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the goal is to evaluate the electric potential u

V- (cVu)=V-j°, in NCR3
Vu-n=20 on 012

where
@ o conductivity of the brain @ analytical solution in sphere
) jp =M. 5r0 dipole source model (de Munck et al., 1988)
o M dipole moment; @ numerical solution in realistic
o dy, Dirac delta centered in rp. models
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MEG Forward Problem

the goal is to evaluate the magnetic B-field B (Biot-Savart):
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where j° depends on the EEG forward solution u
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MEG Forward Problem

the goal is to evaluate the magnetic flux @

@z/B~ds:/(VxA)-ds:]{ A - dc
S S C=0S

where
© B magnetic field o analytical solution out of a
@ A magnetic vector potential sphere model (Sarvas, 1987)
@ S face of the sensor @ numerical solution once u is

e C = 9S contour of the coil computed

9/ 66
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forward problem: ingredients

° :
o electrical features
e geometrical features
°
°
°

e vast spectrum of different numerical methods
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head model - 1

Contents lists available at ScienceDirect

Neurolmage
[, SEVIER journal homepage: www.elsevier.com/locate/ynimg
A guideline for head volume conductor modeling in EEG and MEG ®c,ossm

Johannes Vorwerk **, Jae-Hyun Cho ®, Stefan Rampp €, Hajo Hamer €,
Thomas R. Knésche ®, Carsten H. Wolters

2 Institut fiir Bi i und Biosig Westfiilische Wilhelms-Universitit, Miinster, Germany
® Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
© Epilepsiezentrum, Universitdtsklinikum Erlangen, Erlangen, Germany
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head model - 2

Table 1
Overview of the compartment conductivities, the conductive features of the different head models (1 is considered, - is disregarded,: is further divided, and A is anisotropic), and their
resolution.
Compartment oS/m 3a 4Cl 50 6Cl 6CA 6CA_hr
Brain 033 1 1 ) H
Brain GM 033 - - 1 1 1 1
Brain WM 0.14 - - 1 1 A A
CSF 179 - 1 1 1 1 1
Skin 043 1 1 1 1 1 I
Skull 0.01 1 1 1 B B B
Skull comp. 0.008 - - - 1 1 i
Skull spong. 0025 - - - 1 1 i
Resolution #Nodes 984,569 984,569 984,569 984,569 984,569 2,159,337
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numerical methods

e Boundary Element Method (BEM)
(Mosher et al., 1999; Kybic et al., 2005; Acar and Makeig, 2010; Gramfort et al., 2011; Stenroos and Sarvas, 2012)
o Finite Element Method (FEM)
o Continuous Galerkin (CG)
(Bertrand et al., 1991; Marin et al., 1998; Schimpf et al., 2002; Drechsler et al., 2009; Pursiainen et al., 2016)
o Discontinuous Galerkin (DG)
(Engwer et al., 2017)
o Unfitted Discontinuous Galerkin (UDG)
(Ning et al., 2016)
o Mixed Fomulation
(Vorwerk et al., 2017)
o Immersed
(Vallaghé et al., 2008)
o ...
o Finite Volume Method (FVM)
(Cook and Koles, 2006)
o Finite Difference Method (FDM)

(Wendel et al., 2008; Vatta et al., 2009; Montes-Restrepo et al., 2014)
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outline
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o unfitted discontinuous Galerkin for EEG
@ summary
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CG-FEM and the subtraction approach - EEG

the goal is to evaluate the electric potential u

{ V- (cVu)=V-j°, in 2CR3

Vu-n=0 on 012

split v and o

u= uOO + ucorr
o= O_OO +Ucorr

where u® is solution of Poisson equation in an unbounded and
homogeneous domain with conductivity o>
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CG-FEM and the subtraction approach - EEG

when multiplying with a test function v, € V), and integrating by parts we
obtain the weak formulation:

