vector

αi = (vw
i )trD−1Ume

ε ,

1
ςw

i
ww

i αi is an r× T matrix and the euclidian norm should be exchanged for the
Frobenius-norm. The SA-TSVD can also simply be applied to the approximate
approach of the fixed dipole model, described by Mosher et al. [161]. In this
approach, the dipole strengths for each dipole location tuple q are initially calcu-
lated under the assumption of rotating orientations. After that, the orientations are
fixed by SVD’s of the 3×T submatrices Ji in Jq = (J1, . . . ,Jp)

tr, which describe
the strengths in the three unit directions of every dipole. The fixed orientations
are defined as the first left singular vectors of the submatrices Ji. The appeal
for this approximate approach lies in the reduced computational effort. A com-
putationally more intensive implementation for the fixed dipole model could be
the embedding of a projected gradient method or a penalty method (see, e.g.,
Zeidler [270, Chapter 46] or Polak [186]) for the determination of the two non-
linear orientation parameters into the SA-optimization process for the dipole lo-
cations and the calculation of the linear dipole strength parameters by means of
the TSVD.

6.4.4 Choosing the number of sources

An important parameter is the number p of focal sources, which is normally
unknown in advance, but which is required as an input parameter for spatio-
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temporal dipole modeling. One possibility for the determination of the num-
ber parameter was described by Mosher et al. [161]. They proposed to sepa-
rate the signal and noise subspaces and thus to visually determine the number
of source components through the drop in the magnitude of the smallest signal
eigenvalue to the greatest noise eigenvalue of the estimated spatial data covari-
ance matrix 1

(T−1)Ume
ε (Ume

ε )tr. This procedure assumes that the signals have a
sufficient strength and that they are sufficiently uncorrelated during the time in-
terval. An algorithmic way for the determination of the number parameter is
offered by information criteria, as described by Knösche et al. [123]. Under the
assumption that the measurements are noise-free and the rank of the projection or
lead-field operator is maximal (i.e. no source component projects in the data null
space), the number of non-zero eigenvalues of the data covariance matrix equals
the number of independent source components. Information criteria are based on
a statistical concept of separating the space spanned by the principal components
of the estimated data covariance matrix into a signal and a noise part.

In Wolters et al. [260; 259], a “trial and error” strategy was proposed to com-
bine the determination of the unknown number parameter with the localization
of the sources using the nonlinear dipole fit method SA in combination with the
regularization approach TSVD. It will be shown in the next chapter, that the SA-
TSVD is more stable with regard to an overestimation of the number of focal
sources. Together with the SVD of the spatio-temporal data, giving an estimate
for the minimal source number, the exact number of dipoles can better be en-
closed.

6.5 Instantaneous current density reconstructions

Current density reconstruction methods are used for the distributed source model,
where active dipolar sources are admitted at all ninf influence nodes. The data
functional for instantaneous state modeling (m× 1 measurement vector ume

ε ) is
thus given by

DATA( j) := ||D−1(L j−ume
ε )||22 = ||L̄ j− ūme

ε ||22 (6.5)

with the r×1 source strength vector j and the m× r lead-field matrix L with r =
3ninf or, if the normal-constraint can be applied, r = ninf and the m×m diagonal
weighting matrix D−1 as defined in Section 6.4.3. In order to simplify denotation,
we set L̄ = D−1L and ūme

ε = D−1ume
ε . Minimization of the data functional is an

ill-posed problem. Unknowns outnumber by far the measurements and noise
in the observations has the tendency to amplify high frequency components in
the source reconstruction result. A cure of the problem is to add an additional
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constraint for the sources by a Lagrangian multiplier:

Fν
λ ( j) := DATA( j)+λ ·MODELν( j) != min (6.6)

The index ν denotes the norm for the model term. In the following, this term
will consist of two operators. The first one is a source space regularization oper-
ator, denoted by an r× r matrix B. The second, the r× r diagonal source depth
weighting matrix W = DIAG(wi) will be discussed in Subsection 6.5.4.

In order to simplify denotations, let us introduce the Kronecker product.

Definition 6.5.1. The Kronecker product A⊗B of two matrices A ∈ R
m×n and

B ∈R
r×s is defined by means of the block-matrix

A⊗B =


a11B a12B . . . a1nB
a21B a22B . . . a2nB

...
...

...
am1B am2B . . . amnB

 ∈ R
(mr)×(ns).

6.5.1 Linear Tikhonov-Phillips regularization using the L2 norm

The model term for the linear Tikhonov-Phillips regularization is chosen as

MODEL2( j) := ‖BW j‖2
2 (6.7)

as it was first proposed for source localization by Hämäläinen et al. [95].

Theorem 6.5.2 (Tikhonov-Phillips). Let j
λ

be the solution of the regularized
normal equations, i.e.,

j
λ

= A−1b (6.8)

with
A := L̄trL̄+λWtrBtrBW ∈ R

r×r and b := L̄trūme
ε ∈ R

r,

then it is also solution of the minimization problem (6.6) in combination with the
model term (6.7).

Proof: Louis [145, Theorem 4.2.1].

The above solution is presented on a deterministic way. It can also be derived
by means of probabilistic methods from estimation theory, where the sources are
treated as random variables, being equipped with a probability distribution. In
Vauhkonen [231], e.g., the maximum a posteriori estimate (MAP) is derived by a
maximization of the posterior density with Gaussian assumptions. The solution is
identical to Equation (6.8), if the operator WtrBtrBW is interpreted as the inverse
of a source covariance matrix.
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Choice of the source space regularization operator

In the following, the source space regularization or smoothing operator is written
in the form

BtrB = Ids⊗G,

with Ids ∈R
s×s the identity matrix of rang s∈ {1,3} (s = 1 in case of the normal-

constraint, otherwise s = 3) and G ∈R
ninf×ninf . If no normal-constraint is applied,

then the formulation implies, that each of the three Cartesian dipole components
is regularized separately with the smoothing operator G, defined in the following.
The choice of

•
G = Idninf (6.9)

is denoted by the so-called discrete L2 norm approach.

•
G[i j] =

Z
Ω
ψiψ jdΩ G[i j] =

Z
ΓS

ψ̄iψ̄ jdΓS ∀i, j = 1, . . . ,ninf

for volume or cortical surface regularization, resp., is denoted by the so-
called continuous L2 norm approach. For the volume regularization, ψi are
the basis function of the finite element subspace Vh from Subsection 4.7.2,
while ψ̄i are surface basis functions for the regularization on the cortical
surface ΓS, as described by Buchner et al. [30].

•
G[i j] =

Z
Ω

gradψi gradψ jdΩ G[i j] =
Z
ΓS

grad ψ̄i grad ψ̄ jdΓS

for volume or cortical surface regularization, resp., is denoted by the so-
called continuous (gradient) L2 norm approach.

Iterative solution for the L2 norm approach

The equation system A j
λ

= b in (6.8) has an SPD system matrix A and can thus
be solved with a Jacobi-CG method, presented in Subsection 5.2.1. In the im-
plementation of the PCG method, the matrix-vector multiplication exploits the
special form of A using a tailored stepwise application of the involved matrices
so that A does not have to be compiled and stored explicitely. This reduces arith-
metic costs and memory access [30]. In order that high frequency noise will not
be amplified within the iterative solution process, one option in our implemen-
tation is the interpretation of the CG-method as a regularization approach, i.e.,
the iteration may be stopped in dependence of the noise level in the data (for a
theoretical overview see [145, §4.3.3] or [69]).
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6.5.2 L2 norm regularization in the data space

Lawson and Hanson [136] present an elegant way for solving the regularized least
squares problem (6.6) in combination with the L2 model term (6.7):

Theorem 6.5.3 (Data space regularization). Let j
λ

be computed by means of

j
λ

=
(
WtrBtrBW

)−1
L̄trĀ−1ūme

ε (6.10)

with
Ā := L̄

(
WtrBtrBW

)−1
L̄tr +λ Idm ∈ R

m×m,

then it is also solution of the minimization problem (6.6) in combination with the
model term (6.7).

Proof: If the operators of Equations (6.10) and (6.8) are equated, we get(
WtrBtrBW

)−1
L̄trĀ−1 = A−1L̄tr.

By means of multiplying this equation with Ā from the right and with A from the
left, it is easy to see that both are identical. �

The crucial point is that the dimension of the matrix to invert, Ā, is only of the
order m, while matrix A in Equation (6.8) has an order r. If the source space
regularization and depth weighting operator WtrBtrBW is chosen so that it is easy
to invert, then the above regularization in data space is computationally cheaper
than solving Equation (6.8). This is the case with the operator B, arising from the
discrete L2 norm approach (6.9). The LORETA method, proposed by Pascual-
Marqui and Michel [177], uses a discretization of the Laplace operator for B,
whose inversion is more computation expensive.

6.5.3 Nonlinear regularization by means of the L1 norm

The choice of ν = 1 in Equation (6.6) leads to the L1-norm regularization ap-
proach, introduced by Wagner et al. [242]. Here, we choose B = Ids⊗ Idninf (s = 1
in case of the normal-constraint, otherwise s = 3) and, in case of the normal-
constraint, the model term

MODEL1( j) =
ninf

∑
i=1

|wi j[i]| (6.11)

and otherwise (s = 3)

MODEL1( j) =
ninf

∑
i=1

√(
wi j[i] + wi+ninf j[i+ninf] + wi+2ninf j[i+2ninf]

)2
. (6.12)
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Iterative solution for the L1 norm approach

Since the derivative of the functional (6.6) in combination with the model term
(6.12) can easily be evaluated analytically, a nonlinear Polak-Ribiere CG method
was used for its minimization [191]. The general principle of the method was
described by Polak [186] and will be summarized in the following. If we take a
particular point j(i) as the origin of the coordinate system with coordinates j, the
functional can be approximated by means of its Taylor series

F1
λ ( j) = F1

λ ( j(i))+
r

∑
k=1

∂F1
λ ( j(i))

∂ j[k]
j[k] +

1
2

r

∑
k,l=1

∂2F1
λ ( j(i))

∂ j[k]∂ j[l]
j[k] j[l] + . . .(6.13)

≈ c− (b, j)+
1
2

jtrA j =: F̄1
λ ( j) (6.14)

with

c := F1
λ ( j(i)) ∈ R, b := −gradF1

λ | j(i) ∈R
r, A[kl] :=

∂2F1
λ

∂ j[k]∂ j[l]

∣∣∣∣∣
j(i)

∈ R
r×r.

Starting with an initial vector r0 ∈ R
r and setting s0 = r0, the CG method for

the minimization of the quadratic form F̄1
λ in (6.14), which is equivalent to the

solution of the linear equation system A j = b [93, §9.1], constructs the following
two sequences of vectors

r(i+1) = r(i)−α(i)As(i) , s(i+1) = r(i+1) +β(i)s(i) (6.15)

with

α(i) =
(r(i),s(i))
(s(i),s(i))A

, β(i) =

(
r(i+1),r(i+1)

)(
r(i),r(i)

) ,

where i (i = 0,1,2, . . .) is the iteration index. Remember therefore the PCG-Al-
gorithm 8 without preconditioning. If the Hessian matrix A were known, then
the construction (6.15) could be used to find a sequence of conjugate directions si

along which to line-minimize. It can be shown that the minimum of the quadratic
form (6.14) would be achieved on this way after maximally r iterations [93, §9.4].
Since A is not known, Fletcher-Reeves version of the CG method exploits the
following theorem:

Theorem 6.5.4. Let us suppose that r(i) =−grad F̄1
λ ( j(i)) and that we start from

j(i) and determine the local minimum, j(i+1), of F̄1
λ along the direction s(i) and

then set r(i+1) := −grad F̄1
λ ( j(i+1)). Under the above assumptions, r(i+1) (which

is now constructed without any knowledge of A) is the same vector as the one
constructed by the use of (6.15).
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Proof: Exploiting the assumption, it is r(i) = −A j(i) + b, and, with an α ∈ R

chosen so that j(i+1) = j(i) +αs(i) (use recursion (6.15) for the computation of

s(i)) is at the line minimum,

r(i+1) :=−grad F̄1
λ ( j(i+1)) =−A j(i+1) + b = r(i)−αAs(i). (6.16)

But at the line minimum, it is 0 =
(
s(i),grad F̄1

λ ( j(i+1))
)

= −(s(i),r(i+1)
)
. If this

condition is combined with Equation (6.16), the arising α is equal to α(i) from
recursion (6.15). �

In practice, the functional F1
λ in (6.13) is not a real quadratic form. Therefore,

Polak and Ribiere introduced a small change,

β(i) =
(ri+1− ri,ri+1)

(ri,ri)
,

to the above algorithm. Line minimization along the direction si by means of a
routine for initially bracketing a minimum ([187, p.400]) combined with Brent’s
method in one dimension ([187, p.404]) finally completes the Polak-Riviere CG
method ([187, p.423]).

6.5.4 Depth weighting

Three different choices for the r×r source depth weighting matrix W = DIAG(wi)
are discussed now.

• Since deeper sources can only explain measurements with a higher source
strength compared to more superficial sources, a regularization without
depth weighting, i.e. wi = 1, gives preference to superficial sources.

• If it is not clear from the experiment that superficial sources are searched
for, a depth weighting has to be carried out in order not to discriminate
deeper sources [177; 74]. The choice of

wi = ‖li‖2 ∀i = 1, . . . ,r

leads to a column-wise depth normalization.

• It is well known that radial sources in a sphere model are silent with regard
to the MEG. With the column-wise normalization, zero lead-field columns
could thus be possible, leading to a singular matrix W. Motivated by this
fact, a regularized location-wise normalization W = Ids⊗W̃ with the ninf×
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ninf diagonal matrix W̃ = DIAG(w̃i) was proposed by Fuchs et al. [74]. In
case of the normal-constraint (s = 1), the weights w̃i are chosen as

w̃i = (k2
i +β2)/ki ki = ‖li‖∞ ∀i = 1, . . . ,ninf (6.17)

and otherwise (s = 3)

w̃i = (k2
i +β2)/ki ∀i = 1, . . . ,ninf (6.18)

ki = max
j=1,...,m

{√
(l[ j]

i )2 +(l[ j]
i+ninf

)2 +(l[ j]
i+2ninf

)2

}
By means of the choice

β= max
i=1,...,ninf

ki/SNR,

the regularization was carried out with respect to the signal-to-noise ratio
SNR of the measured data.

6.5.5 Choice of the regularization parameter

Much research has been done with regard to the choice of the regularization pa-
rameter λ for the above procedures, especially for the L2 norm methods. Refer,
for example, to the overview article of Hanke and Hansen [100] and the refer-
ences therein. Most often, two cases are distinguished, the case where the vari-
ance of the noise is known in advance and the case where it is unknown. In
Section 6.4.3, the discrepancy principle was presented as a member of the first
class. For Tikhonov regularization, a second representative of the first class is the
Greferer/Raus-method, which may be seen as an improved variant of the discrep-
ancy principle [100]. If the variance of the noise is unknown, the regularization
parameter can be chosen following the quasi-optimality criterion or using the
generalized cross-validation (GCV) method [100].

Besides the discrepancy principle, the so-called L-curve criterion is used here
and will now be described. The L-curve criterion can be seen as a more heuristic
approach when comparing it to the above procedures. No convergence results
are known, but numerical experiments demonstrated that the criterion is robust
in practical applications, as reported by Hansen [101]. The L-curve criterion is
based on a graph of the model term MODELν( j) (either (6.7) for the L2 norm or
(6.11,6.12) for the L1 norm) versus the data term DATA( j) (see (6.5)) as a func-
tion of the regularization parameter λ, as presented in Figure 6.1 [187]. When
plotted in log-log scale, the graph will have a characteristic L-shaped appearance
with a steep part (almost parallel to the y-axes), a flat part (almost parallel to the
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Figure 6.1: Concept of the L-curve criterion for choosing the regularization pa-
rameter [187].

x-axes) and a “distinct” corner separating these two parts. The steep part corre-
sponds to solutions which are dominated by regularization errors, i.e., parameter
λ is chosen too large and not all the available information in the measurements
is extracted. The flat part corresponds to a solution that is dominated by pertur-
bation errors. The curve becomes almost parallel to the x-axes in the vicinity of
λ = 0, where the data part approaches its limit and high frequency components
of the measurement noise are strongly amplified into the solution vector, so that
a large model term results. The corner of the L-curve, chosen by hand within
this thesis (an automatic procedure was presented by Hanke and Hansen [100]),
thus corresponds to a good balance between minimizing data and model term and
therefore to an appropriate choice of λ.

The last presented method, the χ2 criterion, was introduced to source local-
ization by Rienäcker et al. [191]. The χ2 criterion chooses the regularization
parameter λ so that the data term is brought in its “statistical range” m±√m, i.e.,

DATA( j) != m

(m the number of measurement sensors).
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6.6 Spatio-temporal current density reconstructions

Only the a-priori assumption of spatial smoothness of the current distribution
within the brain was used for the above regularization procedures. A second
physiologically meaningful assumption is the temporal smoothness property of
the current density reconstruction, which is now considered additionally.

