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Abstract. Time plays an important role in medical and
neuropsychological diagnosis and research. In the field of
Electro- and MagnetoEncephaloGraphy (EEG/MEG) source
localization, a current distribution in the human brain is
reconstructed noninvasively by means of measured fields out-
side the head. High resolution finite element modeling for the
field computation leads to a sparse, large scale, linear equa-
tion system with many different right hand sides to be solved.
The presented solution process is based on a parallel algebraic
multigrid method. It is shown that very short computation
times can be achieved through the combination of the multi-
grid technique and the parallelization on distributed memory
computers. A solver time comparison to a classical parallel
Jacobi preconditioned conjugate gradient method is given.

1 Introduction

Nowadays devices and tools are available for analyzing and
monitoring the human brain with fine details. These details
are necessary, e.g., for successful surgery or, more gener-
ally, for basic brain research. Often computational methods
are used in the diagnosis- and pre-surgical phase. Such non-
invasive tools are of course preferable to invasive methods,
e.g., surgery, with high risks for patients. In basic human
brain research, most often there is no other choice besides
computational methods. However, the acceptance of tools
depends very much on their speed and their reliability and
robustness. In this paper it will be shown how advanced nu-
merical methods enhance such tools or make them work at
all. The paper brings together clinical diagnosis, pre-surgical
planning, clinical and cognitive research and numerical math-
ematics, and describes the requirements of necessary algo-
rithms and software.

It is normal practice in cognitive research and in clin-
ical routine and research to localize current sources in the
human brain by means of the induced electric potentials,
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measured with electrodes which are fixed on the scalp (EEG)
and/or the induced magnetic fluxes, measured in a distance
of a few centimeters from the head surface (MEG). The lo-
calization of the underlying source distribution is an inverse
problem whose solution requires the repeated simulation of
the electric/magnetic propagation in the head for a varying
source in the brain (forward problem). During the forward
problem, the volume-conductor head has to be modeled. An
overview about the head tissues with different conductivi-
ties can be found in Haueisen et al. [20]. The human skull,
e.g., is an inhomogeneously conducting layer which consists
of different plates with suture lines in between. These inho-
mogeneities have an influence on the inverse source local-
ization, as shown by Pohlmeier et al. [35]. Van den Broek
et al. [45] reported a large influence of holes in the skull or
lesions in the brain to the field simulations. If the skull, from
a macroscopic point of view, is regarded as one unit consist-
ing of a soft bone layer (spongiosa) enclosed by two hard
bone layers (compacta), its conductivity shows an anisotropy
with a ratio of about 1:10 (radially : tangentially to the
skull surface) (Akhtari et al. [1]). First results show that neg-
lecting this anisotropy in the forward problem can lead to
spurious errors in the inverse current reconstruction result
(Marin et al. [30]). An anisotropic conductivity with a ratio of
1 : 9 (normal : parallel to fibers) has been measured for brain
white matter. Figure 1, taken from Platzer [33] and Wolters
et al. [53], illustrates geometrical features of skull and white
matter tissues. Models and measurement techniques to ap-
proximate and include white matter anisotropy into source
localization procedures can be found in [21, 44, 53]. Haueisen
et al. [21] presented a first study showing a non neglectable
influence of white matter conductivity anisotropy to the for-
ward problem.

A bottleneck for sensitivity-studies of tissue inhomogen-
eities/anisotropies towards the different inverse source re-
construction techniques and especially for broad application
of high resolution volume conductor modeling to inverse re-
constructions in the application fields is the time for calcu-
lating the 3D potential distributions during the various for-
ward problems that have to be solved. Waberski et al. [46],
e.g., conclude that for the achievement of the final goal in
epilepsy source localization, i.e., the general clinical use,
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Fig. la,b. Head geometry: a The human skull: Suture lines and the tri-layeredness, Platzer [33]. b Diffusion Tensor Imaging reveals anisotropy of brain

white matter, Wolters et al, [53]

high resolution realistically shaped head models are neces-
sary and parallel computing has to speed the computation. Fi-
nite element (FE) models for the electromagnetic field simu-
lation in the head have been developed by various research-
groups (see e.g. [3,5,7,20,30,45]). The FE method is able
to treat geometries of arbitrary shape, inhomogeneous and
anisotropic conductivities. Generally iterative solvers like the
preconditioned Conjugate Gradient (CG) method with con-
ventional preconditioners on single processor machines have
been used for the large linear equation system arising from
this approach. The hundred or even thousand times repeated
solution of such a system with a constant stiffness matrix
and varying right hand sides is the major time consuming
part within the inverse localization process. These calculation
times limited the resolution of the models or, even stronger,
the broader application of FE based head modeling to practi-
cal source localization problems got stuck.

Geometric MultiGrid (GMG) methods have proven to
be of optimal order with respect to memory requirement
and arithmetic costs, see e.g. Hackbusch [19]. In Jung and
Langer [24], it was shown that multigrid methods are effi-
cient preconditioners for the conjugate gradient method. For
a parallel implementation see for instance Bastian et al. [4].
GMG suffer from the requirement of a grid hierarchy, which
is not available in our case. By contrast, Algebraic Multi-
Grid (AMG) methods use only single grid information (see
e.g. [6,17,26,37] and for parallel versions [13,16,28,47])
while mostly preserving the properties of the geometric ver-
sion. Many numerical studies have shown a good perform-
ance of AMG preconditioners. Furthermore, AMG precon-
ditioners were successfully applied to source localization re-
cently ([23,50]). Even if AMG preconditioned CG (AMG-
CG) was shown to be very fast in comparison to standard
methods, additional speedup is required. This paper describes
how the latter can be achieved for realistically shaped high
resolution head models by using a parallel computer with
a moderate number of processors.

