Linear complexity of finite element method based forward modeling in bioelectromagnetism

Carsten Wolters

Institut für Biomagnetismus und Biosignalanalyse, Westf. Wilhelms-Universität Münster, Germany

Lecture on Nov.26, 2024

Structure of the lecture

- Linear complexity for FEM forward modeling: Transfer matrices
- Fast FE solver methods

Link to own work for transfer matrices:

Carsten Wolters 🗶 Index of /~wd	Iters/LiteraturZur * Wolters-Publications.pdf * +
(i)	ung/biomag/Mitarbeiter/Wolters-Publications.pdf C 🔍 C carsten wolters
leistbesucht 👻 🧐 Erste Schritte 🛛 🔝 Aktuelle Nachric 👻	🚺 Apple 🚨 Amazon 📄 Lehre 👻 🦳 Haus 👻 🦳 News 👻 🦳 Wörterbücher 👻 🦳 Apple-Mac 👻 📄 University of Utah 👻 📄 Muenster 🔻
🔶 🗣 Seite: 🧕 9 von 30	─ + Automatischer Zoom ÷
	Webversion, pdf
	 Wolters, C.H., Grasedyck, L. and Hackbusch, W., Efficient Computation of Lead Field Bases and Influence Matrix for the FEM-based EEG and MEG
	Inverse Problem. Inverse Problems, 20(4), pp. 1099–1116, (2004). DOI, Eprint, pdf

[Weinstein, Zhukov & Johnson, *Annals Biomed. Eng.*,2000] [Wolters, Grasedyck & Hackbusch, *Inverse Problems*, 2004]

EEG transfer matrix

$$T^{EEG} := \mathbf{R}\mathbf{K}^{-1} \in R^{(s^{EEG}-1) \times N}$$

$$T^{EEG}: \underline{J} \to \underline{\Phi}^{EEG}$$

Ν

MEG transfer matrix

$$\underline{\Psi}_{i} = \underline{\Psi}_{i}^{\mathrm{s}} + \underline{\Psi}_{i}^{\mathrm{sek}} = \frac{\mu}{4\pi} \int_{\Omega} \left\langle \vec{j}^{\mathrm{s}}(\vec{y}), \oint_{\partial F_{i}} \frac{1}{|\vec{x} - \vec{y}|} d\vec{x} \right\rangle d\vec{y} - \frac{\mu}{4\pi} \int_{\Omega} \left\langle \sigma(\vec{y}) \nabla \Phi(\vec{y}), \oint_{\partial F_{i}} \frac{1}{|\vec{x} - \vec{y}|} d\vec{x} \right\rangle d\vec{y}$$

MEG transfer matrix

$$\underline{\Psi}_{i} = \underline{\Psi}_{i}^{\mathrm{s}} + \underline{\Psi}_{i}^{\mathrm{sek}} = \frac{\mu}{4\pi} \int_{\Omega} \left\langle \vec{j}^{\mathrm{s}}(\vec{y}), \bigoplus_{\partial F_{i}} \frac{1}{|\vec{x} - \vec{y}|} d\vec{x} \right\rangle d\vec{y} - \frac{\mu}{4\pi} \int_{\Omega} \left\langle \sigma(\vec{y}) \nabla \Phi(\vec{y}), \bigoplus_{\partial F_{i}} \frac{1}{|\vec{x} - \vec{y}|} d\vec{x} \right\rangle d\vec{y}$$

$$\nabla \Phi(\vec{y}) \approx \nabla \left(\sum_{j=1}^{N} \psi_{j}(\vec{y}) \underline{\Phi}_{j} \right) = \sum_{j=1}^{N} \nabla \psi_{j}(\vec{y}) \underline{\Phi}_{j}$$