Let us introduce the spatio-temporal regularization problem in a more general
form. With Yme denoting the m×T matrix of measurement data (y

i
the vector of

measurements at timepoint ti and y := (ytr
1
, . . . ,ytr

T
)tr ∈ R

mT ), X the r×T matrix
with the properties of the investigated object that we are searching for and W an
r× r diagonal depth weighting matrix, we define the (generally time-dependent)
m× r matrix Ai at timepoint ti as the operator, which maps the property vector
xi onto the observation vector y

i
. The spatio-temporal regularization problem is

then given by the minimization problem

Fλ,µ(X) :=
T

∑
i=1

||Aixi− y
i
||22 +λ2

T

∑
i=1

‖Wxi‖2
2 + µ2

T−1

∑
i=1

‖Wxi+1−Wxi‖2
2

(ti+1− ti)2 →min,

and, if we substitute x̂i := Wxi, by

Fλ,µ(X̂) :=
T

∑
i=1

||Ãix̂i− y
i
||22 +λ2

T

∑
i=1

‖x̂i‖2
2 + µ2

T−1

∑
i=1

‖x̂i+1− x̂i‖2
2

(ti+1− ti)2 →min (6.19)

with Ãi = AiW−1. The µ penalty term models the temporal smoothness of the
problem. The extreme cases µ = 0 and µ→ ∞ can thus be interpreted as regula-
rizations of the temporally uncoupled and static problem, resp..

6.6.1 A deterministic approach

Let us consider problem (6.19) and let us define the block diagonal matrix

Ã := DIAG
(
Ã1, . . . ,ÃT

) ∈ R
(mT )×(rT) (6.20)

and the temporal regularization operator

D :=


1

t2−t1
− 1

t2−t1
1

t3−t2
− 1

t3−t2
. . . . . .

1
tT−tT−1

− 1
tT−tT−1

 ∈ R
(T−1)×T . (6.21)

Remember the Definition 6.5.1 of the Kronecker product of two matrices. An
efficient method for solving the minimization problem (6.19) is then presented in
Algorithm 16, which can be derived on a deterministic way, as shown by Schmitt
and Louis [203; 202].
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Algorithm 16 STR:(y,λ,µ)→ X

(i) Compute Q ∈ R
(T−1)×(T−1) and R ∈ R

T×T (D from (6.21))

Q =
(

DDtr +
λ2

µ2 IdT−1
)−1

R = IdT −DtrQD

(ii) With Ã from (6.20), define the block matrix C ∈ R
(mT)×(mT ) as

C := Ã
(
R⊗ IdrT) Ãtr

(iii) Solve for v = (vtr
1 , . . . ,vtr

T )tr ∈ R
mT(

C +λ2 IdmT)v = y

(iv) Finally, ∀i = 1, . . . ,T , compute the ith column vector of matrix X ∈R
r×T

xi = W−1
T

∑
j=1

R[i j]Ãtr
j v j

6.6.2 Estimation theoretical approaches

The so-called Kalman-filters and smoothers are spatio-temporal regularization
approaches, which are derived using methods from estimation theory. Kalman-
filters estimate x̂i by means of only the current and past observations, {y

1
, . . . ,y

i
},

while a Kalman-smoother exploits the whole measurement interval, {y
1
, . . . ,y

T
}.

It will be renounced here to deeper present the underlying estimation theoretical
methodology. For an introduction to the theory of Kalman-filters, see Melsa and
Cohn [157], for Kalman-smoothers, refer to Grewal and Andrews [84]. Since
the Kalman filtering estimates are based on the current and past observations
only, slight delays are often induced in the reconstruction results for dynamic
processes, while this problem is less distinct when using a Kalman-smoother, as
shown by Kaipio et al. [116].

6.6.3 Applications of dynamic inverse problems

The application of Algorithm 16 to two different problems, namely spatio-temporal
current density reconstructions and dynamic electrical impedance tomography,
will be shortly described now. For more details, refer to Schmitt et al. [204].
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Algorithm 17 STR-C:(Ume,λ,µ)→ J
(i) Calculate Q and R as in Algorithm 16.
(ii) Solve the generalized Sylvester equation for V ∈ R

m×T(
L̃L̃tr)VR +λ2V = Ume

(iii) Compute the current density matrix J ∈ R
r×T

J = W−1L̃trVR

Spatio-temporal current density reconstruction

For spatio-temporal current density reconstructions, matrix Yme consists of the
measured spatio-temporal EEG/MEG data, i.e., Ume, X consists of the spatio-
temporal current density reconstructions, i.e., J, and W is the diagonal source
strength depth weighting matrix as defined in Section 6.5.4. Matrix Ai is re-
placed by the lead-field matrix L, which is independent of the time, so that C in
Algorithm 16 simplifies to C = R⊗ L̃L̃tr with L̃ := LW−1 ∈ R

m×r. As shown by
Schmitt and Louis [203; 202], Algorithm 16 can then be transformed to Algo-
rithm 17. The Sylvester type equation in this algorithm can be efficiently solved
by methods proposed by Gardiner et al. [76].

In Schmitt et al. [204], we compared the reconstruction results of Algo-
rithm 17 with the reconstructions of the temporally uncoupled linear Tikhonov-
Phillips regularization from Section 6.5.1 with the discrete regularization opera-
tor (6.9). For two dipoles with smooth activation curves in a very simple volume
conductor model, Algorithm 17 resulted in a reconstruction with smaller local-
ization error and a more exact activation curve. We concluded, that the a-priori
information of temporal smoothness leads to higher robustness against noise in
the data.

Dynamic electrical impedance tomography

A second application of Algorithm 16 can be found in the field of dynamic Elec-
trical Impedance Tomography (dyn-EIT) [212; 231; 234; 232; 233; 116; 235;
204; 146]. EIT tries to reconstruct a conductivity distribution inside a given
object by means of injecting currents and measuring resultant potentials at the
objects surface. It may be difficult for EIT to reconstruct the anisotropic con-
ductivity distribution within the WM compartment with the necessary resolu-
tion, since the low-conducting closed skull compartment poses a big problem.
Nevertheless, the method may help in reducing systematic errors in the EEG
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inverse problem [80], in determining conductivity inhomogeneities of the skull
layer [174; 173] and may also be useful in better estimating the WM conductivity
tensor eigenvalues, while exploiting the eigenvectors as an a-priori information,
measured by DT-MRI [213].

We consider the so-called complete electrode model

div(σgrad u) = 0 in ΩZ
el

σ
∂u
∂n

dΓ = Il l = 1, . . . ,L(
u+ zlσ

∂u
∂n

)∣∣∣∣
el

= Ul l = 1, . . . ,L

σ
∂u
∂n

∣∣∣∣
Γ\∪L

l=1el

= 0

with zl the effective contact impedance between the lth electrode el and tissue, Il

the injected current at el and Ul the measured voltage at this electrode. As shown
by Somersalo et al. [212], the conditions ∑l Il = 0 and ∑l Ul = 0 ensure existence
and uniqueness of the solution and the complete electrode model predicts the
measured voltages at the precision of the measurement system. In the following,
the resistivity ρ is used, which is defined as the inverse of the conductivity σ, i.e.,
ρ = 1/σ ([127, p.69]). Using variational and FE methods, a discrete determin-
istic forward model for EIT of rang Nh can be derived (an overview is given in
Vauhkonen [231]). By means of the operator

Uc : R
Nh ×R

L → R
L Uc(ρ

i
) := Uc(ρ

i
, Ii) = R(ρ

i
)Ii i = 1, . . . ,T,

with an L×L matrix R arising from the FE discretization and depending nonlin-
early on the resistivity vector ρ

i
∈R

Nh at timepoint ti, the simulated voltage vector

can be computed from the vector of injected currents at timepoint ti, Ii ∈R
L. The

operator Uc can be linearized in ρ
i
,

Uc(ρ) = Uc(ρ
i
)+ J(ρ

i
)(ρ−ρ

i
)+ o(‖ρ−ρ

i
‖),

with J(ρ
i
) denoting the L×Nh Jacobian matrix, which can be computed as de-

scribed by Vauhkonen [231, Chapter 4.1]. Using the linearization, a Gauss-
Newton type algorithm can be formulated for the dyn-EIT inverse problem [231;
202; 204]

ρk+1 = min
ρ=(ρ

1
,...,ρ

T
)

{
T

∑
i=1

||Uc(ρk
i
)+ J(ρk

i
)(ρ

i
−ρk

i
)−ume

i ||22

+ λ2
T

∑
i=1

‖ρ
i
−ρ0‖2

2 + µ2
T−1

∑
i=1

‖ρ
i+1
−ρ

i
‖2

2

(ti+1− ti)2

}
.
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The index k in this equation denotes the Gauss-Newton iteration count. The vec-
tor ρ0 = const · (1, . . . ,1)tr ∈ R

Nh can be estimated from the data [231]. The
measured voltages are denoted by the matrix Ume = (ume

1 , . . . ,ume
T ) ∈R

L×T . If we
now substitute xi := ρ

i
−ρ0, we obtain

ρk+1 = ρ0 + min
X=(x1,...,xT )

{
T

∑
i=1

||J(ρk
i
)xi−

[
ume

i + J(ρk
i
)(ρk

i
−ρ0)−Uc(ρk

i
)
]
||22

+ λ2
T

∑
i=1

‖xi‖2
2 + µ2

T−1

∑
i=1

‖xi+1− xi‖2
2

(ti+1− ti)2

}
, (6.22)

which has the form (6.19), so that Algorithm 16 can be applied.
In Schmitt et al. [204], we carried out a numerical study to test accuracy and

efficiency of the presented deterministic approach for dyn-EIT. The considered
model consisted of a two-dimensional cut through a tube with high resistive con-
tent and the dynamic process of a low-resistive “rising bubble” perpendicular to
the 2D observation plane. The results of Algorithm 16 for solving the dyn-EIT
problem (6.22) for k = 1 and k = 2, i.e., one or two Gauss-Newton iterations,
was compared with the result of a (fixed interval) Kalman-smoother estimation
theoretical approach (see Section 6.6.2). It was found that for both noiseless
and noisy data, one Gauss-Newton iteration with Algorithm 16 already yielded
slightly better reconstruction results than the Kalman-smoother, while the results
for two iterations were again enhanced. Note also that the Kalman-smoother is
more memory and computation expensive and has to be controlled by three pa-
rameters while Algorithm 16 only needs two. It should finally be annotated that
the so-called fixed-lag Kalman smoother, used by Vauhkonen et al. [235], should
be computationally more interesting than the fixed-interval smoother.

6.7 Summary and Conclusions

In this chapter, a selection of approaches to the bioelectromagnetic inverse prob-
lem was presented. After introducing the concept of the lead field matrix and
the node-oriented EEG lead field basis, algorithms were discussed that are ei-
ther based on the assumption of a limited number of pointlike sources, the focal
source model, or on the assumption of a distributed source model.

For the reconstruction of focal sources, a downhill simplex optimizer in com-
bination with methods for solving the linear least square problem was presented.
Among other conceivable applications, this procedure is especially appropriate
for reconstructing single dipolar sources in continuous parameter space. The
main focus of the section about focal inverse methods was placed on a new dipole



166 CHAPTER 6. THE INVERSE PROBLEM

fit method, the SA-TSVD, a discrete simulated annealing approach in combina-
tion with the truncated singular value decomposition for solving the embedded
linear least square problem. By means of an adjusted discrepancy principle, the
TSVD regularization is automatically controlled by the noise in the data and the
condition of the occurring least square problems. Although the singular value
decomposition of the spatio-temporal EEG/MEG data gives an estimate for the
minimal number of sources contributing to the measurements, the exact num-
ber is unknown in advance and noise complicates the reconstruction. Classical
non-regularized nonlinear dipole fit algorithms (as an example of this class the
SA-COF was presented) do not give an estimate for the correct number because
they are not stable with regard to an overestimation of this parameter. Too many
sources may only describe noise but can still attain a large magnitude during
the inverse procedure and may be indiscernible from the true sources. The SA-
TSVD annihilates this problem by better filtering ghost source components. Such
ghosts can be radial components (MEG) or components with deep dipoles (EEG
and MEG) or sources which nearly cancel each other (EEG and MEG). In the
next chapter, the superior ability of the SA-TSVD to estimate the number and
reconstruct “sure” sources will be demonstrated through simulation studies.

As the second class of inverse methods, instantaneous current density recon-
struction approaches were presented. The distributed source models were devi-
ded into L2 and L1 norm methods and various regularization operators for 3D
brain- or 2D cortical surface- regularization together with their numerical solu-
tion strategies were described. The concepts of channel and source space depth
weighting were introduced and the choice of the regularization parameter was
discussed. The instantaneous current density reconstruction methods will be used
in the next chapter.

In the last section, recently developed linear spatio-temporal regularization
approaches [203] were described, which do not only use the a-priori assumption
of spatial smoothness as the instantaneous Tikhonov-Phillips L2 norm methods,
but which additionally consider temporal smoothness properties of the underly-
ing distribution, also measured in the L2 norm. The application of the methods to
spatio-temporal current density reconstruction and, as a second application area,
to the dynamical electrical impedance tomography (dyn-EIT) showed a stabiliz-
ing effect of the additional temporal smoothness term. In dyn-EIT, the presented
method was compared to a fixed-interval Kalman smoother and was found to be
superior with respect to reconstruction accuracy and memory and computational
effort.

The new results of this chapter have been published in Wolters et al. [256;
260; 259] and Schmitt et al. [204].



Chapter 7

Sensitivity towards tissue
anisotropy

7.1 Introduction

The last chapters were concerned with the generation of realistically shaped vol-
ume conductor models, the solution of the forward problem and the theory of
various inverse methods, used in the field of EEG/MEG source reconstruction.
The gold standard for the forward approach are multi-compartment models with
isotropic conductivities within each compartment. EEG and MEG are most often
simulated by means of the BE method, while the FE approach was only rarely
used because of the large computation amount.

In spherical models of the head, some studies exist for the influence of layer
conductivity anisotropy (radial versus tangential) on forward and inverse problem
in EEG and MEG [180; 273], but especially GM and WM compartments are
only poorly represented by such a model. In realistic FE models, sensitivity
studies exist for the influence of 1:10 skull anisotropy on forward problem (EEG
and MEG, [228]) and inverse problem (EEG, [152]), while only one study is
known for the influence of WM anisotropy onto the forward simulation (EEG
and MEG, [106]). The sensitivity of source reconstruction methods on realistic
WM anisotropy for both EEG and MEG was not yet studied.

In the first section of this chapter, the influence of skull and WM anisotropy
onto the forward problem will be presented and compared with results from
the literature. The second section concerns about the sensitivity of inverse ap-
proaches towards tissue anisotropy. The results of this chapter are summarized in
the last section.

167
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Figure 7.1: EEG and MEG topography error (top row) and magnitude error (bot-
tom row) for different anisotropy ratios: For the EEG, errors due to anisotropy
effects of skull, WM and both skull and WM are presented for the tensor volume
retaining (left) and Wang’s constraint (middle). For MEG, only WM anisotropy
effects for both constraints are presented (right), since skull anisotropy was found
to have no influence.

7.2 Influence on EEG/MEG forward problem

In this section, the influence of skull and WM anisotropy onto the EEG and MEG
forward problem is studied for a neocortical source and for a deep source. For the
neocortical source, it is distinguished between a mainly tangential and a mainly
radial orientation component. EEG and MEG sensors are simulated as described
in Section 4.8.3.

7.2.1 A tangentially oriented eccentric source

Forward calculations for the eccentric source with a large tangential orientation
component (“Somato(tang)” in Fig. 4.7) and a strength of 10 nAm were carried
out in the volume conductor model 1 (Table 4.1) and the sensitivity of EEG and
MEG towards anisotropy of the skull layer (see Table 4.3), the WM compartment
(Table 4.4), and of both skull and WM was determined. Fig. 7.1 shows the result-
ing RDM (top row) and MAG (bottom row) errors for an increasing anisotropy
ratio, when either obeying the volume constraint or Wang’s constraint. EEG and
MEG sensors were modeled as described in Section 4.8.3.

The EEG results concerning 1:10 anisotropic skull in combination with an
isotropic WM compartment are generally in agreement with the observations of
Marin et al. [152], where a topography error of about 10% and a magnification
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a) b) c) d)

Figure 7.2: Topography of isopotential distribution on upper part of the head:
a) isotropic skull; from -0.9 to 0.2 µV b) 1:10 anisotropic skull; volume method;
from -1.1 to 0.3 µV c) 1:10 anisotropic skull with σrad = 0.00042 and σtang =
0.0042; from -0.7 to 0.1 µV d) 1:10 anisotropic skull with σrad = 0.0042 and
σtang = 0.042; from -2.2 to 0.9 µV .

factor larger than 1 was reported for an eccentric tangentially oriented dipole
in a realistic FE head model. However, Marin et al. [152] modeled 1:10 skull
anisotropy by fixing the radial and increasing the tangential conductivity eigen-
values by a factor of 10. If we do so, a much larger topography error (RDM=20%)
and a much larger magnification factor (MAG=1.72) was observed (see Fig. 7.2
and compare (a) with (d)). This difference could be attributed to different sim-
ulation parameters like skull thickness and source location, and to the defini-
tion/evaluation of RDM and MAG. Marin et al. [152] evaluated an integral over
the whole head surface, whereas only the potentials at the 71 EEG electrodes
were considered here. The focus is on the influence of anisotropy on the inverse
EEG problem, where in practice, only a limited number of sensors is available.
The electrodes are often placed around the “center of interest” in order to sample
the whole measurable dipolar pattern, which is illustrated for example in Fig. 1.2.

