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Comparing Regularized and Non-Regularized
Nonlinear Dipole Fit Methods: A Study in a Simulated
Sulcus Structure

C.H. Walters*, R.R BeckmannA, A. Rienacker*, and H. Buchner*

Summary: The inverse problem arising from EEG and MEG is largely underdetermined. One strategy to alleviate this problem is the restriction to
a limited number of point-like sources, the focal source model. Although the singular value decomposition of the spatio-temporal data gives an
estimate of the minimal number of dipoles contributing to the measurement, the exact number is unknown in advance and noise complicates the
reconstruction. Classical non-regularized nonlinear dipole fit algorithms do not give an estimate for the correct number because they are not stable
with regard to an overestimation of this parameter. Too many sources may only describe noise but can still attain a large magnitude during the
inverse procedure and may be indiscernible from the true sources. This paper describes a nonlinear dipole fit reconstruction algorithm with a new
regularization approach for the embedded linear problem, automatically controlled by the noise in the data and the condition of the occuring least
square problems. The algorithm is stable with regard to source components which "nearly" lie in the kernel of the projection or lead field operator
and it thus gives an estimate of the unknown number parameter. EEG simulation studies in a simulated sulcus structure are carried out for an
instantaneous dipole model and spatial resolution in the sulcus and stability of the new method are compared with a classical reconstruction algorithm
without regularization.
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Introduction
Source localization of cerebral activity with respect

to the individual anatomy is a prominent goal of electro-
and magnetoencephalography. The determination of the
current distribution inside the brain by means of extrac-
ranial field measurements is called the inverse problem.
The non-uniqueness of the inverse problem implies that
assumptions on the source model, as well as anatomical
and physiological a-priori knowledge about the source
region and sometimes even results from other techniques
like functional magnetic resonance imaging (Menon et al.
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1997; Opitz et al. 1999) should be taken into account to
obtain a unique solution.

Different source models have been proposed during
the last years. One possibility is the restriction to a limited
number of dipoles, the focal source model (Scherg and von
Cramon 1985; Vaughan 1974). The various spatio-tempo-
ral focal source models differ in the manner in which they
describe the time dependence of the data. Generally, they
are grouped into three classes: the unconstrained dipole
model (so-called moving dipole), dipoles with temporally
fixed location (rotating dipole) and dipoles with fixed
location and fixed orientation (fixed dipole). If only one
single rime "snapshot" is taken into account, the three
classes merge in a spatial dipole model, the so-called
instantaneous state dipole model (Wood 1982).

Another proposition is the distributed source
model, where the restriction to a limited number of focal
sources is abolished. The non-uniqueness of the result-
ing problem is compensated by the assumption that the
dipole strengths should be minimal with regard to a
specific norm. Different norms have been proposed,
such as the linear L2-norm (Hamalainen and Ilmoniemi
1994), leading to a smooth current distribution with
minimal source energy and the nonlinear Ll-norm
(Rienacker et al. 1997; Wagner et al. 1996), which results
in a more focal distribution.
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This paper deals with the focal source model.
Mosher et al. (1992) showed how a common linear alge-
braic framework can be formulated for the three spatio-
temporal dipole models. One can conclude from this
formulation that measured fields depend nonlinearly on
dipole location and fixed orientation and linearly on
dipole moment strength. Thus, after having chosen the
number of sources, nonlinear algorithms should deter-
mine their locations (and possibly fixed orientations) and
embedded linear methods their moment strength. An-
other important parameter is the number of active source
components, which is normally unknown in advance, but
which is required as an input parameter for spatio-tem-
poral dipole modeling. One possibility for the determi-
nation of the number parameter was described by
Mosher et al. (1992). They proposed to separate the signal
and noise subspaces and thus to visually determine the
number of source components through the drop in the
magnitude of the smallest signal eigenvalue to the great-
est noise eigenvalue of the estimated spatial data covari-

ance matrix(n-1)pe
me(pe

me) t r (n: number of samples, m:

number of channels, m x n matrix Pe
me: measured data).

This procedure assumes that the signals have a sufficient
strength and that they are sufficiently uncorrelated dur-
ing the time interval. An algorithmic way for the deter-
mination of the number parameter is offered by
information criteria (Knosche et al. 1998). Under the
assumption that the measurements are noise-free and the
rank of the projection or lead field operator is maximal
(i.e., no source component projects in the data null space),
the number of non-zero eigenvalues of the data covari-
ance matrix equals the number of independent source
components. Information criteria are based on a statisti-
cal concept of separating the space spanned by the prin-
cipal components of the estimated data covariance matrix
into a signal and a noise part.

