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Abstract

Objectives: A framework for combining bioelectric and biomagnetic data is presented. The data are transformed to signal-to-noise ratios
and reconstruction algorithms utilizing a new regularization approach are introduced.

Methods: Extensive simulations are carried out for 19 different EEG and MEG montages with radial and tangential test dipoles at
different eccentricities and noise levels. The methods are verified by real SEP/SEF measurements. A common realistic volume conductor is
used and the less well known in vivo conductivies are matched by calibration to the magnetic data. Single equivalent dipole fits as well as
spatio-temporal source models are presented for single and combined modality evaluations and overlaid to anatomic MR images.

Results: Normalized sensitivity and dipole resolution profiles of the different EEG/MEG acquisition systems are derived from the
simulated data. The methods and simulations are verified by simultaneously measured somatosensory data.

Conclusions: Superior spatial resolution of the combined data studies is revealed, which is due to the complementary nature of both
modalities and the increased number of sensors. A better understanding of the underlying neuronal processes can be achieved, since an
improved differentiation between quasi-tangential and quasi-radial sources is possible. 1998 Elsevier Science Ireland Ltd. All rights
reserved
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1. Introduction

Source reconstructions combining bioelectric and bio-
magnetic data promise to benefit from the advantages of
both modalities (Cohen and Cuffin, 1979, 1983, 1987,
1991; Cohen et al., 1990; Lopes da Silva et al., 1991; Mau-
guiere, 1992). Electroencephalographic (EEG) measure-
ments can be carried out with an optimized electrode
arrangement and provide nearly equal sensitivities for tan-
gentially- and radially-oriented sources. Due to this unspe-
cific sensitivity distribution EEG data often suffer from a
limited signal-to-noise-ratio (SNR) and exhibit rather com-
plex field structures. Magnetoencephalographic (MEG) gra-
diometer systems have an increased sensitivity for
tangential superficial sources, leading to an improved

SNR and a larger specificity for this class of generators.
On the other hand this means that MEG sensor arrays are
more or less blind to (quasi-)radial neural current compo-
nents and deep sources, leading to a reduced complexity of
the measured field patterns. Therefore, a combination of
both complementary methods should be able to reveal radial
dipole components and stabilize the reconstruction of tan-
gential sources by an increased information content and an
improved overall SNR.

In order to combine both modalities in a unified frame-
work, different problems have to be solved:

• The different measures have to be transformed to a
common basis. This is done by referencing each
sensor to its individual noise statistics (Greenblatt,
1995; Pflieger et al., 1998). So every measurement
channel contributes with its statistical relevance to
the ensuing evaluation procedures. One method to
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automatically determine the noise level of each sen-
sor is to use the standard deviation of a fraction of
the smallest signal levels of the total latency range,
e.g. the smallest 20%. This method of course
requires about 20% signal-free (e.g. pre-trigger)
samples in the measurement.

• For unified reconstruction algorithms, a common
volume conductor model has to be used. EEG
data strongly depend on the head’s shape and its
conductivities (Cuffin, 1990). For example, in
volume conductor models with one compartment
only, the measured signals are inversely propor-
tional to the conductivity. MEG signals in the sphe-
rical volume conductor approximation are not at all
affected by the conductivity. With more realisti-
cally-shaped volume conductor models (e.g. bound-
ary element method (BEM) models) the MEG data
show only a weak dependence on the electric prop-
erties of the compartments. Furthermore the indivi-
dual real (in-vivo) tissue conductivities are not well
known (Geddes and Baker, 1963). We have thus
chosen latencies where single dominantly tangential
dipoles can explain the measured data very well for
both modalities and used them for matching the
conductivities of the volume conductor model.
Thus the magnetic data are used for calibrating
the electric conductivities via a common scaling
factor that keeps the relative conductivities of the
model compartments (brain, skull, skin) constant.

• MEG reconstructions with realistic volume conduc-
tor models tend to overemphasize quasi-radial cur-
rent components due to their very small gain
(Menninghaus and Lu¨tkenhöner, 1995). Therefore,
dipole regularization techniques have to be intro-
duced in order to limit or suppress these low-gain
components at least in single-modality MEG eva-
luations. In EEG or combined EEG/MEG examina-
tions, the electric data are expected to reduce these
effects due to their nearly isotropic orientational
sensitivity distributions (Fuchs et al., 1998b).

For testing the methods described above in view of their
spatial resolution, simulations with different electrode and
magnetometer/gradiometer set-ups were used with a 3
spherical shells volume conductor model. White noise,
uncorrelated across sensors, was added to calculated field
distributions to get statistically relevant results for different
dipole depths and signal-to-noise-ratios. Equivalent dipolar
sources were then fitted with single and combined modalities.

Evoked somatosensory measurements from electric med-
ianus nerve stimulation with simultaneously recorded 31
electrodes EEG (SEP) and 31 channels MEG (SEF) (Buch-
ner et al., 1994) were used to test combined evaluations with
real data. The volume conductor was modeled by a BEM
consisting of 3 compartments. The head/brain compart-
ments for the BEM model were semi-automatically segmen-

ted, and triangulated from magnetic resonance (MR) images
(Wagner et al., 1995). Single equivalent dipoles, cortically
constrained deviation scans (Fuchs et al., 1994, 1998a), and
spatiotemporal dipole models (Scherg and von Cramon,
1985; Mosher et al., 1992) were used to compare single
modality and merged evaluations.