MEG transfer matrix

$$\underline{\Psi}_{i} = \underline{\Psi}_{i}^{\mathrm{p}} + \underline{\Psi}_{i}^{\mathrm{sek}} = \frac{\mu}{4\pi} \int_{\Omega} \left\langle \vec{j}^{\mathrm{s}}(\vec{y}), \oint_{\partial F_{i}} \frac{1}{|\vec{x} - \vec{y}|} d\vec{x} \right\rangle d\vec{y} - \frac{\mu}{4\pi} \int_{\Omega} \left\langle \sigma(\vec{y}) \nabla \Phi(\vec{y}), \oint_{\partial F_{i}} \frac{1}{|\vec{x} - \vec{y}|} d\vec{x} \right\rangle d\vec{y}$$

$$\mathbf{S}_{ij} \coloneqq -\frac{\mu}{4\pi} \int_{\Omega} \left\langle \sigma(\vec{y}) \nabla \psi_{j}(\vec{y}), \oint_{\partial F_{i}} \frac{1}{|\vec{x} - \vec{y}|} d\vec{x} \right\rangle d\vec{y} \in R^{s^{\text{MEG}} \times N}$$
$$\underline{\Psi}^{\text{sek}} = \mathbf{S} \underline{\Phi} \stackrel{(*)}{=} \mathbf{S}(\mathbf{K}^{-1} \underline{J}) = (\mathbf{S} \mathbf{K}^{-1}) \underline{J}$$

$$T^{\text{MEG}} := \mathbf{SK}^{-1} \in \mathbb{R}^{s^{\text{MEG}} \times N} \qquad s^{\text{MEG}}$$
$$T^{\text{MEG}} : \underline{J} \to \Psi^{\text{sek}} \qquad N$$

Computing the transfer matrices

$$\begin{pmatrix} T^{EEG} \\ T^{MEG} \end{pmatrix} \coloneqq \begin{pmatrix} \mathbf{R} \\ \mathbf{S} \end{pmatrix} \mathbf{K}^{-1} \Leftrightarrow \begin{pmatrix} T^{EEG} \\ T^{MEG} \end{pmatrix} \mathbf{K} = \begin{pmatrix} \mathbf{R} \\ \mathbf{S} \end{pmatrix}$$

$$\Leftrightarrow \mathbf{K} \left(\left(T^{EEG} \right)^{tr} \quad \left(T^{MEG} \right)^{tr} \right) = \left(\mathbf{R}^{tr} \quad \mathbf{S}^{tr} \right)$$

- Linear complexity for FEM forward modeling: Transfer matrices
- Fast FE solver methods

Link to this work:

FEM solver aspects

$$\mathbf{K}_h \underline{u}_h = \underline{j}_h$$

$$\underline{u}_h = K_h^{-1} \underline{j}_h ??$$

Preconditioned Conjugate Gradient Method

Algorithm 1 PCG:
$$(K_h, \underline{u}_h, \underline{j}_h, C_h, \text{ACCURACY}) \rightarrow (\underline{u}_h)$$
PCG accuracy $\underline{r}_h = \underline{r}_h^0 = \underline{j}_h - K_h \underline{u}_h$ SOLVE $C_h \underline{w}_h = \underline{r}_h$ accuracy $\underline{s}_h = \underline{w}_h$ $\gamma^0 = \gamma = \gamma_{\text{OLD}} = \langle \underline{w}_h, \underline{r}_h \rangle$ $(||\underline{r}_h||_{C_h^{-1}})^2 = (\frac{||\underline{r}_h||_{K_h \underline{c}_h^{-1}}}{||\underline{c}_h^0||_{C_h^{-1}}})^2 = (\frac{||\underline{c}_h^i||_{K_h \underline{c}_h^{-1} K_h}}{||\underline{c}_h^0||_{K_h \underline{c}_h^{-1} K_h}})^2 > \text{ACCURACY}^2)$ do $\underline{w}_h = K_h \underline{s}_h$ $\alpha = \gamma / \langle \underline{s}_h, \underline{v}_h \rangle$ $\underline{u}_h = \underline{u}_h + \alpha \underline{s}_h$ $\underline{r}_h = \underline{r}_h - \alpha \underline{w}_h$ $\underline{v}_h < \underline{r}_h > \beta \underline{s}_h$ $\underline{r}_h = \underline{r}_h$ $\gamma = \langle \underline{w}_h, \underline{r}_h \rangle$ $\beta = \gamma / \gamma_{\text{OLD}}$ $\gamma_{\text{OLD}} = \gamma$ $\underline{s}_h = \underline{w}_h + \beta \underline{s}_h$ $\underline{s}_h = \underline{w}_h + \beta \underline{s}_h$ end while $\underline{v}_h = \underline{v}_h + \beta \underline{s}_h$