Fig. 7.2 shows the isopotential distribution interpolated on the head surface
for various anisotropy ratios. The isopotential distribution for the isotropic skull
layer is shown in (a), and the result for 1:10 anisotropy with volume constraint in
(b). The two 1:10 skull anisotropy isopotential distributions in (c) and (d) were
calculated either by means of a fixation of the tangential conductivity eigenvalues
and a reduction of the radial one by a factor of 10 (c) or by means of a fixation
of the radial conductivity eigenvalue and an increase of the tangential ones by a
factor of 10 (d).

The result of a computation in the isotropic nodeshifted cube model 2 (Ta-
ble 4.1) is shown on an axial cut through the model in the vicinity of the source
in Fig. 7.3(a). In (b), the computation was carried out in the corresponding model
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a) b)

Figure 7.3: Isopotential distribution from -0.1 to 0.2 µV on axial cut through
the nodeshifted cube model a) isotropic model b) 1:10 anisotropic skull, volume
constraint; isotropic WM.

with 1:10 anisotropic skull (volume constraint), while retaining the isotropic WM
compartment. The influence of anisotropy can well be studied when comparing
the run of the marked (grey and brown) isopotential lines in both models.

When comparing the results on skull anisotropy in realistic FE models with
examinations in multilayered sphere models [273; 152], the important difference
is found that the EEG topography error between isotropic and 1:10 anisotropic
skull modeling in the realistic FE head model (in agreement with the realistic
FE head model in Marin et al. [152]) is much larger than the EEG topography
error between isotropic and 1:10 anisotropic spherical layer modeling, reported
by Zhou et al. [273] and Marin et al. [152]. Additionally, a MAG close to 1 was
pointed out for the spherical model [273], whereas for the realistic FE model, a
MAG larger 1 was found here, and was also reported by Marin et al.. Spherical
symmetry effects could thus play a role, reducing topography and magnitude er-
rors for the multilayered sphere model. However, these errors seem to be apparent
in realistically shaped head models.

1:10 skull anisotropy was found to have no influence (RDM < 1%, MAG≈ 1)
on the MEG topography and magnitude for both volume and Wang’s constraint.
This is in agreement with the results of van den Broek [228] in a realistic FE head
model and with the generally accepted idea that volume currents in the skull and
scalp layer give negligible contributions to the magnetic field [96].
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The observations regarding the influence of WM anisotropy on EEG and
MEG for an isotropic skull layer in Fig. 7.1 agree well with the results in Haueisen
et al. [106]. They reported small topography and magnitude errors for EEG and
MEG for an eccentric source with large tangential orientation component. Here,
a negligible influence for a ratio of 1:10 on the EEG topography with an RDM
close to 1% and on the MEG topography with an RDM of about 5% was ob-
served. The MAG is close to the optimum in the realistic anisotropy range for
both EEG and MEG.

Haueisen et al. [104] reported a strong influence of local conductivity changes
around the source to EEG and MEG. Therefore, 41 finite elements in the neigh-
borhood around the source were determined in the 1:10 anisotropic tetrahedra
model 1, five of which were isotropic CSF, 30 isotropic GM and 6 anisotropic
WM elements. Isotropic WM conductivity was then assigned to the latter 6 el-
ements and EEG and MEG were computed in this locally isotropic model. For
both EEG and MEG, an RDM smaller than 1% and a MAG of about 1 was found.
Note that only 6 out of the 41 neighboring elements to the source were WM ele-
ments so that the small influence should be mainly attributed to this fact.

In summary, for the EEG, 1:10 anisotropy of both skull and WM layer, leads
to a topography error of about 9% for the volume constraint and 11% for Wang’s
constraint. The topography error is mainly due to skull anisotropy, whereas WM
anisotropy has only a small influence on the potential distribution for the chosen
eccentric source with large tangential orientation component. When choosing
the volume constraint, the magnitude error MAG for 1:10 anisotropy of skull and
WM layer is kept close to the optimum of 1.0, whereas Wang’s constraint leads
to a MAG of 1.23. An increase of radial or tangential skull conductivity contracts
(in Figure 7.2, compare (a) with (d)), whereas a decrease spreads out the isopo-
tential distribution on the surface. The pattern is also distorted (in Figure 7.2,
compare (a) with (c)), so that an approximation of skull anisotropy effects by
means of an increase or a decrease of the scalar isotropic skull conductivity value
in BE head models seems to be impossible. This is in particular true, because
further computations with different source locations and orientations showed that
contraction or spreading out depends on parameters such as location/orientation
of the source and skull shape and thickness (see Section 7.3.1).

For the MEG, no influence of skull anisotropy was observed. The influence
of WM was small for realistic anisotropy ratios.

7.2.2 A radially oriented eccentric source

Forward calculations for the eccentric source with large radial orientation com-
ponent (“Somato(rad)” in Fig. 4.7) and a strength of 10 nAm were carried out in
the tetrahedra FE model 1 (Table 4.1). Fig. 7.4 shows the resulting RDM (left)
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Figure 7.4: EEG and MEG topography error (top row) and magnitude error (bot-
tom row) for different anisotropy ratios: For the EEG, errors due to anisotropy
effects of skull, WM and both skull and WM are presented for the tensor volume
retaining (left) and Wang’s constraint (middle). For MEG, only WM anisotropy
effects for both constraints are presented (right), since skull anisotropy was found
to have no influence.

and MAG (right).

1:10 realistic WM anisotropy for the radially oriented eccentric source has
a strong influence on the topography of EEG and MEG, a result which again
mainly agrees with the results of Haueisen et al. [106]. They reported a large to-
pography error for both EEG and MEG (our MEG results have to be compared to
the flux density component By in Haueisen’s Table 2) and a moderate magnitude
error for an eccentric almost radially oriented source. Here, an EEG topography
error was observed of RDM=23% for the volume and RDM=20% for Wang’s
constraint and an MEG topography error of about 15% for both constraints. The
large MEG topography error can be explained by the fact that WM anisotropy
influences the secondary (return) currents and that the ratio of the secondary to
the whole magnetic flux increases with increasing ratio of the radial dipole orien-
tation component [105]. Note that for radially oriented sources in spherical head
models, the primary magnetic flux (and because of spherical symmetry effects
also the secondary magnetic flux) is zero outside the model. For both EEG and
MEG, the MAG was again close to the optimum 1.0 for realistic WM anisotropy
ratios except for the MEG in combination with the volume constraint, where the
error was close to 1.1.

Again, an RDM smaller than 1% and a MAG of about 1 was found for
the comparison with the 1:10 anisotropic but locally isotropic model (see Sec-



7.2. INFLUENCE ON EEG/MEG FORWARD PROBLEM 173

EEG: Volume constraint

0%

10%

20%

30%

1 10 100

Tensor eigenvalue relation 1:x

RDM
Skull WM Skull+WM

EEG: Wang's constraint

0%

5%

10%

15%

1 10 100

Tensor eigenvalue relation 1:x

RDM Skull WM Skull+WM

MEG: Influence of WM Anisotropy

0%

10%

20%

30%

1 10 100

Tensor eigenvalue relation 1:x

RDM Volume constraint Wang's constraint

EEG: Volume constraint

0

0,5

1

1,5

1 10 100

Tensor eigenvalue relation 1:x

MAG Skull WM Skull+WM

EEG: Wang's constraint

0

0,5

1

1,5

1 10 100

Tensor eigenvalue relation 1:x

MAG Skull WM Skull+WM

MEG: Influence of WM Anisotropy

0,2

0,4

0,6

0,8

1

1 10 100

Tensor eigenvalue relation 1:x

MAG
Volume constraint Wang's constraint

Figure 7.5: Deep thalamic source: EEG and MEG topography error (top row)
and magnitude error (bottom row) for different anisotropy ratios: For the EEG,
errors due to anisotropy effects of skull, WM and both skull and WM are presented
for the tensor volume retaining (left) and Wang’s constraint (middle). For MEG,
only WM anisotropy effects for both constraints are presented (right), since skull
anisotropy was found to have no influence.

tion 7.2.1) for both EEG and MEG.
The EEG results concerning 1:10 anisotropy of the skull agree well with the

observations of Marin et al. [152]. With an RDM of 12% for the volume and
14% for Wang’s constraint, the influence on the potential topography is in the
range as seen for the tangential dipole. A MAG close to 1 for the volume and a
MAG of 1.27 for Wang’s constraint was achieved. For MEG, as for the tangential
eccentric source, no influence (RDM < 1%, MAG ≈ 1) of skull anisotropy was
found [96; 228].

In summary, 1:10 anisotropy of both considered compartments leads to a
non-negligible topography error for both EEG and MEG. This error is mainly
due to WM anisotropy. Skull anisotropy has no influence on the MEG, but a
non-negligible influence on the EEG. For EEG, the volume constraint led to a
smaller MAG error than Wang’s constraint, whereas we observed the inverse for
the MEG. The local change from anisotropic to isotropic conductivity of (some
few) WM elements in the neighborhood of the source did not influence the error
considerations.

7.2.3 A deep source

In a last simulation, forward calculations in the tetrahedra FE model 1 (Table 4.1)
were carried out for a deep and thus almost radial source (“Thal(rad)” in Fig. 4.7)



174 CHAPTER 7. SENSITIVITY TOWARDS TISSUE ANISOTROPY

a) b)

Figure 7.6: Isopotential distribution from -0.3 to 0.3 µV on coronal cut through
the nodeshifted cube model a) isotropic model b) 1:10 anisotropic, but locally
isotropic WM compartment.

with a strength of 10 nAm. In the thalamus, tissue structure is almost radially
oriented. Fig. 7.5 shows the resulting RDM and MAG errors.

It can be observed from both figures, that 1:10 WM anisotropy in combi-
nation with an isotropic skull layer leads to a non-negligible topography error
larger 10% for the EEG, whereas with 6%, the error is moderate for the MEG,
but it is then strongly increasing for larger anisotropy ratios. WM anisotropy
strongly decreased the surface potential (MAG=0.57 in Fig. 7.5) and the magnetic
fields (MAG≈0.6 in Fig. 7.5). The former is related to the results of Zhou and
van Oosterom [273], who reported a decreased (increased) potential magnitude
for increased (decreased) radial conductivity in the inner sphere of a multilayer
sphere model, whereas for a change in the tangential conductivity component, no
influence was found.

Again, the influence of local conductivity changes around the source was
studied. Therefore, for the thalamic source, 29 neighbored finite elements in
the 1:10 anisotropic tetrahedra model 1 and 45 neighbored finite elements in
the nodeshift cube model 2 with 1:10 anisotropic WM compartment were de-
termined, all of which were transformed from anisotropic to isotropic WM el-
ements. When comparing the forward simulations in the tetrahedra model, an
RDM of 16% and a MAG of 1.34 was found for the EEG and an RDM of 14%
and a MAG of 1.19 for the MEG. These results show the importance of local
conductivity changes, as reported by Haueisen et al. [104]. Fig. 7.6 shows the
isopotential distribution for model 2 for the isotropic case (a) and for the cor-
responding case with 1:10 anisotropic but locally isotropic WM compartment.
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Figure 7.7: Cut through the thalamus, the Pedunculus cerebri and the Pons [166].

The increased volume current flow along the fibre bundles of the corticospinal
tract, shown in Fig. 7.7, can be observed from the isopotential distribution in the
anisotropic case (isopotential lines are perpendicular to the volume current flow).
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For the EEG, an RDM of about 7% for 1:10 anisotropic skull in combina-
tion with an isotropic WM compartment (Fig. 7.5, left column) and an increase
in the magnitude for Wang’s constraint (Figure 7.5, bottom row, right, MAG =
1.14) was observed, while the magnitude was kept close to the optimum for the
volume constraint (Figure 7.5, top row, right, MAG = 0.97). For the MEG, only a
small influence (RDM < 3%, MAG=0.98) was found for Wang’s constraint (not
shown).

In summary, for the deep thalamic source, a non-negligible influence of 1:10
skull and WM anisotropy on the EEG topography was found. The EEG topog-
raphy error is mainly due to WM, but to a minor extent also to skull anisotropy.
For the MEG, we assume that WM anisotropy has a non-negligible influence
on the topography, whereas skull anisotropy can be neglected. WM anisotropy
strongly reduced EEG and MEG field magnitude. Local conductivity changes
were strongly influencing our error considerations.

7.3 Influence on EEG/MEG source reconstruction

The sensitivity of the EEG/MEG inverse source reconstruction process towards
realistic head tissue conductivity anisotropy is now examined. In various medical
application fields such as epilepsy and brain tumors, simple one dipole models
are used [78; 81; 195; 110; 237; 111; 48]. Therefore, in the first part of this
section, the EEG single dipole fit reconstruction error is examined for a variety
of sources. In the second part, a more complicated source model from cogni-
tion is studied. The sensitivity of EEG and MEG inverse reconstruction methods
towards tissue anisotropy is described for the reconstruction of early syntactic
processes in frontal and temporal cortical areas, referring to the examinations of
Friederici et al. [68].

7.3.1 EEG reconstruction error for single dipole fit

A variety of sources with different locations and orientations in the brain were
used for examining the sensitivity of EEG single dipole fitting towards realistic
skull and WM anisotropy. The EEG was computed in the 5 tissue tetrahedra
model 1 (Table 4.1) for 46 neocortical sources with large tangential and for 42
with large radial orientation component and for 46 dipoles in deeper brain areas,
each with a strength of 10 nAm. The reference dipoles are presented in Figs. 7.8
and 7.9 as red arrows or poles, resp.. They are scaled so that 1mm arrow length
corresponds to 1nAm source strength. The 71 EEG electrodes are fixed as de-
scribed in Section 4.8.3. The inverse dipole fit method uses the downhill simplex
optimizer in continuous parameter space (Section 6.4.1) for the dipole localiza-
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Figure 7.8: EEG reconstruction errors due to 1:10 anisotropy of the skull com-
partment (1nAm source strength scaled as 1mm, figure scale 1:4): The red arrows
are the reference dipoles, 46 mainly tangentially oriented (top) and 42 mainly ra-
dially oriented ones (bottom), and the blue arrows are the fitted ones. The pair of
reference and corresponding reconstructed source is connected with a black pole,
representing the localization error. Dipoles are shown on underlying transparent
WM surface.

tion, while orientation and strength are determined by means of the generalized
inverse (Section 6.4.3). The midpoint of the brain was chosen as the seedpoint
and the simplices could then move freely in space without further constraints.

In order to study the accuracy of the 71 electrode fit in combination with the
blurred dipole source model, each source was fitted in the isotropic model by
means of its EEG result in the isotropic volume conductor. A maximal localiza-
tion error of 0.6mm was found, which emphasizes the accuracy of chosen method
and source model.

In the following, mean µ, standard deviation Σ and maximum and minimum
are computed for the (absolute) localization error, the (absolute) orientation error
and the (relative) amplitude error for each of the three source classes (tangential,
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ref. (Abs.) Localization (Abs.) Orientation (Rel.) Strength error
sour. error (in mm) error θ (in degrees) AMP (in percent)

µ Σ Max Min µ Σ Max Min µ Σ Max Min
tang. 8.6 3.5 18 3.6 19 11 55 1.9 29 40 201 2.8
rad. 4.6 1.9 8.8 1.3 10 7 35 1.1 56 41 154 2
deep 6.8 2.6 12 2.1 11 7 29 0.7 31 34 174 1.9

Table 7.1: Influence of 1:10 skull anisotropy on single dipole fit for the class
of tangentially and radially oriented neocortical sources and the class of deep
sources.

radial, deep). If x (x) is the orientation (strength) of the reference source and y
(y) the one of the corresponding fitted dipole, the orientation (strength) error θ
(AMP) is measured by means of

θ := GRAD

(
arccos

(x,y)
‖x‖‖y‖

)
AMP =

∣∣∣∣x− y
x

∣∣∣∣ ·100,

where the function GRAD denotes a conversion of the measure of angle in radi-
ans to a measure of angle in degrees.

Note that the orientation error as well as the strength error are also important
criteria besides the localization error. In certain experiments, different dipole
locations are fixed (e.g., if fMRI results are available) and those dipole location
is considered as the correct one, where the reconstructed source orientation and
strength fits best to the anatomical normal-constraint, described in Section 6.2.
Other experiments exist, where dipole locations as well as their orientations are
fixed and only the fitted strengths are evaluated. The latter procedure was used,
e.g., for discovering an isolated influence of repetitive sensorimotor training on
the activation in motor areas [244].

Skull anisotropy

A dipole fit in the isotropic model was then carried out exploiting its EEG result
in the model with 1:10 skull anisotropy. In Fig. 7.8, the fitted dipoles are shown
as blue arrows for the neocortical sources with mainly tangential (top) and with
mainly radial orientation (bottom). The localization error for each pair is visu-
alized by means of a black pole, whose location is the location of the reference
source and who points to the location of the fitted source.