CG - FEM (Drechsler et al., 2009)

find us™ € V, C H! st
h

/ oVu?™ - Vvpdx = —/ oc"Vu*® - Vvpdx — / oV u™ - nvuds)
Q Q o0

(the solution exists and it is unique)
(derivation of the weak form on the smart board)
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CG-FEM and the subtraction approach - MEG

B(r) = + B*(r)

s Ho s/ r—r 3,/
B*(r) /Qj(r)x|r_r/’3dr

" 4r
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CG-FEM and the subtraction approach - MEG

B(r) = +B%(r)
s _ﬂ s/ r—r 3./
B (I’)—47T/QJ (r') x |"—r"3d r

_
B*(r) = Z—;/QJVU(H) X |rr_ rt|3 a3

r—v 5,
Ir_'_/‘?’d r

BS(r) = i‘i / (Vu®(F) + aVu®"(r)) x
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the Discontinuous Galerkin method in EEG

[Engwer et al., SIAM J. Scientific Comp., 2017]
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the Discontinuous Galerkin method in EEG
[Engwer et al., SIAM J. Scientific Comp., 2017]
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schematization
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@ the strong solution of the Poisson equation fulfills this property, i.e.
there is a conservation property for the correction potential:

/ jcorr .nds = / Feorr s
oK K

where
° jCOrf = gVucor
° fCOrI’ — _V . UCOH’VUOO
@ in general, a conforming discretization does not guarantee this
property
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A triangulation 7(2) of a domain Q is:
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triangulation and h

A triangulation 7(2) of a domain Q is:

@ a finite set of disjoint open sets E.

o forms a partition of Q
h denotes the mesh width, h := maxdiam(E)|E € T ()
Broken polynomial spaces

piecewise polynomial spaces on a triangulation of Q

vk = {v € 12(Q): v|e € ]P’k(E)} ,
where PX denotes the space of polynomial functions of degree k
Jump and average operators

[u] = ule.ne + ulg s, v = ;- ule + 5535 ulE

v
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Symmetric Interior Penalty Galerkin (SIPG) - formulation
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find up" € V,f s.t.
a(uﬁorr7 Vh) + J(ugorr, Vh) = I(Vh)yvvh S Vi‘:(

lhs=

Z/UVu,fo”-Vvhdx—/ oV u® [ve]ds
Q

int

- / oV va[u@T]ds + 1 / %[[uﬁo”]][[vh]]ds

Cint Cine "y
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lhs=
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Symmetric Interior Penalty Galerkin (SIPG) - formulation

: k
find uf®" € V|{ s.t.

a(uﬁorr7 Vh) + J(ugorr, Vh) = I(Vh)yvvh S Vi‘:(

lhs=
= / oVup®" - Vvpdx —
Q
— +
rhs=

—/ oV u™ - Vvpdx +/ oV u™ - nvds +
Q o0
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Symmetric Interior Penalty Galerkin (SIPG) - properties

for n > 0 sufficiently large, the SIPG discretization has a unique solution;
consistent with the strong problem

Lemma

the SIPG discretization fulfills a discrete conservation property, with
e &
) Jcorr = {o.vhulc;orr} _ ,’7;:’_:[[“;0”’]]

o fCOfT = _v . O.COI'I'VUOO
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schematization: DG FEM

o Cp: skull (very low conductivity)
o (;: CSF
o (5: skin
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the Discontinuous Galerkin method in EEG

[Engwer et al., SIAM J. Scientific Comp., 2017]

Geometry CG-FEM DG-FEM
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the Discontinuous Galerkin method in EEG

[Engwer et al., SIAM J. Scientific Comp., 2017]

o fulfills the property of conservation of charge

a conservative flux

the electric flux j° has two different representations:

js, NONCcons

:s,cons

and j

o joNONcons ues not fulfill the conservation of charge property
° js,cons does
o in a CG-FEM discretization only j*NONeons

@ in a DG-FEM both.

can be reppresented,

@ — curing “skull leakage” effects
o uses directly voxel-based representation of the head
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results

@ convergence and comparison CG - DG

o leaky scenarios analysis
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convergence and comparison

