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Abstract

Accuracy and time play an important role in medical and neuropsychological diagnosis and re-
search. The inverse problem in the field of Electro- and MagnetoEncephaloGraphy requires the
repeated simulation of the field distribution for a given dipolar source in the human brain using
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a volume-conduction model of the head. High resolution finite element head modeling allows
the inclusion of tissue conductivity inhomogeneities and anisotropies. We will present new ap-
proaches for individually determining the direction-dependent conductivities of skull and brain
white matter, based on non-invasive multimodal magnetic resonance imaging data, and for gen-
erating a high resolution realistic anisotropic finite element model of the human head. Error
estimations will indicate the necessity of the chosen complex forward model. The finite element
approach within the inverse problem leads to a sparse, large scale, linear equation system with
many different right hand sides to be solved. The presented solution process is based on a par-
allel algebraic multigrid method. It is shown that very short computation times can be achieved
through the combination of the multigrid technique and the parallelization on distributed mem-
ory computers. The iterative solver approach is shown to be stable towards modeling of tissue
anisotropy. A solver time comparison to a classical parallel Jacobi preconditioned conjugate
gradient method is given.
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1 Introduction

Nowadays devices and tools are available for analyzing and monitoring the
human brain at a high level of detail. These details are necessary, e.g., for
successful surgery or, more generally, for basic brain research. Often com-
putational methods are used in the diagnostic and pre-surgical phase. Such
non-invasive tools are of course preferable to invasive methods, e.g., surgery,
with high risks for patients. In fundamental brain research, most often there
is no other choice besides computational methods. However, the acceptance
of tools depends very much on their reliability and robustness and on their
speed. In this article it will be shown how non-invasive imaging methods
deliver necessary data for such a tool and how advanced numerical methods
enhance its accuracy and speed. The article brings together clinical diag-
nosis, pre-surgical planning, clinical and cognitive research and numerical
mathematics, and describes the needed imaging data and the requirements of
necessary algorithms and software.

It is common practice in cognitive research and in clinical routine and re-
search to localize current sources in the human brain by means of the induced
electric potentials, measured with electrodes which are fixed on the scalp
(ElectroEncephaloGraphy, EEG) and/or the induced magnetic flux density,
measured in a distance of a few centimeters from the head surface (Magne-
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Fig. 1: The human skull: Suture lines and the tri-layeredness [Platzer,1994].

Fig. 2: Fibre orientation map from a DT-MRI experiment [Wolters et al.,1999b]. Eigenvector
orientations corresponding to the largest eigenvalue are projected onto the imaging plane, and
overlaid on a T1 weighted MRI. Eigenvector directions were suppressed in voxels with FA <
0.2 (see Definition for FA in Equation (11))



toEncephaloGraphy, MEG). The localization of the underlying source distri-
bution is an inverse problem whose solution requires the repeated simulation
of the electric/magnetic fields in the head for a varying source in the brain
(forward problem). For the forward problem, the volume-conductor head has
to be modeled. An overview of the head tissues with different conductivi-
ties can be found in [Haueisen, 1996]. The human skull consists of a soft
bone layer (spongiosa) enclosed by two hard bone layers (compacta). Since
the spongiosa have a much higher conductivity than the compacta [Akhtari et
al., 2000], the skull shows a direction-dependent (anisotropic) conductivity
with an anisotropy ratio of up to 1:10 (radially:tangentially to the skull sur-
face) [Akhtari et al., 2000]. Skull anisotropy was shown to have an impact on
the inverse problem in EEG [Marin, 1997; Marin et al., 1998]. Figure 1, taken
from [Platzer, 1994], illustrates geometrical features of the human skull.

It is known that brain white matter has an anisotropic conductivity with
a ratio of about 1:9 (normal:parallel to fibers) [Nicholson, 1965], but still,
no technique exists for a robust and non-invasive direct measurement of con-
ductivity anisotropy in the whole brain. Recently, formalisms have been de-
scribed for relating the effective electrical conductivity tensor of white matter
tissue to the effective water diffusion tensor as measured by Diffusion Tensor
Magnetic Resonance Imaging (DT-MRI). Fig. 2 shows a white matter fibre
orientation map from a DT-MRI experiment [Wolters et al., 1999b]. [Basser
et al., 1994b] introduced the assumption that the effective electrical conduc-
tivity tensor shares the eigenvectors with the effective diffusion tensor of wa-
ter, which can be measured for white matter tissue by DT-MRI. [Tuch et al.,
1998; Tuch et al., 1999] proposed a linear relationship between the eigenval-
ues of both tensors for small intracellular diffusion and high resistivity of the
cell membrane. Their proposition is based on a self-consistent differential Ef-
fective Medium Approach (EMA) for the generalized dielectric constant (for
low frequencies the conductivity) of porous media, derived from a multiple
scattering formula from solid state physics developed by [Sen et al., 1981].
[Latour et al., 1994] derived a similar EMA for the effective water diffusion in
biological cells. The coupling of both EMA-formulae through the unknown
porosity variable led to the linear dependence of the eigenvalues described
in [Tuch et al., 1998]. In a first study, white matter conductivity anisotropy
was shown to have an influence on EEG and MEG [Haueisen et al., 2002].

In this article, we will present measurement techniques and methods for
obtaining a realistically shaped high resolution volume conductor model of
the human head in a non-invasive way with anisotropically conducting com-
partments skull and white matter. Our goal is the study of the influence of
tissue anisotropy on EEG and MEG.

A bottleneck for such sensitivity studies towards the different inverse
source reconstruction techniques and especially for broad application of high
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resolution volume conductor modeling to inverse reconstructions in the appli-
cation fields is the time for calculating the 3D potential distributions during
the various forward problems that have to be solved. [Waberski et al., 1998],
e.g., conclude that for the achievement of the final goal in epilepsy source
localization, i.e., the general clinical use, realistically shaped high resolution
head models are necessary and parallel computing has to speed up the compu-
tation. Finite Element (FE) models for the electromagnetic field simulation in
the head have been developed by various research groups (see e.g. [Bertrand
et al., 1991; Haueisen, 1996; van den Broek et al., 1997; Buchner et al., 1997;
Awada et al., 1997; Marin et al., 1998]). The FE method is able to treat
geometries of arbitrary shape and inhomogeneous and anisotropic material
parameters. Generally iterative solvers like the preconditioned Conjugate
Gradient (CG) method with conventional preconditioners on single processor
machines have been used for the large linear equation system arising from
this approach. The hundred or even thousand times repeated solution of such
a system with a constant stiffness matrix and varying right hand sides is the
major time consuming part within the inverse localization process. These cal-
culation times limited the resolution of the models or, even worse, the broader
application of anisotropic FE based head modeling to practical source local-
ization problems got stuck.

Geometric MultiGrid (GMG) methods have proven to be of optimal order
with respect to arithmetic costs and memory requirement, see e.g. [Hack-
busch, 1985]. In [Jung and Langer, 1991], it was shown that multigrid meth-
ods are efficient preconditioners for the conjugate gradient method. For a
parallel implementation see for instance [Bastian et al., 1997]. GMG meth-
ods suffer from the requirement of a grid hierarchy, which is not available
in our case. By contrast, Algebraic MultiGrid (AMG) methods use only
single grid information (see e.g. [Ruge and Stüben, 1986; Braess, 1995;
Kickinger, 1998; Haase et al., 2000; Reitzinger, 2001 ] and for parallel ver-
sions [Falgout et al., 1999; Krechel and Stüben, 2001; Haase et al., 2002;
Wagner, 2000]) while mostly preserving the properties of the geometric ver-
sion. Many numerical studies have shown a good performance of AMG pre-
conditioners. Furthermore, AMG preconditioners were successfully applied
to source localization recently ([Wolters et al., 2000; Johnson et al., 2000]).
Even if AMG preconditioned CG (AMG-CG) was shown to be very fast in
comparison to standard methods, additional speedup is required. In [Wolters
et al., 2002], we described for realistically shaped isotropic high resolution
tetrahedra and cube head models how the latter can be achieved by using a
parallel computer with a moderate number of processors. Within this arti-
cle, we will show that our approach is stable towards realistic head tissue
anisotropy.
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Subsection 1.1 of this article will give an overview of different application
fields of source localization and will present an exemplary reconstruction re-
sult for Somatosensory Evoked Potentials (SEP). It aims at giving further
motivation for readers from outside the bioelectromagnetism area and it can
be skipped otherwise. In Section 2, the modeling aspects for the forward
problem will be described. Subsection 2.1 gives an overview of a physical
model for the source and for the field distribution in the head volume conduc-
tor. In 2.2, we will describe the generation process of a realistically shaped
anisotropic 5-tissue head model. We focus on the modeling aspect for ob-
taining an anisotropically conducting skull in 2.2.1 and an anisotropically
conducting white matter compartment in 2.2.2, using multimodal Magnetic
Resonance Imaging (MRI) data. The section terminates with FE meshing and
discretization aspects for EEG and MEG in 2.3. In Section 3, the AMG-CG
solver is described as a fast solver for the large linear equation system arising
from the FE approach. The partitioning of the meshes and a parallelization
strategy for distributed memory computers will then be presented. Section 4
describes the new software developments. In the first part of Section 5, we
will present results concerning the influence of tissue conductivity anisotropy
on EEG and MEG for various simulated sources. Performance results of the
parallel AMG solver and its sensitivity to tissue anisotropy will be discussed
in the second part. The parallelized multigrid method will be compared with
a parallel Jacobi-preconditioned CG method (Jacobi-CG), which is a well-
known solver method in FE source localization. It will be shown that high
speedups can be achieved which open the possibility for a broader applica-
tion of high resolution realistically shaped anisotropic FE based source local-
ization in the human brain. The article ends with the conclusions in Section
6.

1.1 Overview of applications of source localization

This subsection is only meant to be a further motivation and to list some refer-
ences for readers who would like to know more about the inverse problem and
some well-established application fields of EEG/MEG-source localization.

An overview of the different application fields of source localization can
be found in [Andrä and Nowak, 1998]. Various inverse reconstruction tech-
niques for continuous and discrete source parameter spaces are described,
e.g., in [Scherg and von Cramon, 1985; Buchner et al., 1997; Knösche, 1997;
Wagner, 1998; Wolters et al., 1999a; Schmitt and Louis, 2002; Schmitt et al.,
2002].

A first example is the study of functional cortical organization by means
of evoked fields of the somatosensory system. The different evoked signal
components of interest in such studies appear during the first 100 ms post-
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Fig. 3: SEP example dataset, taken from CURRY: Butterfly plot of averaged EEG data from −0.4
to 0.4 µV . The P22 signal component is marked.

stimulus. Since the components are well time-locked and not dependent on
the attention of the subjects, the signal can be averaged over a large number of
trials so that the signal components of interest are obtained with a relatively
good signal-to-noise ratio. Figure 3 shows the averaged EEG measurements
for SEP in 31 channel butterfly plot from [Fuchs et al., 1998], included as
an example dataset in the software package [CURRY, 2000]. As an example
for a medically interesting source localization result, the continuous dipole fit
method, introduced by [Scherg and von Cramon, 1985], with two dipoles at
the peak of the SEP-P22 signal component is shown in Figure 4 (see [Fuchs
et al., 1998]). The result has been calculated using the example dataset and
methods within [CURRY, 2000]. Source localization methods have also been

Fig. 4: SEP source localization example, computed with CURRY: Results of the continuous
dipole fit method with two dipoles at the peak of the P22 signal component.
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introduced to characterize the generators of signals related to higher cognitive
function. An example is a recent study showing equivalences between speech
and music processing in the brain [Maess et al., 2001].