Subsection 1.1 of this paper will give an overview about
different application fields of source localization and will
present an exemplary reconstruction result for Somatosen-

sory Evoked Potentials (SEP). The subsection is meant to be
a further motivation for interested readers not stemming from
the bioelectromagnetism area and it can be skipped other-
wise. In Sect. 2, the modeling aspects for the forward prob-
lem will be described. An overview about a physical model
for the source and for the field propagation in the head vol-
ume conductor will be presented. A short introduction to the
automatic generation of realistically shaped high resolution
head models using multimodal Magnetic Resonance Imag-
ing (MRI) based segmentation and tetrahedral and cubic FE
meshing will then be given. The section terminates with an
FE formulation. In Sect. 3, the AMG-CG solver will be in-
troduced as a fast solver for the large linear equation system
arising from the FE approach. The partitioning of the meshes
and a parallelization strategy for distributed memory com-
puters will then be presented. Section 4 describes the new
software developments, necessary for the achievement of the
results in Sect. 5, where numerical studies will be presented
within realistically shaped high resolution head models. The
parallelized multigrid method will be compared with a par-
allel Jacobi-preconditioned CG method (Jacobi-CG), which
is a well-known solver method in FE source localization. It
will be shown that high speedups can be achieved which open
the possibility for a broader application of high resolution
FE based source localization in the human brain. The paper
ends with the discussion of the results and the conclusions
in Sect. 6.

1.1 Overview about applications of source localization

This subsection is only meant to be a further motivation and
to list some references for readers who would like to know
more about the inverse problem and some well-established
application fields of EEG/MEG-source localization.

An overview about the different application fields of
source localization can be found in Andrii and Nowak [2].
Various inverse reconstruction techniques for continuous and
discrete source parameter spaces are described, e.g., in [7,27,
38-40,48,52].



A parallel algebraic multigrid for FEM based source localization

A first example is the study of functional cortical orga-
nization by means of evoked fields of the somatosensory
system. The different evoked signal components of interest
in such studies appear during the first 100 ms poststimulus.
Since the components are well time-locked and not depen-
dent on the attention of the subjects, the signal-average can
be built over a large number of trials so that the signal
components of interest are equipped with a relatively good
signal-to-noise ratio. Figure 2 shows the averaged EEG meas-
urements for SEP in 31 channel butterfly plot from Fuchs
etal. [14], included as an example dataset in the software
package CURRY [11]. To give an impression for a medically
interesting source localization result, the continuous dipole
fit method, introduced by Scherg and von Cramon [38], with
two dipoles at the peak of the SEP-P22 signal component is
shown in Fig. 3 (see Fuchs et al. [14]). The result has been
calculated using the example dataset and methods within
CURRY [11]. Source localization methods have also been in-
troduced to characterize the generators of signals related to
higher cognitive function. An example is a recent study show-
ing equivalences between speech and music processing in the
brain (Maess et al. [29]).
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Fig. 2. SEP example dataset, taken from CURRY: Butterfly plot of averaged
EEG data from —0.4 10 0.4 pV. The P22 signal component is marked

Fig. 3. SEP source localization example, computed with CURRY: Results
of the continuous dipole fit method with two dipoles at the peak of the P22
signal component

The non-invasive EEG/MEG-source localization diagno-
sis method is successfully used in clinical research and ap-
plication. For instance tumors may distort brain anatomy so
that the presurgical localization of sensory or motor areas on
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the basis of anatomical landmarks is impossible. In Suther-
ling et al. [43], the agreement between invasive and the non-
invasive diagnosis method have been evaluated and an “excel-
lent precision of the source localization results” was found.
About 0.25% of the world population suffers from drug-
resistant epilepsy and about 10 to 15% would profit from
a surgical removement of the epileptogenic tissue (Andrd
and Nowak [2]). As opposed to alternative invasive diagnos-
tic procedures, i.e., opening the skull and implanting elec-
trodes near the assumed focus (ECoG surface electrodes or
depth electrodes) which put the patient under a considerable
risk and is cost intensive, source localization procedures are
non-invasive and can give a more “global” overview since
the sensors can be placed around the whole head. Waberski
etal. [46], e.g., found a high congruence of source reconstruc-
tion and invasive determination of the focus of epileptiform
activity using realistically shaped head models.

2 The forward problem
2.1 Physical modeling

The sources to be localized during the inverse problem and to
be modeled in the forward problem are electrolytic currents
within the dendrites of the large pyramidal cells of activated
neurons in the cortex sheet of the human brain. A stimulus-
induced activation of a large number of excitatory synapses
of a whole pattern of neurons leads to a negative monopole
under the brain surface, whereas the cells in rest form a posi-
tive monopole quite closely underneath. Such a stimulus can
have various forms, e.g., any visual or auditory stimulus in
neuropsychological experiments or an epilepsy- or tumor-
induced stimulus as clinical examples. The resulting primary
current is generally formulated as a mathematical dipole

77 (x) = Méy, (x) (1)

at the position x; with the moment M (see, e.g., Nunez [31]).
The dipole source establishes an electric field E and a return
current o E in the whole head with o a 3 x 3 conductivity
tensor. The total current distribution j in the head is then
modeled as

Jj=Jj?+oE.

Since in the considered low frequency band, the capaci-
tive component of tissue impedance and the electromag-
netic propagation effect can be neglected (Plonsey and Hepp-
ner [34]). the fields are quasistatic and E can be expressed as
the negative gradient of a scalar potential ., so that

J=JjP—aVu.

Because the divergence of j must be zero, we arrive at the
quasistatic approach of Maxwell’s equations of electrody-
namics

V(oVu)=J"=V-j’ in 2 (2)
with appropriate boundary conditions

ou

on |
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with £2 the head, I the head surface and n the surface nor-
mal. Additionally, a reference electrode with given potential
is assumed, i.e.,

un,f=0. (4}

If the scalar potential is known, the magnetic flux through an
MEG-magnetometer can then be calculated using a corollary
from Biot—Savart’s law (see, e.g., Wolters et al. [53]).