@ 4 layer spherical head model

compartment | outer radius | conductivity
brain 78 mm 0.33S/m
CSF 80 mm 1.79 S/m
skull 86 mm 0.01S/m
skin 92 mm 0.49 S/m

Table: head model features
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convergence and comparison

hexahedral meshes with different resolutions (Imm, 2mm, 4mm)

10 randomly distributed sources for 10 different eccentricities

relative difference measure:

RDM(u, v) = ”H 12

ull2 vz

logarithmic magnitude error:

InMAG (u,v) = In (”“Hz)
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leaky scenario statistics

skull thickness | num leaks
seg 2_res 2 _r82 2 10,080
seg 2_res 2 r83 3 1,344
seg 2 _res_2_r84 4 0

Table: leaky head models: 428,185 nodes; 407,907 elements

Figure: r82 Figure: r83 Figure: r84
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skull leakages of volume current - 4

Geometry CG-FEM DG-FEM

seq.2 res 2.r82
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the Discontinuous Galerkin method in MEG

[Piastra et al., Frontiers in Neuroscience, 2018]
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the Discontinuous Galerkin method in MEG

[Piastra et al., Frontiers in Neuroscience, 2018]

how is the general DG-FEM behavior?
“skull leakage" scenarios?
how can this method be accessible for our Neuroscience community?

simulation in a sphere model
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Il DG_NONconservative Il DG_NONconservative
80 I DG_conservative I DG_conservative
100
2% 2
= Q
a z 50
T 4 =
o .LL
20 o
0 —  — =z ;I_ 0
0.01 0.5025 0.7487 0.8718 0.9334 0.9642 0.9796 0.9873 0.01 0.5025 0.7487 0.8718 0.9334 0.9642 0.9796 0.9873
eccentricity eccentricity
v

53 / 66



the Discontinuous Galerkin method in MEG

[Piastra et al., Frontiers in Neuroscience, 2018]

effects of fulfilling the property of conservation of charge?

“skull leakage” scenarios?
how can this method be accessible for our Neuroscience community?

54 / 66



the Discontinuous Galerkin method in MEG

[Piastra et al., Frontiers in Neuroscience, 2018]

effects of fulfilling the property of conservation of charge?

“skull leakage” scenarios?
how can this method be accessible for our Neuroscience community?

sphere model
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the Discontinuous Galerkin method in MEG

[Piastra et al., Frontiers in Neuroscience, 2018]

effects of fulfilling the property of conservation of charge?

“skull leakage” scenarios?
how can this method be accessible for our Neuroscience community?

sphere model: RDM% mean= 1.5% and MAG% mean = 0.1%
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the Discontinuous Galerkin method in MEG

[Piastra et al., Frontiers in Neuroscience, 2018]

effects of fulfilling the property of conservation of charge?
how is the general DG-FEM behavior?

how can this method be accessible for our Neuroscience community?
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the Discontinuous Galerkin method in MEG

[Piastra et al., Frontiers in Neuroscience, 2018]

effects of fulfilling the property of conservation of charge?
how is the general DG-FEM behavior?

how can this method be accessible for our Neuroscience community?

simulation in a sphere model with leakages
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the Discontinuous Galerkin method in MEG

[Piastra et al., Frontiers in Neuroscience, 2018]

effects of fulfilling the property of conservation of charge?
how is the general DG-FEM behavior?
“skull leakage” scenarios?

simulation tool

@ C++ open source library for solving
partial differential equations (PDEs) T —

@ solving PDEs in Neuroscience u
http://duneuro.org/

@ integration of duneuro in FieldTrip

FieldTrip

v
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the Discontinuous Galerkin method in MEG

[Piastra et al., Frontiers in Neuroscience, 2018]

summary

°a representation of the increases the accuracy of
DG-FEM results in MEG

o for the finest mesh resolution of 1 mm, sources with a distance of
1.59 mm from the brain-CSF surface, DG-FEM yielded mean
of and mean of for the magnetic field

o skull leakages do play a role for the MEG modality

@ in a combined EEG and MEG (EMEG) source reconstruction analysis
is desirable to employ the for both EEG and
MEG data

o DG-FEM complements, and in some cases as the skull leakage
scenarios, outperforms CG-FEM in EEG or combined EMEG
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the Discontinuous Galerkin method in MEG