As Fig. 7.8 and Table 7.1 show, with 8.6mm for the localization and 19 de-
grees for the orientation, the largest mean errors appear for the class of neocorti-
cal sources with mainly tangential orientation component. The tangential sources
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ref. (Abs.) Localization (Abs.) Orientation (Rel.) Strength error
sour. error (in mm) error θ (in degrees) AMP (in percent)

µ Σ Max Min µ Σ Max Min µ Σ Max Min
tang 2.5 1.3 5.8 0.6 11 6.4 26 1.3 15 12 43 0.1
rad 2.1 1.1 6.3 0.4 7 5.8 25 0.8 18 16 63 0.2

deep 3.3 1.5 6.2 0.9 11 6.0 24 1.9 21 22 116 0.2

Table 7.2: Influence of WM anisotropy on single dipole fit for the class of tangen-
tially and radially oriented neocortical sources and the class of deep sources.

have in particular localization errors in depth, which was already observed in
spherical models by Peters and de Munck [180]. They are localized too deep in
the temporal lobe (Fig. 7.8, top left) and too superficial in particular in parietal
and occipital areas (Fig. 7.8, top right). A correlation seems to exist between the
thickness of the skull layer and the depth mislocalization of tangentially oriented
sources: tangential sources are localized too deep in temporal areas, where the
skull layer is quite thin and too superficial in parietal and occipital areas, where
it is quite thick.

In Dümpelmann et al. [55] we showed that reconstruction errors, resulting
from inaccuracies in the conductivity ratio assumptions for a BEM forward model,
can be alleviated by better optimizing the electrode configuration with regard to
the examined source. As it can be observed in Fig. 7.8 (top right), the localiza-
tion errors are especially large in frontal cortical areas. For such regions, the fixed
electrode configuration may be less appropriate for sampling the dipolar pattern
with sufficient accuracy, as Fig. 4.8 (top right) indicates. Note that because of
eyes and nose it may be difficult in practice to improve the situation in frontal
areas.

While localization and orientation errors seem to be nearly a factor two smaller,
with a mean of 56 percent, the amplitude error is conspicuously large for the class
of radially oriented reference sources (Table 7.1 and Fig. 7.8, bottom row).

An anisotropy ratio of 1:10 was chosen for the above study following the
measurements of Rush and Driscoll [197]. This ratio was also taken in other
skull anisotropy studies [49; 52; 228; 152]. Nevertheless, if Akhtari et al’s [3]
recently measured values for thicknesses and conductivities of the three skull
layers and the formulas (3.3) and (3.4) for the simplified 3x3x3 model of the
skull are considered, an anisotropy ratio of only about 1:3 results, which would
reduce the reconstruction errors, as reported by Fuchs et al. [71].
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Figure 7.9: EEG reconstruction errors due to 1:10 anisotropy of the WM com-
partment (1nAm source strength scaled as 1mm, figure scale 1:4): The red poles
are the reference dipoles, 46 mainly tangentially oriented (top) and 46 deep ones
(bottom). The blue poles are the reconstructed dipoles. Dipoles are presented on
underlying transparent WM surface.

WM anisotropy

Each dipole was then reconstructed in the isotropic model by means of its EEG
result in the model with anisotropic WM compartment. A ratio of 1:10 was as-
sumed, which is the upper bound found in measurements [165; 77]. In Fig. 7.9,
the reference and reconstructed sources are shown for the class of mainly tan-
gentially oriented neocortical sources (top row) and for the class of deep sources
(bottom row). Since the localization errors are in general smaller than for skull
anisotropy, the pairs of reference and fitted source can well be identified without
indicating them by means of black poles as in Fig. 7.8. The reconstruction errors
are presented in Table 7.2. With 3.3mm for localization, 11 degrees for orien-
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tation and 21 percent for source strength, the largest mean reconstruction errors
were observed for the class of deep sources. Maximal errors for that class were
6.2mm/24◦/116%.

As discussed in Section 7.2, especially in 7.2.3, the influence of WM anisotropy
increases, the more the source is surrounded by WM fibre structures. In the study
of Haueisen et al. [106] and in 7.2.3, large amplitude changes were observed for
deep sources when including realistic WM anisotropy in the forward simulation.
It was expected that those amplitude changes translate with approximately the
same percentage value into source strength changes. This is now confirmed with
the large maximal strength error of 116 percent for the class of deeper sources.

Note that all reference sources (also the deep ones) were placed in the GM
compartment, which was modeled with an isotropic conductivity value through-
out this thesis. In reality, also brain GM is equipped with an anisotropy. A ratio
of 1:2 was measured in cat cerebellar cortex [266], while the ratio measured in
the cortex of a frog was even much higher [164]. If we then take into account
that local conductivity variations around the source strongly influence the for-
ward computations as observed in 7.2.3, larger errors than presented here have to
be expected if the GM anisotropy is modeled additionally.

7.3.2 Localization of early syntactic processes: An EEG/MEG sim-
ulation study

Language processing is a very complex cognitive task. On the way to a deeper un-
derstanding how it is performed, the reconstruction of the involved brain regions
as well as their dynamical interaction is an important step. Since a long time,
the cortical representation of language is examined through patients with circum-
scribed brain lesions (Broca [28], 1861, Wernicke [251], 1874, and see, e.g.,[54;
65; 67]). In the past century, this knowledge has been strongly enlarged through
the use of electrophysiological methods such as EEG ERP’s (see, e.g., [163; 66;
65; 67]) and by means of brain imaging techniques such as PET (see, e.g., [218]),
fMRI (see, e.g., [160]), EEG source reconstruction (see, e.g., [125]) and MEG
source reconstruction (see, e.g., [124; 68]).

Friederici et al. [66; 65; 67] identified three ERP components, which correlate
with language comprehension processes. Their studies are based on comparisons
between correct and either syntactically incorrect or semantically incorrect sen-
tences: An Early Left Anterior Negativity component (ELAN), reaching its peak
mostly between 130 and 200ms after stimulus, was observed and interpreted as
a phase where the input is parsed into an initial syntactic structure. In a second
phase, a centroparietal negativity component, the so-called N400 (“N” stands for
Negativity and “400” for an average peak latency of 400ms after stimulus), was
seen in correlation with processes of lexical-semantic access and integration. A
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late centroparietal positivity (P600) was observed in correlation with secondary
syntactic processes of reanalysis and repair in a third phase.

Up to now, it is not clear which generators in the brain support the ELAN
processes. While PET and fMRI succeeded in identifying a number of brain
structures that seem to contribute to the processing of syntactic structures, their
dynamic interaction remains unclear due to the low temporal resolution of the
methods. ERP studies have revealed a great deal of the temporal dimension of
syntax processing, but EEG source localization was not able to provide more than
very coarse information on the reconstruction of the underlying sources. MEG
has the same temporal resolution as EEG combined with a better spatial reso-
lution for mainly tangentially oriented primary currents in source reconstruction
(as seen later in this section). Friederici et al. [65; 67] suggested that frontal cor-
tical structures support early parsing processes, while specific subcortical regions
of the basal ganglia may not be crucial for the ELAN. This resulted from lesion
studies where patients with left frontal cortical lesions demonstrated a selective
absence of the ELAN, whereas the component was present in patients with sub-
cortical lesions involving the basal ganglia. On the other hand, in an fMRI study,
Meyer et al. [160] also found an increase in activation as a function of syntac-
tic correctness in the mid-portion of the superior temporal gyrus. Note that due
to low temporal resolution, the study may have reflected an additive effect of
the early and the late syntactic processes. Dronkers et al. [54] reported that pa-
tients with a temporal lesion including the anterior part of the superior temporal
gyrus displayed a syntactic comprehension deficit. In a 148 channel whole-head
MEG study using instantaneous Tikhonov-Phillips current density reconstruc-
tion on the cortical surface in a realistically shaped one compartment BE model,
Knösche et al. [124] revealed a significant difference between correct and syn-
tactically incorrect sentences for the early phase in frontal and temporal areas
in both hemispheres. Since the current density approach did not allow precise
spatial conclusion, Friederici et al. [68] carried out a second MEG study, using a
dipole fit approach with seedpoints from the fMRI results of Meyer et al. [160].
The dipoles, fitted within a time interval of 20ms around the ELAN peak of the
syntactically incorrect condition, were allowed to move within a sphere region
centered at the respective seedpoint with a radius of 1cm. The study provided
a clear indication that both temporal as well as fronto-lateral cortical regions in
both hemispheres support early syntactic processing with a dominance in the left
hemisphere. The contribution of the left temporal region seemed to be larger than
the contribution of the left fronto-lateral region.

Our interest will now be focused on the influence of volume conduction ef-
fects on the reconstruction of the ELAN sources. Therefore, a cortical influence
space surface was generated by means of a dilation of the white matter mask
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Figure 7.10: The four reference dipoles supposed to underlie the ELAN compo-
nent (1nAm source strength scaled as 1mm, figure scale 1:4).

from Section 2.6.2 by 1mm, while taking care that the dilated mask was topo-
logically equivalent to a sphere, i.e., had no cavities or handles (Euler number
1, see Def. 2.2.6). In a subsequent step, the surface of the resulting mask was
triangulated. Therefore, the tetrahedrization algorithm from Section 4.7.3 with
dcomp

min = 5mm was used and the resulting surface queue Qs was exploited, yielding
a triangulation with 6742 regularly shaped triangles and a number of ninf = 3373
vertices. For triangulation, the software package CURRY was used. The triangles
were controlled to be similarly orientated so that their normal vectors pointed in
one direction, i.e., either outside or inside the surface [121]. The solid angle of a
closed surface with regard to the origin is 0, 2π or 4π for the origin lying outside,
on or inside the surface, resp. [229]. In our case, the origin is lying outside the in-
fluence space mesh and the solid angle was computed to be 0.5 ·10−5 (necessary
condition for closed surface fulfilled). The mesh with 5mm resolution is con-
sidered to only be a rough representation of the neocortical surface, neglecting
deeper GM structures such as the basal ganglia. It is not supposed to represent
all important neocortical curvatures and as a consequence, the normal-constraint
was not applied, i.e., sources in all cartesian directions were allowed for each
mesh vertex during source reconstruction (r = 3ninf, see Section 6.2). Two lead
field matrices for the isotropic tetrahedra model 1 (Tables 4.1 and 4.2) with a rel-
ative solver accuracy of 10−10 (10−7), in the following referred to as the isotropic
lead field matrix with high (low) accuracy, were then computed for combined 71
electrode EEG and 148 channel MEG (Section 4.8.3).

Four ELAN reference dipoles as presented in Fig. 7.10 were simulated on
vertices of the influence space mesh, a source with 33nAm strength in the vicinity
of the left auditory cortex, a left fronto-lateral source with 20nAm strength and
their right hemisphere homologue dipoles with 18nAm and 16nAm, resp..

In a first study, forward computations for the left temporal ELAN source were
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Figure 7.11: Isopotential distribution for the left temporal ELAN source from
-0.5 to 0.5 µV on a coronal slice through the location of the source for the
isotropic nodeshifted cube model 2 (left) and the corresponding models with
1:10 anisotropy of skull (middle) and WM (right) compartment (both volume con-
straint).

carried out in the nodeshifted cube model 2 (Table 4.1). Fig. 7.11 shows the resul-
tant isopotential distributions on a coronal slice through the location of the source
for the isotropic case (left) and for the corresponding cases with 1:10 anisotropy
of skull (middle) and WM (right) compartment (both volume constraint). Skull
anisotropy leads to a shift of the ELAN ERP component from lateral in medial
direction on the head surface. This can be seen when following the black marked
iso-line with a potential of -0.075µV , which is the strongest negative isopotential
line in the presented figure which reaches the model surface in the isotropic case
(left). In the anisotropic case, the same isopotential is not able to break through
the skull layer, the strongest is the line with a potential of -0.06µV , which reaches
the surface more medially (middle). The brown marked iso-line with a potential
of 0.06µV shows the effect of WM anisotropy. An interpretation may be that in
the anisotropic WM case (right), this isopotential line is forced to stronger follow
a direction perpendicular to the fibre bundles of the corticospinal tract because
of an increased volume current flow along the fibres, so that it enters the skull
compartment at a different location and, in contrast to the isotropic case, is then
able to break through the skull.

A next study consisted of reconstructing the ELAN dipoles using an in-
verse method for focal sources. Therefore, the SA Alg. 14 in discrete parameter
space (Section 6.4.2) was used. With a choice of tstep = 0.99, TOL =1E-08 and
MAX =1E07 for all of the following SA optimization runs, a very slow anneal-
ing was simulated so that a high probability for SA convergence to the global
minimum was given [112]. In a first validation step, the four reference dipoles
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were reconstructed by means of their simulated isotropic EEG and MEG data
with high solver accuracy. A number of p = 4 sources was used in combination
with the functional H , determined by means of the COF, i.e., assuming noise-free
data (Section 6.4.3 and Appendix C.2). When using the isotropic lead field ma-
trix with high accuracy, all four reference sources were reconstructed without any
reconstruction error for both simulated datasets. When using the isotropic lead
field matrix with low accuracy and the simulated highly accurate EEG data, only
three of four sources were correctly found, the reconstructed dipole in the right
temporal area already had a localization error of 3mm to the corresponding ref-
erence source, while again no reconstruction error was observed when using the
MEG data. This shows the high sensitivity of EEG multiple dipole reconstruc-
tion towards model inaccuracies. The isolating skull layer is reducing the surface
electrode potentials by several orders of magnitude compared to the potentials
close to the source so that high solver accuracy is needed for accurate source re-
construction. Therefore, the isotropic lead field matrix with high accuracy was
used in the following.

EEG and MEG reference data were then simulated in the 6 tissue tetrahedra
volume conductor model 3 (Table 4.1). For the two skull layers OSC and RS
and for skin, CSF and GM compartments, the isotropic conductivity values from
Table 4.2 were used. The EMA was applied for the conductivities of the WM ele-
ments (Section 3.4.4), yielding an anisotropic and inhomogeneous WM compart-
ment. For the inverse dipole fit, the isotropic lead field matrix and the methods
SA-COF and SA-TSVD were used. For the computation of the SVD within the
TSVD, we use subroutine DGESVD from the software package LAPACK [132].
In the MEG case, with p = 8, the number of sources was overestimated while
the correct number of p = 4 sources was chosen for the EEG. The regularization
parameter for the TSVD in Alg. 15 was set to R = 1.0 and the entries of the diag-
onal weighting matrix D were determined by means of εi = ABS(u[i]

iso−u[i]
sim), i.e.,

the absolute value of the difference between reference, uiso, and simulated, usim,
data. If we define the Signal-to-Noise Ratio

SNR :=
1
m

m

∑
i=1

∣∣∣∣∣u
[i]
sim

εi

∣∣∣∣∣ , (7.1)

SNR = 101.2 was achieved for the simulated MEG data (m = 148), whereas only
SNR = 11.7 was found for the EEG (m = 71).

As Fig. 7.12 (top row) shows, both inverse dipole fit methods SA-TSVD
(blue) and SA-COF (green) were able to reconstruct the 4 ELAN reference sources
for the MEG case with only a neglegible error, even when overestimating the
number of sources with the choice of p = 8. In contrast to the SA-COF, the reg-
ularization approach SA-TSVD avoids, that the remaining defect to the data is
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Figure 7.12: Influence of volume conduction effects of model 3 with two-layer
skull and EMA WM compartment on the reconstruction of the ELAN sources
(red) using SA-COF (green) and SA-TSVD (blue): MEG, overestimated number
of 8 dipoles (top row, 1nAm source strength scaled as 1mm, figure scale 1:4) and
EEG, 4 dipoles (bottom row, 2nAm source strength scaled as 1mm, figure scale
1:4).

explained by a strong dipole, which has only small influence on the flux distri-
bution. Remember that deep dipoles are mainly radial and that, in a multilayer
sphere model, radial dipoles do not produce any magnetic field. For the (correct)
choice p = 4, the MEG reconstruction error was also close to zero.

The reference ELAN sources could not be correctly reconstructed when us-
ing the EEG data and optimizing without any further constraints to the sources, as
shown in Fig. 7.12 (bottom row). If we assume that the large fitted source in the
left temporal lobe (for both SA-COF and SA-TSVD) corresponds to the left tem-
poral ELAN source, its reconstruction error amounts to 12mm/28◦/132%. The
reconstruction errors for the right temporal ELAN source are 11.6mm/11.5◦/56%
for SA-COF and 4.2mm/42◦/48% for SA-TSVD. The two fronto-lateral ELAN
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Figure 7.13: Influence of 1:10 WM anisotropy on the MEG reconstruction of the
ELAN sources (red) when overestimating the number of dipoles (p = 8): Recon-
struction result of SA-COF (green, top row) and SA-TSVD (blue, bottom row)
(2nAm source strength scaled as 1mm, figure scale 1:4).

sources were replaced by a surface-near and a deep fronto-medial source.