We will present a "trial and error" strategy to combine
the determination of the unknown number parameter with
the localization of the sources using a nonlinear dipole fit
method with a new regularization approach. The non-
linear dipole parameters will be calculated iteratively by
means of simulated annealing (SA) from combinatorial
optimization theory (Buchner et al. 1997; Gerson et al. 1994;
Haneishi et al. 1994). Compared to the widely used
Nelder-Mead simplex algorithm (Nelder and Mead 1965),
the annealing procedure is more calculation-intensive, but
tries to globally minimize a cost function regardless of the
choice of the starting parameters. If the cooling schedule
is sufficiently slow, SA has been shown to converge to the
global minimum (Geman et al. 1984). The simplex method
can become stuck in local minima as shown for brain-stem
auditory evoked potentials (Gerson et al. 1994). The linear

parameters will then be determined by linear least square
methods, yielding a "best" (will be defined) fit between
measured and calculated electric potentials. If dipole com-
ponents are proposed which "numerically" (nearly) project
into the data null space, the corresponding lead field matrix
becomes ill-conditioned. In combination with noisy data,
least square algorithms based on a complete orthogonal
factorization or a singular value decomposition of the lead
field matrix (see Theory) can yield physiologically unex-
plainable results for dipole moment strengths, especially
when overestimating the number of active sources. This
problem can be solved with dipole fit regularization meth-
ods like the truncated singular value decomposition
(TSVD) (Wolters et al. 1997) or Tikhonov-Phillips regulari-
zation (Fuchs et al. 1998). After presenting the theory with
regard to the different spatio-temporal dipole models,
simulation studies using the instantaneous state dipole
model will be carried out to show, that the SA-TSVD is able
to reconstruct a reference configuration in the case of noisy
EEG data, even when overestimating the number of active
sources and is thus able to give an estimate of the unknown
number parameter.

A physiological a-priori information about the
source region (influence space) is the assumption that the
generators must be located on the folded surface of the
brain inside the cortex, ignoring white matter and deeper
structures such as basal ganglia, brain stem and cerebel-
lum. The apical dendrites of the large pyramid cells in
the cortex are considered the generators of the measured
fields. If convolutions of the cortical surface are appro-
priately modelled by the segmentation procedure, an-
other addition is the anatomical information that the
generators are perpendicular to this surface (Lorente de
No 1938; Nunez 1990). This limitation to normally ori-
ented dipoles is called the normal-constraint. Because a
mathematical dipole models an active source region with
a certain extent and the resolution of the inverse current
reconstruction by means of noisy EEG data is limited, the
influence space can be discretized. In the presented
simulations with the program CAUCHY (Buchner et al.
1997), we will use a discrete influence space mesh, which
properly describes the simulated sulcus surface. Dipoles
can only be placed on mesh nodes (influence nodes) and
the normal-constraint will be applied.

The inverse algorithm strongly depends on the qual-
ity of a forward method. Here, the potential distribution
of the observation space is calculated for a known source.
Essential for the accuracy is an appropriate model of the
volume conductor and of the field propagation. Since the
inclusion of the time dependencies is negligible for typi-
cal EEG/MEG frequencies below 1 kHz, the field propa-
gation can be described by the quasistatic approximation
of Maxwells system of coupled partial differential equa-
tions (PDE), leading to a second order elliptic PDE to be

4



solved for the potential (Plonsey and Heppner 1967). It
can be shown, that the solution of this equation in the
variational formulation in combination with boundary
conditions of Neumann-type and a Dirichlet-point (ref-
erence electrode) exists and is unique (Wolters 1997).
Thus, the finite element method can be applied to nu-
merically calculate the potential distribution inside the
volume conductor (Bertrand et al. 1991; van den Broek et
al. 1996; Buchner et al. 1997). This method allows anisot-
ropic and inhomogeneous conductivities (Haueisen et al.
1995; Marin et al. 1998; Pohlmeier et al. 1997).

Since the differential equation is linear, it is possible
to set up a so-called influence or lead field matrix L. A
column of L is established by calculating a forward solu-
tion at the measurement nodes for a dipole on an influ-
ence node with unit strength in one direction. If the
physiological a-priori information and the normal-con-
straint are applied, there is only one possible dipole
direction for each influence node and thus every dipole
location is represented by only one column in the lead
field matrix and one row in the strength matrix J. For the
unconstrained case, three columns in L represent the
three orthogonal unit dipoles at a specific location and
three rows in the strength matrix J correspond to their
time series. For an arbitrary dipole source configuration
J, the resulting electric potentials can then be inexpen-
sively calculated by pc = LJ.