The non-invasive EEG/MEG-source localization diagnosis method is suc-
cessfully used in clinical research and application. For instance tumors may
distort brain anatomy so that the presurgical localization of sensory or motor
areas on the basis of anatomical landmarks is impossible. In [Sutherling et al.,
1988], the agreement between invasive and non-invasive methods was evalu-
ated and an “excellent precision of the source localization results” was found.
About 0.25 % of the world population suffers from drug-resistant epilepsy
and about 10 to 15 % would profit from a surgical removement of the epilep-
togenic tissue [Andrä and Nowak, 1998]. As opposed to alternative invasive
diagnostic procedures, i.e., opening the skull and implanting electrodes near
the assumed focus (ECoG surface electrodes or depth electrodes) which put
the patient under a considerable risk and is cost intensive, source localization
procedures are non-invasive and can give a more “global” overview since the
sensors can be placed around the whole head. [Waberski et al., 1998], e.g.,
found a high congruence of source reconstruction and invasive determination
of the focus of epileptiform activity using realistically shaped head models.

2 The forward problem

2.1 Physical modeling

The sources to be localized during the inverse problem and to be modeled
in the forward problem are electrolytic currents within the dendrites of the
large pyramidal cells of activated regions in the cortex sheet of the human
brain. Stimulus-induced activation of a large number of excitatory synapses
of a whole pattern of neurons leads to a negative monopole under the brain
surface, whereas the cells in rest form a positive monopole quite closely un-
derneath. The stimulus can have various forms, e.g., any visual or auditory
stimulus in neuropsychological experiments or an epilepsy- or tumor-induced
stimulus as clinical examples. The resulting primary current is generally for-
mulated as a mathematical dipole

�jp (�x) = �Mδ(�x− �x0) (1)

at the position �x0 with the moment �M (see e.g.[de Munck et al., 1988]). The
dipole source establishes an electric field �E and a return current σ �E in the
whole head with σ denoting the 3 × 3 conductivity tensor. The total current
distribution �j in the head is then modeled as

�j = �jp + σ �E.

117



Since in the considered low frequency band (frequencies below 1000 Hz) the
capacitive component of tissue impedance and the electromagnetic propaga-
tion effect can be neglected [Plonsey and Heppner, 1967], the fields are qua-
sistatic and �E can be expressed as the negative gradient of a scalar potential
Φ, so that

�j = �jp − σ∇Φ.

Because the divergence of �j must be zero, we arrive at the quasistatic ap-
proach of Maxwell’s equations of electrodynamics

∇ · (σ∇Φ) = Jp = ∇ ·�jp (2)

in Ω with appropriate boundary conditions

σ
∂Φ
∂�n

∣∣∣∣
Γ

= 0 (3)

with Ω denoting the head, Γ the head surface and �n the surface normal. Ad-
ditionally, a reference electrode with given potential is assumed, i.e.,

Φref = 0 . (4)

For the magnetic problem, linear material equations are used and it is as-
sumed, that the magnetic permeability, µ, is constant over the whole volume
and equal to the permeability of vacuum, so that the following quasistatic
Maxwell equation for the flux density �B is valid [Sarvas, 1987]:

∇× �B = µ�j. (5)

Since the divergence of �B is zero, a magnetic potential �A with �B = ∇ × �A
can be introduced and, using Coulomb’s gauge ∇ · �A = 0, Equation (5)
transforms to

µ
(
�jp − σ∇Φ

)
= ∇×

(
∇× �A

)
= ∇

(
∇ · �A

)
−∆ �A = −∆ �A.

The source term is vanishing outside the volume conductor, so that the solu-
tion of Poisson’s equation is [Nolting, 1992]

�A(�x) =
µ

4π

∫
Ω

�jp(�y)− σ(�y)∇Φ(�y)
|�x− �y| d�y. (6)

Finally, the magnetic flux Ψ through an MEG magnetometer flux transformer
Υ (see, e.g., Figure 13, left) is determined as an integral over the coil area F
enclosed by Υ, or, using Stokes theorem, as

Ψ =
∫
F

�B(�x)d�x =
∮
Υ

�A(�x)d�x.
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With

�C(�y) =
∮
Υ

1
|�x− �y|d�x, (7)

the final equations for primary magnetic flux, Ψp, and secondary magnetic
flux, Ψs, emerging from primary and secondary (return) currents, resp., are
given by

Ψp
(1)
=

µ

4π
< �M, �C(�x0) > (8)

Ψs =
−µ
4π

∫
Ω

< σ(�y)∇Φ(�y), �C(�y) > d�y (9)

Ψ = Ψp + Ψs.

[de Munck and Peters, 1993] derived series expansion formulas for prob-
lem (2) with boundary conditions (3) and reference potential (4) in order
to calculate the potential distribution for a dipolar source in a multi-layer
spherical shell model with constant isotropic or anisotropic conductivity val-
ues/tensors within each layer. It is now widely known that realistically shaped
models of the human head are necessary to keep the localization error at an
acceptable level (see e.g. [Waberski et al., 1998]).

2.2 Generation of a realistic 5 tissue anisotropic head model

A prerequisite for a realistic modeling of the volume conductor is the segmen-
tation of head tissues with different conductivity properties. MRI is known
as a safe and non-invasive method for imaging the human head and does not
expose subjects to radiation load like in Computed Tomography. The iden-
tification of the CerebroSpinal Fluid(CSF)-skull boundary based on T1-MRI
(T1-weighted MRI) is problematic, and PD-MRI (Proton-Density-weighted
MRI) is most appropriate for this task. Figure 5 shows an axial slice of the
segmented 5-tissue head model and the corresponding slices of T1- and PD-
MRI. The model will be used throughout this article. For the segmentation
of skin, white and gray matter surfaces, we only refer to [Wolters, 2002],
whereas we will now focus on the description of the modeling for the two
anisotropic compartments, skull and white matter.

2.2.1 Generation of an anisotropic skull layer

The exact modeling of the low-conducting anisotropic human skull is of
particular importance for EEG source localization [Burkhardt et al., 2002;
Huiskamp et al., 1999]. The skull can be seen as an isolating layer which
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5-tissue model T1-MRI registered PD-MRI

Fig. 5: Axial slice of the 5-tissue segmentation result and the corresponding slice of the T1-MRI
and of the registered PD-MRI.

leads to a strong decrease and a blurring of the potential distribution towards
the measurement electrodes.

A first step in the modeling process is the segmentation of inner and outer
skull surfaces. We will now shortly summarize our results, see [Burkhardt et
al., 2002] for a deeper study. The registration of a bimodal data set is a funda-
mental step in order to exploit the information in both images in the segmen-
tation process. Inspired by [Maes et al., 1997], we used a voxel-similarity
based registration method, yielding high accuracy in matching both modali-

ISS/EISS on T1-MRI ISS/EISS on PD-MRI SSSM on T1

Fig. 6: Left and middle: Comparison of the segmented Inner Skull Surface (ISS) from bimodal
MR images (bold white) and the Estimated Inner Skull Surface (EISS) by means of a T1-MRI
based closing and inflation procedure (white on underlying T1 MRI and black on underlying
registered PD MRI). Right: Smooth Surface Spongiosa Model (SSSM) on underlying T1-MRI for
modeling the eigenvectors of the skull conductivity tensors.
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ties [Burkhardt et al., 2002]. Figures 5 and 6 show the PD-MRI, which was
registered onto the T1 image. Our segmentation approach for inner and outer
skull surfaces uses a combination of basic 3D image operations, a fuzzy seg-
mentation method which compensates for image intensity inhomogeneities,
an extended region growing concept and a deformable model, exploiting the
registered bimodal data set [Burkhardt et al., 2002]. The bimodal MRI ap-
proach was shown to substantially improve the Inner Skull Surface (ISS) seg-
mentation when compared to a T1-MRI based method. The latter estimates
the inner skull from a segmentation of the cortical surface. The cortex sur-
face is closed and inflated by a fixed distance via mathematical morphology
to provide the Estimated Inner Skull Surface (EISS). The segmentation im-
provement was found to be large in particular in regions of the skull base, but
also in those neurocranial roof areas with larger deviation between chosen
global inflation parameter and realistic local thickness of the cerebrospinal
fluid compartment [Burkhardt et al., 2002]. The comparison of ISS and EISS
segmentation results is shown in Figure 6 (left and middle). Errors in EEG
source localization of up to 1cm in mesial-temporal and basal-frontal regions,
resulting from inaccurate skull segmentation, were found in [Huiskamp et al.,
1999]. Since these regions are of particular importance in epilepsy surgery,
it was concluded that this imprecision may be detrimental in clinical applica-
tions.

As mentioned in the introduction, the human skull is an anisotropically
conducting layer, if it is regarded as one unit. [Marin, 1997; Marin et al.,
1998] pointed out the importance of well-defined skull conductivity tensor
eigenvectors and reported larger errors for the EEG potential in the case of
erroneous tensor directions. We therefore based our determination of tensor
eigenvectors on the resulting mesh of a discrete deformable surface model,
whose pseudo-code is shown in Algorithm 1. This model was also used for a
segmentation improvement of inner and outer skull surface [Burkhardt et al.,
2002]. The deformable model was applied here in order to generate a Smooth
Surface Spongiosa Model (SSSM), i.e., a strongly smoothed triangular mesh,
which was shrunken from the outer skull mask onto the outer spongiosa sur-
face. Therefore, the binary mask of the outer skull surface was shrunken by
2 under the assumption of a 2 mm thick outer compacta layer [Akhtari et
al., 2000], resulting in the initial binary mask. In a first step, the operation
EXTRACT extracts a triangle mesh from mask, using the marching tetra-
hedra method [Payne and Toga, 1990]. Then, the wrapper algorithm [Gueziec
and Hummel, 1994] is applied to achieve a reduction in the vertex count to
Nv vertices, while retaining the shape of the surface, denoted by the operation
SIMPLIFY . Nv = 30, 000 was found to be a good choice, since mask
is only moderately curved. The operation outputs a mesh with mesh vertices
�v0, normal vectors �n0 and triangle elements ∆, where the normal vector for
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Algorithm 1 DEFORM : (mask,Nv, T 1, Ilim, ωin, ωex, it)→ SSSM

(�v0, �n0,∆) = SIMPLIFY (EXTRACT (mask), Nv), i = 0, κ = 1/3
for i = 1 up to i = iters do

for each of the Nv vertices �vi do
�Fin(�vi) = 0 /* calculate smoothing force */
for EACH OF THE N EDGE-CONNECTED NEIGHBORS �vi

j OF �vi do
�Fin(�vi) = �Fin(�vi) + 1

N

(
�vi

j − �vi
)

end for
Fex,1(�vi) = 〈−∇IT1

g (�vi), �ni〉 /* gradient force */
Fex,2(�vi) = tanh

(
κ(IT1(�vi)− Ilim)