The subtraction method (see, e.g., Awada et al. [3]) splits
the total potential # into two parts, the singularity potential
u™ and the correction potential 1"

u =Hm+ﬂ'c”n—‘ (5)

The singularity potential is the solution for a current dipole
in an unbounded homogeneous conductor with constant con-
ductivity og (the isotropic conductivity value at the dipole
location xp),

; 1 M(x—
u®(x)= B HEE) xf) .
4oy |x —xq|

which can be computed very fast. Subtracting the differen-
tial equation for the singularity potential from (2) yields the
following equation for the correction potential

V. (oVu®") ==V .((c —0p) Vu™) in £ (6)

and the inhomogeneous Neumann boundary conditions at the

surface

au('orr

on

du
— e O

r an

a

(7

r
When solving this towards u“”", the unknown scalar potential
u can then be calculated using (5).

De Munck and Peters [12] derived series expansion for-
mulas for problem (2) with boundary conditions (3) and
reference potential (4) in order to calculate the potential
distribution for a dipolar source in a multi-layer spherical
shell model with constant isotropic or anisotropic conduc-
tivity values/tensors within each layer. It is now widely
known that realistically shaped models of the human head are
needed to minimize the localization error (see, e.g., Waberski
et al. [46]).

2.2 Generation of a realistic 5 tissue head model

A prerequisite for a realistic modeling of the volume conduc-
tor is the segmentation of head tissues with different conduc-
tivity properties. The exact modeling of the low-conducting
human skull is of special importance for EEG/MEG-source
localization (Huiskamp et al. [22]). The skull can be seen
as an isolating layer which leads to a strong decrease and
a blurring of the potential distribution towards the measure-
ment electrodes. MRI is known as a save and non-invasive
method for imaging the human head. The identification of the
CerebroSpinal Fluid(CSF)-skull boundary based on T1-MRI
(T1-weighted MRI) is problematic, and PD-MRI (proton-
density-weighted MRI) is most appropriate for this task (see
Fig. 4). A strong segmentation improvement of the CSF-skull

C.H. Wolters et al.

a)

Fig. 4a,b. Axial slices of a a T1-weighted MRI b registered proton-density-
weighted MRI

boundary could be achieved through the exploitation of the
registered PD image. When compared to procedures, solely
based on a T1 image modality, where the segmented brain
surface is smoothed and dilated in order to estimate the in-
ner skull, larger errors in areas of the skull base, but also
at the neurocranial roof, where the CSF layer between brain
and skull is underestimated, are reported in [8, 22, 49]. Errors
in EEG source localization of up to lecm in mesial-temporal
and basal-frontal regions, resulting from inaccurate skull seg-
mentation, were found in Huiskamp et al. [22]. The segmen-
tation of outer skull, skin, white and gray matter surfaces
was carried out as described in Wolters [49], resulting in the
5-tissue head model, shown in Fig. 5. In future studies, the
skull conductivity tensor eigenvectors will be automatically
determined by means of the triangle normals of a deformable
model within the skull spongiosa space and Diffusion Tensor
Imaging (DTI) methods will be used to measure/model the
conductivity anisotropy of the white matter as shown in Fig. 1
and described in [21, 44,49, 53].

Fig. 5. Cut through an axial layer of the 5-tissue segmentation result through
multimodal MR-imaging

2.3 Discretization and mesh generation

Numerical methods are needed for field simulations in vol-
ume conductors which exploit individual tissue segmenta-
tion results. Within this paper, we will use the FE method
and (2) will be discretized, using a direct approach. There-
fore, the blurred dipole model has been introduced for FE
based source localization in Buchner et al. [7], which will be
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shortly summarized now. The blurred dipole is made up from
monopole sources ff = J?(xp), calculated for all neighbor-
ing FE mesh nodes x; around the location x; of a mathemati-
cal dipole M; := My, (x), so that

] L
D=3 ("M; — (A%)" J¢) (M} — (A%;)" J7)
l 1
+ Ai-ffgk.rjf = min

ng /2

i (Axy AxL) if k=s

0 if k#s
with AX}, = Axj;/a the r-component of the a-weighted vec-
tor from node i to node k, Axy;, no the order of the source
model and n; the dipole smoothness. The first part of the
functional D ensures a minimal difference between the resul-
tant moment of the blurred dipole and the one of the math-
ematical dipole, while the second part, a Tikhonov—Phillips
regularizer, smoothes the monopole distribution and enables
a unique minimum for D. The differentiation of D with re-
spect to J? expresses the condition for the minimum and
a linear system of equations is established.

[(A%)" (A%)™ +rgus] 7 = (A%)" M

Y JE=o0. (8)
k

Together with J’f’ = 0 for all non-neighbor indices ¢ of dipole
index i, the monopole distribution of the blurred dipole model
is defined. See Buchner etal. [7] for a motivation of this
source model and for accuracy tests in a sphere model, where
the numerical results were compared with results of an ana-
lytical formula from Smythe [42] for two closely neighbored
monopoles, a source and a sink. The direct application of
variational and FE techniques to (2) with boundary condi-
tions (3) together with the blurred dipole model yields a sys-
tem of linear equations

KhE;, = ih (9)

with K; € R¥ ¥ the stiffness matrix, J,, € RV the source
load and u, € R the solution vector for the total potential.
The stiffness matrix is given by

Ki:‘.j] s f VoV ds2 (10)
2

and the right hand side entries for the direct method by

[gh]"=—f1,."¢‘- e (11)

2

for an FE-basis V;, = span{; :2’]. The subindex h denotes
the average meshsize and N, = O(h™?) is the number of
unknowns as h tends to zero. The condition number of the
stiffness matrix behaviors asymptotically like O(h~2).
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The subtraction method (6), (7) leads to an equation sys-
tem Kuu$'" = J3° with the same stiffness matrix (10), but
with the right hand side entries

. N"'

=l p

- fog{ij,n)gir;dr ;.
I

The solution vector 4} is the FE approximation of the cor-
rection potential and equation (5) is used to calculate the total
potential. Since the stiffness matrix is the same for the sub-
traction method and the solvers are independent of the right
hand side of the equation system, the results presented in the
following are as well valid for the subtraction method.