An important point is the localization of active neu-
ron assemblies within deep and narrow fissures and sulci
because two-thirds of the cerebral cortex lie within these
structures. An especially difficult case is the reconstruc-
tion of oppositely oriented sources if both sulcus walls
have regions of neuronal activity.

In the next section, we will present the underlying
theory of the focal inverse current reconstruction algo-
rithms SA-COF and SA-TSVD and we will compare the
regularization concept of the TSVD with Tikhonov-Phil-
lips regularization. SA-COF and SA-TSVD have been im-
plemented in CAUCHY and EEG simulation studies using
the instantaneous state dipole model have been carried out
in a four-sphere model with a simulated sulcus structure
embedded in the innermost sphere. The goal was the
examination of the localization properties, i.e., spatial reso-
lution and stability, of both algorithms in the sulcus.

Theory
The goal of the focal inverse current reconstruction is

to find a location tupel q for a chosen number of p dipoles
of the influence space and the corresponding r x n strength
matrix Jq such that
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where the m x r matrix Lq is the overdetermined lead
field matrix (thus m > r), corresponding to the location
tupel q, the m x n matrix pme are the noise-free measure-
ments (EEG/MEG), where m is the number of channels
and n the number of samples and |||F is the Frobenius-
norm. Using the normal-contraint, the number r of col-
umns of Lq and rows of Jn equals the number p of dipoles,
without this constraint it is r=3p.

The minimization task can be split into two prob-
lems. First, a physiologically and mathematically suit-
able model should be developed for the shape of the
functional graph H. Every evaluation of H for a given
location tupel q contains the construction of the corre-
sponding lead field matrix Lq and the subsequent deter-
mination of the direction and strength matrix Jq with
respect to the noise in the measured data pme

e.
The second problem is to find the dipole location

tupel q which gives a good approximation of the global
minimum of H in a feasible calculation time. This was
realized with the SA algorithm implemented in
CAUCHY.

We will start with the derivation of the theory for a
single timepoint n=l since the instantaneous state dipole
model was used for the sulcus simulations. Notationally,
we use underlines to indicate vectors and boldface for
matrices. The measured and noisy data vector will be
denoted as pe

me, the noise as Apme and the noiseless data

as bme = Ome
e - Apme and our problem reduces to

Assuming that a dipole location tupel q has been
proposed by the SA-algorithm, the linear least square
problem (equation 1) with noisy data qme

e should then
be solved. Without respect to the noise in the data, one
possibility to do so is the generalized inverse (Miller 1979)
of the lead field matrix

(<.,.> denotes the vector scalar product). The generalized
inverse is based on a singular value decomposition (SVD)
(Appendix A) of Lq. ci, the singular values, are automat-
ically arranged by the SVD such that e1 >e2 >..> er > 0 if
full rank of L, has been assumed. vi, the right singular
vectors and ui, the left singular vectors, are both ar-
ranged with increasing spatial frequency. Another pos-
sibility to solve equation 1 is the Complete Orthogonal
Factorization (COF) of Lq (Appendix A). This method
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can also handle matrices which do not have full effective
rank re = r, which cannot be guaranteed in practical
applications. Generally, the COF numerically produces
the same results as the generalized inverse and it also
suffers from the fact not to account for the data noise. The
only goal of both algorithms is to minimize the residual
variance to the noisy data.

In practice, Lq is often ill-posed during the SA-opti-
mization process. This can be measured with the condi-

tion number of the lead field matrix cond2(Lq) = e1,

which can be quite large. Thus, the singular values, qi, get
very small and the high spatial frequency components of
the noise in the data can be extremely amplified (see
equation 2). This has an effect on those spatial dipole
components, which "numerically" (nearly) lie in the ker-
nel of Lq. It can lead to source configurations, where
dipoles with a large strength nearly cancel each other
with regard to their surface potential distribution and
only explain noise (for both, EEG and MEG inverse prob-
lem). Only considering the MEG inverse problem, radial
dipoles also numerically lie in the kernel of Ln and can get
a big strength only to explain MEG noise. Both problems
especially appear if the number of active sources is over-
estimated. The problem can be solved with a regulariza-
tion of the generalized inverse

where Fy is called a filter (Louis 1989). The choice of

leads to a Tikhonov-Phillips regularization, where the
high spatial frequency components in the source space,
strongly influenced by the noise in the data space, are
attenuated and the condition number of the regularized
linear least square problem

is not only minimized, but chosen in dependence of the
condition number of Lq and of the noise AOme in the data.