)
/* capturing force */

�vi+1 = �vi + ωin
�Fin(�vi) + ωex

(
Fex,1(�vi)Fex,2(�vi) + Fex,2(�vi)

)
�ni

end for
i = i+ 1

end for
SSSM = (�vi, �ni,∆)

each vertex was calculated as the arithmetic mean of the neighboring trian-
gle normals. The internal force �Fin(�vi) for a vertex in the ith iteration, �vi,
is chosen as a force, which pulls the vertex to the centroid of its N edge-
connected neighbor vertices. In order to force the SSSM to remain inside
the segmented skull layer, the intensity values of all voxels inside the inner
skull surface and outside the outer skull surface were set to the highest grey
value 255, resulting in the modified image T 1. The magnitude of the external
force, acting along the vertex normal �n i, is divided into two parts. The first,
Fex,1, is attached to the local intensity value gradient of the Gauss smoothed
modified image, ∇IT1

g , while the second term, Fex,2, captures the surface
within a narrow range around an image intensity I lim. We chose Ilim as the
arithmetic mean of the intensities of skull compacta and spongiosa. The pa-
rameter κ ∈ R defines the capturing range, which is related to the amount
of noise in the MR data. It was fixed to κ = 1/3, following [Burkhardt et
al., 2002]. We performed it = 100 iterations with a strong weighting of
the smoothing force, ωin = 0.07 and a moderate weighting for the external
force, ωin = −0.002. The resulting triangle mesh SSSM was voxelized and
shown in Figure 6 (right). For each point in the skull layer, we are now able to
determine the radial skull direction by means of the normal vector �n k of the
SSSM vertex �vk with minimal distance. The two tangential directions in the
perpendicular plane to the radial direction can then be determined using vec-
tor product. Within the simulations in Section 5, we use conductivity tensors
of the form σ = SΛST with S the orthogonal eigenvector matrix, built of
the two tangential and the radial direction vectors, and simulated eigenvalues
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Λ = diag(λtang, λtang, λrad), as described in Table 1 in Subsection 5.1.1.

2.2.2 Generation of an anisotropic white matter compartment

We performed whole-head-DTI using a 4-slice displaced U-FLARE [Norris
and Börnert, 1993] protocol with centric phase-encoding. Diffusion weight-
ing was implemented as a Stejskal-Tanner type spin-echo preparation [Koch,
2000]. Although echo planar imaging (EPI) is being widely applied for DTI
purposes, U-FLARE was preferred to EPI in order to avoid spatial misregis-
tration between the DTI data and the 3D data sets due to magnetic field inho-
mogeneities. The effective echo time was Teff = 120 ms, and TR = 11 s.
The diffusion weighting gradient pulses had a duration of 22 ms, and their on-
set was separated by 40 ms. Four different b values evenly spaced between 50
and 800 s/mm2 were applied through variation of the gradient strength [Koch,
2000]. The slices were axially oriented and 5mm thick. In-plane resolution
was 2 × 2 mm2. In order to increase the signal-to-noise ratio, 5 to 16 images
(depending on the b value) with identical diffusion weighting were averaged.
Due to the long measurement time (50 min for 4 slices) data acquisition was
split into 8 sessions. Diffusion tensor calculation [Basser et al., 1994a] was
based on a multivariate regression algorithm in IDL (Interactive Data Lan-
guage, Research Scientific, Bolder, Colorado/USA). Figure 2 shows a detail
of an axial slice of the measured DTI data with 2 × 2 mm2 resolution on
an underlying coregistered T1-MRI. The coregistered T1 images of the same
slices allowed the registration of the DTI data on the 3D T1 data set. The
registered DT data were then resampled to 1× 1× 1 mm3. In order to handle
the orientation information in the registered DT images appropriately, each
diffusion tensor D′ was rotated with the rotation matrix R of the respective
registration process via the similarity transform D = RD ′RT [Alexander et
al., 2001]. Figure 7 shows Tr(D), i.e., the sum of the diagonal tensor ele-

Axial Coronal Saggital

Fig. 7: Tr(D) of the 8 registered DT-MRI sessions. Water diffusion coefficients in CSF (white)
are much larger than in the brain, allowing a quality check of the registration.
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ments, of the 8 registered DTI sessions. Since water diffusion coefficients in
CSF are much larger than in the brain, a large contrast is achieved at the brain
surface, which allows a quality check of the registration. As the figure shows,
the registered DTI slices are not exactly parallel. Later in Subsection 2.3.1 for
the generation of the FE volume conductor model, the gaps were filled with
isotropic white matter conductivity tensors.

When extracting the anisotropic part of the diffusion tensor by means of

A = D− TrD
3

I, (10)

we can define the “fractional anisotropy index” [Basser and Pierpaoli, 1996]
as

FA =

√
3
2

√
A : A√
D : D

with B : C ≡
∑
i,j

BijCij . (11)

Figure 8 shows a map of the fractional anisotropy index of the registered DT
data, masked with the white matter mask of the 5-tissue segmentation result.
The highest value for fractional anisotropy was found in the splenium of the
corpus callosum, where FA = 0.74.

Within the simulations in Section 5, we will not make use of the EMA for
the conductivity tensor eigenvalues as described in the introduction. We are
rather interested in using conductivity tensors of the form σ = SΛST with
S the orthogonal matrix of eigenvectors of the measured diffusion tensors,
but with simulated eigenvalues Λ = diag(λlong, λtrans, λtrans) as described
in Table 2 in Subsection 5.1.1. λlong is the eigenvalue parallel (longitudinal)
and λtrans perpendicular (transverse) to the fibre directions. Figure 9 shows a
detail of the projection of the conductivity tensor ellipsoids σ = SΛST with
an eigenvalue choice of λlong = 0.65 and λtrans = 0.065 onto a coronal slice
of the T1-MRI. The eigenvalue choice corresponds to the modeled anisotropy

Axial Coronal Saggital

Fig. 8: Fractional anisotropy index, FA (see Equation 11), of the DT-MRI, masked with the
white matter mask of the 5-tissue segmentation result.
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Fig. 9: Detail of the projection of the conductivity tensor ellipsoids σ onto a coronal cut of the T1-
MRI through the Commissura anterior. The gap, where no measurement data was available, is
not yet filled with isotropic conductivity tensors. Top right: Fibres going up to the Gyrus frontalis
superior; top left: Fibres going up to the Gyrus frontalis medius; bottom right: Fibres going
through the Truncus corporis callosi; bottom left: Fibres going up to the Gyrus precentralis
and down to Gyrus frontalis inferior, pars opercularis. Tensor validation and visualization was
carried out with the VM tool [SIMBIO, 2000].

ratio of 1:10 in Table 2 in Subsection 5.1.1. In Figure 9 the gap, where no
measurement data was available, is not yet filled with isotropic conductivity
tensors. The visualization of tensors in Figures 9, 10 and 11 was carried
out with the software tool VM (Visualization Module), developed within the
project [SimBio, 2000].

2.3 Meshing and discretization aspects

Numerical methods are needed for field simulations in realistically shaped
anisotropic volume conductors. Within this article, we use the FE method.

2.3.1 FE mesh generation

An essential prerequisite for FE modeling is the generation of a mesh which
represents the geometric and electric properties of the head volume conduc-
tor. Our approach uses a surface-based tetrahedral tessellation of the relevant
compartments skin, skull, CSF, brain gray and white matter, and ventricular
system, as described in [Wagner, 1998]. Auxiliary surfaces with a distance
d1 from the given compartment borders are generated so that a set of layered
surfaces is obtained. In a next step, the vertices of the tetrahedral mesh are
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a) b)

Fig. 10: Conductivity tensors in the barycenters of the skull elements for 1:5 anisotropy: a)
Tensors of the skull roof. b) Tensors of an axial cut through the skull model on underlying T1-
MRI. A stronger scaling of the eigenvalues of the tensors was chosen in a) compared to b). Tensor
validation and visualization was carried out with the VM tool [SIMBIO, 2000].

Fig. 11: Conductivity tensor ellipsoids in the barycenters of white matter elements for 1:10
anisotropy on underlying T1-MRI: The eigenvalues were chosen as λlong = 0.65 and λtrans =
0.065 according to Table 2 in Subsection 5.1.1. Tensor validation and visualization was carried
out with the VM tool [SIMBIO, 2000].



generated by means of a thinning of the surfaces with thinning-distance d 1

for auxiliary and d2 for compartment surfaces. d2 = 2mm enabled a very
exact representation of the volume conductor. A distance of 1.3 times d 2 was
chosen for d1. This resulted in 147287 nodes. After a three-dimensional De-
launay triangulation, each of the 892115 tetrahedra was labeled according to
its compartment. The tetrahedral FE mesh was generated using the software
package [CURRY, 2000].

According to the procedure described in 2.2.1, an anisotropic conductivity
tensor was assigned to the barycentre of each finite element in the skull. Fig-
ure 10 shows the conductivity tensors of the skull roof (left) and of an axial
cut through the skull model on underlying T1-MRI (right) for 1:5 anisotropy.
Tensor validation and visualization was carried out with the VM tool [Sim-
Bio, 2000]. To the barycentre of each finite element in the white matter
compartment, we assign the anisotropic conductivity tensor derived from the
measured diffusion tensor image with 1mm3 resolution, presented in Subsec-
tion 2.2.2. Figure 11 shows the conductivity tensor ellipsoids in the barycen-
ters of the white matter finite elements for 1:10 anisotropy on the underlying
T1 MRI. Again, the tensors were validated and visualized by means of the
VM tool [SimBio, 2000].

2.3.2 The blurred dipole model

A direct approach for the discretization of Equation (2) is used within this ar-
ticle. Therefore, the blurred dipole model was introduced for FE based source
localization in [Buchner et al., 1997], which will be shortly summarized be-
low. The blurred dipole is made up from monopole sources J b

k := Jb(�xk),
calculated for all neighboring FE mesh nodes �xk around the location �xi of a
mathematical dipole �Mi := �Mδ(�x− �xi), so that

F =
1
2

(
n0 �M r

i −
(
∆�̄xr

ki

)n0
Jb

k

) (
n0 �M r

i −
(
∆�̄xr

si

)n0
Jb

s

)
+λ

1
2
Jb

kgksJ
b
s

!= min

gks :=

{ (
∆�̄xr

ki∆�̄x
r
si

)ns/2
if k = s

0 if k �= s

with ∆�̄xr
ki = ∆�xr

ki/a the r cartesian component of the a-weighted vector
from node i to node k, ∆�xki, n0 the order of the source model, ns the dipole
smoothness and λ the dipole regularization parameter. The first part of the
functional F ensures a minimal difference between the resultant moment of
the blurred dipole and the one of the mathematical dipole, while the second
part, a Tikhonov-Phillips regularizer, smoothes the monopole distribution and
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enables a unique minimum for F . The differentiation of F with respect to J b

is used to express the minimum condition which leads to a system of linear
equations:[(

∆�̄xr
ki

)n0 (
∆�̄xr

si

)n0 + λgks

]
Jb

s =
(
∆�̄xr

ki

)n0 �Mn0
i (12)∑

k

Jb
k = 0

Together with J b
t = 0 for all non-neighbor indices t of dipole index i, the

monopole distribution of the blurred dipole model is defined. See [Buchner
et al., 1997] for a motivation of this source model and for accuracy tests
in a sphere model, where the numerical results were compared with results
of an analytical formula from [Smythe, 1989] for two closely neighbored
monopoles, a source and a sink.