An essential prerequisite is the generation of an FE mesh
representing the geometric and electric properties of the head
volume conductor. Two different approaches have been cho-
sen. The first approach uses a surface-based tetrahedral tes-
sellation of the relevant compartments skin, skull, CSF, brain
gray and white matter and ventricular system, described in
Wagner [48]. Auxiliary surfaces with a distance &, from the
given compartment borders are generated so that a set of lay-
ered surfaces is obtained. In a next step, the vertices of the
tetrahedral mesh are generated by means of a thinning of the
surfaces with thinning-distance d, for auxiliary and > for
compartment surfaces. d> = 2 mm enabled a very exact rep-
resentation of the skull-layer. A distance of 1.3 times d> was
chosen for d,, since the resolution deeper in the brain was
considered to be less important for an appropriate accuracy.
This resulted into 119299 nodes. After a three-dimensional
Delaunay triangulation, each of the 713733 tetrahedra was
labeled according to its compartment. Figure 6 shows the
tetrahedra mesh for the 5 tissue head model. The top part was
cutted away in order to enable a view to the inside. The sec-
ond mesh generation exploits the discretization of 3D space
which is a given for any scanned medical dataset. High-
resolution 2 mm isotropic cube elements have been generated
and labeled according to their position as described above.
This resulted in a model with 325384 nodes and 307 580
elements.

Both FE meshes were generated using the software pack-
age CURRY [11].

Fig. 6. Tetrahedra mesh of the 5 tissue head model
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3 Parallel algebraic multigrid solver

The inverse reconstruction process requires the solution of
hundreds or even thousands of large scale systems (9) with
the stiffness matrix (10). In Wolters et al. [50], condition
numbers of about 107 have been calculated for high reso-
lution realistically shaped head stiffness matrices, causing
severe accuracy and convergence problems for classical it-
erative solvers. These problems were recovered by applying
appropriate preconditioners for the CG method such that the
condition number of the resulting preconditioned stiffness
matrix was small. The AMG preconditioner was shown to be
superior to incomplete Cholesky factorization with threshold.
In Johnson et al. [23], AMG-CG was found to be superior to
a successive overrelaxation method.

If we are going to solve the entire localization problem
with many calls of the solver, the results cannot be produced
within an acceptable time. However, a parallel computer may
provide sufficient capacity such that time limitation can be
fulfilled. In Haase et al. [16] it has been shown that AMG-CG
solvers exhibit high speedups on parallel computers including
PC clusters and an SGI ORIGIN 2000. The speedup was es-
pecially good for the solver-part of the algorithm. Since the
setup of the preconditioner has to be carried out only once
per head geometry, its calculation time and speedup can be
neglected.

3.1 Algebraic multigrid method

As in Geometric MultiGrid (GMG. see Hackbusch [19] for
a theoretical overview), the basic idea in AMG is to reduce
high and low frequency components of the error by the ef-
ficient interplay of smoothing and coarse grid correction,
respectively. In AMG, both, the matrix hierarchy and the pro-
longation operators are constructed just from the stiffness ma-
trix Kj,. In analogy, we will speak of “coarse grids™ although
these are purely virtual and do not have to be constructed
explicitly as coarse FE meshes. Since the automatic gener-
ation of a grid-hierarchy for GMG and especially the proper
assembling of all components would be a very difficult task
with respect to conductivity inhomogeneities and anisotropies
in a realistically shaped head model. the automatic algebraic
construction of a virtual grid is a big advantage. A general
concept of AMG methods for FE discretizations can be found
in Haase et al. [17]. Each AMG algorithm consists of the fol-
lowing components:

(a) Coarsening: define the splitting w;, = wc Uwr of wy, (the
index set of nodes) into sets of coarse and fine grid nodes
we and wp, respectively.

(b) Transfer operators: prolongation Py, : Vi = Vj and re-
striction Ry, :=P7.

(¢) Definition of the coarse matrix by Galerkin’s method, i.e.,
Kar 1= Ry KB

(d) Appropriate smoother for the considered problem class.

The most important issue to be discussed is the setup
phase. i.e., the construction of the matrix hierarchy and the
prolongation operators. We will give the explanation for a two
grid method where h is related to the fine grid and H to the
coarse grid.

C.H. Wolters et al.

In our case, the stiffness matrix K, can be associated with
an FE grid, i.e., the diagonal entry of the i row of the matrix
Ky, is related to a grid point in w; and an off-diagonal entry is
related to an edge in an FE grid (see Fig. 7). First we look at
the coarsening process which has the task to reduce the nodes
such that Ny = |wc| < Ny = |wy|. Here, |w| denotes the num-
ber of elements in the set w. Motivated from Fig. 7, the grid
points wy, can be split into two disjoint subsets wc (coarse grid
nodes) and wy (fine grid nodes), i.e.,

wy =wcJwr, wcNwp=§

such that there are (almost) no direct connections between
any two coarse grid nodes and the resulting number of coarse
grid nodes is as large as possible. Instead of considering all
connections between nodes being of the same rank, we intro-
duce the following sets

N =1 |k 0. i # ]
5= Ije N; | ‘K',:‘”‘ > coarse (i, j, K;,)}
S;';T=[jeN;', ‘ses;f)] (12)

where N} is the index set of neighbors, §j denotes the in-
dex set of nodes with a “strong connection” from node i and
Sjl'T is related to the index set of nodes with a “strong con-
nection” to node i (see Ruge and Stiiben [37]). In addition
coarse(i, j, Ky) is an appropriate cut-off (coarsening) func-
tion, e.g.,

coarse (i, j.Kp) i=a- m}ax HKLL;'IH ) (13)

with & € [0, 1]. With those definitions a splitting into coarse
and fine grid nodes can be done. For our computations
we used the modified splitting algorithm of Ruge and
Stiiben [37]. Next the prolongation operator has to be de-
fined correctly. We require that the prolongation operator
B, : Vi — Vj, has full rank. There are a lot of possibil-
ities to define such transfer operators with pure algebraic
information. For the construction we refer to [6,26,37.47].
A possible setting and the one which turned out to be the most

"fine grid" "coarse grid"
A [ .
. I
..._I_'_"____ \.'._
LS o _.
— ¢

W coarse grid node
e fine grid node
Fig. 7. Nlustration of a two grid method
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efficient for the presented application is given by

1
=11/
0

The coarse grid matrix Ky is defined by the classical Galerkin
method, i.e.,

i=jewc

ST Nwc| icwr, jesTnwe  (14)

else .