Let C be the m x m sample noise covariance matrix,
determined e.g., from the signal-free pre-stimulus inter-
val of the measurements, averaged over all epochs. This
matrix reflects the spatial distribution and correlation of
the noise. C is a symmetric and positive definite matrix,
which can be decomposed into C = DDtr by means of a
singular value decomposition. If the noise statistics are

with

and

leading to a regularization called the Truncated Singular
Value Decomposition (TSVD) (Wolters et al. 1997). This
algorithm is simply to implement and has the effect of a
lowpass filter. The high spatial frequency components of
the data, ei<J, vi > ui, are lying below the noise level and

as a consequence, the high spatial frequency components
in the source space cannot be reconstructed. Using regu-
larization, information will be lost but otherwise the
amplification of the high frequency data components
would have a more negative effect on the solution, espe-
cially in combination with an overestimation of the
number of active sources. Like Tikhonov-Phillips regu-
larization, the TSVD ameliorates the condition of the
problem.

The proposed algorithm is an iterative procedure. In
every step of the optimization, Lq is changing and thus
the condition of the least square problem. Therefore, an
automatic determination of the regularization parameter
Y is essential. One possibility is provided by the discrep-
ancy principle (Vainikko 1982,1983) where the so-called
defect d to the measured data

is ameliorated to cond2 (Hammerlin and

Hoffman 1991). This regularization concept for non-
linear dipole fit methods has recently been applied to
source localization (Fuchs et al. 1998).

Another way is to choose the filter
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known, i.e., if the number of epochs is sufficiently high in
order to obtain a good estimate of the noise covariance
matrix, the process of data pre-whitening (Knosche et al.
1998) can be used. Thus, we can restrict the theory to
spatially uncorrelated noise where D is a diagonal
weighting matrix. If we consider only one time point and
Gaussian distributed and heteroscedastic (different in
each channel) noise with zero mean, every channel i
should be weighted according to its own noise standard

deviation ei= |APme
i| using the diagonal weighting ma-

trix D-1 with entries 1 /ei. We thus get the weighted least
square problem

TY is an order optimal regularization procedure
(Louis 1989; Vainikko 1982). The greater the free parame-
ter R is chosen, the stronger the regularization will be.
Most of the following simulations in the sulcus structure
have been carried out with R=2, but some results show
that the choice Re [1.1,...,1.5] would be more appropriate
because of the small number r of source components.

The extension of the SA-TSVD to spatio-temporal
modeling (n >1) is straightforward for the moving and for
the rotating dipole model. In these cases, a, is the 1x n
vector

ei
wvw

iai is an r x n matrix and the euclidian norm should

be exchanged for the Frobenius-norm. The SA-TSVD can
also simply be applied to the approximate approach of
the fixed dipole model, described by Mosher et al. (1992).
In this approach, the dipole strengths for each dipole
location tupel q are initially calculated under the assump-
tion of rotating orientations. After that, the orientations
are fixed by singular value decompositions of the 3 x n
submatrices Ji in Jq = (J1,...Jp)

tr which describe the
strengths in the three unit directions of every dipole. The
fixed orientations are defined as the first left singular
vectors of the submatrices Ji. The appeal for this approxi-
mate approach lies in the reduced computational effort.
A computationally more intensive implementation for
the fixed dipole model could be the embedding of a
projected gradient method or a penalty method for the
determination of the two nonlinear orientation parame-
ters into the SA optimization process for the dipole loca-
tions and the calculation of the linear dipole strength
parameters by means of the TSVD.

Methods
In the following study, the focal inverse current re-

construction methods without (SA-COF) and with regu-
larization (SA-TSVD) are applied to a simulated sulcus
structure in order to study their stability when overesti-
mating the number of active sources and the spatial
resolution of their reconstruction results in the sulcus. A
four layer sphere model with a simulated sulcus embed-
ded in the innermost sphere was constructed (table I), see
also (Beckmann et al. 1997). Deeper in the sulcus the
walls are parallel with a distance of 6 mm, the opening is
described by two opposite hyperbolic functions. The sul-
cus has a depth of 22 mm and a width of 17 mm. This
model was read into the CURRY (Philips Research Labo-
ratories, Research Division Technical Systems, Hamburg,
Germany) software-package in order to generate a 3D-

This leads to the following algorithm for the instan-
taneous state TSVD (n=1, a, is a scalar):

• Calculate the singular system {ei
w,ui

w,vi
w} of the

weighted lead field matrix D-1Lq by means of a singular
value decomposition
• Choose R > 1, initialize Jw

y = 0 and i=0 and calculate

where {ei
w,ui

w,vi
w} is the singular system of the weighted

lead field matrix D-1Lq and the weighted defect

the weighted regularized inverse
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Table 1. Parameters of the four layer sphere model with
embedded sulcus used for computations.

layer

1 (brain)

2 (liquor)

3 (skull)

4 (scalp)

outer radius (mm)