2.3.3 FE formulation for EEG forward computation

The direct application of variational and FE techniques to equation (2) with
boundary conditions (3) together with the blurred dipole model yields a sys-
tem of linear equations

Khh = Jh (13)

with Kh ∈ RNh×Nh denoting the stiffness matrix, Jh ∈ RNh the source load
and h ∈ RNh the solution vector for the total potential. The stiffness matrix
is given by

K
[i,j]
h =

∫
Ω

∇ψjσ∇ψi dΩ (14)

and the right hand side entries for the direct method by

[Jh]i = −
∫

Ω

Jb
i ψi dΩ (15)

for an FE space Vh = span{ψi}Nh

i=1. The subscript h denotes the average
meshsize and Nh = O(h−3) is the number of unknowns. The condition
number of the stiffness matrix behaves asymptotically like O(h−2).

In contrast to the described direct discretization method in combination
with the blurred dipole model, the subtraction method (see e.g. [Awada et al.,
1997; van den Broek et al., 1997; Schimpf et al., 2002 ]) splits the total poten-
tial into two parts, the singularity potential and the correction potential. The
singularity potential is the analytically calculated solution for a mathematical
current dipole (equation (1)) in an unbounded homogeneous conductor with
constant isotropic conductivity. The correction potential is a solution to equa-
tion 2 in the closed sourceless domain under boundary conditions that correct
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Fig. 12: EEG sensors: 71 electrodes of the chosen EEG system. Electrode size was enlarged for
visualization purposes.

the movement of current across boundaries between regions of different con-
ductivity. The correction potential is calculated by means of an FE approach,
leading to a linear equation system with the same stiffness matrix (14), but
with different right hand side. Since the solvers are independent of the right
hand side of the equation system, the results presented in the following are
also valid for the subtraction method in combination with the mathematical
dipole.

For the EEG forward computation, 71 electrodes were placed interactively
on the head surface according to the international 10/20 system [Pastelak-
Price, 1983]. The electrode configuration is shown in Figure 12. The sensors
were projected onto the FE head model, i.e., we model the electrode potential
with the value of the closest neighboring FE mesh node.

2.3.4 MEG forward computation

For the magnetic forward problem, the flux transformers of the MEG de-
vice have to be modeled. The Max-Planck-Institute of Cognitive Neuro-
science Leipzig is equipped with a BTI 148 channel whole-head MEG sys-
tem. [Pohlmeier, 1996] modeled each coil Υ of this system (see Figure 13,
left) by means of a thin, closed conductor loop with a diameter of 11.5 mm,
using 8 isoparametric quadratic finite row elements. Errors slightly below the
data noise between this realistic and a point-like coil representation were re-
ported, showing the necessity of the chosen approach. With regard to these
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Fig. 13: MEG sensors: Magnetometer flux transformer (left) and the chosen whole head BTI-
148-channel MEG system together with the FE head model, top view (middle) and side view
(right).

results, equation (7) was discretized by means of

�C(�y) =
∑

n

1∫
−1

1
| ∑
i(n)

χi(ξ)�xi − �y|
∑
i(n)

∂χi(ξ)
∂ξ

�xidξ, (16)

where n denotes a finite row element and an isoparametric FE Ansatz with
quadratic (parabolic) Ansatz functions χ i was made for the coil position vec-
tor, �x(ξ) =

∑
i χi(ξ)�xi, with �xi the vertices of the row element. The de-

termination of the primary flux Ψp in Equation (8) is then straight-forward.
After the FE calculation of the potential distribution, the secondary flux Ψ s

in Equation (9) is computed by means of a Gauss integration, where the inte-
grand consists of the interpolated functions in the FE space [Pohlmeier, 1996].
In Figure 13, the position of the 148 magnetometer coils, each represented by
its row elements, are visualized together with the FE head model.

3 Parallel Algebraic Multigrid Solver

The inverse reconstruction process requires the solution of hundreds or even
thousands of large scale systems of equations (13) with the stiffness matrix
(14). In [Wolters et al., 2000], condition numbers of about 107 have been cal-
culated for high resolution realistically shaped head stiffness matrices, caus-
ing severe accuracy and convergence problems for classical iterative solvers.
These problems were recovered by applying appropriate preconditioners for
the CG method such that the condition number of the resulting precondi-
tioned stiffness matrix was small. The AMG preconditioner was shown to be
superior to incomplete Cholesky factorization with threshold. In [Johnson et
al., 2000], AMG-CG was found to be superior to a successive overrelaxation
method.
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If we are going to solve the entire localization problem with many calls of
the solver, the results cannot be produced within an acceptable time. How-
ever, a parallel computer may provide sufficient capacity such that time limi-
tation can be fulfilled. In [Haase et al., 2002; Wolters et al., 2002] it has been
shown that AMG-CG solvers exhibit high speedups on parallel computers in-
cluding PC clusters and an SGI ORIGIN 2000. The speedup was especially
good for the solver-part of the algorithm. Since the setup of the precondi-
tioner has to be carried out only once per head geometry, its calculation time
and speedup can be neglected. Our following description of the parallel AMG
is taken from [Wolters et al., 2002].

3.1 Algebraic Multigrid Method

As in Geometric MultiGrid (GMG, see [Hackbusch, 1985] for a theoretical
overview), the basic idea in AMG is to reduce high and low frequency com-
ponents of the error by the efficient interplay of smoothing and coarse grid
correction, respectively. In AMG, both, the matrix hierarchy and the prolon-
gation operators are constructed just from the stiffness matrix Kh. In analogy,
we will speak of “coarse grids” although these are purely virtual and do not
have to be constructed explicitly as coarse FE meshes. Since the automatic
generation of a grid-hierarchy for GMG and especially the proper assembling
of all components would be a very difficult task with respect to conductivity
inhomogeneities and anisotropies in a realistically shaped head model, the
automatic algebraic construction of a virtual grid is a big advantage. A gen-
eral concept of AMG methods for FE discretizations can be found in [Haase
et al., 2000]. Each AMG algorithm consists of the following components:

(a)Coarsening: define the splitting ωh = ωC ∪ ωF of ωh (the index set of
nodes) into sets of coarse and fine grid nodes ωC and ωF , respectively.

(b)Transfer operators: prolongation Ph : VH 
→ Vh and restriction Rh :=
PT

h .
(c)Definition of the coarse matrix by Galerkin’s method, i.e.,

KH := RhKhPh.
(d)Appropriate smoother for the considered problem class.

The most important issue to be discussed is the setup phase, i.e., the con-
struction of the matrix hierarchy and the prolongation operators. We will give
the explanation for a two grid method where h is related to the fine grid and
H to the coarse grid.

In our case, the stiffness matrix Kh can be associated with an FE grid,
i.e., the diagonal entry of the ith row of the matrix Kh is related to a grid
point in ωh and an off-diagonal entry is related to an edge in an FE grid (see
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Figure 14). First we look at the coarsening process which has the task to

coarse grid node
fine grid node

“fine grid” “coarse grid”

Fig. 14: Illustration of a two grid method.

reduce the nodes such that NH = |ωC | < Nh = |ωh|. Here, |ω| denotes the
number of elements in the set ω. Motivated from Figure 14, the grid points
ωh can be split into two disjoint subsets ωC (coarse grid nodes) and ωF (fine
grid nodes), i.e.,

ωh = ωC ∪ ωF , ωC ∩ ωF = ∅
such that there are (almost) no direct connections between any two coarse grid
nodes and the resulting number of coarse grid nodes is as large as possible.
Instead of considering all connections between nodes being of the same rank,
we introduce the following sets

N i
h =

{
j | |K[i,j]

h | �= 0, i �= j
}

(17)

Si
h =

{
j ∈ N i

h | |K[i,j]
h | > coarse(i, j,Kh)

}
Si,T

h =
{
j ∈ N i

h | i ∈ Sj
h)

}
where N i

h is the index set of neighbors, S i
h denotes the index set of nodes

with a “strong connection” from node i and S i,T
h is related to the index set of

nodes with a “strong connection” to node i (see [Ruge and Stüben, 1986]). In
addition coarse(i, j,Kh) is an appropriate cut-off (coarsening) function, e.g.,

coarse(i, j,Kh) := α ·max
j
{|K[i,j]

h |} , (18)
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Algorithm 2 (Parallel) V (νF , νB)-cycle MG(Kh, , J)
if COARSEGRID then
⇐ DIRECTSOLVE (K · = J )

else˜⇐ νF TIMES SMOOTH(Kh, , J)
d← J− Kh ·̃
dH ← PT · d
wH ← 0
wH ⇐ MG(KH ,w

H , dH)
w← P ·wĤ←˜+w
⇐ νB TIMES SMOOTHT (Kh ,̂ , J)

end if

with α ∈ [0, 1]. With those definitions a splitting into coarse and fine grid
nodes can be done. For our computations we used a modified splitting algo-
rithm of [Ruge and Stüben, 1986]. Next the prolongation operator has to be
defined correctly. We require that the prolongation operator P h : VH 
→ Vh

has full rank. There are a lot of possibilities to define such transfer operators
with pure algebraic information. For the construction we refer to [Ruge and
Stüben, 1986; Braess, 1995; Kickinger, 1998; Wagner, 2000 ]. A possible set-
ting and the one which turned out to be the most efficient for the presented
application is given by

(Ph)[i,j] =


1 i = j ∈ ωC

1/|Si,T
h ∩ ωC | i ∈ ωF , j ∈ Si,T

h ∩ ωC

0 else .

(19)

The coarse grid matrix KH is defined by the classical Galerkin method, i.e.,

KH = PT
h KhPh ∈ RNH ×NH ,

being again symmetric and positive definite (see e.g. [Ruge and Stüben,
1986]).

After the proper definition of the prolongation and coarse grid operators
a matrix hierarchy can be setup in a recursive way. Finally, a multigrid cy-
cle can be assembled, see Algorithm 2. Therein the variable COARSEGRID

denotes the level where a direct solver is applied.
For our application we use AMG-CG, i.e., AMG is applied as a precondi-

tioner for the CG method (see [Jung and Langer, 1991]). For the
m-V (νF , νB)-cycle AMG preconditioned CG method, the operation w =
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Algorithm 3 (Par.) PCG algorithm PCG(Kh, , J,CK )
r← J− Kh

w⇐ C−1
K · r

s← w

γ ⇐ 〈w, r〉
repeat

v← Kh · s
α⇐ γ/〈s, v〉
← + αs
r← r − αv
w⇐ C−1

K · r
γ ⇐ 〈w, r〉
β ← γ/γOLD , γOLD ← γ
s← w+ βs

until TERMINATION

C−1
K r is realized by m calls of MG(Kh,w, r). For the Jacobi-preconditioner,

it is CK = D with D the diagonal of Kh. The Preconditioned CG (PCG)
method is shown in Algorithm 3.