Ky =P KnPy € RV#*Nu |

being again symmetric and positive definite (see e.g. Ruge
and Stiiben [37]).

After the proper definition of the prolongation and coarse
grid operators a matrix hierarchy can be setup in a recursive
way. Finally, a multigrid cycle can be assembled, see Algo-
rithm 1. Therein the variable COARSEGRID denotes the level
where a direct solver is applied.

Algorithm 1 (Parallel) V (v, vg)-cycle MG (K, ,u,J)

if COARSEGRID then
u <= DIRECTSOLVE(K-u = J)
else
4 vp TIMES SMOOTH (K, u,J)
d—J-K,-u
d —pT.d

X

]3:
1
Bzo
g a
g
T
&
(=1
<

Ue U+
T -
u<= Vg TIMES SMOOTH {Kh.g.i)
end if

=g 18 18

For our application we use AMG-CG, i.e., AMG is ap-
plied as a preconditioner for the CG method (see Jung
and Langer [24]). The Preconditioned CG (PCG) method is
shown in Algorithm 2. For the m-V(vg, vg)-cycle AMG pre-
conditioned CG method, the operation w = C;(lg is realized
by m calls of MG(Kj, o, r). For the Jacobi-preconditioner. it
is Cx = D with D the diagonal of K.

Algorithm 2 (Par.) PCG algorithm PG (K, u,J. Cy)

[‘_J_Khﬂ
weCeler
s—h

Y= (1)

B—Y/Yorp » Yoo — ¥
s—m+fis
until TERMINATION

3.2 Data partitioning

The aim of parallelization is to split both data and opera-
tions to the P processors available. The consistency of the
algorithms is preserved by message passing. In our case, the
parallelization is based on a non-overlapping domain decom-
position, i.e., we decompose §2 into P subdomains §2; such
that

P
2=z
s=1
with

N2, =0 Yg#s, s.g=1...,P
holds. Each subdomain §2; is discretized by a mesh 7, ; such
that the whole triangulation

P
Th = U Th,s
s=1

of §2 forms a conforming mesh. A global FE space V, is
defined with respect to 1, and the local spaces V}, ; are restric-
tions of ¥, onto 1, ;.

The mesh partitioning of realistic FE geometries with un-
structured meshes is critical for the efficiency of the parallel
solver method. The distribution must be done so that the num-
ber of elements assigned to each processor is the same and
the number of adjacent elements assigned to different proces-
sors is minimized in order to balance the computation amount
among the processors and to minimize the communication
between them, respectively. Therefore, graph partitioning al-
gorithms were used which model the FE mesh by a graph
(V, E) with vertices V and edges E. Since we are interested
in an “element-wise-" in contrast to a “node-wise-" distri-
bution, the dual graph of the FE mesh was partitioned. The
finite elements are the vertices of the dual graph and adjacent
elements are the corresponding edges. A balanced k-way par-
titioning was used, minimizing the number of edges which
straddle partitions. No weighting of the edges, e.g. with re-
gard to jumping conductivities between elements at tissue-
boundaries, was used. The algorithm is based on a multilevel
approach, first reducing the size of the dual graph by collaps-
ing vertices and edges, then partitioning the dual graph on

a) b)

Fig.8a,b. FE meshes, partitioned for 12 processors with METIS and vi-
sualized with PMVIS a Realistic tetrahedra-head model, 713733 elements
b Realistic cube-head model, 307 580 elements



172

the lowest level and further refine during the uncoarsening
steps. For the described mesh-partitioning, the software pack-
age METIS was used [25]. The results were achieved in a few
seconds on a single processor SGI workstation. A first exam-
ination of the partitioning result was carried out by means of
zooming, rotating, translating, scaling, and applying explo-
sion factors. Figure 8 shows a visualization of the partitioned
geometries for 12 processors (see PMVIS [32]). Later, the
number of interface and inner nodes and the number of elem-
ents were controlled during the calculations. The interface
nodes are those nodes which belong to at least two proces-
sors, whereas inner nodes only belong to one. In all cases, the
quality of the partitioning results were very satisfactory.

3.3 Parallel AMG

The mapping of a vector u, € R™ in global numbering
onto a local vectoru , € R™ insubdomain 2, (s=1,..., P)
is represented symbohcal]y by subdomain connectivity
matrices A, : RV — RN with entries

1 if j=Loc2GLOB(i)

) .
o’y 0 else

VYicw,, Yjew,

where LOC2GLOB(-) maps a local index to the global index.
The transpose 4! of these binary matrices 4, maps a local
vector back onto the global one. The index set of all those
subdomains to which an unknown u} 2 _,r € wy, belongs, is de-
noted by

olil = {slu};jleﬁ,} . (15)

We store the data related to the i node in the subdomain £2;
if s € ¢l7l. This approach results in local data denoted by in-
dex s of two types (Haase [15]): accumulated data (vector u,
matrix ) represented by

u = oAd, P A PoAT te

and distributed data (vector d, matrix K}, ) represented by

P
Kn'l :=Zg4)3“K5'z)%_\-. (17)

s=1 s=1

It turns out, that in Algorithms 1 and 2, the functionals are
represented as distributed data (J, v, r, d, Kj), whereas func-
tions are represented as accumulated data (u, s, w, P). The
local FE accumulation with respect to ¥, ; produces automat-
ically distributed matrices K;. For instance, it can be shown
that the multiplication of a distributed matrix K; with the
accumulated vector s in Algorithm 2 results in a distributed
vector v:

C.H. Wolters et al.