78 (without embedded sulcus)

81 (Including the sulcus)

90

96

conductivity (S/m)

0.336

1.0

0.0042

0.336

tetrahedral finite element mesh in CAUCHY-readable
format respecting the segmented four surfaces of the
model (figure 1). This led to 97581 tetrahedra and 18213
nodes. 126 electrodes (1 reference electrode at Cz) were
distributed regularly over the skin surface in accordance
to the 10/10 system (figure 2). The brain surface mesh,
appropriately modeling the convolution of the sulcus,
was chosen as discrete influence space with 3446 influ-
ence nodes (figure 1) and the corresponding lead field
matrix was calculated using the anatomical normal-con-
straint. The calculations were carried out in CAUCHY
and visualization of reference sources, generated noisy
potential distributions (rereferenced to common aver-
age) and inverse source reconstructions was done in
CURRY. In the following simulations, reference sources
were placed on surface mesh nodes inside the sulcus
(figure 3) and of the inner sphere and the potential distri-
bution at the electrode locations was calculated. As a
measure for the global field strength, we used the euclid-
ean norm of the calculated electrode potentials (zero
potential at Cz)

Noise was then added and the resulting potential
distribution was used to simulate the measurement data
for the focal inverse source reconstruction. The noise was
assumed to be Gaussian distributed with zero mean and
heteroscedastic, thus D-1 being a diagonal weighting ma-
trix. The signal to noise ratio (SNR) was varied for the
different simulations. It is defined as

The focal inverse current reconstruction was then
carried out using SA-COF and SA-TSVD with a varying
number of dipoles. At first, the activity was limited to one
sulcus wall, then both sulcus walls were active and in the
last simulation we used separated reference sources.

Results
Each of the deeper sources 1l, 1r, 21,2r, 31,3r and 4l,

4r with normalized strength (100nAm) generated a global

field strength |kc|2 of 25 up to 30 uV. Surface-near di-

poles have a much greater effect on the electrode poten-
tials, 5l and 5r of about |pc| 2=71 uV and Al and Ar of

about p$c|2 =83uV.

Figure 1. Tetrahedra mesh of the four layer sphere model with embedded sulcus structure. A cross-section through the
finite element mesh (left) and the influence space mesh, used for simulations (right).
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Figure 2. Right view (left) and top view (right) on the electrode positions on the outer sphere surface.

Activity on one sulcus wall

Simulation 1

Six reference dipoles (l00nAm) were placed in the
model (figure 4, top left), one at the sulcus position 5l and
five at the bottom of the inner sphere only to simulate
biological noise (global field strength of the noise dipoles
| | H c | | -4uV).

In CAUCHY, forward results are stored with a pre-
cision of five digits. When carrying out a focal inverse
source reconstruction SA-COF for six dipoles, using the
stored potential values, the noise dipoles already could

Figure 3, Reference dipole positions on the sulcus walls.

not be reconstructed in contrast to the sulcus source. Five
dipoles on the bottom of the inner sphere were found
with locations, differing slightly from the locations of the
reference noise sources.

Gaussian distributed noise with SNR = 17.9 was then
added to the reference potentials. The noisy potential
distribution rereferenced to common average is shown in
figure 4 (top right). The goal of the inverse search cannot
be the reconstruction of the noise dipoles. It should be
rather ensured that the left sulcus activity, lying above
the noise level, can be emphasized in the result. There-
fore, a single dipole model is appropriate and both algo-
rithms, SA-COF and SA-TSVD, yielded the right location
5l with an appropriate strength. In practice, the number
of active sources is unknown. If for example two dipoles
are underlying the measured potentials, the search for
one source would not be a good model. In contrast to
that, if the number of active sources is overestimated, a
desirable result would be the reconstruction of the real
sources and the neglect of the remaining ones by assign-
ing small values of strength to them.

SA-COF and SA-TSVD were then carried out with
six dipoles. The result is shown in figure 4 (bottom). The
defect d of the calculated potentials to the noisy data
without regularization is 11 (uV)2, with regularization it
is 16.4 (uV)2. Thus, despite being a better approximation
to the measured data, the SA-COF is not stable. The
activity in the sulcus was reconstructed (dipole 5l with a
strength of 91nAm), but stays behind a stronger activity
of the remaining and only noise-explaining dipoles
(strongest dipole 374nAm). The regularization method
focusses on the sulcus activity and avoids that the re-
maining defect to the data is explained by strong dipoles,
which cancel each other with regard to their potential

9
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Figure 4. Activity on one sulcus wall: Simulation 1: Reference dipole configuration (top, left), the simulated noisy potential
distribution on the outer sphere surface rereferenced to common average (top, right) and the reconstruction results of
the SA-TSVD (bottom, left) and SA-COF (bottom, right) when searching for 6 dipoles.

distribution or sources which have a small influence on
the potential distribution, like deep sources (EEG and
MEG) or radial sources (MEG). Fixing the dipole loca-
tions of the SA-COF result and considering the regular-
ized solution of the resulting least square problem, the
defect is about 19.6 (uV)2. The first right singular vector
v1 emphasizes the sulcus node 5l and already after the
first term of the generalized inverse, the defect drops off
below the noise level and the discrepancy principle takes
effect.

