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Structure of the lecture

Convergence analysis for FEM subtraction approach (sections
6.5.1-6.5.3 of lecture scriptum)

Other source models (section 6.5.4 of lecture scriptum)
Overview: Multi-layer sphere model (section 6.2 of lecture scriptum)
Forward modeling results

The local subtraction approach
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Overview: Subtraction approach

V. (oV®)=V.j# =1 inQ,

V-6V = f inQ,  f:=V-(cVD™), (6.11)

mit inhomogenen Neumann Randbedingungen an der Kopfoberflache

(VD" n) =g onT, g:=—(cVd~ n).
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Subtraction finite element approach

Theorem 6.1.37 (Existenz und Eindeutigkeit). Sei Q kompakt mit stiickweise
glattem Rand und erfiille eine Kegelbedingung. Dann hat die Variationsaufgabe

Suchev € HI(Q): J(v):= %a(v, v) —1(v) = min! (6.38) : / (VDT V1) dQ
Q

mit a(-,-) aus (6.34) und [ (-) aus (6.35) genau eine Losung ®°" € H!(Q). Diese . / FrdQ + / gvdl’
Losung ist durch Q r
a(®“" v)=1(v) YweH (Q) (6.39)

charakterisiert.

Because of the smoothness of the functions in equations (6.11)] and (6.12),
we could apply the Gaul} integral theorem

/Q V() dive(x)Vu(x)dx =

+ [ v(x){(n(x),o(x)Vu(x))dx
r
and 1n Theorem 6.1.37 we arrived at the variational formulation that was suitable
for a finite element discretisation. Here, we rewrite it in a slightly different form.
We now indicate the source position by an index y. For example, 6(y) is now
the conductivity at the source position which was denoted by 6™ in equation 6.9.
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Subtraction finite element approach
This leads to

Definition 6.5.1 (Analytical forward problem). For an arbitrary mapping  o.:
Q — R3*3 we define the bilinear form

ag: VXV =R, ag(u,v):= /Q<Oc(x)Vu(x),Vv(x)>d :

The weak formulation of the analytical forward problem (Equations (6.11) and
(6.12)) was to find " €V s.t. forallv eV

o( 7 ) (@) = [ v(0)(n(x),00) VO™ (1)dx,

ds(y)—c
DY (x)dx — / DY (x)dx.
Q Q

In Theorem 6.1.37, it was shown that a unique solution of the analytical for-
ward problem exists and the solution "™ belongs to H'(Q).
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FEM basis functions and meshing aspects

<>

Abb. 12. Erlaubte Triangulierung und unzulissige Triangulierung mit hingendem Knoten
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FEM basis functions and meshing aspects

Tabelle 2. Interpolation bei gebriuchlichen Finiten Elementen

AN ANEEN

Abb. 16. Knoten der nodalen Basis fiir lineare, quadratische und kubische
Dreieckelemente
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Vorgabe des Funktionswertes

Vorgabe von Funktionswert und den 1. Ableitungen
Vorgabe von Funktionswert, 1. und 2. Ableitungen
Vorgabe der Normalableitung

Lineares Dreieckelement M}
ue (R
My =Py, dimMg=3

Quadratisches Dreieckelement ,Mé
ue (R
My =P, dimM =6

Kubisches Dreieckelement M
uec(Q)
My =P5, dimM =10

Argyris Dreieck
uec(Q)
17.; — 7’5. d.imﬂ,d =21

Bell Dreieck
uec(Q)
My CPs, dyulsyy €P3, dimIT =18

Hsieh-Clough-Tocher-Element
u e CY()
T=U. Ki, ulg, €Ps, dimMy =12

Bilineares Viereckelement Qi
ue Q)
My CP2, ulgr, € P, dim [Ty =4

Viereckelement der Serendipity-Klasse
ue C(R)
My CPa, ulgn € Pa, dim [T, =8
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FEM basis functions and meshing aspects
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Let T ={ty,...,Tr} be a triangulation of the polygonal domain Q into tetra-
hedra 7;. For the finite element space Vy we use standard conforming linear
elements, i.e. Vy ={v €V | v|;, affine ,i=1,...,T}. Let span{¢; | i € I } denote
the standard Lagrange basis of Vi using local basis functions @;, i € I,#I = N.
By &; we denote the Lagrange point of the FE basis function ;.