The realization requires no communication at all because we
only have to compute v, = K; - 5, locally.
If an accumulated matrix 91 fulfills the condition

Vi, jew,: ol ¢ ol = il =0, (18)

then the operations 0 = M-w’, d¥ = M’ .d and Ky =
IMMTK;, 9N can be performed locally without any communica-
tion (Haase [15]).

In AMG the coarsening and prolongation operators are
components which can be chosen. The main idea in the de-
sign of parallel AMG is to choose these components such that
the resulting prolongation operators P are of accumulated
type satisfying the pattern condition (18). For this purpose,
a local node ordering is introduced by means of a grouF
ing and ordering of the index sets (15) according to |o/}|
The coarsening then starts at interfaces involving more than
2 processors and continues with faces between two proces-
sors and finally the coarsening of inner nodes is realized. In
addition the coarsening has to be synchronized such that the
coarse grid problem is conforming across interfaces between
processors. This synchronization requires next neighbor com-
munication. Note that the partitioning of the nodes has only
been performed on the finest grid. For a detailed discussion
we refer to Haase et al. [16].

Now we observe that Algorithm | and Algorithm 2 are
also the appropriate parallel formulations, where double-line
arrows <" indicate that communication is required for the
corresponding operation. In Algorithm 1, the coarse grid sys-
tem is accumulated globally once in the setup phase. During
the iteration only a vector has to be assembled for computing
the coarse grid solution. Furthermore, the smoother requires
communication and has to be adapted appropriately. We use
a Gauss-Seidel smoother for the inner nodes and a Jacobi
smoother for the interface nodes. The Jacobi-smoother in-
volves a vector conversion from distributed to accumulated
type, i.e., one next neighbor communication across interfaces
is required per smoothing step. In this way we get a sophis-
ticated smoother which can be found in Haase [15]. In Algo-
rithm 2, only inner products involve communication besides
the preconditioning operation. Since for the inner product of
different type vectors it is

P
= _rg_;r Z GA,TL =
s=1
P
=) (o
s=1

only one global reduce operation is needed.

(‘A’Sm)r 1r5

M~

§=]

4 Software developments

A new FE software package NeuroFEM was developed,
based on the package CAUCHY (see [7,9]). Since it would
have been difficult to integrate the FORTRAN77-CAUCHY
code using quasistatic memory management in a new C++
class structured inverse toolbox, the old software was re-
designed. The inverse toolbox contains a variety of state-of-
the-art current source localization methods (SimBio [41], see



A parallel algebraic multigrid for FEM based source localization

also [27,52]). Another argument for the code development
was the possibility for a proper interface to the software pack-
age PEBBLES including the parallel AMG solver ([16, 36]).
The solver code exploits C++ principles of overloading and
inheritance.

Therefore, C++ class structured software concepts re-
place old CAUCHY kernel routines. The storage management
within NeuroFEM is fully dynamical so that a recompila-
tion of the software is no longer necessary when changing
the problem- and thus memory-size. The new structure facili-
tated parallel programming on distributed memory computers
using the Message-Passing Interface (MPI) standard. The in-
tegrated software allows future comparisons with boundary
element method based forward simulations (see e.g.[14, 54])
or series expansion formulas in spherical shell models [12].

The coupling to the parallel solver-package is carried out
through an “element by element” interface. The root-process
determines the index set (15) for each node of the parti-
tioned geometry and scatters the corresponding data together
with the material properties to the processors. The arrange-
ment of the nodes to groups according to their index-sets, the
ordering of the groups and the allocation of corresponding
MPI-communicator groups and the local node numbering is
then a fully parallel process. Element-stiffness-matrices are
computed on each processor and stored in the local stiffness
matrices in FE compact row format. These matrices auto-
matically have the distributed data format (17). The global
Dirichlet-node information is scattered to all processors and
implemented with a penalty approach in local numbering to
those local stiffness matrices whose processor-number is part
of the global Dirichlet-node index-set. The coarsening can
then be carried out and the hierarchy of stiffness and prolon-
gation matrices can be determined in the parallel setup-phase
of the AMG preconditioner as described in Sect. 3.

5 Results with realistic head models

For the following simulations, one blurred dipolar current
source was placed in the somatosensory cortex of the tetrahe-
dra and cube head models. For the parameters of the blurred
dipole (see equation (8)), we chose ng = 2 for the order of
the source model, n, = 2 for the dipole smoothness, » = 10~°
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for the regularization parameter and a = 20.0 for the dipole
scale, effecting a spatial concentration of monopole loads Jj
in the dipole axis around the dipole node. This choice also
led to best results in sphere model accuracy tests, when com-
paring the numerical results with an analytical formula from
Smythe [42] for two closely neighbored monopoles, a source
and a sink, see Buchner et al. [7]. The zero starting vector
ug = 0 was chosen for the iterative solution process. The FE
basis V}, consisted of piecewise linear Ansatz-functions. Note
that the solver-speed of the algorithms in Sect. 3 is only de-
pendent on the stiffness matrix (10), so that the following
results are valid for both, direct and subtraction method (see
Subsects. 2.1 and 2.3) and all possible source configurations
(i.e., independence of the right-hand side of the linear equa-
tion system).

The conductivities o of skin- and brain-elements were set
to 0.33 [1/€2 m]. A conductivity value of 0.0042 [1/£2 m] was
assigned to skull elements and 1.0 [1/£ m] to elements in the
CSF, i.e., within the layer between brain and skull and within
the ventricular system.