As a last study to the reconstruction of the ELAN sources with focal in-
verse methods, MEG data were simulated in the 5 tissue model 1 with 1:10
anisotropy of the WM compartment (Table 4.4), yielding a signal-to-noise ratio
of SNR = 12.9. The sensitivity of the inverse fit using SA-COF and SA-TSVD
when overestimating the number of sources with a choice of p = 8 was examined.
Fig. 7.13 shows the result for the SA-COF (top row) and for the regularization
approach SA-TSVD (bottom row). Even for 1:10 WM anisotropy and the strong
overestimation of the number of sources, both methods are able to localize quite
exactly the ELAN reference dipoles without any further constraint to the sources
during optimization. The reconstruction errors are summarized in Table 7.3. Note
that the tangentially oriented superficial ELAN sources are especially well suited
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ref. SA-COF SA-TSVD
sour. Loc.Err. θ AMP Loc.Err. θ AMP

left temp. 0mm 50◦ 3% 0mm 5◦ 0%
left front. 13mm 24◦ 333% 8mm 23◦ 169%

right temp. 0mm 14◦ 3% 3mm 11◦ 37%
right front. 0mm 20◦ 9% 0mm 11◦ 28%

Table 7.3: Influence of 1:10 WM anisotropy on the MEG reconstruction when
overestimating the number of dipoles (p = 8): Localization, orientation and
strength errors for the four ELAN reference sources when using SA-COF and
SA-TSVD.

for MEG reconstruction. Much larger errors have to be expected for dipoles with
stronger radial source components. Furthermore, as discussed at the end of Sec-
tion 7.3.1, the modeling of realistic 1:2 GM anisotropy is expected to increase
reconstruction errors significantly.

The SA-COF was found to produce larger errors in orientations and strengths
for the four ELAN dipoles and also assigned larger strengths to the additionally
fitted sources than the SA-TSVD (see Fig. 7.13 and Table 7.3). This is because
radial source components were not filtered out as done by the regularized dipole
fit. As described in Wolters et al. [260; 259], the SA-TSVD shows better separa-
tional abilities to disentangle real and ghost sources. Sources (or better: source
components) which have a measurable effect on the data are reconstructed and
do not sink into insignificance beside stronger sources which only explain noise
such as radial (MEG, see Fig. 7.13, top row) or deep dipoles (EEG and MEG, see
Fig. 7.12, top row) or sources which nearly cancel each other (EEG and MEG).
For the latter two classes, a further series of EEG reconstructions in a simulated
sulcus structure was presented in Wolters et al. [259], showing the superiority
of the regularized over the non-regularized fit. In all of these examinations, SA-
TSVD was shown to be more stable regarding an overestimation of the number of
active dipoles. In combination with the SVD of the spatio-temporal measurement
data, giving an estimate for the minimal number, the exact number of dipoles
can thus better be enclosed. As a final note, the regularized focal reconstruction
method is used as a more stable method for the inverse reconstruction of rotor
unbalance sources in an aircraft engine, as described by Rienäcker et al. [192].

Current density reconstruction

The reconstruction properties of inverse instantaneous current density methods
from Section 6.5 are now examined for the four focal ELAN reference dipoles
from Fig. 7.10. Knowing that we are confronted with superficial reference sources,
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Figure 7.14: L-curves for various instantaneous current density reconstruction
methods for model 1 with 1:10 anisotropy of skull and WM compartments, EEG
(left) and MEG (right).

the depth weighting operator W (Section 6.5.4) was chosen as the identity op-
erator, i.e., the reconstructed current distribution gives preference to superficial
sources. For the simulations using anisotropic data, the channel weighting matrix
D was computed as described in the last subsection.

The regularization parameters for the various current density methods first
have to be determined. Therefore, L-curves were computed for the isotropic
5 tissue tetrahedra model 1 and the corresponding model with 1:10 anisotropic
skull and WM compartments, following the description of Section 6.5.5. The
simulated anisotropic data were equipped with a signal-to-noise ratio (see Equa-
tion 7.1) of SNR = 36.2 for EEG and SNR = 12.9 for MEG. The resulting graphs,
i.e., the model term versus the data term, is shown in log-log-scale in Fig. 7.14
for EEG data (left) and for MEG data (right), both for the anisotropic case. The
corresponding choices of parameter λ for the L-curve-criterion is marked with an
“L” and for the χ2 criterion with a “Xi”. As the figure shows, some curves do not
have the characteristic L-shaped appearance. The flat part of the L-curve is miss-
ing for example for the discrete L2 norm method for both EEG and MEG, i.e., in
this case, perturbation errors do not become dominant for decreasing λ values. A
reason could be that high frequency noise in the simulated data is missing, since
the modeled noise consists only of the absolute value of the difference between
isotropic and anisotropic forward simulations. Therefore, the solution does not
get spoiled with high frequency source components.

We begin with the current density reconstruction using simulated EEG data
and the L1 norm method from Section 6.5.3. The method is well known to be fa-
vorable for the reconstruction of focal sources when compared to L2 norm model
term formulations [242; 191; 72]. By means of using the non-linear Polak-
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Figure 7.15: Influence of volume conduction effects of model 1 on the EEG based
current density reconstruction of the ELAN sources, using the L-curve-criterion
for the regularization parameter (50pAm source strength scaled as 1mm, figure
scale 1:4): discrete L1 norm (top and middle row) and continuous gradient L2
norm (bottom row), results in the isotropic model (red), results in the model with
1:10 anisotropy of skull and WM compartments (blue).
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Ribiere CG method for the minimizing of the functional with L2 norm model
term and comparing the result with the one of the linear Jacobi-CG solver from
Section 6.5.1, a necessary (not sufficient) validation for the numerical solver was
carried out. Fig. 7.15 shows the result for the isotropic EEG data (top row) and
for the anisotropic EEG data (middle row). The L-curve criterion was used for
the determination of the regularization parameter. 1mm pole length corresponds
to a current amplitude of 50pAm. As the isotropic result shows (top row), even
the focusing L1 norm is not able to distinguish between the temporal and the
fronto-lateral center of activity. Instead of two centers, the activity is smeared
out over the whole cortical area between both ELAN sources. The reconstructed
activity on the left hemisphere dominates over the right hemisphere. This is the
error which is introduced through the choice of the source model (focal refer-
ence sources reconstructed by means of a current density method). The error
is much more distinct for the anisotropic data (middle row), where, addition-
ally, the center of activity was strongly shifted in anterior direction along the
Sylvian fissure so that the sources would no longer be expected in the vicinity
of the auditory cortex. The results for the continuous gradient L2 norm in the
bottom row of Fig. 7.15 show comparable properties only that the current den-
sity distribution is even more spread out. Similar results were achieved when
using the discrete or the continuous L2 norm (not shown here). The sensitiv-
ity of two instantaneous current density reconstruction methods towards skull
anisotropy was already studied for EEG by Marin et al. [152]. They used the lin-
ear Tikhonov-Phillips L2 norm approach and an S-MAP regularization [11], i.e.,
a non-linear method which produces more focalized results like the presented
L1 norm approach. In agreement with the above results, Marin et al. [152] re-
ported that 1:10 skull anisotropy totally annihilated any localization ability for
the Tikhonov-Phillips approach and that the restoration of very close active re-
gions was profoundly disabled for both the linear and the non-linear regulariza-
tion method because of too strongly blurred solutions.

Current density reconstructions were then carried out using the simulated
MEG data. Fig. 7.16 shows the result of the discrete L1 norm (top row, visualized
as poles) and the discrete L2 norm (bottom row, visualized as spheres in order to
focus on strength differences). 200pAm current strength corresponds to 1mm for
the left and to 2mm for the right hemisphere. The results using isotropic MEG
data are shown in red, the results for 1:10 anisotropic MEG data (skull and WM
compartment) using the L-curve-criterion in blue. Examplarily, the χ2-criterion
was used for the L1 norm reconstruction (top row, in green). The solution of
the L1 norm for isotropic MEG data (and thus the error introduced through the
choice of the source model) shows three centers of activity. Surprisingly, the left
(which is stronger than the right) fronto-lateral ELAN source could not be re-
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Figure 7.16: Influence of volume conduction effects of model 1 on the MEG based
current density reconstruction of the ELAN sources, isotropic model (red), 1:10
anisotropic model using the L-curve- (blue) and the χ2-criterion (green) (200pAm
corresponds to 1mm for the left and to 2mm for the right hemisphere, figure scale
1:4): L1 discrete, results presented as poles (top row), L2 discrete, results pre-
sented as spheres (bottom row).

constructed, but both temporal and the right fronto-lateral center. The temporal
activities are much better focused around the reference sources than in the EEG
case. The result of the L1 norm reconstruction (L-curve-criterion) by means of
the anisotropic MEG data is only a little more smeared out, but the three activ-
ity centers are still distinguishable. This is no longer the case when using the
χ2-criterion, where the activity between the fronto-lateral and the temporal refer-
ence centers is strongly smeared out on both hemispheres. Since this property of
the χ2-criterion was also observed for L2 norm methods for both EEG and MEG
(not shown) and, furthermore, was reported from another study by Rienäcker et
al. [191], it can be concluded that the criterion “over-regularizes” and should not
be used. As Fig. 7.16 (bottom row) shows, the reconstructed current distribu-
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tion between the fronto-lateral and the temporal reference centers are also much
more smeared out on both hemispheres when using the discrete L2 norm for both
isotropic and anisotropic MEG data. The reconstructed activity on the left hemi-
sphere is stronger for the anisotropic data than for the isotropic data, whereas the
inverse is true for the right hemisphere.

7.4 Summary and Conclusions

The influence of realistic conductivity anisotropy of the human skull and the hu-
man brain WM compartments on forward and inverse problem in EEG and MEG
was studied in this chapter using high resolution FE head models.

Concerning the influence on the forward problem, the presented results are
mainly in agreement with the literature (for skull anisotropy, see [273; 228; 152],
for WM anisotropy only one study exists, see [106]).

It can be concluded for the EEG forward problem that the influence of 1:10
anisotropy of both skull and WM compartments depends on location and orienta-
tion of the source. For a tangentially oriented superficial source, the modeling of
skull anisotropy was found to have a non-negligible influence, whereas the effect
of WM anisotropy was less distinct. For a radially oriented superficial source,
the relative influence of WM anisotropy to skull anisotropy increased. The more
the source is surrounded by WM structure and the more the source orientation is
parallel to the WM fibre orientation, the larger the influence of WM anisotropy
seems to be. The relative influence of WM to skull anisotropy was much in-
creased for a deep thalamic source.

For the MEG forward problem, skull anisotropy or thickness variations only
have a negligible effect, whereas the accurate modeling of the inner skull surface
is important. This was also reported in [96; 97]. The influence of 1:10 anisotropy
of the WM compartment depends on location and orientation of the source. For a
tangentially oriented superficial source, the influence was also negligible. Since
WM anisotropy influences the secondary (return) currents and the ratio of the
secondary to the whole magnetic flux increases with increasing ratio of the ra-
dial dipole orientation component (see, e.g., [105]), the effect was distinct for a
radially oriented superficial source. Since the radial dipole orientation compo-
nent increases with source depth, WM anisotropy modeling gets more and more
important, the deeper the source is.

It was found that local conductivity (anisotropy) changes around the source
have a strong influence on EEG and MEG forward problem. This is in agreement
with a study of local (isotropic) conductivity changes [104]. The sources are em-
bedded in brain GM structure, modeled here with an isotropic conductivity. In re-
ality, brain GM is equipped with an anisotropy of 1:2 (tangentially:perpendicular
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to the cortical surface), which could therefore be expected to be important.

The influence of various inverse reconstruction methods on skull and WM
anisotropy was then examined. The influence on WM anisotropy for both EEG
and MEG was not yet studied.

In a first examination, the sensitivity of an EEG single dipole fit method,
widely used in many application areas [81; 195; 110; 237; 111; 48], was pro-
foundly studied for three classes of sources (superficial tangentially and radi-
ally oriented and deep sources). Each class consisted of more than 40 reference
dipoles, placed in the GM compartment and spread over the whole domain of
interest. For the class of deep sources, 1:10 WM anisotropy led to maximal
errors of 6.2mm/24◦/116% (localization, orientation, strength). Because of the
strong effect of local conductivity changes, larger errors have to be expected if
GM anisotropy is additionally taken into account. Errors for 1:10 anisotropy of
the skull are significantly larger. With 18mm/55◦/201% maximal errors, the tan-
gentially oriented superficial sources were found to be most affected. This is
in agreement with a study in a spherical model by Peters and de Munck [180].
They were localized too deep in temporal areas, where the skull layer is quite
thin and too superficial in parietal and occipital areas, where it is quite thick. An
approximation of skull anisotropy effects by means of an increase or a decrease
of the scalar isotropic skull conductivity value in BE head models thus seems to
be impossible.

The last study was concerned with the restoration sensitivity for more com-
plicated source models. The ELAN sources [68] were chosen as an example. It
was shown for the EEG that neglecting both the partitioning of the skull (into
outer skull compacta and the remaining layer) and the EMA-WM anisotropy an-
nihilated the restoration ability of the dipole fit methods SA-TSVD and SA-COF.
For the MEG, since the ELAN sources were modeled superficial and tangentially
oriented [68], the dipole fit reconstruction was still sufficiently accurate when
neglecting a 1:10 WM anisotropy (stronger than EMA-WM anisotropy). For SA-
TSVD, the latter is even true if the number of sources is overestimated. In this
case, the result of the non-regularized dipole fit approach SA-COF was spoiled by
either strong radial dipole components or strong components with deep dipoles.
This shows the superiority of the regularized dipole fit method. The sensitivity
of instantaneous current density methods was then examined. For EEG, it was
found that the L2 and even the focalizing L1 norm methods are no longer able to
distinguish between the fronto-lateral and the temporal ELAN source. Even with-
out any error in the head model, the activity is smeared out between both centers
on both hemispheres. This is the error which is introduced through the choice
of the source model (focal reference sources reconstructed by means of a current
density method). MEG in combination with the L1 norm approach is already able
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to reconstruct both temporal and the right fronto-lateral ELAN source. Neverthe-
less, when using the discrete L2 norm approach, the activity is again smeared out
between both centers on both hemispheres. For EEG, 1:10 anisotropy annihilated
the restoration ability of L1 norm model terms and L2 norm methods, the latter
being in agreement with the results of Marin et al. [152]. The centers of activity
were strongly shifted along the Sylvian fissure in anterior direction. For MEG,
the additional errors through 1:10 anisotropy were negligible.

The new results of this chapter are summarized in Wolters et al. [258; 257]
and Anwander et al. [9].
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Chapter 8

Conclusions and Perspective

Die von mir nicht selten beobachtete Tatsache, daß sich das E.E.G. in manchen Fällen
nur vom Bereich einer Schädellücke ableiten ließ und dann, wenn die Nadeln

unmittelbar daneben auf dem unversehrten Knochen lagen, keine Kurve zu erzielen war,
sprach meiner Ansicht nach eindeutig für die Entstehung des menschlichen E.E.G. im

Großhirn.

Hans Berger

8.1 Summary and Conclusions

This thesis deals with EEG/MEG source reconstruction in realistically shaped
high resolution anisotropic Finite Element (FE) models of the human head. It
covers four major topics: the first is concerned with methods to generate a re-
alistically shaped head model with anisotropic conducting compartments skull
and brain White Matter (WM) and techniques to incorporate physiological and
anatomical constraints to the inverse problem; the second topic deals with al-
gorithms for the fast solution of the EEG/MEG FE forward problem; the third
is concerned with an overview of different techniques for solving the inverse
problem and with the presentation of new regularization algorithms for the re-
construction of multiple and extensive sources and the fourth is the study of the
sensitivity of EEG/MEG source reconstruction towards skull and brain WM con-
ductivity anisotropy.

In Chapter 2, techniques were presented for constructing a multi-compartment
head model from a matched set of T1- and PD-MRI. The chapter focused on an
improved segmentation of the skull compartment, since larger errors were ob-
served in EEG-based [42; 43; 110; 111] or MEG-based [96; 97] source recon-

197
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struction due to misspecifications of skull shape or incorrect modeling of the
inner skull surface, resp.. These imprecisions were reported to be detrimental in
certain clinical applications [110; 111]. In this thesis, the T1-MRI was used for
the segmentation of skin, brain grey matter and WM compartments, whereas the
registered PD-MRI was exploited for a correct modeling of the inner skull sur-
face. When comparing the T1/PD-MRI inner skull surface result with the result
of the standard technique in EEG/MEG-source reconstruction, which exclusively
exploits the T1-MRI and uses a closing and inflation of the segmented brain sur-
face, errors of up to 8.5 mm were found in areas, where the thickness of the
cerebro-spinal fluid was underestimated by the conventional method. Further-
more, an improved incorporation of physiological and anatomical constraints to
the inverse problem was enabled by means of the presented exact segmentation of
the brain grey matter compartment when compared to standard techniques such
as region-growing procedures. This is especially due to the segmentation method
which takes into account the scanner inhomogeneities. As described in Chap-
ter 3, realistic skull conductivity tensors were obtained by means of the surface
normals of a smooth surface spongiosa model, for which the segmentation re-
sults of inner and outer skull were exploited. For the WM compartment, whole
head DT-MRI measurements were used to determine the WM conductivity tensor
eigenvectors, following the proposition of Basser et al. [16]. The skull and WM
tensor eigenvalues were either simulated, following direct conductivity measure-
ments (measured anisotropy ratio of 1:10 for the skull [197] and up to 1:10 for
WM [165; 77]), or, for brain WM, they were modeled by means of a differential
effective medium approach, as reported by Tuch et al. [223; 224].