Iterative solver for FE-equation system

FE discretization, meshsize: *h*

$$\mathbf{K}_{h}\underline{u}_{h} = \underline{j}_{h}$$

with condition number

$$\kappa(K_h) = \frac{\lambda_h^{\max}}{\lambda_h^{\min}} = O(h^{-2})$$

Link to this work:

[Wolters, Reitzinger, Basermann, Burkhardt, Hartmann, Kruggel & Anwander, Proceedings of BIOMAG Helsinki, 2000]

Iterative solver for FE-equation system

[Wolters, Reitzinger, Basermann, Burkhardt, Hartmann, Kruggel & Anwander, Proceedings of BIOMAG Helsinki, 2000]

Iterative solver for FE-equation system

FE discretization, meshsize: *h*

$$\mathbf{K}_{h}\underline{u}_{h} = \underline{j}_{h}$$

with condition number

$$\kappa(K_h) = \frac{\lambda_h^{\max}}{\lambda_h^{\min}} = O(h^{-2})$$

Convergence of the CG solver:

$$\left\|\underline{u}_{h}^{*}-\underline{u}_{h}^{(i)}\right\|_{K_{h}} \leq 2c_{h}^{i}\left\|\underline{u}_{h}^{*}-\underline{u}_{h}^{(0)}\right\|_{K_{h}} \qquad c_{h} = \frac{\sqrt{\kappa(K_{h})}-1}{\sqrt{\kappa(K_{h})}+1}$$
Example: $h \approx 2mm$ $\kappa(K_{h}) \approx 10^{7}$ $c_{h} = 0.9993$

Strategy: Preconditioning!

[Wolters, Vorlesungsskriptum, Chapter 7.2] [Wolters, Kuhn, Anwander & Reitzinger, *Comp. Vis. Sci..*, 2002] [Lew, Wolters, Dierkes, Roer & MacLeod, *Appl.Num.Math.*, 2009] **Jacobi preconditioning**

Jacobi preconditioning or scaling

The simplest preconditioner is the scaling or Jacobi-preconditioning ([264, pp.265f], [281, pp.257f]), where

$$C_h := D_h^2, \qquad D_h := \mathrm{DIAG}(\sqrt{K_h^{[11]}}, \dots, \sqrt{K_h^{[N_h N_h]}}).$$

Theorem 6.5.8. Let K_h be SPD and $C_h := D_h^2$ the Jacobi-preconditioner. Assume that each row of K_h does not contain more than d nonzero entries. Then, for all diagonal matrices \tilde{D}_h^{-1} , it is

 $\kappa_2(C_h^{-1}K_h) \leq \mathbf{d} \, \kappa_2(\tilde{D}_h^{-1}K_h),$

Incomplete Cholesky preconditioning

The SPD stiffness matrix K_h can be decomposed into a left triangular matrix L_h and its transpose using the Cholesky-decomposition, $K_h = L_h L_h^{tr}$ [281, pp.209f]. Algorithm 19 shows the Cholesky-decomposition.

Algorithm 19 Cholesky decomposition $K_h = L_h L_h^{tr}$

for
$$p = 1, ..., N_h$$
 do
 $L_h^{[pp]} = \sqrt{\mathsf{K}_h^{[pp]}}$
for $i = (p+1), ..., N_h$ do
 $L_h^{[ip]} = \mathsf{K}_h^{[ip]} / L_h^{[pp]}$
for $k = (p+1), ..., i$ do
 $\mathsf{K}_h^{[ik]} = \mathsf{K}_h^{[ik]} - L_h^{[ip]} / L_h^{[kp]}$
end for
end for
end for

[Wolters, Vorlesungsskriptum, Chapter 7.2] [Wolters, Kuhn, Anwander & Reitzinger, Comp. Vis. Sci.., 2002] [Lew, Wolters, Dierkes, Roer & MacLeod, Appl.Num.Math., 2009] Incomplete Cholesky preconditioning

Figure 7.1: Principle of ICO (taken from Schwarz [281]): nonzero matrix pattern (left), situation after first step of Algorithm 19 (fill-in is marked with *), situation after the first step of ICO.