The experiment was run on an SGI ORIGIN 2000 with
R10000, 195 MHz processors and overall 6 GB of main mem-
ory. The speedup for 1 up to 12 processors was investigated.

The process of determining the index set (15) for each
node and scattering the data to the processors, both carried out
by the root, and the local arrangement of nodes to groups ac-
cording to their index-set and the allocation of corresponding
communicator groups takes about half a minute and can be
neglected since it has to be done only once per head model.

The solver process was stopped in the i iteration if the
relative error in the controllable K;,C}'K;,-energy norm was
below € = 1078, i.e.,

I )
(', r') e
(m®, %) =

For the AMG-CG, we used the 1-V(l, 1)-cycle AMG-
preconditioner. Equation (13) was taken as the cut-off coars-
ening function with @ = 0.01 and the prolongation was cho-
sen as in (14), respecting the pattern condition (18). The
factorization in Algorithm 1 was carried out, if the size of

the coarsest grid (COARSEGRID) in the preconditioner-setup
was below 800 for the tetrahedra and 1000 for the cube-

Fig. 9a,b. [sopotential-lines: a from —5 to 5 uV
on an axial layer through the location of the
source in the cube head model, calculated on
2 processors b from —1.6 to 0.7 wV on the sur-
face of the tetrahedra head model, calculated on
12 processors
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models. The coarse system is solved by means of a Cholesky-
factorization. It should be mentioned that the solver times for
the tetrahedra model with a fixed value of COARSEGRID =
1000 were only slightly slower, so that this parameter could
be fixed to 1000 for the considered resolution range.

Figure 9 shows a result of the FE calculations, achieved
on two (Fig. 9a) and 12 (Fig. 9b) processors. The isopotential
lines have been interpolated and visualized from —5 puV up to
S LV on an axial layer of the 2 mm cube mesh (left) and from
—1.6 to 0.7 wV on the surface of the tetrahedra head model
(right). Note the blurring effect of the isolating skull-layer on
the axial slice.

5.1 Realistic tetrahedra model

For the realistic tetrahedra model, the local accumulation of
the geometry matrix K; on 1 processor took 173.4s, paral-
lelized on 12 processors a setup time of 14.89 s was achieved.

Figure 10 shows the wall-clock time of the parallel AMG-
CG solver compared to the parallel Jacobi-CG. The number
of iterations for both solvers, necessary for the required ac-
curacy, is shown over the curves. The time for the setup of
the preconditioner is not included, since it has to be carried
out only once per head model and is thus neglectable with
regard to the solution of the inverse problem. To give an im-
pression, the setup of the AMG on 1 processor took 29.9 s and
parallelized on 12 processors 7.4 s. The 3D potential distribu-
tion was calculated on one processor within 195.8 s with the
Jacobi-CG method, whereas the parallel AMG-CG method
on 12 processors needed 2.6s. This is a factor of about
75 (7.5 through multigrid preconditioning and 10 through
parallelization).

Tetrahedra head model: Comparison of parallel
solvers up to rel.accuracy 1e-08

Time
(leg., in sec.)

1000

BI6 11

1 2 5
Processors (log.)

[~ AMG-CG —=—Jacobi-CG |

Fig. 10. SGI ORIGIN: Wall-clock time from 1 to 12 processors for the
solver part of the parallel AMG-CG compared to the parallel Jacobi-CG
up to an accuracy of 107 for the realistic tetrahedra head model, 118299
nodes. The numbers of iterations are shown over the curves

The speedup results from 1 to 12 processors are shown
in Fig. 11. The matrix generation is purely local and gives
the reference curve for the quasi optimal speedup. This curve
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SGI ORIGIN: Speedup results for tetrahedra
headmodel, 118229 nodes
Speedup
12
1M 4—

-
(=]

- N W A 0 N @ W

Processors
| —+— Matrix —a— AMG-CG —+— AMG-CG: 1 lter —a— Jacobi-CG |

Fig. 11. SGI ORIGIN: Speedup results from | to 12 processors for the
tetrahedra head model, 118299 nodes

can also be seen as an indicator for the quality of the mesh-
partitioning, described in Sect. 3.2. The speedups for the par-
allel AMG-CG solver, for one iteration of this solver and for
the parallel Jacobi-CG solver are compared.

Since the coarsening process and the determination of
the prolongation matrix P respecting pattern condition (18)
in the setup of the parallel AMG-preconditioner and the
smoother-component of the solver depend on the decompos-
ition into subdomains and a strongly increasing number of
interface-nodes would spoil the preconditioning effect, it is
interesting to have a look at the relation of interface nodes
to all nodes (interface plus inner nodes) on the different lev-
els of the multigrid. Figure 12 shows this relation exemplarily
for 2, 4, 8 and 12 processors. The decomposition into two do-

Matrix hierarchy of tetrahedra head model
Nodes

100000 /m

100000

10000

1000

12 Processors

minner nodes level 2

Hinner nodes level 4
W interface nodes level 2
W interface nodes level 4

Dinner nodes level 1

Hinner nodes level 3
Binterface nodes level 1
M interface nodes level 3

Fig. 12. Realistic tetrahedra head model, 118299 nodes: Relation interface
nodes to all nodes (interface plus inner nodes) on the four levels of the
algebraic multigrid, exemplarily for the decompositions for 2, 4, 8 and
12 processors



A parallel algebraic multigrid for FEM based source localization

mains lead to 2986 and thus 2.5% interface nodes on the finest
level. On the third level (their is no more smoother compon-
ent on the fourth and coarsest virtual grid), 294 out of 3581
nodes were interface nodes and thus a percentage of 8.2%.
On 12 processors, 11175 and thus 9% were interface nodes
on the finest level and on the third level, 998 out of 3675,
ie., 27%.

5.2 Realistic cube model

For the cube head model., the local geometry matrix accumu-
lation took 183.2 seconds on | processor and parallelized on
12 processors 15.80s.