Definition 6.5.2 (Finite element forward problem). The finite element forward
problem is to find uy € Vy s.t. for all v € Vy

as(un,v)

(@)= [ v(0) (). 6()VE™ (1))d

ds(y)—oc
/ uv()dx = — / ™ (x)dx.
Q Q
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Numerics of the full subtraction approach

The finite element approach leads to the following linear system for the full sub-
traction approach:.

Ku=b0, KeRVYN yup cRVY (6.110)

with the stiffness matrix

K,'ﬁj = / (G(x)V(pj,V(p,->dx, I,] = I,....N (6.111)
Q

and the right-hand side

= [ (60 =00 V& (). V() (6.112)

/cp, o(y) VO™ (x))dx, i=1,....,N. (6.113)
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The matrix K is SPD, where the positive definiteness follows from the ellip-
ticity of the bilinear form a(-,-) for all uy € Vy,

Lemma 6.1.34

u”Ku—Zu iy Zu (p],Zu ©;) = aluy,uy) > CellHlfl-N”%)

(6.114)
with Ce;; > 0O the ellipticity constant and from the comments of Schwarz [282,
Chapter 3.1.3] concerning the implementation of the Dirichlet condition.
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The term V@; 1s constant for linear elements, so that entries of K in (6.111)
can be computed easily. The entries of the right-hand side 5’ need to be accurate
enough in order to preserve the finite element convergence. The gradient of
can be computed analytically following equation (6.10). Since we project the

correction potential into the space of piecewise linear elements, it 1s sufficient to
have a perturbation of an order of the square of the step size which 1s achieved by
a second order accurate quadrature formula. In Section 6.5.9 we will verify that
this order 1s necessary and sufficient to produce a negligible quadrature error. We
assemble the first term (6.112) of b, element-wise. For x — y, the integral even
vanishes because of the homogeneity assumption. The second term (6.113) in-
volves the normal vector and the basis function itself. Thus, we need a quadrature
formula that resolves V®™Y at the boundary (where it is very smooth) and that
1s accurate for linear functions. Again, a second order quadrature formula for the
surface triangles is necessary and sufficient, as will be verified in Section 6.5.9.
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Table 6.1: Quadrature formulas of Stroud [307] for the volume integral from
Equation (6.112) and the surface integral from Equation (6.113) .

Formula | degree | number integration points Reference

Volume integral from Equation (6.112)

1—1 1 [307, Chapter 8.8, p.307]
:2—1 n+1 [307, Chapter 8.8, p.307]
:T—1 64 [307, Chapter 8.8, p.315]

Surface integral from Equation (6.113)

1—1 1 [307, Chapter 8.8, p.307]
:2—1 n+1 [307, Chapter 8.8, p.307]
:T—1 16 [307, Chapter 8.8, p.314]

For the numerical integration of the right-hand side (6.112), (6.113), we use
quadrature formulas of [307]. As shown in Table 6.1, the overall numerical accu-
racy of the full subtraction approach will be evaluated for quadrature orders of 1,
2 and 7. Our notation in Table 6.1 closely follows the one of the tables in [307].
T, indicates an n-dimensional simplex [307, Chapter 7.8] (in our case: n = 3).