[Piastra et al., Frontiers in Neuroscience, 2018;12:30]

proof of concept:
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the Unfitted Discontinuous Galerkin method in EEG

[NiiBing et al., IEEE Trans. on Biom. Eng., 2016]

good conservative properties of the DG-FEM

uses hexahedral meshes

eliminates geometrical error

obtains same accuracy as DG-FEM in tetrahedral model
ouperforms DG-FEM in hexahedral model

controlled computational costs
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the Unfitted Discontinuous Galerkin method in EEG
[NiiBing et al., IEEE Trans. on Biom. Eng., 2016]
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the Unfitted Discontinuous Galerkin method in EEG
[NiiBing et al., IEEE Trans. on Biom. Eng., 2016]
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general introduction

continuous Galerkin for EEG and MEG
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unfitted discontinuous Galerkin for EEG
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summary

o the subtraction approach cures the singularity on the right-hand side
of the EEG forward problem (Wolters et al., 2007; Drechsler et al.,
2009)

o CG-FEM can suffer from skull leakages (directly in EEG (Engwer et
al., 2017), indirectly in MEG (Piastra et al., 2018))

e SIPG (DG) - FEM fulfills conservation law, it has the same accuracy
as CG-FEM and voxel-based representations can be used directly
(Engwer et al., 2017)

o UDG-FEM use level set function directly and outperforms DG-FEM
on hexahedral meshes (NiiBing et al., 2016)

65 / 66



Structure

Validation of different FEM forward approaches in TES
and EEG

CutFEM

Mixed FEM



[Vogenauer, Master Thesis in Mathematics, 2019]
[Piastra,..., Wolters, Frontiers in Neurosci., 2018]
[Engwer, Vorwerk, Ludewig & Wolters, SIAM J. Sci. Comp., 2017]

Validation and evaluation of new FEM forward approaches

hultilayer sphere verification. From left to right, the images show the DG-tet-1447k, DG-hex-3057k, and
QeiS. T1C dIicIc STCPICSC ° different conductivity values. (a) Conforming tetrahedral mesh. (b) Conforming hexahedral mesh. (¢) Cut

cell mesh.




[Vogenauer, Master Thesis in Mathematics, 2019]

TES: Validation and evaluation of surface-based tetrahedral FEM

/

(a) Potential (b) Potential in the brain

(c) Relative error (d) Absolute error in the brain

Figure 5.3.: The numerical solution in the tet-4layer-434k sphere model for tES
forward problem (a) in the whole volume conductor and (b) just the brain com-
partment. Visualization of the (c) relative error and (d) the absolute error between
numerical and analytical solution in the brain compartment.




[Vogenauer, Master Thesis in Mathematics, 2019]
[Piastra,..., Wolters, Frontiers in Neurosci., 2018]
[Engwer, Vorwerk, Ludewig & Wolters, SIAM J. Sci. Comp., 2017]

Validation and evaluation of new FEM forward approaches

(©

Fig. 3. Sections of the different meshes used in tl ages show the DG-tet-1447k, DG-hex-3057k, and
UDG-1335k models. The different colors represent the different conductivity values. (a) Conforming tetrahedral mesh. (b) Conforming hexahedral mesh. (¢) Cut
cell mesh.




[Vogenauer, Master Thesis in Mathematics, 2019]
[Piastra,..., Wolters, Frontiers in Neurosci., 2018]
[Engwer, Vorwerk, Ludewig & Wolters, SIAM J. Sci. Comp., 2017]

TES: Validation of Continuous Galerkin (CG) and Discontinuous Galerkin
(DG) FEM in 2 mm hexahedral meshes with 4 mm skull thickness

CG-FEM DG-FEM

N/ LN S

(a) Potential in the volume conductor

(¢) Relative error in the brain

Figure 5.9.: Numerical results for hex-res-2mm-r84 sphere model CG-FEM (left)
and DG-FEM (right). First, the potential solution is shown (a) in the sphere model.
Then visualizations of the relative error (b) in the whole volume conductor and (c)
only in the brain compartment are shown.