[Lew, Wolters, Dierkes, Roer & MacLeod, Appl.Num.Math., 2009] MultiGrid (MG) preconditioning Principle of MG

Smoother for high-frequency error components is effective

 $\underline{d}_h = K_h \underline{u}_h - \underline{j}_h$

[Lew, Wolters, Dierkes, Roer & MacLeod, Appl.Num.Math., 2009] MultiGrid (MG) preconditioning Principle of MG

• **Smoother** for low-frequency error components not effective

$$\underline{d}_h = K_h \underline{u}_h - \underline{j}_h$$

MultiGrid (MG) preconditioning Principle of the MG

- Smoother for high-frequency error components
- Coarse grid correction for low-frequency error components

$$\underline{d}_{H} = P_{h,H}^{tr} \underline{d}_{h}$$

MultiGrid (MG) preconditioning

Algorithm 3 V-cycle MG : $(K_h, \underline{u}_h, \underline{j}_h, \nu_F, \nu_B) \rightarrow (\underline{u}_h)$

 ${f if}$ CoarseGrid ${f then}$

$$\underline{u}_h \leftarrow \text{DirectSolve}(K_h \underline{u}_h = \underline{j}_h)$$

else

 $\underline{u}_{h} \leftarrow \nu_{F} \text{ TIMES SMOOTH FORWARD}(K_{h}, \underline{u}_{h}, \underline{j}_{h})$ $\underline{d}_{h} = K_{h}\underline{u}_{h} - \underline{j}_{h}$ $\underline{d}_{H} = P_{h,H}^{tr}\underline{d}_{h}$ $\underline{w}_{H} = 0$ $\underline{w}_{H} = \text{MG}(K_{H}, \underline{w}_{H}, \underline{d}_{H})$ $\underline{w}_{h} = P_{h,H}\underline{w}_{H}$ $\underline{u}_{h} = \underline{u}_{h} - \underline{w}_{h}$ $\underline{u}_{h} \leftarrow \nu_{B} \text{ TIMES SMOOTH BACKWARD}(K_{h}, \underline{u}_{h}, \underline{j}_{h})$ end if

Geometric Multigrid

Geometric MG (GMG)

- Problem-specific smoother for highfrequency error components
- Coarse grid correction for low-frequency error components
- **Problems in our application**

- Complexity: • O(N) Convergence rate: • h-independent • high
- Choice of the smoother is difficult (Inhomogeneities/Anisotropies)
- Generation of the coarse grids difficult

Strategy: Algebraic MG (AMG)!

Algebraic Multigrid

[Ruge and Stüben, *SIAM*, 1986; Stüben, GMD, Tech.Report, 1999] [Wolters, Vorlesungsskriptum, Chapter 7.2] [Wolters, Kuhn, Anwander & Reitzinger, *Comp. Vis. Sci..*, 2002] [Lew, Wolters, Dierkes, Roer & MacLeod, *Appl.Num.Math.*, 2009]

- **Principle of the AMG:**
 - Smoother is given (Gauss-Seidel)
 - Coarse grids and interpolation matrices are constructed from the entries of *K*
 - Diagonal entries <-> nodes
 - Nondiagonal entries <-> edges
 - Only one high resolution FE mesh!

Problems:

- AMG-interpolation non-optimal:
 - Some few error components are not well reduced, i.e., some few eigenvalues of the AMG iteration matrix are close to 1

Preconditioned Conjugate Gradient Method

Algorithm 1 PCG : $(K_h, \underline{u}_h, j_h, C_h, \text{ACCURACY}) \rightarrow (\underline{u}_h)$ PCG $\underline{r}_h = \underline{r}_h^0 = \underline{j}_h - K_h \underline{u}_h$ accuracy Solve $C_h \underline{w}_h = \underline{r}_h$ $\underline{s}_h = \underline{w}_h$ $\gamma^0 = \gamma = \gamma_{\rm OLD} = <\underline{w}_h, \underline{r}_h >$ while $\left(\gamma/\gamma^{0} = \left(\frac{||\underline{r}_{h}||_{C_{h}^{-1}}}{||\underline{r}_{h}^{0}||_{C_{h}^{-1}}}\right)^{2} = \left(\frac{||K_{h}\underline{e}_{h}||_{C_{h}^{-1}}}{||K_{h}\underline{e}_{h}^{0}||_{C_{h}^{-1}}}\right)^{2} = \left(\frac{||\underline{e}_{h}^{i}||_{K_{h}C_{h}^{-1}K_{h}}}{||\underline{e}_{h}^{0}||_{K_{h}C_{h}^{-1}K_{h}}}\right)^{2} > \operatorname{ACCURACY}^{2} \operatorname{do}$ $\underline{v}_h = K_h \underline{s}_h$ $\alpha = \gamma / \langle \underline{s}_h, \underline{v}_h \rangle$ $\underline{u}_h = \underline{u}_h + \alpha \underline{s}_h$ $\underline{r}_h = \underline{r}_h - \alpha \underline{v}_h$ Solve $C_h \underline{w}_h = \underline{r}_h$ $\gamma = \langle \underline{w}_h, \underline{r}_h \rangle$ $\beta = \gamma / \gamma_{\text{OLD}}$, $\gamma_{\text{OLD}} = \gamma$ $\underline{s}_{h} = \underline{w}_{h} + \beta \underline{s}_{h}$ end while