An overview of the underlying theory for the EEG/MEG FE forward simu-
lations and the definition of the head volume conductor models, used throughout
the thesis, was given in Chapter 4. By means of accuracy studies in multilayer
sphere models, hexahedra FE meshes exploiting a nodeshifting on compartment
surfaces were shown to be more accurate than conventional hexahedra meshes.
The presented modern FE solver approach in Chapter 5, being well suited for
tissue inhomogeneity and anisotropy, yielded computation times, which should
push high resolution realistically shaped anisotropic volume conductor modeling
within the EEG/MEG inverse problem into the application fields. When compar-
ing the presented parallel algebraic multigrid preconditioned conjugate gradient
technique on 12 processors with the standard in source reconstruction, a single
processor Jacobi conjugate gradient method, speed-ups of more than 100 were
achieved for high resolution anisotropic FE head models.

An overview of methods for the reconstruction of focal and distributed sources
and new algorithmic developments for the inverse problem were presented in
Chapter 6. The single dipole fit in continuous parameter space was first intro-
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duced to FE modeling. For multiple sources, a new regularized dipole fit algo-
rithm was presented, a simulated annealing algorithm in discrete parameter space
in combination with the truncated singular value decomposition for solving the
embedded linear least square problem. Its application to the reconstruction of
the sources of the Early Left Anterior Negativity component (ELAN) in Chap-
ter 7 and further studies in a simulated sulcus structure in Wolters et al. [259]
showed better separational abilities to disentangle real and ghost sources and
estimate the unknown number of dipoles. This is due to the filtering proper-
ties of the regularized fit method, where source components, which only have
a small contribution to the measurements, are suppressed. Concerning the dis-
tributed source model, a recently developed linear spatio-temporal regularization
approach with additional temporal smoothness term, introduced by Schmitt and
Louis [203], was applied to spatio-temporal current density reconstruction and,
as a second application area, to the dynamical electrical impedance tomography
(dyn-EIT). The spatio-temporal approach was shown to have a stabilizing effect
on the reconstruction results. In dyn-EIT, the presented method was compared to
a fixed-interval Kalman smoother and was found to be superior with respect to
reconstruction accuracy and memory and computational effort.

Finally, in Chapter 7, the sensitivity of EEG/MEG source reconstruction to-
wards skull and WM conductivity anisotropy was studied. As mentioned in the
introduction, to the knowledge of the author, no study exists for the sensitivity
towards WM anisotropy and the sensitivity towards skull anisotropy was only
insufficiently explored. In a first part, the influence on the forward problem
was studied. The results were mainly in agreement with the literature. Skull
anisotropy was found to have a non-negligible influence on the EEG and nearly
no influence on the MEG (see also [227; 151; 228; 152]). It seems that, the more
the source is surrounded by WM structure, the more important WM anisotropy
modeling becomes for both EEG and MEG (see also [104; 106]). For MEG,
this influence was especially strong for sources with mainly a radial orientation
component (see also [105]). Local conductivity changes around the source were
important for both, EEG and MEG. The sensitivity of an EEG continuous single
dipole fit, widely used in various application fields [81; 195; 110; 237; 111; 48],
was then studied. With 18 mm maximal error, the localization of tangentially
oriented superficial sources was found to be especially sensitive to 1:10 skull
anisotropy, in agreement with a study in a spherical model [180]. Since tangential
sources were localized too deeply in temporal areas, where the skull layer is quite
thin and too superficially in parietal and occipital areas, where it is quite thick, an
approximation of skull anisotropy effects by means of a change of the isotropic
skull conductivity parameter in boundary element models seems to be impossi-
ble. Of course, the sensitivity decreases, if a smaller ratio for skull anisotropy
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will be found to be more appropriate. With a maximal localization error of 6.2
mm for a deeper source, the localization procedure was less affected by WM
anisotropy. Nevertheless, with a maximal orientation error of 24◦ and a more
than twice underestimated source strength, a misinterpretation of the dipole re-
construction result can not be precluded. With regard to the reconstruction of the
four superficial and tangentially oriented sources, which are assumed to underly
the ELAN ERP component [68], WM and skull anisotropy was found to have a
negligible influence on the MEG reconstruction. In contrast, it annihilated the
EEG reconstruction ability. This was found for the presented regularized multi-
dipole fit procedure as well as for instantaneous current density reconstructions
using discrete L1 or L2 norm model terms. For the EEG, anisotropy strongly
shifted the center of the ELAN current density reconstruction results along the
Sylvian fissure in anterior direction.

8.2 Perspective

In the future, a further effort is needed for the measurement of human head tis-
sue conductivities, especially concerning the skull anisotropy. Animal models
have to provide the necessary validation at a better controlled level. This could
be done through the implantation of depths electrodes and their EEG/MEG re-
construction with and without tissue anisotropy modeling (see the validation part
of the SimBio project, Appendix D, and the preliminary study by Flemming et
al. [62]). Since it was shown that skull inhomogeneities have a large effect on
EEG and MEG, one of the interesting application fields for high resolution FE
head modeling are newborns with open sutures (see Grebe et al. [83; 82]). Be-
cause of the strong effect of local conductivity changes, additional errors have
to be expected if brain gray matter anisotropy is taken into account, which can
amount to ratios of much more than 1 to 2 [164; 266]. This should be figured
out in future simulations, as well as the influence of the improved (bimodal) skull
modeling on the inverse problem. Concerning fast FE forward computation, a
further acceleration will be achieved through a simultaneous treatment of a mod-
erate number of sources (right-hand-sides) (see preliminary results in [90; 8]).
The node-oriented EEG lead-field basis of Weinstein et al. [247] (Section 6.3)
has to be implemented and validated. This exploitation of the reciprocity the-
orem will strongly reduce the computational work for the EEG inverse prob-
lem. Furthermore, modern solver approaches based on hierarchical matrices [94]
could be applied and compared to the presented approach. As a last remark, an
investigation of the stabilizing effect of spatio-temporal current density model-
ing [203; 204] has to be carried out in realistic head models and further modern
inverse approaches have to be implemented (see, e.g., [144]).



Appendix A

Basics of Magnetic Resonance
Imaging

Nuclear Magnetic Resonance (NMR), the physical basis phenomenon for Mag-
netic Resonance Imaging (MRI), was discovered in 1946 [23; 188]. Ten years
later, first attempts were made to use NMR for medical purposes [171], but it was
not until 1974 that interest for clinical applications increased strongly, when it
was described how magnetic field gradients could be employed to obtain images
from NMR [134]. A short overview of MRI will now be given and the denota-
tions will be defined, which were used in Sections 2.3 and 3.4.4. The reader is
referred to [6; 246; 126] for a more detailed description.

A.1 Larmor relationship and macroscopic magnetization

The spin of a single hydrogen nucleus1 and its magnetic dipole moment,�µ, can-
not be oriented arbitrarily in an external magnetic field B0 = B0ez (see 2). The
magnetic moment is subjected to a torque �µ×B0 that tries to align it with the
z-axis [210]. The usual state would be for�µ to align itself N to S, where N refers
to the north pole of the hydrogen nucleus and S refers to the south pole of the
external field (rest or parallel state) [246]. However, it is possible for a nucleus
to be oriented N to N (excited or antiparallel state). It then has the property that a
slight perturbation causes the particle to flip back to the lower-energy state. Ac-
tually, at any instance, there are nuclei in parallel and others in antiparallel state.

1For simplicity, we will restrict ourselves to hydrogen nuclei, which make up 10% of the body
weight [246] and which allow medically meaningful images to be produced. The total angular
momentum of a hydrogen nucleus consists only of the spin of the nucleus and does not have an
additional orbital angular momentum.

2For simplicity, B0 will be restricted to a static field aligned along the z-axis.
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Figure A.1: Precession of charged particles in a magnetic field from Andrä and
Nowak [6].

The axis of the spinning nucleus does not remain fixed in the magnetic field, but
rather precesses or wobbles just as a spinning top does in a gravitational field
(see Fig.A.1 [6]). The precessional (Larmor) frequency ν=ω/(2π) can be found
from the Larmor relationship

ω= γB (A.1)

where B is the amplitude of the magnetic field and γ the magnetogyric ratio3.
The energy difference of particles in rest and excited particles is ∆E = hν (h is
Planck’s constant) and the ratio of the populations of nuclei in parallel state, Np,
to nuclei in antiparallel state, Nap, is Np/Nap = exp∆E/kT where k is Boltzmann’s
constant and T the temperature. Therefore, a surplus of nuclear spins aligned
parallel to B0 results4. This difference gives rise to a macroscopic magnetization
M of the sample, i.e., a magnetic dipole moment per unit volume.

A.2 Resonance

Resonance occurs when a second magnetic field B1, a pulse of radio frequency
(RF) energy which oscillates at the Larmor frequency, is applied to the system.
The particles then absorb energy and the magnetic moment of the nucleus rotates.
The flip angle of the rotation, α, (see Fig.A.1) is dependent on the magnitude and
duration of B1 [126]. A pulse with Larmor frequency ν and α = π/2 is called a
90◦ pulse.

3At B0 = 3 Tesla the Larmor frequency for hydrogen nuclei is ν= 127.7 MHz.
4At B0 = 1 Tesla, it is Np/Nap ≈ 1+10−6 [6].
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A.3 Field gradients

The effect of a spatially constant gradient field Bz = zGz during the application of
an RF pulse is now discussed. Using (A.1), it is then ω(z) = γ(B0 + zGz), i.e., the
Larmor frequency varies linearly along the z axis. This means that the protons in
slice z∗ can only be excited by an RF pulse with frequency ω(z∗).

A.4 B0 inhomogeneities

In practice, B0 is not perfectly homogeneous 5. The corresponding effects can be
reduced by means of a refocusing or 180◦ RF pulse. After a 90◦ pulse, the trans-
verse magnetization diverges due to the inhomogeneities (see Equation A.1), e.g.,
spins at locations with slightly larger field strength precess faster than the ones
with slightly smaller field strength. A 180◦ refocusing pulse, applied a time τ af-
ter the 90◦ pulse, then reverses the order of the spins, so that the ones which have
lagged behind now move ahead. After another time delay τ, a signal maximum
will be achieved, the so-called Hahn-spin echo. The symbol TE is commonly
used for the time 2τ. A 180◦ refocusing pulse in combination with field gradients
is also used for diffusion weighted imaging, introduced in A.9.

A.5 Relaxation

After RF excitation, Mz and M⊥ (⊥= x,y) return to the equilibrium value M0 and
0, resp.. When denoting the relaxation time constants by T1 for longitudinal (Mz)
or spin-lattice relaxation and by T2 for transverse (M⊥) or spin-spin relaxation6,
this is described by the classical Bloch equations [23]

dMz

dt
= γ(M×B0)z−Mz−M0

T1

dMx,y

dt
= γ(M×B0)⊥−Mx,y

T2
(A.2)

These equations represent phenomenologically the motion of M in time under
the influence of the external field B0 including relaxation mechanisms. The spin-
lattice relaxation is due to thermal coupling to the lattice, whereas the spin-spin

5It is technically impossible to produce an absolutely homogeneous magnetic field [126].
6It is the wide range of relaxation times in biological tissue that makes NMR so interesting

for medical diagnostics. At B0 = 1.5 Tesla, T1 and T2 relaxation times for brain white matter are
510 ms and 67 ms, for brain gray matter 760 ms and 77 ms and for CSF 2650 ms and 280 ms,
resp. [126].
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relaxation mainly relies on an exchange of magnetic energy between excited and
non-excited particles [246]. For a 90◦ pulse, (A.2) is satisfied by 7 [6]

Mz(t) = M0(1− e
−t
T1 ), M⊥(t) = M0eiωt e

−t
T2 . (A.3)

A.6 Magnetic resonance imaging

For simplicity, the restriction is made to a two-dimensional object and the relax-
ation term in (A.3) is neglected [6]. A 90◦ pulse is applied in order to excite the
sample, followed by a spatially constant field Gradient Gy, switched on for the
time Ty, and a subsequent Gradient Gx in x direction. The following NMR signal
is then recorded [6]:

M⊥(t,Gy) =
1√
2π

Z Z
M̃⊥(x,y)eiγ(Gyy+B0)Tyeiγ(Gxx+B0)tdxdy

In the following, in line with [6], B0 is set to 0. We only consider the phase evolu-
tion due to externally applied fields other than the main magnetic field. Repeating
the above encoding procedure with various Gy, subsequently measuring the sig-
nal M⊥(t,Gy) and applying a Fourier transformation with respect to Gy yields the
final result for 2D-space [6]

M̃⊥(x,y) =
1√
2π

TxZ

−Tx

Gmax
yZ

−Gmax
y

M⊥(t,Gy)e−iγ((GyTy)y+(Gxt)x)dGydt.

A similar relationship can be derived for 3D [126]:

ρ(r) =
1√
2π

Z Z Z
S(k)e−i2π(k,r)dk. (A.4)

In this formula, we use r instead of (x,y,z) and the function ρ instead of M⊥
in order to underline, that we seek to get an image of the proton density of the
tissues, and we denote the measured signal with S and its domain of definition
with k(Gx ∗ t,Gy ∗Ty,Gz ∗Tz), the so-called “k-space” (see [126]).

A.7 Pulse sequence

A pulse sequence describes the chronological order of RF and gradient pulses in
order to obtain signals from which an image can be reconstructed. Many different
pulse sequences exist, each tuned to a specific problem such as the optimization
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Figure A.2: Gradient echo pulse sequence from Andrä and Nowak [6].

of the contrast between certain tissues (see Section 2.3) or diffusion imaging (see
A.9).

In the following, a simple gradient echo sequence will be discussed as an
example for a pulse sequence (see Fig. A.2) [6]. This sequence is used for the
acquisition of the PD-MRI in Section 2.3. The temporally constant (during a cer-
tain period of time) field gradient Gz during the application of an RF pulse with
flip angle α means, that only protons within a slice of the sample are excited. The
slice thickness is proportional to the width of the frequency spectrum of the RF
pulse and inversely proportional to the amplitude of Gz. Protons with different z
coordinates within the slice will have different phases after the excitation, so that
they have to be rephased with a further gradient with inverted amplitude, −Gz.
On the simplifying assumption that the spins are tipped instantaneously after half
the duration of the RF pulse, they will be refocused if the rephasing gradient has
half the duration of the slice excitation gradient pulse ([34], p.105). During this
time, the phase encoding gradient Gy and a reversed readout gradient, −Gx, are
also applied. The signal is then recorded under the influence of Gx for twice the
duration of the reversed readout gradient. The pulse sequence is then repeated
with different phase encoding gradients Gy, followed by the Fourier transforma-
tion for image reconstruction. The sequence repetition interval is denoted by TR.

The imaging of a slice can take minutes, since after each phase encoding step,

7M⊥ = Mx + iMy is a complex quantity.
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at least a T1 period is needed for a recovering before the sample can be re-excited
for the next phase encoding step. If TR is short with respect to T1, the effective
transverse magnetization is determined by [6]

M⊥(x,y) = M0(x,y)
(1− e

−TR
T1(x,y) )sinα

1− e
−TR

T1(x,y) cosα
.

If small flip angles, e.g., 10◦ or 20◦, are chosen in combination with short repe-
tition times, the obtained signal can still be large. The resulting pulse sequence
is referred to as FLASH (Fast Low Angle SHot, [86]). FLASH assumes, that the
phase memory of M⊥ has been lost at the end of the repetition interval; since
this is not true when the repetition interval is faster than the transverse relaxation
time, spoiling gradient pulses must be applied at the end of each interval [64; 6],
as shown in Fig. A.2.

A.8 Bloch equations including diffusion

If we denote with c the concentration in terms of particles per unit volume, the
well-known diffusion equation (Fick’s second law) [60] assumes the form

∂c
∂t

= ∇ · (Deff∇c) (A.5)

with Deff ∈R
3×3 the effective diffusion tensor, defined in Section 3.4.1. The mod-

ified Bloch equations including anisotropic diffusion then have the form [216;
215; 126]:

∂M⊥
∂t

= γ(M×B0)x−M⊥
T2

−∇ · (vM⊥)+∇ · (Deff∇M⊥)

∂Mz

∂t
= γ(M×B0)z− Mz−M0

T1
−∇ · (vMz)+∇ · (Deff∇Mz) (A.6)

In these equations, additionally, the first added term accounts for flow with ve-
locity v. Again, a strong B0 in z direction has been assumed. The total time
derivative in (A.2) has been replaced by a partial derivative since now the com-
ponents of M (and also of c in A.5) depend on both position and time.