[Vogenauer, Master Thesis in Mathematics, 2019]
[Piastra,..., Wolters, Frontiers in Neurosci., 2018]
[Engwer, Vorwerk, Ludewig & Wolters, SIAM J. Sci. Comp., 2017]

TES: Validation of Continuous Galerkin (CG) and Discontinuous Galerkin
(DG) FEM in 2 mm hexahedral meshes with 2 mm skull thickness

CG-FEM DG-FEM

. y N 7/

(a) Potential in the volume conductor

o0

(b) Relative error

(c) Relative error in the brain

Figure 5.11.: Numerical results for hex-res-2mm-r82 sphere model CG-FEM (left)
and DG-FEM (right). First, the potential solution is shown (a) in the sphere model.
Then visualizations of the relative error (b) in the whole volume conductor and (c)
only in the brain compartment are shown.




[Vogenauer, Master Thesis in Mathematics, 2019]
[Piastra,..., Wolters, Frontiers in Neurosci., 2018]
[Engwer, Vorwerk, Ludewig & Wolters, SIAM J. Sci. Comp., 2017]

”Skull leakages” when using standard FEM
in insufficiently resolved hexahedral models

CG-FEM: Unphysical current flow through an FE node



[Vogenauer, Master Thesis in Mathematics, 2019]
[Piastra,..., Wolters, Frontiers in Neurosci., 2018]
[Engwer, Vorwerk, Ludewig & Wolters, SIAM J. Sci. Comp., 2017]

Discontinuous Galerkin- (DG-) FEM in hexahedral models

DG-FEM:
Continuous radial current flow component over tissue boundaries
Discontinuous potential over tissue boundaries



[Vogenauer, Master Thesis in Mathematics, 2019]
[Piastra,..., Wolters, Frontiers in Neurosci., 2018]
[Engwer, Vorwerk, Ludewig & Wolters, SIAM J. Sci. Comp., 2017]

Validation and evaluation of new FEM forward approaches

(b)

Fig. 3. Sections of the different meshes used in the multilayer sphere verification. From left to right, t
UDG-1335k models. The different colors represent the different conductivity values. (a) Conforming tetrahedral mesh. (b) Conforming hexahedral mesh. (¢) Cut
cell mesh.




[NiiBing, Wolters, Brinck & Engwer,...UDG-FEM for EEG..., IEEE Trans Biomed Eng, 2016]

EEG: Validation of Unfitted DG (UDG) FEM

30
N UDG 39k
[ UDG 218k
0 UDG 1335k

eccentricity

(a) RDM% error for radial dipoles




[NiiBing, Wolters, Brinck & Engwer,...UDG-FEM for EEG..., IEEE Trans Biomed Eng, 2016]

EEG: Validation of Unfitted DG (UDG) FEM

[ 1 DG-hex-3057k
B UDG-39k

eccentricity




Structure
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and EEG
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[Erdbriigger, Master thesis in Maths, 2021
[NiiBBing, PhD thesis in Maths, 2018]

Level sets and cut elements

a) Reconstruction of one cut element ([Nu318]) b) Reconstruction of a multilayer sphere
model.

Fig. 4.7.: a) Reconstruction of a kingle square cut by a level-set. The grey area indicates the inside
of the domain, reconstructed into 5 cut-cells, 3 of which are inside the domain. The red
points indicate quadrature points for the domain, the green are for the outside area. b)
Reconstruction of a multilayer sphere model. Accurate depiction of the curvature of the
sphere is achieved while maintaining a low fundamental mesh resolution.