Venant:tang

Solver: "Maximal relative error over all eccentricities" versus "solution time"

[Lew, Wolters, Dierkes, Roer & MacLeod, Appl.Num.Math., 2009]

FE models tuned for subtraction (group 1) and for the direct potential methods (group 2)

Comparison of different preconditioners

	group 1					group 2						
	tet503K		tet125K		tet33K		tet508K		tet128K		tet32K	
solver	time	iter	time	iter	time	iter	time	iter	time	iter	time	iter
AMG-CG	12.25	11.20	1.87	9.04	0.18	5.89	9.18	10.40	1.36	7.27	0.15	5.81
IC(0)-CG	112.03	233.43	8.40	128.39	0.45	72.63	72.41	215.05	5.20	98.96	0.31	52.84
Jacobi-CG	167.82	679.43	16.98	414.00	0.76	229.52	99.60	578.04	9.62	331.15	0.47	161.68
gain factor	13.70	60.66	9.08	45.8	4.22	38.97	10.85	55.58	7.07	45.55	3.13	27.83

Link to this work:

Web, pdf.

[Wolters, Grasedyck, Anwander & Hackbusch, Biomag, 2004]

Efficiency of the fast FE transfer matrix approaches

Head model: Tetrahedral FE, 147,287 nodes, 892,119 elements

[Wolters, Grasedyck, Anwander & Hackbusch, Biomag, 2004]

Efficiency of the fast FE transfer matrix approaches

- Head model: Tetrahedral FE, 147,287 nodes, 892,119 elements
- Influence space: brain surface mesh, 2mm resolution, 9555 nodes

[Wolters, Grasedyck, Anwander & Hackbusch, Biomag, 2004]

Efficiency of the fast FE transfer matrix approaches

- Head model: Tetrahedral FE, 147,287 nodes, 892,119 elements
- Influence space: brain surface mesh, 2mm resolution, 9555 nodes
- Number of FE forward solutions:
 EEG, 71 electrodes: 9555 * 3 = 28665
 MEG, 147 channels: 9555 * 2 = 19110 (tangential constraint)

FE approach and dipole model: Venant

Platform	Method	Solver method	Setup	o time	Influence	matrix	Max.memory (in MB)		
			MEG	EEG	MEG	EEG	MEG	EEG	
	New Lead field bases approach	3RHS-AMG-CG	14min	6.5min	63 sec	56 sec	654	405	
Mac G4	Standard	symIC(0)-CG	0.5sec	0.5sec	230 h	302 h	432	219	

[Wolters, Kuhn, Anwander & Reitzinger, Comp. Vis. Sci, 2002]

Parallel AMG-CG on distributed memory computers

Parallel MultiRHS-AMG-CG: Communication is only necessary for:

- Smoother (ω-Jacobi within interface nodes, Gauss-Seidel between blocks and for inner nodes)
- distribution of coarse grid solution
- inner products within PCG method

[Wolters, Kuhn, Anwander & Reitzinger, Comp. Vis. Sci, 2002]

Results for parallel solver methods

SGI Origin2000, each processor 195MHz, MIPS 10000

- **Distribution of memory**
- About a linear speedup for moderate processor number
- Jacobi-CG on 1 proc <-> AMG-CG on 8 procs: Speedup factor of about 80 (10 MG, 8 parallel.)
- Anisotropy and inhomogeneity does not change
 - performance results
- Stable preconditioning for moderate processor numbers

Thank you for your attention!

SIM-NEURO work-group at IBB