3.2 Data Partitioning

The aim of parallelization is to split both data and operations to the P pro-
cessors available. The consistency of the algorithms is preserved by message
passing. In our case, the parallelization is based on a non-overlapping domain
decomposition, i.e., we decompose Ω into P subdomains Ω s such that

Ω =
P⋃

s=1

Ωs

with
Ωs ∩ Ωq = ∅ ∀q �= s, s, q = 1, . . . , P

holds. Each subdomain Ωs is discretized by a mesh τh,s such that the whole
triangulation

τh =
P⋃

s=1

τh,s

of Ω forms a conforming mesh. A global FE space Vh is defined with respect
to τh and the local spaces Vh,s are restrictions of Vh onto τh,s.

The mesh partitioning of realistic FE geometries with unstructured meshes
is critical for the efficiency of the parallel solver method. The distribution
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a) b)

Fig. 15: Realistic tetrahedral FE head model, 892115 elements, partitioned with METIS and
visualized with PMVIS: a) for 4 processors b) for 12 processors.

Fig. 16: Simulated sources on underlying T1-MRI: Almost tangentially oriented somatosensory
source (left), somatosensory source with large radial orientation component (middle) and left
thalamic source (right).



must be done so that the number of elements assigned to each processor is
the same and the number of adjacent elements assigned to different proces-
sors is minimized in order to balance the computation amount among the
processors and to minimize the communication between them, respectively.
Therefore, graph partitioning algorithms were used which model the FE mesh
by a graph (V,E) with vertices V and edges E. Since we are interested in
an “element-wise-” in contrast to a “node-wise-” distribution, the dual graph
of the FE mesh was partitioned. The finite elements are the vertices of the
dual graph and adjacent elements are the corresponding edges. A balanced
k-way partitioning was used, minimizing the number of edges which straddle
partitions. No weighting of the edges, e.g. with regard to jumping conduc-
tivities between elements at tissue-boundaries, was used. The algorithm is
based on a multilevel approach, first reducing the size of the dual graph by
collapsing vertices and edges, then partitioning the dual graph on the low-
est level and further refine during the uncoarsening steps. For the described
mesh-partitioning, the software package METIS was used [Karypis and Ku-
mar, 1998]. The results were achieved in a few seconds on a single processor
SGI workstation. A first examination of the partitioning result was carried
out by means of zooming, rotating, translating, scaling, and applying explo-
sion factors. Figure 15 shows a visualization of the partitioned geometries
for 12 processors (see [Öztekin et al., 1998]). Later, the number of interface
and inner nodes and the number of elements were controlled during the cal-
culations. The interface nodes are those nodes which belong to at least two
processors, whereas inner nodes only belong to one. In all cases, the quality
of the partitioning results were very satisfactory.

3.3 Parallel AMG

The mapping of a vector Φh ∈ RNh in global numbering onto a local vector
Φs ∈ RNs in subdomain Ωs (s = 1, . . . , P ) is represented symbolically by
subdomain connectivity matrices As : RNh 
→ R

Ns with entries

A[i,j]
s :=

{
1 if j = LOC2GLOB(i)
0 else

∀i ∈ ωs , ∀j ∈ ωh

where LOC2GLOB(·) maps a local index to the global index. The transpose
AT

s of these binary matricesAs maps a local vector back onto the global one.
The index set of all those subdomains to which an unknown Φ [j]

h , j ∈ ωh

belongs, is denoted by

σ[j] := {s |Φ[j]
h ∈ Ωs} . (20)
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We store the data related to the ith node in the subdomain Ωs if s ∈ σ[i] .
This approach results in local data denoted by index s of two types [Haase,
1999]: accumulated data (vector , matrixP) represented by

s := As · , Ps := As ·P · AT
s (21)

and distributed data (vector d, matrix Kh) represented by

d =
P∑

s=1

AT
s · ds, Kh :=

P∑
s=1

AT
s · Ks · As . (22)

It turns out, that in Algorithms 2 and 3, the functionals are represented as
distributed data (J, v, r, d, Kh), whereas functions are represented as ac-
cumulated data (, s, w, P). The local FE accumulation with respect to Vh,s

produces automatically distributed matrices Ks. For instance, it can be shown
that the multiplication of a distributed matrix Kh with the accumulated vector
s in Algorithm 3 results in a distributed vector v:

Kh · s =
P∑

s=1

AT
s KsAs · s =

P∑
s=1

AT
s (Ks · ss)

=
P∑

s=1

AT
s vs = v

The realization requires no communication at all because we only have to
compute vs = Ks · ss locally.

If an accumulated matrixM fulfills the condition

∀i ∈ ωh , ∀j ∈ ωC : σ[i] �⊆ σ[j] =⇒ M[i,j] = 0, (23)

then the operationsw = M ·wH , dH = MT · d and KH = MT KhM can
be performed locally without any communication [Haase, 1999].

In AMG the coarsening and prolongation operators are components which
can be chosen. The main idea in the design of parallel AMG is to choose
these components such that the resulting prolongation operatorsP are of ac-
cumulated type satisfying the pattern condition (23). For this purpose, a local
node ordering is introduced by means of a grouping and ordering of the index
sets (20) according to |σ [j]|. The coarsening then starts at interfaces involving
more than 2 processors and continues with faces between two processors and
finally the coarsening of inner nodes is realized. In addition the coarsening
has to be synchronized such that the coarse grid problem is conforming across
interfaces between processors. This synchronization requires next neighbor

135



communication. Note that the partitioning of the nodes has only been per-
formed on the finest grid. For a detailed discussion we refer to [Haase et al.,
2002].

Now we observe that Algorithm 2 and Algorithm 3 are also the appropri-
ate parallel formulations, where double-line arrows “⇐” indicate that com-
munication is required for the corresponding operation. In Algorithm 2, the
coarse grid system is accumulated globally once in the setup phase. During
the iteration only a vector has to be assembled for computing the coarse grid
solution. Furthermore, the smoother requires communication and has to be
adapted appropriately. We use a Gauss-Seidel smoother for the inner nodes
and a Jacobi smoother for the interface nodes. The Jacobi-smoother involves
a vector conversion from distributed to accumulated type, i.e., one next neigh-
bor communication across interfaces is required per smoothing step. In this
way we get a sophisticated smoother which can be found in [Haase, 1999].
In Algorithm 3, only inner products involve communication besides the pre-
conditioning operation. Since for the inner product of different type vectors
it is

〈w, r〉 = wT
P∑

s=1

AT
s rs =

P∑
s=1

(Asw)T rs

=
P∑

s=1

〈ws, rs〉,

only one global reduce operation is needed.

4 Software developments

A new FE software package NeuroFEM was developed, based on the pack-
age CAUCHY (see [CAUCHY, 1997; Buchner et al., 1997]). Since it would
have been difficult to integrate the FORTRAN77-CAUCHY code using qua-
sistatic memory management in a new C++ class structured inverse tool-
box, the old software was redesigned. The inverse toolbox contains a vari-
ety of state-of-the-art current source localization methods ( [SimBio, 2000],
see also [Knösche, 1997; Wolters et al., 1999a]). Another argument for the
code development was the possibility for a proper interface to the software
package PEBBLES including the parallel AMG solver ([Reitzinger, 1999;
Haase et al., 2002]). The solver code exploits C++ principles of overloading
and inheritance.

Therefore, C++ class structured software concepts replace old CAUCHY
kernel routines. The storage management within NeuroFEM is fully dynami-
cal so that a recompilation of the software is no longer necessary when chang-
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ing the problem- and thus memory- size. The new structure facilitated parallel
programming on distributed memory computers using the Message-Passing
Interface (MPI) standard. The integrated software allows future compar-
isons with Boundary Element (BE) method based forward simulations (see
e.g.[Zanow and Peters, 1995; Fuchs et al., 1998]) or series expansion formu-
las in spherical shell models [de Munck and Peters, 1993].

The coupling to the parallel solver-package is carried out through an “el-
ement by element” interface. The root-process determines the index set (20)
for each node of the partitioned geometry and scatters the corresponding data
together with the conductivity tensors to the processors. The arrangement of
the nodes to groups according to their index-sets, the ordering of the groups
and the allocation of corresponding MPI-communicator groups and the local
node numbering is then a fully parallel process. Element-stiffness-matrices
are computed on each processor and stored in the local stiffness matrices in
FE compact row format. These matrices automatically have the distributed
data format (22). The global Dirichlet-node information is scattered to all
processors and implemented with a penalty approach in local numbering to
those local stiffness matrices whose processor-number is part of the global
Dirichlet-node index-set. The coarsening can then be carried out and the hier-
archy of stiffness and prolongation matrices can be determined in the parallel
setup-phase of the AMG preconditioner as described in Section 3.

5 Results and discussion

After discussion of parameter settings and definition of sensitivity error mea-
sures, we present simulation results concerning the influence of tissue con-
ductivity anisotropy on EEG and MEG for typical current sources in the brain.
Performance results of the parallel AMG solver and its sensitivity to tissue
anisotropy will be discussed in the last part of the section.

5.1 Parameter settings and error measures

5.1.1 Simulated sources

Simulation studies were carried out with three blurred dipolar current sources
at two different locations in the brain (see Figure 16 before p. 134). The first
two sources, one of them almost tangentially oriented (in y-direction, Fig-
ure 16, left) and the other radially (in z-direction, Figure 16, middle), were
chosen in the right somatosensory cortex as an example for eccentric, i.e.,
superficial sources. The second location was chosen in the left thalamus as
an example for deeper sources, where the orientation is always almost radial
(Figure 16, right). For the parameters of the blurred dipoles (see equation
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(12)), we chose n0 = 2 for the order of the source model, ns = 2 for the
dipole smoothness, λ = 10−6 for the regularization parameter and a = 20.0
for the dipole scale, effecting a spatial concentration of monopole loads J k

in the dipole axis around the dipole node. This choice also led to best re-
sults in sphere model accuracy tests, when comparing the numerical results
with an analytical formula from [Smythe, 1989] for two closely neighboring
monopoles, a source and a sink, see [Buchner et al., 1997].

5.1.2 Volume conductor modeling

Volume constraint Wang’s constraint
λrad : λtang λrad λtang λrad λtang

1:1 (iso) 0.0042 0.0042 0.0042 0.0042
1:2 0.0026 0.0053 0.003 0.0058
1:5 0.00143 0.0072 0.00188 0.00938

1:10 0.000905 0.00905 0.00133 0.01326
1:100 0.000195 0.0195 0.00042 0.042

Tab. 1: Skull conductivity tensor eigenvalue settings: λrad is the conductivity tensor eigenvalue
for radial and λtang for tangential direction.