Simulation 2

Six dipoles were placed on the left sulcus wall at the
positions 1l (WOnAm), 2l (UOnAm), 3l (ISQnAm), 4l
(IWnAm), 5l (WOnAm) and Al (100nAm) (figure 5, top

left). Altogether, this led to a reference potential distri-

bution of ||pc ||=195uV. Low Gaussian distributedII— 112
noise with a SNR = 75.3 was then added to these poten-
tials. The noisy potential distribution rereferenced to
common average is shown in figure 5 (top right). When
fixing the reference dipole locations, figure 5 (middle)
shows the solutions of the corresponding least square
problem with the TSVD and with the COF (ten times
reduced dipole strength). The condition number of the
corresponding lead field matrix Lq is 1960. Thus the least
square problem is ill-conditioned and without regulari-
zation, the high frequency components of the noise are
extremely amplified in the solution. Because the dipole
distribution is assumed to be smooth for neighboring
sources (like for the current density source model), the
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Figure 5. Activity on one sulcus wall: Simulation 2: Reference dipole configuration (top, left), the simulated noisy potential
distribution on the outer sphere surface rereferenced to common average (top, right), the solution of the least square
problem using the reference dipole locations with TSVD (middle, left) and with COF (ten times reduced dipole strength)
(middle, right) and the reconstruction results of SA-TSVD (bottom, left) and SA-COF (bottom, right) when searching for 5
and 8 dipoles.

11
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regularization is a justified and necessary model for noisy
data. During the simulated annealing process, high con-
dition numbers often appear for separated dipole loca-
tions. In this case, the model of regularization cannot be
justified by the smoothness property of the dipole distri-
bution and high frequencies in the source space can be
quite meaningful. Here, the regularization can be seen as
a method to ameliorate the condition of the problem. The
high frequency components in the data space are lying
below the noise level and thus, high frequencies in the
source space cannot be reconstructed.

SA-COF and SA-TSVD were carried out with five
dipoles (figure 5, bottom). The result of the SA-COF has
a defect of only d = 25.8 (uV)2, but is not stable with regard
to the sulcus wall. The data is explained by a strong dipole
on the left wall (990nAm), weakened by a source on the
right wall with opposite direction (490nAm). The problem
is ill-posed and the high frequency component had a
strong influence in the result. The solution of the regulari-
zation method has a defect of 27.9 (uV)2 and is stable
concerning the sulcus wall but it should be mentioned that
a result with dipoles on both sulcus walls with the same
direction can not be precluded. In the following, eight
dipoles were searched for (figure 5, bottom). Both algo-
rithms show the main activity on the left sulcus wall. The
spatial resolution of the SA-TSVD is better. One part of
the noise-flawed reference potential distribution can be
explained by three dipoles, one at sulcus position Ar, a
second on the left side of the sphere surface with an
orientation of approximately 45 degrees and a third at the
same height on the right side of the sphere surface. With
the SA-COF, a second part of the noise is explained by a
deep and strong source, lying at the bottom left of the
sphere surface, the method is getting unstable.

Activity on both sulcus walls

Six opposing dipoles were placed on the left and
right sulcus wall at the positions 11 (100nAm), 21
(IWnAm), 3l (100nAm), 1r (100nAm) 2r (120nAm) and 3r
(100nAm) (figure 6, top left). Because of the eliminating

effect the potential had an euclidian norm of only ||pc ||2 =

36.8 uV. Noise yielding a SNR of 11.35 was added to
these potentials (figure 6, top right, rereferenced to com-
mon average) and the inverse reconstruction for 6 and 7
dipoles was carried out with both algorithms (figure 6,
bottom). When searching for 7 dipoles, the SA-COF could
reconstruct the sulcus activity with a defect of d = 4.7
(uV)2, while the SA-TSVD tended to a "zero-solution" and
a defect of d = 5.3 (uV)2 was left to the data. The regulari-
zation with R = 2.0 was too careful with regard to the
noise and to the high spatial frequencies of the reference
source configuration.