[Erdbriigger, Master thesis in Maths, 2021
[NiiBBing, PhD thesis in Maths, 2018]

CutFEM for tDCS and EEG

Definition 4.4 (weak tDCS-/EEG CutFEM formulation) Find uj, € V}, such that
a(up, vp) + afy/s(uh, vp) + aG(uh, vp) = l(vy) Yo € Vy, (4.23)

with
o l(vy) = [3q IvndS for tDCS and
o l(vn) == Jo, VJPv,dx for EEG.

a(up,vp) = Z/Q oVl Vu, dx

In total, the Nitsche coupling terms with Symmetric Weighted Interior Penalty Galerkin
(SWIPGQG) are stated as

al (up, vp) == —/F{UVuh}[[vh]] — /F{UVU;L}[[uh]]dS+7Vk/F %[[uh]][[vh]]dS, (4.18)

or in the Non-Symmetric (NWIPG) case as

o (up, vn) = — /F {oVun o] + /F (Vo [un]dS + v /F %[[uh]][[vh]]dS, (4.19)

the two only differing in one sign.

Then the Ghost-penalty term can be stated as

a® (up, vp) = 70/?/}[[0Vuh]][[Vvh]]dS




[Erdbriigger, Master thesis in Maths, 2021
[NiiBBing, PhD thesis in Maths, 2018]

Comparing CutFEM and CG-FEM

In total, CutFEM features several differences compared to standard CG-FEM.

e Using the level-set function directly allows for a very accurate representation of the
head geometry.

No possibly complicated mesh generation as in the tetrahedral case is necessary. Mis-
shapen cut-cells are taken care of through Ghost-penalties.

Ansatzfunctions are defined on the fundamental mesh. This can be chosen coarser
than a CG-mesh while maintaining a similar level of accuracy. Thus the number of
Degrees of Freedom (i.e. number of Ansatzfunctions) is smaller.

Most mesh-generators cannot deal with holes in the compartments, which occur for
example in the CSF when brain and skull touch.

A possible downside is the dependence on the penalty parameters 7y, vs which can
strongly influence the result as will be seen in the evaluations.




[Erdbriigger, Master thesis in Maths, 2021

Comparing CutFEM and CG-FEM

Fig. 6.1.: Depiction of the 4-layer-sphere model
used. The layers from red to blue are scalp, skull,
CSF and brain. The brain is shifted to the right,
thus shares exactly one point with the skull.




[Erdbriigger, Master thesis in Maths, 2021

CutFEM and CG-FEM for EEG

Tangential Source directions
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ig. 6.14.: Overview of different EEG-errors for 3- and 4-layer CG- and CutFEM. Top: Errors for
tangential source directions. Bottom: Errors for radial source directions. Errors are in
percent and grouped by eccentricities. The green line marks optimal error values, the
circle represents the average error.

NWIPG approach with Nitsche-penalty 40 and Ghost-penalty 0.05




[Erdbriigger, Master thesis in Maths, 2021

Comparing CutFEM and CG-FEM for TES

Current Density Errors

Vector Angle Magnitude Error

3
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Fig. 6.15.: Overview of different tDCS-errors for 3- and 4-layer CG- and CutFEM. Right: Vector
Magnitude differences in percent. The green lines indicate optimal values, the circle

depicts the average error per category.

NWIPG approach with Nitsche-penalty 40 and Ghost-penalty 0.05
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Fig. 6.18.: Comparison of absolute MAG errors for Cut- and CGFEM. Left: CutFEM. Right: CG-
FEM. Fundamental mesh cells are colorised by MAG at the center. For a clearer compari-
son, the CG-errors stem from the nearest tetrahedral center, the MAG error at that point
was then used to colorize the fundamental cell. Brightest color is reached at 3 percent.
Scalp cells are ignored to improve clarity. Instead, the entire scalp area is depicted as
single color sphere. Black dots indicate stimulation electrodes.

NWIPG approach with Nitsche-penalty 40 and Ghost-penalty 0.05
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Fig. 6.19.: Overview of different tDCS-errors for 3- and 4-layer CG- and CutFEM taken at element
centers. Right: Vector Magnitude differences in percent. The green lines indicate optimal
values, the circle depicts the average error per category.