The conductivity σ of the chosen isotropic skin- and grey matter-elements
was set to 0.33 1/Ωm. An isotropic conductivity value of 1.79 1/Ωm was
assigned to elements in the CSF [Baumann et al., 1997], i.e., within the com-
partment between brain and skull and within the ventricular system. The con-
ductivity tensor eigenvectors of skull elements were determined by means of
the procedure, described in Subsection 2.2.1. The conductivity eigenvalues
for an isotropic skull layer were set to 0.0042 1/Ωm, resulting in the well-
known conductivity ratio of about 1 : 80 between skull and skin layer (see,
e.g., [Haueisen, 1996]). For a chosen anisotropy ratio, λrad : λtang , radial
(λrad) and tangential (λtang) eigenvalues were calculated, obeying two dif-
ferent constraints: The first constraint, namely retaining λrad ·λtang between
the isotropic and anisotropic models, was proposed in [Wang et al., 2001;
van den Broek, 1997]. Our second constraint tries to retain the geomet-
ric mean of the eigenvalues and thus the volume of the conductivity tensor,
4/3πλradλ

2
tang . Table 1 shows the 5 chosen anisotropy ratios and the cal-

culated eigenvalues under constraint of the respective approach. We chose
anisotropy ratios of 1 : 2, 1 : 5, 1 : 10 and 1 : 100, where the last should be
considered to be out of the realistic range. For the white matter compartment,
the eigenvectors of a measured water diffusion tensor at the barycentre of a
white matter finite element were taken as its conductivity tensor eigenvec-
tors. The conductivity eigenvalues for an isotropic white matter compartment
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Volume method Wang’s method
λtrans : λlong λtrans λlong λtrans λlong

1:1 (iso) 0.14 0.14 0.14 0.14
1:2 0.111 0.222 0.099 0.19798
1:5 0.0818 0.41 0.0626 0.31309

1:10 0.065 0.65 0.04427 0.4427
1:100 0.03016 3.016 0.014 1.4

Tab. 2: White matter conductivity tensor eigenvalue settings: λlong is the conductivity tensor
eigenvalue for longitudinal and λtrans for transverse fibre direction.

were set to 0.14 1/Ωm (see, e.g., [Haueisen, 1996]). The anisotropy of the
white matter compartment was varied through a variation of the eigenval-
ues assigned to the longitudinal fibre direction (parallel to white matter fibre
bundles, i.e., the eigenvector direction with the largest eigenvalue in the wa-
ter diffusion tensor), λlong , and transverse direction, λtrans, again obeying
the two constraints which were described above. Table 2 shows the chosen
anisotropy ratio, λtrans : λlong , and the resulting eigenvalues. Again, we
chose the anisotropy ratios 1 : 2, 1 : 5, 1 : 10 and 1 : 100, where the last
should again be considered to be out of the realistic range.

Fig. 17: Determined 41 finite elements in the neighborhood of the eccentric source at vertex
106066 (left) and the 29 neighbored finite elements of the deep source at vertex 60997 (right).

In [Haueisen et al., 2000], a strong influence of local conductivity changes
around the source location to EEG and MEG was reported. Therefore, in our
model with 1:10 anisotropy of white matter and skull (volume constraint),
we first determined 41 finite elements in the neighborhood around the eccen-
tric source, 5 of which were isotropic CSF, 30 isotropic grey matter and 6
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anisotropic white matter elements (Fig. 17, left). To the latter 6 elements,
we then assigned the isotropic white matter conductivity. This model is
denoted by EALC (Eccentric 1:10 Anisotropic Locally Changed). For the
deep source, we determined 29 neighbored finite elements (Fig. 17, right), all
of which were anisotropic white matter elements. The isotropic white mat-
ter conductivity tensor was then assigned to these elements, resulting in the
DALC (Deep 1:10 Anisotropic Locally Changed) model.

5.1.3 Settings for the FE solution process

The zero starting vector Φ0 = �0 was chosen for the iterative solution pro-
cess. The FE space Vh consisted of piecewise linear Ansatz-functions. Note
that the solver-speed of the algorithms in Section 3 is only dependent on the
stiffness matrix (14), so that the following results are valid for both the direct
and the subtraction method (see Subsections 2.1 and 2.3.3) and all possible
source configurations (i.e., independence of the right-hand side of the linear
equation system). For the AMG-CG, we used the 1-V (1, 1)-cycle AMG-
preconditioner. Equation (18) was taken as the cut-off coarsening function
with α = 0.01 and the prolongation was chosen as in (19), respecting the pat-
tern condition (23). The factorization in Algorithm 2 was carried out, if the
size of the coarsest grid (COARSEGRID) in the preconditioner-setup was be-
low 800. The coarse system is solved by means of a Cholesky-factorization.
We observed only a small influence of the coarse grid size towards the solver
times, when, e.g., increasing from COARSEGRID=800 to 1000.

The process of determining the index set (20) for each node and scattering
the data to the processors, both of which are carried out by the root processor,
and the local arrangement of nodes to groups according to their index-set
and the allocation of corresponding communicator groups takes about half
a minute. This duration can be neglected since these processes have to be
performed only once per head model.

The solver process was stopped after the ith iteration if the relative error
in the controllable KhC−1

K Kh-energy norm was below ε = 10−8, i.e.,

〈wi, ri〉
〈w0, r0〉 ≤ ε

2.

The simulations were run on an SGI ORIGIN 2000 with R10000, 195 MHz
processors and overall 6GB of main memory. The solver speedup for 1 up to
12 processors was investigated.

5.1.4 Error criteria for sensitivity determination

We now define the two error criteria, which shall describe the influence of
skull and white matter anisotropy on the field distribution. These criteria
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were introduced for Boundary Element calculations in [Meijs et al., 1989].
The first error criterion, the Relative Difference Measure (RDM) at M mea-
surement sensors, defined as

RDM =

√√√√√ M∑
n=1

 Φiso
n√∑M

n=1 (Φiso
n )2

− Φaniso
n√∑M

n=1 (Φaniso
n )2

2

, (24)

is a measure for the topography error (Optimum RDM = 0). The second
error measure, the MAGnification factor (MAG), defined as

MAG =

√∑M
n=1 (Φaniso

n )2√∑M
n=1 (Φiso

n )2
, (25)

gives an indication of errors in the magnitude.

5.2 Influence of tissue conductivity anisotropy on EEG and
MEG

5.2.1 Results for a tangentially oriented eccentric source

Forward calculations for the eccentric source with a large tangential orienta-
tion component (Figure 16, left) and a strength of 10 nAm were carried out in
the 5-tissue model and the sensitivity of EEG and MEG towards anisotropy
of the skull layer, the white matter compartment, and of both skull and white
matter was determined. Figure 18 shows the resulting RDM (left) and MAG
(right) errors for an increasing anisotropy ratio, when either obeying the vol-
ume constraint or Wang’s constraint.

Our EEG results concerning 1:10 anisotropic skull in combination with an
isotropic white matter compartment are generally in agreement with the ob-
servations in [Marin et al., 1998], where a topography error of about 10% and
a magnification factor larger than 1 was reported for an eccentric tangentially
oriented dipole in a realistic FE head model. However, [Marin et al., 1998]
modeled 1:10 skull anisotropy by fixing the radial and increasing the tangen-
tial conductivity eigenvalues by a factor of 10. If we do so, we observe a
much larger topography error (RDM=20%) and a much larger magnification
factor (MAG=1.72) (see also Figure 19, bottom row, right). This difference
could be attributed to different simulation parameters like skull thickness and
source location, and to the definition/evaluation of RDM and MAG. [Marin
et al., 1998] evaluated an integral over the whole head surface, whereas we
considered only the potentials at the 71 EEG electrodes. We focus on the
influence of anisotropy on the inverse EEG problem, where in practice, only
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Fig. 18: Eccentric source, large tangential orientation component: EEG/MEG topography er-
ror (left) and magnitude error (right) for different anisotropy ratios: For EEG, errors due to
anisotropy effects of skull, white matter (WM) and both skull and WM are presented for the ten-
sor volume retaining (top row) and Wang’s constraint [Wang et al., 2001] (middle row). For
MEG, only WM anisotropy effects for both constraints are presented, since skull anisotropy was
found to have no influence.

a limited number of sensors is available. The electrodes are often placed
around the “center of interest” in order to sample the whole measurable dipo-
lar pattern (see Figure 4). Figure 19 shows the isopotential distribution of
the somatosensory source interpolated on the head surface of various FE for-
ward calculations in the 5-tissue model. The isopotential distribution for the
isotropic skull layer is shown in Figure 19, top row, left, and the result for
1:10 anisotropy with volume constraint in Figure 19, top row, right. The two
1:10 skull anisotropy isopotential distributions, presented in the bottom row
of Figure 19, were calculated either by means of a fixation of the tangential
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a) b)

c) d)

Fig. 19: Topography of isopotential distribution of the eccentric source with large tangential
orientation component on upper part of the head a) isotropic skull (λrad = 0.0042, λtang =
0.0042); from -0.9 to 0.2 µV b) 1:10 anisotropic skull; volume method: λrad = 0.000905 and
λtang = 0.00905); from -1.1 to 0.3 µV c) 1:10 anisotropic skull; 10 times lower radial cond.:
λrad = 0.00042 and λtang = 0.0042; from -0.7 to 0.1 µV d) 1:10 anisotropic skull; 10 times
higher tangential cond.: λrad = 0.0042 and λtang = 0.042; from -2.2 to 0.9 µV .

a) b) c)

Fig. 20: Thalamic source: Isopotential distribution from -0.6 to 0.4 µV on upper part of the head
a) isotropic model: λrad = 0.0042, λtang = 0.0042 and λtrans = 0.14, λlong = 0.14.
b) 1:10 anisotropic white matter (volume constraint): λtrans = 0.065 and λlong = 0.65;
isotropic skull. c) 1:10 anisotropic skull (volume constraint): λrad = 0.000905 and λtang =
0.00905); isotropic white matter.



conductivity eigenvalues and a reduction of the radial conductivity eigenvalue
by a factor of 10 (left) or by means of a fixation of the radial conductivity
eigenvalue and an increase of the tangential conductivity eigenvalues by a
factor of 10 (right).

When comparing our results on skull anisotropy in realistic FE models
with anisotropy examinations on multilayered sphere models [Zhou and van
Oosterom, 1992; Marin et al., 1998], we find the important difference that the
EEG topography error between isotropic and 1:10 anisotropic skull modeling
in our realistic FE head model (in agreement with the realistic FE head model
in [Marin et al., 1998]) is much larger than the EEG topography error between
isotropic and 1:10 anisotropic spherical layer modeling, reported in [Zhou and
van Oosterom, 1992; Marin et al., 1998]. Additionally, a MAG close to 1 was
pointed out for the spherical model [Zhou and van Oosterom, 1992], whereas
for the realistic FE model, we found a MAG larger 1, like [Marin et al., 1998].
Spherical symmetry effects could thus play a role, reducing topography and
magnitude errors for the multilayered sphere model. However, these errors
seem to be apparent in realistically shaped head models.

1:10 skull anisotropy was found to have no influence (RDM < 1%, MAG
≈ 1) on the MEG topography and magnitude for both volume and Wang’s
constraint. This is in agreement with the generally accepted idea that vol-
ume currents in the skull and scalp layer give negligible contributions to the
magnetic field [Hämäläinen and Sarvas, 1987] and with results in realistic FE
head models [van den Broek et al., 1997].

Our observations regarding the influence of white matter anisotropy on
EEG/MEG for an isotropic skull layer agree well with the results in [Haueisen
et al., 2002]. [Haueisen et al., 2002] reported small topography and magni-
tude errors for EEG and MEG for an eccentric source with large tangential
orientation component. We observed a negligible influence for a ratio of 1:10
on the EEG topography with an RDM close to 1% and on the MEG topogra-
phy with an RDM of about 5%. Our observed MAG is close to the optimum
in the realistic anisotropy range for both EEG and MEG (see Figure 18).