Figure 13 shows the wall-clock time of the parallel AMG-
CG solver compared to the parallel Jacobi-CG for the realistic
cube model with 325384 nodes. Again, the number of itera-
tions is shown over the curves. As for the tetrahedra-model,
the time for the setup of the preconditioner is not included.
The setup of the AMG for the cube model on 1 processor took
184 seconds and parallelized on 12 processors 29.6 5. The 3D
potential distribution was calculated on one processor within
499 s with the Jacobi-CG method, whereas the parallel AMG-
CG method on 12 processors needed 8.3 s. This is a factor
of about 60 (6.3 through multigrid preconditioning and 9.5
through parallelization).

2mm cube head model: Comparison of parallel
solvers up to rel. accuracy 1e-08

Time
(log., in sec.)
1000 ®

w
~
-

1 2 5 10 12
Processors (log.)

[-=—AMG-CG —=—Jacobi-cG |

Fig.13. SGI ORIGIN: Wall-clock time from 1 to 12 processors for the
solver part of the parallel AMG-CG compared to the parallel Jacobi-CG up
to an accuracy of 10~% for the realistic cube head model, 325384 nodes.
The numbers of iterations are shown over the curves

The speedup results from 1 to 12 processors are shown
in Fig. 14. Again, the matrix generation gives the reference
curve for the quasi optimal speedup.

Let us have a closer look at the percentage of interface
nodes to all nodes (interface plus inner nodes) on the five lev-
els of the multigrid. Figure 15 shows this relation exemplarily
for 2, 4, 8 and 12 processors. The decomposition into two do-
mains lead to 6659 and thus 2% interface nodes on the finest
level. On the fourth level, 219 out of 2029 nodes were inter-
face nodes and thus a percentage of 10.8%. On 12 processors,
27312 and thus 8.4% were interface nodes on the finest level
and on the third level, 637 out of 1804, i.e., 35.3%.
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SGI-ORIGIN: Speedup results for 2mm cube
headmodel, 325384 nodes
Speedup

- M W Ak O ®m ~N @ D

1 2 3 4 5 6 7 8 9 10 N 12
Processors

—+— Matrix —s—AMG-CG —— AMG-CG: 1 lter —m- Jacobi-CG |

Fig. 14. SGI ORIGIN: Speedup results for 2 mm cube head model, 325384
nodes, relative accuracy 10~%

Matrix hierarchy of 2mm cube head model
Nodes

1000000 =

100000 =

10000 -

1000

100 -

2 4 8 12 Processors
Oinner nodes level 1 Hinner nodes level 2
Hinner nodes level 4 HEinner nodes level 5
Binterface nodes level 1 Minterface nodes level 2 BMinterface nodes level 3

W interface nodes level 4 Minterface nodes level 5

W inner nodes level 3

Fig. 15. Realistic cube head model, 325384 nodes: Relation interface nodes
to all nodes (interface plus inner nodes) on the five levels of the algebraic
multigrid, exemplarily for the decompositions for 2, 4, 8 and 12 processors

6 Discussion and conclusions

High resolution FE head modeling allows the inclusion of
head tissue conductivity inhomogeneities and anisotropies.
Many studies indicate the necessity of such a complex for-
ward model within EEG/MEG-based source localization
methods. The bottleneck for a broader application is the time
for solving the large linear equation system with thousands of
different right hand sides arising from the FE discretization.
Within this paper, an efficient and memory-economical way
was presented to face this problem. Very short calculation
times were achieved through the combination of AMG pre-
conditioning techniques and the parallelization on distributed
memory platforms.
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We compared the presented AMG-CG with the Jacobi-
CG, the latter being a well-known solver method in FE-based
source localization. If the Jacobi-CG on a single processor is
taken as a reference, we achieved a speedup of 75 for a re-
alistically shaped high resolution tetrahedra head model with
118299 nodes when comparing to the parallel AMG-CG on
12 processors, 7.5 through multigrid preconditioning and 10
through parallelization on 12 processors. The factor for the
realistically shaped high resolution cube model with 325384
nodes was 60, 6.3 through multigrid preconditioning and 9.5
through parallelization on 12 processors. On 12 processors,
the parallel AMG-CG was a factor 6.6 faster than the paral-
lel Jacobi-CG for the tetrahedra model and a factor 5.1 for
the cube model. The required relative solution accuracy was
1078, For a solution accuracy of 10~ with respect to the lim-
itations within the inverse problem (e.g. data noise), we found
factors in the same range (slightly larger).

The partitioning of the dual graph of a convex head geom-
etry generally leads to a relatively large percentage of inter-
face nodes. Nevertheless, for the examined moderate proces-
sor numbers between 1 and 12, the AMG-preconditioner was
found to be stable, i.e., a sensible increase of the number of
subdomains did not result in a deterioration of the AMG-
preconditioner and thus an increasing need for iterations for
the tetrahedra model (Fig. 10) or resulted in only a slight de-
terioration with a slightly increased number of iterations for
the cube model (Fig. 13).

In Wolters et al. [50] it was shown on a single processor
machine that a radial : tangential “skull”-layer anisotropy of
1 : 10 in a spherical four layer FE model did not influence the
solver times of the AMG-CG whereas the time for the Jacobi-
CG solver was a factor 1.25 larger for the anisotropic models.
This is due to the fact that the AMG-preconditioner takes
anisotropy into account. Future studies will be carried out to
test the sensitivity of the parallelized AMG-CG solver to real-
istic skull anisotropy and especially white matter anisotropy.

Moreover, the overall solver CPU-time for the inverse
source reconstruction will be accelerated through the use of
techniques for multiple right hand sides [10, 18]. First studies
on a sequential computer have shown a good performance.
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Note added in proof

The presented parallel AMG-CG solver was recently shown
to be stable towards modeling of realistic conductivity
anisotropy of the head compartments brain white matter and
skull (see Wolters et al. [51]).
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