Separated activity

More than one active source region normally con-
tributes to integrative processes of the brain and the
locations of the involved sources can be quite separated.
In the last simulation, three dipoles were placed in the
sulcus structure, one on the left sulcus wall at position 11
(200nAm) and two further sources on the surface of the
inner sphere (100nAm) (figure 7, top left). The reference

potential had an euclidian norm of ||pc || = 71 uV. Using

these noiseless data, the SA-COF could exactly recon-
struct the reference source configuration when searching
for three dipoles. Noise with SNR = 16.6 was added to
these potentials (figure 7, top right). When searching for
three dipoles, the SA-COF, just like the SA-TSVD with the
regularization parameter Re [1.1,...,1.5] could reconstruct
the reference configuration with only a small localization
error. The error for the SA-TSVD was more significant
when choosing R=2.0. In this case, the regularization is
too careful and the loss of information too large for the
small dimension of the source space.

The inverse reconstruction for 5 and 8 dipoles indi-
cates the stabilizing effect of the regularization (figure 7,
bottom).

Discussion and Conclusions
We have presented a new regularization approach

for nonlinear dipole fit algorithms and we have carried
out simulations using the instantaneous state dipole
model (single time slice of data, typically at the peak of the
observed EEG response). The focal inverse source recon-
struction algorithm simulated annealing in combination
with the regularization method TSVD shows good prop-
erties to determine "sure" sources. Dipoles which have a
measurable effect on the data, will be reconstructed and
do not sink into insignificance beside stronger and physi-
ologically unexplainable sources which only explain noise
and nearly cancel each other (EEG and MEG) or deep
sources (EEG and MEG) or radial sources (MEG). The
derived algorithm accounts for heteroscedastic noise in
the data, especially in combination with bad condition
numbers of the least square problems, occuring during the
inverse search. It especially seems to be more stable re-
garding an overestimation of the number of active dipoles
when compared with non-regularized nonlinear dipole fit
algorithms like it is the SA-COF. In combination with the
singular value decomposition of the spatio-temporal data,
giving an estimate for the minimal number, the exact
number of dipoles can better be enclosed. This can be seen
as a "trial and error" strategy of determining the number
of sources, compared with the statistical concept of the
information criteria, working in the data space (Knosche
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Figure 6. Activity on both sulcus walls: Reference dlpole configuration (top, left), the simulated noisy potential distribution
on the outer sphere surface rereferenced to common average (top, right) and the reconstruction results of SA-TSVD
(bottom, left) and SA-COF (bottom, right) when searching for 6 and 7 dipoles.

et al. 1998) or the method based on the SVD of the meas-
urement data, proposed by (Mosher et al. 1992). The
strength of the regularization, controlled by the parameter
R, should not be chosen too large, because it is propor-

tional to the loss of information and because the dimen-
sion of the source space is small. The choice Re [1.1,...,1.5]
for the TSVD showed the best performance during our
simulations.
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Figure 7. Separated activity: Reference dlpole configuration (top, left), the simulated noisy potential distribution on the
outer sphere surface rereferenced to common average (top, right) and the reconstruction results of SA-TSVD (bottom,
left) and SA-COF (bottom, right) when searching for 5 and 8 dipoles.

With regard to spatio-temporal modeling, as we
have shown, the SA-TSVD can simply be extended to the
moving dipole model (unconstrained location and orien-
tation), to the rotating dipole model (fixed location, un-
constrained orientation) and to the fixed dipole model

Wolters et al.

approach, proposed by Mosher et al. (1992). When em-
bedding a further nonlinear algorithm to determine the
two fixed orientation parameters during the SA process
for the location parameters, e.g., projected gradient meth-
ods or penalty methods, the regularization concept of the



is calculated in a first step of the COF, where the re x re

matrix R11 is defined as the largest leading submatrix
whose estimated condition number is less than l/RCOnd

Complete Orthogonal Factorization (COF)

Generally it cannot be guaranteed, that the overde-
termined m x r (m > r) lead field matrix Lq has full effective
rank re = r. This is why a QR-decomposition with column
pivoting

have been implemented in CAUCHY:

SA-TSVD can also be applied to the fixed dipole model
(fixed locations and fixed orientations). Nevertheless, it
should be mentioned that this procedure will be quite
computationally time-consuming.

The presented regularization concept can be of spe-
cial importance, if dipole locations are already known
(a-priori information, e.g., functional magnetic resonance
imaging constrained dipole fits) whose corresponding
lead field matrix is ill-posed.