Projected (or approx.) subtraction source
modeling approach
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Numerics of the projected subtraction approach

In [370], a projected subtraction approach was presented where the function =
is projected in the finite element space by

N
O (x) = PY(x) = ) @j(x)DT, BT =P7(E)). (6.115)
j=1

Introducing the coefficient vector ®., := (D7, ..., PY), the system of equations

Ku=—-K“"®, —SP, (6.116)

was obtained where K was defined in (6.111) and the matrices K" and S are
defined by

Kif = = [ ((6(3) ~ o)) Ve,(x). Ve (1)) (6.117)
Q

and
(6.118)
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Even if the projected subtraction approach is computationally less expensive be-
cause for each source, only the coefficient vector u. has to be computed, the
drawback of the approach is the additional approximation error by (6.115). We

will see in the numerical validation section that the presented full subtraction
approach in which ®* is not approximated in the FE space has a much higher de-
gree of accuracy, but is, however, also significantly more expensive with regard
to the computational amount of work.
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6.5.2 Convergence analysis for the subtraction approach

In this section we will see that the L?-error of the approximation
ey 1= || D)™ — | 12(q)

with @7 being the finite element approximation with FE stepsize £ to the func-
tion ®° behaves like #2 = N=2/3, so we have to use a finite dimensional but
large space V. For our FE approximation ®,°"", we are interested in estimates
of the form

|| @ — @5 || < ChF (6.119)

with largest possible quantitative order k. & denotes the edge length of a finite
element. In general, the order depends

 on the regularity of the solution
 on the degree of the FE trial-functions
 on the chosen Sobolev norm and

 on the approximation properties of the triangulation to the geometry.
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For a single compartment volume conductor model with homogeneous con-
ductivity, we have the following property:

Theorem 6.5.3 (Quantitative error estimate for single compartment model with
homogeneous conductivity [121]). Let us assume a sufficiently regular solution
O ¢ H*(Q). For an appropriate tetrahedralization (hexahedralization), linear

(trilinear) FE trial-functions and a continuous and elliptic bilinear form af(-,-),
we find a constant Cy which is independent of ®““"" and h with

||¢COFI’ _ @20/‘1’“1 S C1h||¢c0ﬂ”||2

In the single compartment volume conductor model with homogeneous con-
ductivity, the regularity assumption ®°"" € H?(Q) is typically fulfilled because
the boundary of the domain €2 is piecewise smooth.
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Lemma 6.5.4 (Aubin-Nitsche [121]). Let us assume a sufficiently regular solu-
tion ®°'" € H?>(Q). For an appropriate tetrahedralization (hexahedralization),
linear (trilinear) FE trial-functions and a continuous and elliptic bilinear form
a(-,-), we find a constant C which is independent of ®°"" and h with

| |(I)COI'I’ . (D;;OI’I'| |O S C2h2 | I(DCOI'F| |2
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For a multi-layer model with discontinuous conductivities, we can only as-
sume ®'" ¢ H'(Q) (as discussed above, due to higher regularity assumptions,
it might be ®"" ¢ H'¢(Q)). Following Hackbusch [121] (Chapter 10.1.2), we
can hope that the general error bounds ||®“"" — ®{*"||; = 0(h) and ||P“"" —
" ||y = 0 (h?) can be achieved by means of isoparametric, i.e., geometry con-
forming, finite elements.

With regard to our specific application, we can give a statement concerning
the property of the constant C in Equation (6.119), which will be of practical
interest, as shown later in the simulation studies.
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Lemma 6.5.5. Let 0 be the distance between the source position xo and the
closest location of the next conductivity jump on 0Q> (see definitions in Section
6.1.2). If b gets small, then the constant C(J) in

1) <C@)VILy (@), YveH(Q).

with [(v) from Equation (6.35) is proportional to 5/2 (¢ (0) ~ 5/2),
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Proof. When defining r := x — x, we find [A®>| ~ 1/|r|* and, with Q := Q\ Q,

AP ||, @) = \//Q (A®~)* dx \//r>5 1/rédrm\[1/8° =877 =1 ¢1(3).