A.9 Diffusion tensor imaging

Let us consider a stationary particle, exposed to a Stejskal-Tanner type pulse se-
quence, shown in Fig.A.3 [126]. During the first τ period after the 90◦ pulse, the
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Figure A.3: Stejskal-Tanner type spin echo preparation experiment for diffusion weight-
ing.

particle accumulates a phase shift, let’s say, +Φ, due to the applied gradient pulse
with duration δ and magnitude G (see A.3). The 180◦ refocusing pulse then in-
verts the phase of the particle to −Φ (see A.4) and since it accumulates a positive
shift, +Φ, again in the second τ period, no phase shift remains at t = TE = 2τ.
In contrast, a diffusing particle changes its position, so that a net phase shift not
equal to zero, lets say, a positive shift, results for the considered diffusing parti-
cle. Because diffusion is a random process, other particles in the neighborhood
of the first accumulate a negative shift, and since the magnetization is a vector
average over the ensemble spins (see A.1), the result is a signal attenuation.

For a Stejskal-Tanner type pulse sequence, analytic expressions have been
derived based on the extended Bloch equations (A.6) that describe the signal at-
tenuation and relate the measured echo intensity to the applied pulse gradient
sequence [216]. In these expressions, the effects of diffusion, flow, reversible de-
phasing due to external gradients, relaxation and precession in the main magnetic
field were separated [215; 126],

M⊥(t) = Mx(t)+ iMy(t) = A(t)eiΦ(v,t)e−ig(t)e−t/T2e−iω0t ,

with some real-valued functions A, Φ and g. A(TE), the magnitude of the magne-
tization at the time of the echo, was related to the diffusion tensor for anisotropic
media. With A(t)∼ S(t) and with the denotation S and S0 for the echo amplitude
with and without the diffusion gradient pulses, resp., the effective diffusion tensor
was defined in this way by [14]

S
S0

= e−b:Deff
(A.7)
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with the notation

b : Deff :=
3

∑
i, j=1

b[i j](Deff)[i j] ∈ R

and

b[i j] = γ2
Z TE

0

[
F(t ′)−2H(t ′ − τ)f][i] [F(t ′)−2H(t ′ − τ)f][ j]

dt ′

with

F(t) =
Z t

0
G(t ′)dt ′ and f = F(τ).

H is the unit Heaviside function and G(t) the applied gradient pulses. This ex-
pression defines the effective diffusion tensor, being averaged over the echo time.

For the Stejskal-Tanner experiment in Fig.A.3 with gradient pulses having
symmetrical trapezoidal form with time rise ε, the integral can be evaluated and
the elements are given by [153]

b[i j] = γ2G[i]G[ j][δ2(∆−δ/3)+
ε3

30
− ε2

6
δ]. (A.8)

The effective self-diffusion tensor averaged over the echo time, Deff, is thus de-
termined by the application of different b[i j] values (i.e., by means of a variation
of gradient and time settings), the subsequent measurement of the signal S and a
multivariate linear regression [126].



Appendix B

The multilayer sphere model

B.1 The derivation of the monopole potential

Following de Munck [49] and de Munck and Peters [52], the solution of the
inhomogeneous differential equation (4.21) was expressed as the product of two
linear independent solutions H(i)

n , i ∈ {1,2} of the corresponding homogeneous
differential equation,

Rn(r0,re) =
H(1)

n (r0)H
(2)
n (re)

reσrad(re)
[
H(1)

n (r) d
dr H(2)

n (r)−H(2)
n (r) d

dr H(1)
n (r)

]
r=re

.

The solutions of the homogeneous equation are known to be H(1)
0 (r) ≡ 1 and,

∀n �= 0 and for r j+1 < r < r j:

H(i)
n (r) = A(i)

j,nPj,n(r)+ B(i)
j,nQ j,n(r), Pj,n(r) = rv j(n), Q j,n(r) = r−v j(n)−1

with

v j(n) =
1
2
(−1+

√
1+ 4n(n+ 1)σtang

j /σrad
j ).

For a determination of the coefficients, the Dirichlet condition in the center of
the multisphere model and the boundary condition at the outer surface were in-
troduced by

lim
r→0

H(1)
n (r) = 0 lim

r→0
H(1)′

n (r) = 1, ∀n �= 0

lim
r→r1

H(2)
n (r) = 1 lim

r→r1
H(2)′

n (r) = 0, ∀n �= 0,
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so that Gauss’ identity,
R
Ω JpdΩ=

H
Γ f dΓ, was fulfilled for the monopole with

f := σ
∂umon

∂n

∣∣∣∣
Γ

=
1

4πr2
1

.

With two further conditions, the first being the continuity of the potential over a
layer surface,

A(i)
j,nPj,n(r j)+ B(i)

j,nQ j,n(r j) = A(i)
j−1,nPj−1,n(r j)+ B(i)

j−1,nQ j−1,n(r j),

and the second being the continuity of the current normal to a layer surface,

σrad
j

[
A(i)

j,nP′j,n(r j)+ B(i)
j,nQ′j,n(r j)

]
= σrad

j−1

[
A(i)

j−1,nP′j−1,n(r j)+ B(i)
j−1,nQ′j−1,n(r j)

]
,

a formula for the coefficients of the spherical harmonics expansion was derived:

Rn(r0,re) =

{
MJ0(r0,rJ0+1)

J0−1
∏

j=N
M j(r j,r j+1)

}
12{

−r2
e

1
∏

j=N
M j(r j,r j+1)

}
22

ζ
vJ0
0

J0−1

∏
j=1

ζ
v j

j . (B.1)

In this formula, it is ζ0 = r0/rJ0 < 1 and ζ j = r j+1/r j < 1, and, with

S−j (r j,r j+1)=

 r jv j

r j+1
− r j

σrad
j

−σrad
j v j(v j+1)

r j+1
v j + 1

 , S+
j (r j,r j+1)=

 v j + 1 r j+1

σrad
j

v j(v j+1)σrad
j

r j

r j+1v j

r j

 ,

the matrices M j are defined as

M j(r j,r j+1) = ζ
2v j+2
j

1
2v j + 1

S−j (r j,r j+1)+
1

2v j + 1
S+

j (r j,r j+1). (B.2)

In formula (B.1), the limit rN+1 → 0 (Dirichlet condition) has to be taken for
MN(rN ,rN+1), using l’Hôpitals rule:

lim
rN+1→0

d
drN+1

MN(rN ,rN+1) =
1

2vN + 1

(
0 1

σrad
N

0 vN
rN

)
(B.3)

To summarize, the spherical harmonics expansion (4.20) for a monopolar source
can be calculated by means of (B.1), (B.2) and (B.3).
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B.2 Asymptotic approximation for the dipole potential

For the computation of R′n(r0,re), i.e., the derivative with respect to r0, the 12-
matrix element in Equation (B.1) has to be exchanged against the 22-matrix ele-
ment and the result has to be divided by the conductivity σrad

J0
[49; 52].

For n→∞, the first term in (B.2) tends to zero, since ζ j < 1. Thus, the matrix
product in (B.1) tends to a rational function of v j. It is then clear that the series
convergence in Equation (4.20) is determined by the behavior of the product of
the ζ j in (B.1). De Munck and Peters [52] showed that, if the source approaches
the electrode, this product tends to AΛn with Λ→ 1 and

A =
J0−1

∏
j=1

(ζ jζ0)1/2(α j−1) Λ=
J0−1

∏
j=1

(ζ jζ0)α j α j =
√
σtang

j /σrad
j .

Therefore, an asymptotic approximation was proposed to speed up computation
of the series (4.22) and (4.23). The main point in their derivation is an approx-
imation of the spherical harmonics expansion with a formula, which is known
both in analytical form and as a spherical harmonics expansion. Such formulas
are

∞

∑
n=1

ΛnP′n(cosω0e) =
Λ
R3

∞

∑
n=1

nΛnPn(cosω0e) =
Λcosω0e−Λ2

R3 ,

with R =
√

1−2Λcosω0e +Λ2. With the definition of the terms

F0 =− 2A
reβJ0

J0−1

∏
j=1

2β j+1

β j +β j+1
F1 =

βJ0

r0σrad
J0

F0,

with β j =
√
σtang

j σrad
j , de Munck and Peters [52] found the following asymptotic

approximations for n→ ∞

(2n+ 1)Rn(r0,re)→ F0Λ
n (2n+ 1)R′n(r0,re)→ nF1Λ

n

and thus the series of differences (4.24) and (4.25) with a higher speed of conver-
gence.
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Appendix C

Conventional methods for the
dipole fit least square problem

C.1 QR decomposition

Without respect to the noise in the data, one possibility to solve the linear least
square problem (6.2) is the QR decomposition. If the overdetermined m× r (m >
r) lead-field matrix Lq has full rank r, it can be decomposed into an orthogonal
m×m matrix Q (QtrQ = I) and an m× r matrix

R =
(

R1

0

)
with a right upper triangular r× r matrix R1 (see, e.g., Werner [250]). The co-
efficient matrix of the reduced system has the same condition as the lead-field
matrix

cond2(Lq) = cond2(QR) = cond2(R).

The application of Qtr to the measured (noisy) data Ume
ε ∈ R

m×T yields

QtrUme
ε =

(
Ume
ε1

Ume
ε2

)
with an r× T matrix Ume

ε1 and an (m− r)× T matrix Ume
ε2 . Because orthogonal

transformations preserve the Frobenius-norm, the linear least square problem

H(q) = ||QtrLqJq−QtrUme
ε ||2F = ||R1Jq−Ume

ε1 ||2F + ||Ume
ε2 ||2F

can be solved by back-substitution R1Jq = Ume
ε1 .

To compute the QR-decomposition, the method of Householder [250] was
used, implemented in subroutine DGEQPF in the software package LAPACK [132].
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The left orthogonal matrix is represented as a product of elementary Householder
rotation matrices Hi := Idm−τixix

tr
i with a scalar τi and an m×1 vector xi, i.e.

Q = H1 · . . . ·Hm.

C.2 Complete Orthogonal Factorization

Another possibility to solve (6.2) is the Complete Orthogonal Factorization (COF)
of Lq. This method can also handle matrices which do not have full effective rank
re = r, which cannot be guaranteed in practical applications. Generally, the COF
numerically produces the same results as the QR decomposition and it also suffers
from the fact not to account for the data noise. The only goal of both algorithms
is to minimize the residual variance to the noisy data. In a first step of the COF, a
QR-decomposition with column pivoting

LqP = Q

(
R11 R12

0 R22

)
is calculated, where the re×re matrix R11 is defined as the largest leading subma-
trix whose estimated condition number is less than 1/Rcond with a small constant
Rcond . Thus, the order of R11 is the effective rank re of Lq. In a second step of
the COF, the (m− re)× (r− re) matrix R22 is considered to be negligible and the
re× (r− re) matrix R12 is annihilated by the r× r orthogonal right Householder
rotation matrix Z: [

R11 R12
]
=
[

R1 0
]

Z

If we write
Q =

[
Qre Qm−re

]
,

where Qi contains the first i columns of Q and

Z =
[

Zre

Zr−re

]
,

where Zi contains the first i rows of Z, we arrive at the COF of the lead-field
matrix

LqP =
[

Qre Qm−re

]( R1 0
0 0

)[
Zre

Zr−re

]
.

The linear least square problem H(q) can then be solved by

Jq = PZtr
re

R−1
1 Qtr

re
Ume
ε .

Subroutine DGELSX of the Lapack-library was used for the COF [132]. In the
simulations, it was chosen Rcond = 0.3 ·10−7.
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Software developments: The
program NeuroFEM

A new FE software package NeuroFEM 1 was developed, based on the CAUCHY-
code 2 (see [30; 191; 254]). Since it would have been difficult to integrate
the FORTRAN77-CAUCHY FE forward problem tools using quasistatic mem-
ory management in a new C++ class structured inverse toolbox, the old soft-
ware was redesigned. The inverse toolbox contains a variety of state-of-the-art
current source localization methods from the package ASA 3 (see [122]) and
was developed within the frame of the project SimBio 4 (see [142]). It will
ease the future integration of inverse methods from the CAUCHY project or of
new developments such as the methods presented in this thesis and published
in [260; 259; 203; 204]. Another argument for the code development was the
possibility for a proper interface to the software package PEBBLES, including
the parallel AMG solver [88] 5. The solver code also exploits C++ principles of
overloading and inheritance.

Therefore, C++ class structured software concepts in the NeuroFEM code

1NeuroFEM: A.Anwander and C.Wolters, http://www.simbio.de, 2002.
2CAUCHY: Anatomic source reconstruction of EEG/MEG-data, H.Buchner, Neurologische

Klinik, RWTH Aachen, 1997. I would like to thank Rainer Beckmann and Adrian Rienäcker for
the excellent CAUCHY support.

3ASA: Advanced Source Analysis, http://www.ant-software.nl, 2002.
4SimBio: A generic environment for bio-numerical simulation. IST-program of the European

Commission, Project No.10378, http://www.simbio.de, 2000-2003. The author of this thesis was
strongly involved in the definition and application phase of SimBio, in the recruitment of personal
and in the realization of the project-goals.

5PEBBLES – User’s Guide, S. Reitzinger, SFB F013 ”Numerical and Symbolic Scientific Com-
puting”, http://www.sfb013.uni-linz.ac.at, 1999. Many thanks to Stefan Reitzinger and Michael
Kuhn for all the help concerning solver integration and NeuroFEM parallelization.
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replace old CAUCHY kernel routines. The storage management is fully dynam-
ical so that a recompilation of the software is no longer necessary when chang-
ing the problem- and thus memory- size. The new structure facilitated parallel
programming on distributed memory computers using the Message-Passing In-
terface (MPI) standard. The integrated software allows future comparisons with
series expansion formulas in spherical shell models 6 or with BE method based
forward simulations using the ASA software. Furthermore, the use of the bi-
nary VISTA-format was enabled, so that NeuroFEM was successfully coupled to
the other SimBio work-packages such as the work-package for MRI registration
and segmentation, the work-package for FE grid-generation, the library PILUTS,
containing further parallel FE solver techniques (among others, a parallel Schur-
complement ILDLT-preconditioned CG method), the SimBio-VM (Visualization
Module) and the CORBA interface for component interaction and remote paral-
lel computation. Obviously, NeuroFEM still supports the old CAUCHY ASCII
formats, so that it is also coupled to EIPP, the CAUCHY visualization tool, and
to CURRY 7, which, amongst many other features, offers further segmentation
and visualization possibilities, surface triangulation and tetrahedra FE meshing.

The coupling of NeuroFEM to the PEBBLES parallel solver-package was
carried out through an “element by element” interface. The root-process deter-
mines the index set (see Equation (5.10)) for each node of the partitioned ge-
ometry and scatters the corresponding data together with the conductivity ten-
sors to the processors. The arrangement of the nodes to groups according to
their index-sets, the ordering of the groups and the allocation of corresponding
MPI-communicator groups and the local node numbering is then a fully parallel
process. Element-stiffness-matrices are computed on each processor and stored
in the local stiffness matrices in FE compact row format. The global Dirichlet-
node information is scattered to all processors and implemented with a penalty
approach in local numbering to those local stiffness matrices whose processor-
number is part of the global Dirichlet-node index-set. The coarsening can then
be carried out and the hierarchy of stiffness and prolongation matrices can be de-
termined in the parallel setup-phase of the AMG preconditioner as described in
Section 5.4.3.

The software NeuroFEM-PEBBLES is available under a fee-free license of
the MPI of Cognitive Neuroscience Leipzig, Germany, and the University of
Linz, Austria 8. It is used by several institutions in Europe and the USA.

6I would like to thank Jan C. de Munck for handing out his C++ code for the series expansion
formulas and helping me in implementing the software for the validations in Section 4.9.2.

7CURrent Reconstruction and Imaging, http://www.neuro.com/neuroscan/prod05.htm. Many
thanks to Michael Wagner, Manfred Fuchs and Jörn Kastner for the various scientific discussions
and their continuous support concerning the use of CURRY.

8E-mail to wolters@cns.mpg.de or anwander@cns.mpg.de.



Appendix E

Zusammenfassung (summary in
german)

E.1 Motivation und Einordnung

Seit nun fast drei Jahrzehnten werden im Bereich der Kognitionswissenschaften
und in klinischer Forschung und Routine die Quellen elektrischer Aktivität im
menschlichen Gehirn anhand ihrer über das Elektroenzephalogramm (EEG) an
der Kopfoberfläche gemessenen Potentialverteilung bzw. ihres über das Magne-
toenzephalogramm (MEG) in einigen Zentimetern Entfernung davon gemesse-
nen magnetischen Flusses rekonstruiert. Im Vergleich zu anderen funktionellen
Bildgebungsmethoden wie z.B. die Positronen-Emissions-Tomographie (PET)
oder die funktionelle Magnetresonanztomographie (fMRT) hat die EEG/MEG-
Quellrekonstruktion den Vorteil einer sehr hohen zeitlichen Auflösung. Die ge-
messene Aktivität ist das Resultat von Ionenbewegungen in aktivierten kortika-
len Regionen des Gehirns, den sog. Primärströmen. Schon im Jahr 1949 wur-
den erstmals die Primärströme über Stromdipole mathematisch modelliert. Der
Primärstrom erzeugt Rückströme im leitfähigen Gewebe des Kopfes, die sog.
Sekundärströme. Die Rekonstruktion der Dipolquellen wird das EEG/MEG in-
verse Problem genannt. Dessen Lösung erfordert die wiederholte Berechnung
des Vorwärtsproblems, d.h. der Simulation der EEG/MEG-Feldverteilung für ei-
ne gegebene Dipolquelle im Gehirn.