In our sulcus simulations with the focal source
model, the influence space was discretized with 3446
influence nodes. According to the anatomical constraint
and because of the appropriate modeling of the sulcus-
convolution by the influence space mesh, the normal-
constraint could be applied so that for every influence
node only the strength parameter had to be determined.
If reference activity is restricted to one sulcus wall and
noise complicates the reconstruction, high spatial fre-
quency inverse source configurations like dipoles on both
sulcus walls having opposite directions can have a strong
influence in the result of non-regularized dipole fit meth-
ods like the SA-COF, especially when overestimating the
number of dipoles. The regularized SA-TSVD is more
stable with regard to the sulcus wall, but it cannot be
precluded that small dipoles on the opposite sulcus wall
with the same dipole moment direction are added to
explain the data. This is the principle of the shadow
(Wang 1994), who examined the MNLS inverse (mini-
mum norm least squares, distributed source model) in a
simulated sulcus structure.

If both sulcus walls are active and the dipoles nearly
cancel each other with regard to their surface potential
distribution, the regularization method tends to the
"zero-solution" proportional to the size of the regulari-
zation parameter R, to the noise in the data and to the
chosen number of dipoles. The loss of information with
a strong regularization of R = 2.0 and the choice of seven
active dipoles during simulation was too strong to reveal
the underlying sulcus activity. A choice of Re [1.1,...,1.5]
or fewer dipoles was more adequate and even in the case
of noisy data, the activity on both sulcus walls was
reconstructed.

Appendix A
The following methods, based on different decom-

positions of the overdetermined m x r (m > r) lead field
matrix Lq for solving the linear least square problem

Reg. and Non-reg. Nonlinear Dipole Fit Methods 15

QR-Decomposition

If Lq has full rank r, it can be decomposed into an
orthogonal mxm matrix Q (QtrQ=I) and an m x r matrix

with a right upper triangular r x r matrix R1 (see e.g.,
Werner 1991). The coefficient matrix of the reduced sys-
tem has the same condition as the lead field matrix

The application of Qtr to the measured (noisy) data
Pme

e yields

with an r x n matrix Pme
e1 and an (m-r) x n matrix Pme

e2 •
Because orthogonal transformations preserve the Frobe-
nius-norm, the linear least square problem

can be solved by back-substitution R1J = Qme
e1.

To numerically calculate the QR-decomposition, we
used the method of Householder (see e.g., Werner 1991),
implemented in subroutine DGEQPF (LAPACK 1992).
The left orthogonal matrix is represented as a product of
elementary Householder rotation matrices
H(i) = I-Tixixi

tr with a scalar it and an m x 1 vector xi ,
i.e.,



with the orthogonal m x m matrix U, the m x r matrix S
with 2 = diag( S1,... Sr) and the orthogonal rx r matrix V
(see e.g., Werner 1991). For our simulations, we used
subroutine DGESVD (LAPACK 1992). It can be shown,
that q2

i are the eigenvalues and ui the eigenvectors of

Lq L
tr and ei

2 the eigenvalues and vi the eigenvectors of

Ltr
qLq. Furthermore, it is

Orthogonal matrices were dropped in the derivation
since they preserve the Frobenius-norm. When using
SVD-versions of the lead field matrix, in which only the
left singular vectors Ur are iteratively calculated and
when r is small relative to m, this procedure of calculating
H(q) will outperform methods based on noniterative QR
decompositions, leading to the same result.

Mosher et al. (1992) derived an efficient form of
calculating H(q), which is based on an SVD of the data
matrix Pme=UpSe Vp

tr:

For our simulations, we used subroutine DGELSX
(LAPACK 1992).

Singular Value Decomposition (SVD) and
Generalized Inverse

A third strategy is based on the well-known singular
value decomposition (SVD) of the lead field matrix

(see also equation 2). Non-regularized nonlinear dipole
fit methods use this generalized inverse to solve the linear
least square problems embedded in the nonlinear optimi-
zation process.

The matrix PL = LqL
+

q projects data P onto the col-

umn space of Lq

where Zi contains the first i rows of Z, we arrive at the
COF of the lead field matrix

The linear least square problem H(q) can then be
solved by

where Qi contains the first i columns of Q and

If we write Thus, the space spanned by {u1,...,ur} is called the

column space and span {ur+1,...,um}is the so-called left

null space of Ln. Let Ur be the m x r matrix
Ur = (u1,..., u r) . Without respect to the noise in the data,

the least square problem can be solved by means of the
generalized inverse of the lead field matrix, in matrix
form

and

with a small constant Rcond. In our simulations, we de-
fined Rcond = 0.3.10-7. Thus, the order of R11 is the effective
rank re of Lq. In a second step of the COF, the (m-re) x (r-re)
matrix R22 is considered to be neglegible and the re x (r-re)
matrix R12 is annihilated by the r x r orthogonal right
Householder rotation matrix Z:

Wolters et al.16
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