We then find constants C(J) and ¢, so that

OIS (6°TV ™) vdx — / <cvq>°°,n>vdr|
Q I

1V (V") v]dx -+ cal ¥y

ost [ 11607 Ivldx + el ey

Holder
x| [AP” | 1, @) [ V[, @) + €2l (@)

<
< (Gﬁ?icl(S)Jrcz)IIVIlLa ) <C( )||V||L2
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Lemma 6.5.5 has to be interpreted in the following way. If the source ap-
proaches a next conductivity jump, i.e., if d goes to 0, then the constant for the

upper estimation of the right-hand side functional / gets larger (with exponent
5/2).
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Lemma 6.5.6. With [ from Equation (6.35), we find

12" [lo < Cay' 11110

Proof. The ellipticity of the bilinear form was used:

corr||2 corr||2 Lemma 6.1.34 COrr ACOrr corr corr
Can| |7 [[g <Can||P"|[y < a(@7, D) = (1,2 <|]I]|o]|P""[o-

[
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In summary, we thus find

. ~ Lemma 6.5.4 o ) Lemma 6.5.6 ) Lemma 6.5.5 )
10—y < G| R <Gl K< C(8) Cs k.

For sources close to the next conductivity jump (e.g., sources with high ec-
centricity, see numerical studies in Section 6.5.8), we have to be aware of possibly
larger numerical errors because of a strongly increasing constant C(9).
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Source models

The subtraction method was presented above as one way to address the source
singularity. The subtraction FE approach was shown to have a sound mathemati-
cal basis for point current dipole models. Another family of source representation
methods, known as direct FE approaches to the total potential [388; 10; 41; 355;

271; 178], are computationally less expensive, but also mathematically less sound
under the assumption that a point dipole 1s the more realistic source model. How-
ever, 1f the realistic extent of an activated patch of cortical neurons is taken into
account, a smoother source model might even be more appropriate.




Partial integration (Pl) source modeling
approach
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Partial integration (Pl)

The first direct method, discussed in the following, i1s the so-called partial
integration direct FE approach. Multiplying both sides of Equation (6.1) by a
linear FE basis function ¢; and integrating over the head domain leads to a partial
integration direct approach for the total potential [10; 355; 206] expressed as

/V-(GVCI))(p,-dx:/V-j”(p,-dx.
Q o)

Integration by parts, applied to both sides of the above equation, yields

= / (oVD, Vo;)dx + / (cV®,n)@;dl" = — / GP, V) dx + / (j* ,n)@;dT.
Q I Q I
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Partial integration (Pl)

Using the homogeneous Neumann boundary condition from Equation (6.2) and
the fact that the current density vanishes on the head surface, we arrive at

. 6.4
/Q (GVD, Ve, )dx /Q G§7, Vo dx ) (Mo, Vi (x0)).

Setting P(x) ~ Py (x) =L ;", ¢ j(X)gy ], leads to the linear system

1

K (6.120)

= Jprp’

with the same stiffness matrix as in (6.111) and the right-hand side vector lpl ) €
RM: with entries

Jprh = 0 otherwise. (6.121)

] { (Mo, Vi (x9)) ifi € NODESOFELE(Xy),




The partial integration source model™ ™"

The function NODESOFELE (x( ) determines the set of nodes of the element which
contains the dipole at position xg. Note that while the right-hand side vectors
of the full subtraction approach (see (6.112) and (6.113)) and of the projected
subtraction approach (see Equation (6.116)) are fully populated, Jpin has only

INODESOFELE| non-zero entries. Here, |- | denotes the number of elements in
the set NODESOFELE.

For the linear basis functions @; considered in the following, the right-hand
side (6.121) and thus the computed solution for the total potential in (6.120) will
be constant for all xg within a finite element.

\ ./ wv
Right-hand side vector has only 4 (for tetrahedra models) b - ‘

non-zero entries and can be computed very fast "'l.{

...




Thank you for your attention!
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