We computed EEG and MEG in the EALC model (see definition in 5.1.2)
and compared these forward solutions to the corresponding model with 1:10
anisotropy of white matter and skull (volume constraint). For both EEG and
MEG, an RDM smaller than 1% and a MAG of about 1 was found.

In summary, for the EEG, 1:10 anisotropy of both skull and white mat-
ter layer, leads to a topography error of about 9% for the volume constraint
and 11% for Wang’s constraint. The topography error is mainly due to skull
anisotropy, whereas white matter anisotropy has only a small influence on
the potential distribution for the chosen eccentric source with large tangential
orientation component. When choosing the volume constraint, the magnitude
error MAG for 1:10 anisotropy of skull and white matter layer is kept close
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to the optimum of 1.0, whereas Wang’s constraint leads to a MAG of 1.23.
An increase of radial or tangential skull conductivity contracts (in Figure 19,
compare top row, left with bottom row, right), whereas a decrease spreads out
the isopotential distribution on the surface. The pattern is also distorted (in
Figure 19, compare top row, left with bottom row, left), so that an approxi-
mation of skull anisotropy effects by means of an increase or a decrease of
the scalar isotropic skull conductivity value in BE head models seems to be
impossible. This is in particular true, because further computations with dif-
ferent source locations and orientations showed that contraction or spreading
out depends on parameters such as location/orientation of the source and skull
shape and thickness (not shown).

For the MEG, no influence of skull anisotropy was observed. The influence
of white matter was small for realistic anisotropy ratios.

5.2.2 Results for a radially oriented eccentric source

Forward calculations for the eccentric source with large radial orientation
component (Figure 16, middle) and a strength of 10 nAm were carried out
in the 5-tissue model. Figure 21 shows the resulting RDM (left) and MAG
(right) errors for EEG and MEG.

1:10 realistic white matter anisotropy for a radially oriented eccentric
source has a strong influence on the topography of EEG and MEG, a re-
sult which again mainly agrees with the results in [Haueisen et al., 2002].
[Haueisen et al., 2002] reported a large topography error for both EEG and
MEG (our MEG results have to be compared to the flux density component
By in Table 2 in [Haueisen et al., 2002]) and a moderate magnitude error
for an eccentric almost radially oriented source. We observed an EEG topog-
raphy error of RDM=23% for the volume and RDM=20% for Wang’s con-
straint and an MEG topography error of about 15% for both constraints. The
large MEG topography error can be explained by the fact that white matter
anisotropy influences the secondary (return) currents and that the ratio of the
secondary to the whole magnetic flux increases with increasing ratio of the
radial dipole orientation component [Haueisen et al., 1995]. Remember that
for radially oriented sources in spherical head models, the primary magnetic
flux (and because of spherical symmetry effects also the secondary magnetic
flux) is zero outside the model. For both EEG and MEG, the MAG was again
close to the optimum 1.0 for realistic white matter anisotropy ratios except
for the MEG in combination with the volume constraint, where the error was
close to 1.1.

We again found an RDM smaller than 1% and a MAG of about 1 between
forward results in the EALC (see 5.1.2) and the corresponding locally un-
changed model for both EEG and MEG.
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Fig. 21: Eccentric source, large radial orientation component: EEG/MEG topography er-
ror (left) and magnitude error (right) for different anisotropy ratios: For EEG, errors due to
anisotropy effects of skull, white matter (WM) and both skull and WM are presented for the ten-
sor volume retaining (top row) and Wang’s constraint [Wang et al., 2001] (middle row). For
MEG, only WM anisotropy effects for both constraints are presented, since skull anisotropy was
found to have no influence.

Our EEG results concerning 1:10 anisotropy of the skull agree well with
the observations in [Marin et al., 1998]. With an RDM of 12% for the volume
and 14% for Wang’s constraint, the influence on the potential topography is
in the range as seen for the tangential dipole. We achieved a MAG close to 1
for the volume and a MAG of 1.27 for Wang’s constraint. For MEG, as for
the tangential eccentric source, no influence (RDM< 1%, MAG≈ 1) of skull
anisotropy was found (see [Hämäläinen and Sarvas, 1987], [van den Broek et
al., 1997]).

In summary, 1:10 anisotropy of both considered compartments leads to
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Fig. 22: Deep thalamic source: EEG/MEG topography error (left) and magnitude error (right)
for different anisotropy ratios: For EEG, errors due to anisotropy effects of skull, white matter
(WM) and both skull and WM are presented for the tensor volume retaining (top row) and Wang’s
constraint [Wang et al., 2001] (middle row). For MEG, only WM anisotropy effects for both
constraints are presented, since skull anisotropy was found to have no influence.

a non-negligible topography error for both EEG and MEG. This error is
mainly due to white matter anisotropy. Skull anisotropy has no influence
on the MEG, but a non-negligible influence on the EEG. For EEG, the vol-
ume constraint led to a smaller MAG error than Wang’s constraint, whereas
we observed the inverse for the MEG. The local change from anisotropic to
isotropic conductivity of white matter elements in the neighborhood of the
source did not influence our error considerations.
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5.2.3 Results for a deep source

In a last simulation, forward calculations in the 5-tissue-model were carried
out for a deep and thus almost radial source (Figure 16, right) with a strength
of 10 nAm. In the thalamus, tissue structure is almost radially oriented. Fig-
ure 22 shows the resulting RDM and MAG errors. Figure 20 (before p. 143)
shows the isopotential distribution of the thalamic source for three different
volume conductor models. The isopotentials for the isotropic 5-tissue model
are shown on the left. In the middle, we present the result for an isotropic skull
layer and a 1:10 anisotropic white matter compartment (volume constraint)
and on the right the result for 1:10 anisotropic skull (volume constraint) and
isotropic white matter compartment.

It can be observed from the Figs. 22 and 20, that 1:10 anisotropy of white
matter in combination with an isotropic skull layer leads to a non-negligible
topography error larger 10% for the EEG, whereas with 6%, the error is mod-
erate for the MEG, but it is then strongly increasing for larger anisotropy
ratios. White matter anisotropy strongly decreased the surface potential (Fig-
ure 20, middle, and MAG=0.57 in Figure 22, top row, right) and the magnetic
fields (MAG≈0.6 in Figure 22, bottom row). The former is related to the
results of [Zhou and van Oosterom, 1992], who reported a decreased (in-
creased) potential magnitude for increased (decreased) radial conductivity in
the inner sphere of a multilayer sphere model, whereas for a change in the
tangential conductivity component, no influence was found.

When comparing forward computation results between DALC (see defini-
tion in 5.1.2) and the corresponding locally unchanged model, we found an
RDM of 16% and a MAG of 1.34 for the EEG and an RDM of 14% and a
MAG of 1.19 for the MEG. In contrast to the eccentric source, these results
show the importance of local conductivity changes, as reported by [Haueisen
et al., 2000].

For EEG, we observed an RDM of about 7% for 1:10 anisotropic skull
in combination with an isotropic white matter compartment (Figure 22 and
Figure 20, right) and an increase in the magnitude for Wang’s constraint (Fig-
ure 22, middle row, right, MAG = 1.14), while the magnitude was kept close
to the optimum for the volume constraint (Figure 22, top row, right, MAG
= 0.97). For the MEG, we only observed a small influence (RDM < 3%,
MAG=0.98) for Wang’s constraint (not shown).

In summary, for the deep thalamic source, a non-negligible influence of
1:10 skull and white matter anisotropy on the EEG topography was found.
The EEG topography error is mainly due to white matter, but to a minor ex-
tent also to skull anisotropy. For the MEG, we assume that white matter
anisotropy has a non-negligible influence on the topography, whereas skull
anisotropy can be neglected. White matter anisotropy strongly reduced EEG
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and MEG field magnitude. Local conductivity changes were strongly influ-
encing our error considerations.

5.3 Performance results and sensitivity of the FE solution pro-
cess towards tissue conductivity anisotropy

In [Wolters et al., 2002], nearly linear speedups of the parallel AMG method
were reported for high resolution realistically shaped isotropic tetrahedra and
cube head models. In comparison to a classical parallel Jacobi precondi-
tioned conjugate gradient method, large improvements in the computation
time were found for the parallel AMG. In the following, the performance
of both solver methods will be examined for the high resolution realisti-
cally shaped anisotropic tetrahedra model in comparison to the corresponding
isotropic one. The stability of both preconditioners with regard to realistic tis-
sue anisotropy will be analysed.

5.3.1 The isotropic tetrahedra model

We first discuss the FE solution process within the isotropic tetrahedra model.
We chose the deep thalamic source. The local accumulation of the geometry
matrix Ks on 1 processor took 225 seconds, parallelized on 12 processors a
setup time of 19 seconds was achieved.

Figure 23 shows the wall-clock time of the parallel AMG-CG solver com-
pared to the parallel Jacobi-CG. The number of iterations for both solvers,
necessary for the required accuracy, is shown over the curves. The time for
the setup of the preconditioner is not included, since it has to be carried out
only once per head model and is thus negligible with regard to the solution
of the inverse problem. To give an impression, the setup of the AMG on 1
processor took 39 seconds and parallelized on 12 processors 7.6 seconds. The
3D potential distribution was calculated on one processor within 370 seconds
with the Jacobi-CG method, whereas the parallel AMG-CG method on 10
processors needed 4.2 seconds. This is a factor of about 88 (10.2 through
multigrid preconditioning and 8.6 through parallelization on 10 processors).

The speedup results from 1 to 12 processors are shown in Figure 24. The
matrix generation is purely local and gives the reference curve for the quasi
optimal speedup. This curve can also be seen as an indicator for the quality
of the mesh-partitioning, described in Subsection 3.2. The speedups for the
parallel AMG-CG solver, for one iteration of this solver and for the parallel
Jacobi-CG solver are compared.

Since the coarsening process and the determination of the prolongation
matrix P respecting pattern condition (23) in the setup of the parallel AMG-
preconditioner and the smoother-component of the solver depend on the de-
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Fig. 23: SGI ORIGIN: Wall-clock time from 1 to 12 processors for the solver part of the parallel
AMG-CG compared to the parallel Jacobi-CG up to an accuracy of 10−8 for the realistic tetra-
hedra head model, 147287 nodes and a dipole source in the thalamus. The number of iterations
are shown over the curves.
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Fig. 24: SGI ORIGIN: Speedup results from 1 to 12 processors for the tetrahedra head model,
147287 nodes and a deep thalamic source.
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Fig. 25: Isotropic tetrahedra head model, 147287 nodes: Relation interface nodes to all nodes
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Fig. 26: SGI ORIGIN: Wall-clock time from 1 to 12 processors for the solver part of the parallel
AMG-CG compared to the parallel Jacobi-CG up to an accuracy of 10−8 for 1:10 anisotropic
tetrahedra head model, 147287 nodes and the almost tangentially oriented eccentric source. The
numbers of iterations are shown over the curves.



composition into subdomains and a strongly increasing number of interface-
nodes would spoil the preconditioning effect, it is interesting to have a look
at the relation of interface nodes to all nodes (interface plus inner nodes) on
the different levels of the multigrid. Figure 25 shows this relation exemplarily
for 2, 6 and 12 processors. The decomposition into two domains lead to 3084
and thus 2% interface nodes on the finest level. On the fourth level (their is
no more smoother component on the fifth and coarsest virtual grid), 133 out
of 1117 nodes were interface nodes and thus a percentage of 12%. On 12 pro-
cessors, 12462 and thus 8% were interface nodes on the finest level and on
the fourth level, 461 out of 1164, i.e., 40%. In summary, it can be concluded
that the results are close to what we found for the isotropic tetrahedra head
model in [Wolters et al., 2002].