Ein erstes Anwendungsgebiet findet sich in der Diagnose und Therapie von
pharma-resistenten Epilepsien, von denen ca. 0,25% der Weltbevölkerung betrof-
fen sind und für die sich in den letzten Jahrzehnten eine systematische chirurgi-
sche Behandlung entwickelt hat. Voraussetzung für einen die restlichen Gehirnre-
gionen schonenden chirurgischen Eingriff ist die Kenntnis der Lage und Ausdeh-
nung der epileptischen Zentren. Bisher wurden diese Charakteristika in den Pa-
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tienten stark belastenden invasiven Untersuchungen wie zum Beispiel Subdural-
oder Tiefen-Elektroden gewonnen. Die bioelektrischen Signale von Epilepsie-
kranken weisen zwischen den Anfallsereignissen sog. interiktale Spikes auf. Die
nicht-invasive Messung des EEG/MEG dieser interiktalen Spikes und die an-
schließende Berechnung des epileptischen Zentrums belastet den Patienten nicht.

Ein weiteres Anwendungsfeld ist die präoperative Ermittlung der Lage wich-
tiger funktionell-zusammenhängender Zentren im Gehirn, z.B. des primär-mo-
torischen, des primär-auditorischen oder primär-somatosensorischen Cortex. Bei
Operationen in diesen Bereichen (z.B. Tumoroperationen) könnten Lähmungen,
Hör- und Sensibilitätsstörungen vermieden werden. Dazu werden über akusti-
sche oder sensorische Reize charakteristische Signale evoziert und über Summa-
tionstechniken sichtbar gemacht. Durch das Lösen des inversen Problems wird
versucht, die zugrunde liegende Quellstruktur zu ermitteln.

Neben den aufgeführten klinischen Anwendungen ergeben sich auch zahlrei-
che Anwendungsfelder in der Kognitionswissenschaft. Von Interesse sind z.B. funk-
tionelle Zusammenhänge im Gehirn und die Aufdeckung der aktivierten Areale
während der Verarbeitung eines Reizes, wie z.B. der Sprachverarbeitung im Ge-
hirn.

Die Lösung des Vorwärtsproblems impliziert die Modellierung des Kopf-
es als Volumenleiter. Es ist bekannt, dass in makroskopischer Hinsicht Gewe-
be wie die Kopfhaut, der Schädel, die Zerebrospinalflüssigkeit (engl.: CSF) und
die Hirngewebe graue und weiße Substanz (engl.: GM und WM) verschiedene
Leitfähigkeiten besitzen. Der menschliche Schädel ist aus drei Schichten auf-
gebaut, eine relativ gut leitfähige spongiöse Schicht wird von zwei stark isolie-
renden Schichten, den äußeren und inneren Kompakta, eingeschlossen. In radia-
ler Richtung durch den Schädel handelt es sich also um eine Reihenschaltung
von hohem, niedrigem und hohem Widerstand, wohingegen in den tangentia-
len Richtungen die Leiter parallel geschaltet sind. Als Ganzes gesehen besitzt
der Schädel demnach eine richtungsabhängige oder anisotrope Leitfähigkeit mit
einem gemessenen Verhältnis von bis zu 1 zu 10. Für die faserige WM wurde
ebenfalls eine Anisotropie mit einem ähnlichen Verhältnis (senkrecht zu parallel
zu den Fasern) nachgewiesen. Leider existiert bis heute keine direkte Methode,
die Leitfähigkeit der WM nicht-invasiv in genügender Auflösung zu ermittelt.
Seit einigen Jahren werden allerdings Formalismen diskutiert, die den gesuch-
ten Leitfähigkeitstensor in Bezug setzen zum Wasserdiffusionstensor, der in WM
nicht-invasiv über die Diffusionstensor-MRT (DT-MRT) gemessen werden kann.
Natürlich wird keine fundamentale Beziehung zwischen der freien Beweglichkeit
von Ionen und Wasserteilchen angenommen, sondern lediglich, dass die einge-
schränkte Mobilität über die Fasergeometrie der WM in Beziehung steht.

Heutzutage werden verschiedene Ansätze für die Lösung des Vorwärtspro-
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blems genutzt und mit steigender Genauigkeit der Modellierung des Kopfvo-
lumenleiters erhöht sich die Komplexität der numerischen Feldberechnungen.
Einfache Modelle, die immer noch am häufigsten Gebrauchten, beschreiben den
Kopf als Mehrschalenkugel-Leiter mit üblicherweise drei Schichten, die die Kopf-
haut, den Schädel und das Gehirn repräsentieren. Um besser auf die Geometrie
der drei modellierten Oberflächen einzugehen, wurden sog. BE-Modelle (von
engl.: Boundary Element) entwickelt, die sich für isotrop leitfähige Schichten
eignen. Um sowohl auf realistische Geometrien als auch auf Anisotropien und
Inhomogenitäten eingehen zu können, wurden Finite-Elemente (FE) Modelle des
Kopfes entwickelt.

Zwei wichtige Fragen stellen sich nun: Ist eine exakte Modellierung der vor-
gestellten Gewebeleitfähigkeits-Anisotropien nötig und in welchen Fällen rei-
chen weniger berechnungsaufwendige Verfahren aus? Wie können komplexe FE-
Vorwärtsmodelle hinreichend beschleunigt werden, um den Zeitrestriktionen für
inverse Quellrekonstruktionen in den Anwendungen zu genügen?

Es existieren zahlreiche Arbeiten, die, basierend auf FE-Modellen des Kopf-
es, gezeigt haben, dass Öffnungen im Schädel wie z.B. diejenige, durch die der
optische Nerv eintritt oder das okzipitale Loch des Hirnstamms, oder Inhomo-
genitäten wie Läsionen im Gehirn oder die Sutura des Schädels (insbesondere
bei Kleinkindern, wo die Sutura noch nicht geschlossen sind) einen nicht ver-
nachlässigbaren Einfluss auf das EEG/MEG-Vorwärtsproblem haben. Eine erste
Studie bzgl. der Sensitivität zweier ausgewählter EEG-Rekonstruktionsverfahren
wies teils große Fehler im Falle der Nichtbeachtung von Schädel-Anisotropie
nach. Insbesondere für diverse klinische Anwendungen wird der sog. single di-
pole fit im kontinuierlichen Parameterraum verwendet. Aufgrund des hohen Be-
rechnungsaufwands wurden solche Verfahren bisher noch nicht auf ihre Sensi-
tivität auf Schädelanisotropie getestet. Obwohl bereits eine Studie einen nicht-
vernachlässigbaren Einfluss auf die EEG/MEG-Vorwärtssimulation zeigte, gibt
es noch keinerlei Ergebnis zur Auswirkung der WM-Anisotropie auf inverse Re-
konstruktionsverfahren.

Die Lösung des inversen Problems ist im allgemeinen nicht eindeutig. Viele
Dipol-Quellkonfigurationen können ein und dieselbe EEG und MEG Feldvertei-
lung erzeugen. Zusätzliche Annahmen über die Quellen sind dementsprechend
unerlässlich. Bei den sog. fokalen Rekonstruktionsmethoden wird die Annahme
gemacht, dass einige wenige Dipole den gemessenen Daten zugrunde liegen. Die-
se Dipole (Anzahl, Ort, Richtung, Stärke) sollen innerhalb des anatomisch und
physiologisch sinnvollen Suchgebiets so ermittelt werden, dass die Messwerte
möglichst genau erklärt werden, gleichzeitig aber das Rauschen keinen zu star-
ken Einfluss auf die Lösung nimmt und die Algorithmen stabil in Bezug auf eine
Überschätzung der Anzahl aktiver Quellen bleiben. Bei diesen, wie auch bei den
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sog. Stromdichterekonstruktionsverfahren, wird sich das Konzept der Regulari-
sierung als eine wichtige Methode herausstellen.

E.2 Wissenschaftliche Ergebnisse der Dissertation

Die Ergebnisse der vorgelegten Dissertation können in vier Teilbereiche aufge-
teilt werden.

Im ersten Teilbereich wurden Methoden zur Registrierung und Segmentie-
rung multimodaler MR-Bilder vorgestellt mit dem Ziel, ein realistisches ani-
sotropes Multigewebe Kopfmodell zu generieren. In der Literatur wurde von
größeren EEG- und MEG-Quellrekonstruktionsfehlern aufgrund mangelhafter
Modellierung insbesondere der inneren Schädelkante berichtet. Ein erster Fo-
kus dieser Arbeit lag dementsprechend auf einer verbesserten Segmentierung
dieser Kante, die über ein auf dem T1-gewichteten MRT (T1-MRT) registrier-
ten Protonendichte-gewichteten MRT (PD-MRT) gewonnen wurde. Die inne-
re Schädelkante zeichnet sich im PD-MRT im Gegensatz zum T1-MRT durch
einen hohen Kontrast zwischen CSF (protonenreich) und Knochen (protonen-
arm) aus. Das T1-MRT wurde hingegen für die Segmentierung der Kopfhaut, der
GM und der WM verwendet. Die Standardtechnik im Bereich der EEG/MEG-
Quellrekonstruktion nutzt lediglich ein T1-MRT und gewinnt die gesuchte in-
nere Schädelkante über ein Glätten und Aufblasen der segmentierten Hirnober-
fläche. Im Vergleich beider Methoden konnte eine Verbesserung der Segmentie-
rung von bis zu 8,5mm in Gebieten erzielt werden, in denen die Standardmethode
die Dicke der CSF-Schicht unterschätzte. Über die vorgestellten Methoden, ins-
besondere der Segmentierung unter Berücksichtigung der MR-Inhomogenitäten,
konnte zudem eine sehr exakte Modellierung der GM erzielt werden, welche
dann als anatomische und auch physiologische Nebenbedingung in die Quell-
rekonstruktion eingebettet werden kann. Zur realistischen Modellierung der An-
isotropie der Schädelschicht wurde ein deformierbares Modell eingesetzt, wel-
ches eine geglättete Spongiosaoberfläche darstellt und somit ein Abgreifen der
Leitfähigkeitstensor-Eigenvektoren in radialer Knochenrichtung ermöglicht. Die
Eigenvektoren der WM-Tensoren wurden über Ganzkopf-DT-MRT gemessen.
Schädel- und WM-Tensor-Eigenwerte wurden entweder unter Ausnutzung pu-
blizierter Werte simuliert oder gemäß einem differentialen EMA (von engl.: Ef-
fective Medium Approach) ermittelt.

Der zweite Teilbereich betraf die schnelle hochaufgelöste FE-Modellierung
des EEG/ MEG-Vorwärtsproblems. Zunächst wurde ein Überblick über die Theo-
rie gegeben und die praktische Realisierung der später eingesetzten hochauf-
gelösten anisotropen FE-Volumenleitermodelle vorgestellt. In numerischen Ge-
nauigkeitsstudien konnte nachgewiesen werden, dass Hexaeder-FE-Netze, wel-
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che ein Verschieben der Stützpunkte zur Glättung an Gewebekanten nutzen, vor-
teilhaft sind zu herkömmlichen Hexaeder-Netzen. Dazu wurden die Reihenent-
wicklungsformeln für das Mehrschalenkugel-Modell eingesetzt. Ein weiterer Fo-
kus dieser Arbeit lag auf dem Einsatz schneller FE-Lösungsmethoden, welche die
praktische Anwendbarkeit von hochaufgelösten anisotropen FE-Kopfmodellen in
den verschiedenen Anwendungsgebieten ermöglichen sollte. In einem Zeitver-
gleich zwischen dem neu in die Software integrierten parallelen (12 Prozessoren)
algebraischen Mehrgitter- und dem Standard-Einprozessor-Jacobi-Vorkonditio-
nierer für das Verfahren der konjugierten Gradienten konnte für hochaufgelöste
anisotrope FE-Kopfmodelle ein Beschleunigungsfaktor von mehr als 100 erzielt
werden.

Im dritten Teilbereich, den Methoden zum inversen Problem, wurden ne-
ben einem Überblick über fokale Rekonstruktionsverfahren und Stromdichte-
rekonstruktionsverfahren algorithmische Neuentwicklungen präsentiert. Es wur-
de zunächst die Methode des single dipole fit in die FE-Modellierung eingeführt.
Für multiple dipolare Quellen wurde ein Simulated Annealing Algorithmus in
Kombination mit einer abgeschnittenen Singulärwertzerlegung im diskreten Pa-
rameterraum entwickelt. Im Vergleich zu Standardmethoden zeigte der Algorith-
mus in verschiedenen Simulationsstudien eine verbesserte Fähigkeit der Unter-
scheidung zwischen realen und sog. ghost Quellen. Des Weiteren wurde eine
kürzlich in der Literatur vorgestellte raum-zeitliche Regularisierungsmethode auf
die Stromdichterekonstruktion und, als zweite Anwendung, auf die dynamische
Impedanztomographie angewandt. Der raum-zeitliche Ansatz konnte dabei eine
stabilisierende Wirkung auf die Rekonstruktionsergebnisse erzielen und zeigte im
Hinblick auf seine Genauigkeit und den Speicher- und Rechenzeitbedarf Vorteile
gegenüber einem sog. Kalman-Glätter.

Im letzten Teilbereich der Dissertation wurden Untersuchungen zur Aniso-
tropie-Sensitivität durchgeführt. Der erste Teil bezog sich dabei auf das Vorwärts-
problem, wo die Resultate im Einklang mit der verfügbaren Literatur waren. Es
kann festgehalten werden, dass Schädelanisotropie einen nicht-vernachlässigbaren
Einfluss auf die EEG-Simulation hatte, wohingegen das MEG unbeeinflusst blieb.
Je mehr eine Quelle von WM umgeben war, desto größer war der Einfluss der
WM-Anisotropie auf sowohl EEG als auch MEG. Für das MEG wirkte sich
WM-Anisotropie insbesondere auf Quellen mit starken radialen Anteilen aus.
Lokale Leitfähigkeitsänderungen im Bereich der Quelle sollten sowohl im Hin-
blick auf das EEG als auch auf das MEG modelliert werden. Im zweiten Teil
wurden die Einflüsse auf die inverse Quellrekonstruktion untersucht. Mit 18mm
maximalem Fehler des EEG basierten single dipole fit war die Lokalisation einer
hauptsächlich tangential orientierten oberflächennahen Quelle besonders sensitiv
gegenüber einer 1 zu 10 Schädelanisotropie. Da die tangentialen Quellen im tem-
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poralen Bereich (Schädel relativ dünn) zu tief und im parietalen und okzipitalen
Bereich (Schädel relativ dick) zu oberflächennah lokalisiert wurden, scheint ei-
ne Approximation der Schädelanisotropie in BE-Modellen über eine Anpassung
des skalaren Schädelleitfähigkeitswertes nicht möglich zu sein. Obwohl bei Ver-
nachlässigung der WM-Anisotropie der maximale EEG-Lokalisierungsfehler mit
6,2mm für eine tiefe Quelle wesentlich geringer ausfiel, kann aufgrund eines ma-
ximalen Orientierungsfehlers von 24◦ und einer mehr als zweifach unterschätzten
Quellstärke eine Missinterpretation des Ergebnisses nicht ausgeschlossen wer-
den. Für die Rekonstruktion der vier tangentialen oberflächennahen Dipole, wel-
che als Aktivitätszentren der sog. Early Left Anterior Negativity (ELAN) Kompo-
nente bei der Syntaxanalyse von Sprache betrachtet werden, stellte sich WM und
Schädelanisotropie als vernachlässigbar im Hinblick auf eine MEG-Rekonstruk-
tion heraus. Im Gegensatz dazu wurde das EEG-Rekonstruktionsergebnis für alle
getesteten inversen Verfahren stark verfälscht. Anisotropie verschob das Akti-
vitätszentrum von L1 und L2 Norm Stromdichterekonstruktionsverfahren entlang
der Sylvischen Furche in anteriore Richtung.
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integration techniques for the MEG forward problem. In [253], pages
336–338, 1997.

[237] T.D. Waberski, H. Buchner, K. Lehnertz, A. Hufnagel, M. Fuchs, R. Beck-
mann, and A. Rienäcker. The properties of source localization of epilep-
tiform activity using advanced headmodelling and source reconstruction.
Brain Top., 10(4):283–290, 1998.

[238] C. Wagner. On the algebraic construction of multilevel transfer operators.
Computing, 65:73–95, 2000.

[239] M. Wagner. Rekonstruktion neuronaler Ströme aus bioelektrischen und
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[256] C. Wolters, A. Rienäcker, R. Beckmann, H. Jarausch, H. Buchner,
R. Grebe, and A.K. Louis. Stable inverse current reconstruction in real
anatomy using combinatorial optimization techniques combined with reg-
ularization methods. In [253], pages 487–490, 1997.

[257] C.H. Wolters, A. Anwander, M. Dümpelmann, T. Knösche, and M. Koch.
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M., Influence of head tissue conductivity inhomogeneity and anisotropy on
EEG and MEG based source localization in the human brain. in preparation
(2003).

Proceedings
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