NWIPG approach with Nitsche-penalty 40 and Ghost-penalty 0.05



Structure

Validation of different FEM forward approaches in TES
and EEG

CutFEM

Mixed FEM
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Mixed FEM

Applying the quasistatic approximation of Maxwell’s
equations [18], [19], the forward problem of EEG is com-
monly formulated as a second-order PDE with homogeneous
Neumann boundary condition

V.-(eVu)=V-j’ in Q, (1a)

ocopt =0 onoQ=1T. (1b)

Here, u denotes the electric potential, j” the source current,
and o the conductivity distribution in Q. In (1), the electric
current j is already eliminated as an unknown. For our purpose,
we start at the previous step in the derivation of the quasistatic
approximation and keep the electric current as an unknown.

Thus, our starting point is the system of first-order PDEs

j+oVu=j? (2a)
V.j=0 inQ, (2b)
(j,m) = (G”,n) onoQ=T. (2¢)

Since the source current j” in general fulfills (j”,n) = 0
on I', as supp j” C Q° for physiological reasons (there are no
sources in the skin), (2¢) can be simplified to (j,n) =0 on I".
The Mixed-FEM formulation for the EEG forward problem is
now derived from (2), instead of discretizing (1) as would be
done for the CG-FEM.
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Mixed FEM
j+oVu=j’
V=0 in Q,
G,n) = (§”,n) on 0Q =T.
H (div; Q) = {q eL*(Q)’:V.qe LZ(Q)} Ho(div, Q) = {q € H(div; Q) : (q,n) = 0 on 8Q)

Now, we can introduce a weak formulation of (2)

/(a_lj,q)dx—/v-qudx:
Q Q

(c71§7,q)dx for all q € Hyo(div, Q),  (6a)

A
/ V.-jodx =0 forall v e L*(Q). (6b)
Q
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Mixed FEM

Now, we can introduce a weak formulation of (2)

/(a_lj,q)dx—/ V. .qudx =
Q Q

(07 'j7,q)dx for all q € Ho(div, Q),  (6a)

V-jodx=0 forall v e L*(Q). (6b)

J
J

a(p,q) = (7', @) 12(q) (7a)
b(p,v) = (V-p,0)2q) (7b)

and the functional

(@) = (7§, @) 12 (7¢)
for p, q € Ho(div, Q), v € L*(Q), j* € L*(Q)>, 0 € L®(Q),

o > 0. Therefore, to solve (6) 1s to
find (u,j) € L*(Q) x Ho(div, Q), such that
a(j,q) +b(q,u) =1(q) forall q € Hy(div,Q), (8a)
b(j,v) =0 forall v € L*(Q). (8b)
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Mixed FEM

find (u,j) € L*(Q) x Ho(div, Q), such that

a(j,q) +b(q,u) =1(q) forall q € Ho(div, ),
b(j,v) =0 for all v € L*(Q).

We can now choose the space Py of piecewise constant
functions on each element as a discrete subspace of L(Q):

Po(7y) = {v S LZ(Q) colr=cr,cr eRforall T € ’]}l}

For Hy(div, Q), we start by defining the space RTy of the
lowest-order Raviart-Thomas elements on a single, regular
hexahedron T [25], [26]:

RTy(T) = P1,0,0(T) x Po,1,0(T) x Po,0,1(T),

where P; ; «(T) denotes the set of polynomial functions
defined on T of degrees i, j, and k in x1, x2, and x3.