5.3.2 1:10 anisotropic tetrahedra model

We now discuss the solution process for the potential distribution within the
anisotropic tetrahedra model with 1:10 anisotropic skull and white matter
layer for the tangentially oriented eccentric source. The accumulation of the
local geometry matrices on 1 and parallelized on 12 processors takes the same
times as it was presented for the isotropic model above.

Figure 26 shows the wall-clock time of the parallel AMG-CG solver com-
pared to the parallel Jacobi-CG for the anisotropic model. Again, the number
of iterations is shown over the curves. As for the isotropic model, the time
for the setup of the preconditioner is not included. The setup of the AMG on
1 processor took 39 seconds and parallelized on 12 processors 7 seconds in
the anisotropic case. The 3D potential distribution was calculated on one pro-
cessor within 361 seconds with the Jacobi-CG method, whereas the parallel
AMG-CG method on 12 processors needed 3.8 seconds. This is a factor of
about 95 (9.3 through multigrid preconditioning and 10.2 through paralleliza-
tion on 12 processors).

In [Wolters et al., 2000], condition numbers of high resolution 4 layer
sphere FE models were computed. No remarkable difference between iso-
tropic models and models with 1:10 anisotropic third (“skull”) layer were
reported. It was observed, that the anisotropy lead to a slight increase of
Jacobi iterations, whereas the iteration count of the AMG-CG was constant.
For the realistic tetrahedra head model, we now observe the inverse behavior,
a slight decrease of Jacobi-CG iterations (967 for the isotropic and 923 for the
anisotropic) and a slight increase of AMG-CG iterations (19 for the isotropic
and 20 for the anisotropic case). If we expect that the condition numbers of
isotropic and anisotropic models are again in the same range, we explain the
slight changes of the iteration count to be in the range of O(1). Remember
also that different sources were chosen for the isotropic and the anisotropic
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model. The speedup results from 1 to 12 processors are shown in Figure 27.
Again, the matrix generation gives the reference curve for the quasi optimal
speedup.

It is also interesting to consider the number of interface nodes as a fraction
of all nodes on the five levels of the multigrid. Figure 28 shows these node
numbers for 2, 6 and 12 processors. The decomposition into two domains
lead to 3084 and thus again 2% interface nodes on the finest level. On the
4th level, 120 out of 1022 nodes were interface nodes and thus a percentage
of 12%. On 12 processors, 12462 and thus 8% were interface nodes on the
finest level and on the fourth level, 443 out of 1066, i.e., 42%.

6 Conclusions

Head tissue conductivity anisotropy has a non-negligible influence on the
EEG/MEG field distribution and should therefore be taken into account.
These findings in our article are in agreement with results of [van den Broek
et al., 1997; Marin et al., 1998; Haueisen et al., 2002 ]. We presented non-
invasive measurement techniques and image processing methods for obtain-
ing a high resolution anisotropic map of the two tissue compartments skull
and white matter. For solving the EEG/MEG inverse problem, the field dis-
tribution has to be simulated repeatedly for given dipolar sources in the brain.
The chosen modern numerical approach in combination with high perfor-
mance computing on a parallel machine was shown to yield computation
times, which should push high resolution realistically shaped anisotropic for-
ward modeling within the EEG/MEG inverse problem into the application
fields.

Our presented head model was constructed from an MRI segmentation of
the five tissue compartments skin, skull, cerebrospinal fluid and brain grey
and white matter. The modeling of skull anisotropy was based on results for
an improved segmentation of inner and outer skull surfaces, using bimodal
MRI data. Realistic skull conductivity tensors were obtained by means of the
surface normals of a smooth surface spongiosa model, for which the segmen-
tation results of inner and outer skull were exploited. Whole head DT-MRI
measurements were used to determine the conductivity tensor eigenvectors
for each point in the white matter compartment. The diffusion tensor eigen-
vector with largest measured eigenvalue was taken for modeling the high con-
ductive longitudinal white matter fibre direction.

Boundary element method based volume conductor models (see, e.g.,
[Fuchs et al., 1998; Zanow and Peters, 1995]) cannot take tissue conductivity
anisotropy into account. In multilayered sphere models [de Munck and Pe-
ters, 1993; Zhou and van Oosterom, 1992], anisotropy of the inner spherical
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SGI ORIGIN: Speedup results for 1:10

anisotropic model, somatosensory source
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Fig. 27: SGI ORIGIN: Speedup results for 1:10 anisotropic tetrahedra head model and the
almost tangentially oriented eccentric source, 147287 nodes, relative accuracy 10−8 .
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“white matter compartment” can only be represented by a single tensor, which
is not realistic. We used high resolution realistic finite element head model-
ing, where a measured or realistically modeled tensor-valued conductivity
was assigned to each finite element in the skull and white matter compart-
ment. In order to test the influence of tissue anisotropy on EEG and MEG,
different anisotropy ratios were modeled, following a constraint, proposed
in [Wang et al., 2001], and a tensor volume retaining constraint for achieving
the desired ratio.

For the EEG, our influence results agree to a large extent with [van den
Broek et al., 1997; Marin et al., 1998; Haueisen et al., 2002 ]. For a tangen-
tially oriented eccentric source, we found a topography error of about 10%
between the isotropic and a 1:10 anisotropic model. The errors are mainly
due to the skull, whereas we found that white matter anisotropy was negligi-
ble. The magnitude error for the volume retaining constraint was close to the
optimum, whereas with increasing anisotropy ratio, it increased for Wang’s
constraint. An increase of radial or tangential skull conductivity contracts,
whereas a decrease spreads out the isopotential distribution on the surface.
The isopotential pattern is also distorted, so that an approximation of skull
anisotropy effects by means of an increase or a decrease of a scalar isotropic
skull conductivity value in boundary element head models seems to be im-
possible. Thus, dipole mislocalizations have to be expected for tangentially
oriented eccentric sources, if skull layer anisotropy is not taken into account.

For a radially oriented eccentric source, we found an EEG topography er-
ror of more than 20% between the isotropic and a 1:10 anisotropic model. In
this case, the topography errors are mainly due to white matter anisotropy, the
error of the skull layer was only about half the one of the white matter com-
partment. The magnitude error for the volume retaining constraint was again
close to the optimum, while, again, it was larger for Wang’s constraint. A
change of the local conductivities in the neighborhood of the eccentric source
did not influence our error considerations. Larger dipole mislocalizations thus
have to be expected for radially oriented eccentric sources if white matter or
skull anisotropy is not taken into account.

For a deep source, we found an EEG topography error of about 15%,
mainly due to white matter, but to a smaller extent also to skull layer an-
isotropy. White matter anisotropy strongly reduced the magnitude of the
surface potential. A change of the local conductivities in the neighborhood
of the deep source strongly influenced our error considerations, which is in
agreement with results of [Haueisen et al., 2000]. Larger dipole mislocaliza-
tions and errors in dipole strength estimations have to be expected for deeper
sources if white matter or skull anisotropy is not taken into account..

We conclude that for robust EEG-based dipole source reconstruction in the
human brain, tissue conductivity anisotropy of the skull as well as the white
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matter compartment has to be taken into account so that high resolution FE
head modeling is needed.

We found, that skull anisotropy has no influence on the MEG, which is in
agreement with the results of [van den Broek et al., 1997] and with the gener-
ally accepted idea that volume currents in the skull and scalp layer give neg-
ligible contributions to the magnetic field [Hämäläinen and Sarvas, 1987]. In
contrast to the skull compartment, white matter anisotropy was found to have
a non-negligible influence on the MEG. In agreement with [Haueisen et al.,
2002], the topography error was moderate for an eccentric source with almost
tangential orientation (about 5% for a ratio of 1:10), whereas it was much
larger for an eccentric source with almost radial orientation (about 15%). The
larger error can be explained by the fact that tissue anisotropy only influences
the secondary (return) currents and that the ratio of the secondary to the whole
magnetic flux increases with increasing ratio of the radial dipole orientation
component [Haueisen et al., 1995]. As for the EEG, a change of the local
conductivities in the neighborhood of the eccentric source did not influence
the error considerations. The magnitude error was again close to the optimum
for both eccentric sources. For the deep source, in particular the magnitude
error was large (MAG of about 0.6 for a ratio of 1:10), and from our results we
also deduce that the topography error is not negligible. A change of the local
conductivities in the neighborhood of the deep source strongly influenced the
MEG error considerations, which is in agreement with results of [Haueisen et
al., 2000]. For MEG we conclude that white matter conductivity anisotropy
has to be taken into account, if sources with a non-negligible radial orienta-
tion component should be reconstructed or if statements about the strength of
deeper sources have to be made.

The bottleneck for a broader application of finite element method based
anisotropic forward modeling is the time for solving the large linear equation
system with thousands of different right hand sides arising from the FE dis-
cretization. Within this article, an efficient and memory-economical way was
presented to face this problem. Very short calculation times were achieved
through the combination of AMG preconditioning techniques and its par-
allelization on distributed memory platforms. We compared the presented
AMG-CG with the Jacobi-CG, the latter being a well-known solver method
in FE-based source localization. Our findings with regard to anisotropic
head modeling strongly agree with the results in isotropic volume conduc-
tors [Wolters et al., 2002]. If the Jacobi-CG on a single processor is taken
as a reference, we achieved a speedup of 95 for a realistically shaped high
resolution 1:10 anisotropic tetrahedra head model with 147287 nodes when
comparing to the parallel AMG-CG on 12 processors, 9.3 through multigrid
preconditioning and 10.2 through parallelization on 12 processors. The solver
process was thus shown to be stable with respect to realistic tissue anisotropy.
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The partitioning of the dual graph of a convex head geometry generally leads
to a relatively large percentage of interface nodes. Nevertheless, for the exam-
ined moderate processor numbers between 1 and 12, the AMG-preconditioner
was found to be stable, i.e., a sensible increase of the number of subdomains
did not result in a deterioration of the AMG-preconditioner and thus an in-
creasing need for iterations. We showed that the latter is true both for the
isotropic and for the anisotropic model.

The presented methods and software concepts provide higher accuracy in
EEG/MEG source localization by accounting for tissue conductivity anisot-
ropy on the basis of a high resolution realistically shaped FE head model.
Our methods allow the study of the influence of anisotropy on the inverse
source localization results, where many forward solutions have to be com-
puted. This will be done in future examinations. A first performance test
of the NeuroFEM software on a Linux PC-cluster with 100 MBit ethernet
showed very good parallelization speedups and, because of the 1 GB proces-
sors, a strongly reduced computation time compared to the presented results
on the SGI ORIGIN 2000. The presented algorithms can thus be used on
a simple PC-cluster. Moreover, the overall solver CPU-time for the inverse
source reconstruction will be accelerated through the use of techniques for
multiple right hand sides [Chan and Wan, 1997; Haase and Reitzinger, 2002].
First studies on a sequential computer have shown a good performance.
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