(8a)
(8b)

Aj+BTu=0b
Bj =0,

(132)
(13b)

we can left-multiply A~! to (13a) and solve for j, i.e.,
j = A~Y(b — BTu). Substituting this representation of j
into (13b) leads to

Bj=BA '(b—BTu)=0

< BA7'BTyu=BA b, (14)

S = BA'BT is the so-called Schur complement, ms = ng =
#elements. S is positive semidefinite (if ker(B) = {0} positive
definite) and since A is symmetric, also S is symmetric [22].
Thus, with 4 = BA~ b, solving (10) is reduced to solving

Su = h. (15)

(15) could now be solved using the (conjugated)

Uzawa-iteration [22], [24], [36].
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Comparing mixed FEM and CG-FEM for EEG

F NN A
AR

Fig. 7. Geometry of leaky four-layer sphere model (left, compartments from in- to outside/bottom left to top right are brain, CSF, skull, skin, and
air) and visualization of strength (only skull and skin, in ©A/mm?) and direction of volume currents for CG-FEM (middle) and Mixed-FEM simulation

(right).
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Comparing mixed FEM and CG-FEM for EEG

TABLE I
REALISTIC HEAD MODEL PARAMETERS

Mesh width (h)  #vertices #elements #faces

6C_hex_Imm I mm 3,965,968 3,871,029 11,707,401
6C_hex_2mm 2 mm 508,412 484,532 1,477,164
6C_tet_hr - 2,242,186 14,223,508 27,314,610

Fig. 3. Visualization of realistic six-compartment hexahedral

(6C_hex_2mm, left) and high-resolution reference head model
(6C_tet_hr, right).
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Comparing mixed FEM and CG-FEM for EEG

proj. M-FEM, 2 mm ——
Whitney CG-FEM, 2 mm
PIDG-FEM, 2 mm ——

Venant CG-FEM, 2 mm ——
Venant CG-FEM, 1 mm

proj. M-FEM, 2 mm ——
Whitney CG-FEM, 2 mm
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Fig. 8. Cumulative relative errors of RDM (top) and INMAG (bottom) for
EEG in realistic six-layer head model. The horizontal lines indicate the
5th and 95th percentile (lower and upper lines, respectively).




Summary

BEM forward approaches In 3-compartment headmodels are the current
standard, but FEM models allow inclusion of further inhomogeneity or
anisotropy, which might be important (-> talk of Maria Carla Piastra)
Different FEM approaches are available in DUNEuro and it is intructive in
applications to check sensitivity to different forward approaches
Fitted (CG- or DG-FEM) and unfitted FEM (UDG or CutFEM) show accurate
results, their choice should mainly depend on the mesh properties
While mixed FEM and DG-FEM are “current preserving”, CG-FEM is not, but
this seems only relevant, if thin compartments with considerably different
conductivities have to be modeled with limited resolution
Unfitted FEM, especially CutFEM
» showed less deviation in the 3-layer/4-layer test case scenarioand thus
facilitates modeling of “touching skull and brain surfaces” and might
thus facilitate mesh generation
« outperformed CG-FEM in most categories for both EEG and tDCS
* needs less degrees of freedom and thus less memory
* is more expensive for matrix setup (which has to be done only once)



Future outlook: Project PerEpi
(funded by ERA PerMed)

PERsonalized diagnosis and treatment for refractory focal paediatric and adult EPllepsy (PerEpi)

New methods and software i .
PerEpi Research pipelines for multimodal PerEpi Practice
source and connectivity
analysis and optimized
brain stimulation.

Coordinator:
Prof. Dr. Carsten H. Wolters, Institut fur Biomagnetismus und Biosignalanalyse,
Westfélische Wilhelms-Universitat Munster

Validation of the
personalized
diagnosis and

decision on
. Principal Investigators: Acquisitionand individual therapy.
Prof. Dr. Alena Buyx, Institut fir Geschichte und Ethik der Medizin, Technische e e i
Universitat Miinchen and adultepilepsy Management,
EEG/MEG and MRI coordination and
data. dissemination of
results.

Clinical
practice in
drug-
resistent
focal
paediatric

: and adult
Prof. Dr. Sampsa Pursiainen, Computing Sciences, Tampere University, Tampere, . Reduction of s
Finland { seizure frequency DECDSY

and severity by
optimized and
targeted brain
stimul
Ethical, legal,
and social
aspects.

Prof. Dr. Fabrice Wallois, Inserm U 1105, GRAMFC, Universite de Picardie Jules
Verne, Amiens, Frankreich
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