2. Methods

2.1. Signal-to-noise-ratio transformation

In order to combine the different measures of electric and
magnetic data, both have to be converted to a common
basis. Using their signal-to-noise-ratios (SNRs) (Greenblatt,
1995; Pflieger et al., 1998) all sensor or sensor group signals
are processed in the ensuing reconstruction algorithms
according to their statistical significances. A channel-wise
SNR transformation can be utilized by determination of the
noise amplitudeni of each channel, i, from signal-free (e.g.
pre-trigger) latency ranges. From these periods withtn time-
points (samples) the noise amplitudes can be estimated from
the standard deviations of the measured signalsmij = mi(tj):

ni =

������������������������������������������������������������������������������
1

tn −1
∑
tn
�mij −mi�

2 with mi = ∑
tn

mij=tn

s
(1)

Constant channel offsets are compensated by subtraction of
the mean-valuesmi . Linear drifts of the signals can be
compensated by subtracting linear best-fit functions,
which are calculated per channel from continuous signal-
free periods:

ni =
��������������������������������������������������
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with ai =
∑
tn

mij tj − tnmi t

∑
tn

t2j − tnt2
, bi =mi −ai t, t = ∑

tn
tj=tn

(2)

The timepoints used for the noise estimation can also be
taken from histographic analyses of the data (e.g.x% per-
centile). Another possibility, assuming ‘white’ noise spec-
tra, is to use the signal-free high-frequency part of the data
and extrapolate the spectral noise power for all frequencies
of the given measurement bandwidth. In multi-epoch data
the noise characteristics could also be estimated by more
sophisticated techniques, e.g. by taking single trial statistics
into account.

Finally the signal-to-noise-ratios are calculated by nor-
malization of the measured signals to their individual noise
amplitudes, yielding unit-free measures for both electric and
magnetic modalities, that can be combined for merged
reconstructions:

m̂ij =mij=ni (3)
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In cases, where the channel-wise noise determination is not
well-suited, due to a low number of signal-free samples, a
group-wise noise normalization is possible. Here a common
mean noise level̄ng is used for all sensors of one modality
(se, number of electrodes;sm, number of magnetometers):

n̄e = ∑
se

nie=se andn̄m = ∑
sm

nim=sm (4)

The forward calculation of the electromagnetic fields has,
of course, to be modified accordingly (see below).

2.2. Forward models

To solve the inverse problem, that is reconstructing the
generators of the measured data, appropriate models have to
be used. The neural sources are modeled by equivalent or
elementary dipoles, for which analytical or numerical
expressions exist, that describe their electromagnetic field
distributions. These formulas depend on the position and
orientation of the dipolar source, the position (and orienta-
tion, in the magnetic case) of the sensors, and the volume
conductor model and its conductivities. For example in infi-
nite homogeneous volume conductors (conductivityj0, per-
meabilitym0) there are very simple analytic expressions for
the electric potentialV0 and the magnetic fieldB0 (dipole at
positionr j, currentj, sensor at positionr):

V0 =
1

4pj0
j

r − r j

lr − r j l
3 (5)

B0 =
m0

4p
j ×

r − r j

lr − r j l
3 (6)

In the magnetic case, normally only one field component is
measured by the sensor coils. The coil normal directiones

(weighted by the coil areaas) has to be multiplied to the
magnetic field resulting in the calculated magnetic signalB:

B=asesB0 =ases
m0

4p
j ×

r − r j

lr − r j l
3

 !
(7)

In both electric and magnetic cases, the fields depend lin-
early on the current,j. This holds also for the more com-
plicated spherical shell formulas (de Munck, 1988) or more
realistic volume conductor models.

The boundary element method (BEM) allows calculation
of the electric potential,V and the magnetic field,B of a
current source in an inhomogeneous conductor by the fol-
lowing two integral equations, if the conducting object is
divided by closed surfacesSi(i = 1,...,ns) into ns compart-
ments, each having a different enclosed isotropic conduc-
tivity jin

i . The electric potential at positionr [ Sk is then
given by the following formula (Geselowitz, 1967, 1970;
Sarvas, 1987):

j̄kV(r) =j0V0(r) +
1

4p
∑
ns

i =1
Dji rr

Si

V(r ′)n(r ′) ⋅
r ′ − r

lr ′ − rl3
dSi ′ (8)

Given the solution of Eq. (8), the resulting magnetic field
for r Ó Sk is:

B(r) =B0(r) +
m0

4p
∑
ns

i =1
Dji rr

Si

V(r ′)n(r ′) ×
r ′ − r

lr ′ − rl3
dSi ′ (9)

with V0 andB0 representing the potential and the magnetic
field of the source in an unlimited homogeneous medium
with conductivity j0 (see above), the mean conductivity
j̄k = jin

k +jout
k

ÿ �
=2 and the conductivity differences

Dji =jin
i −jout

i . To calculate the electromagnetic fields it
is necessary to numerically approximate the two integrals
over the closed surfacesSi of the conductor boundaries
consisting of differential surface elements(dSi ′) and with
surface normal orientations,n, at positionsr′. The surfaces
are described by a large number of small triangles and the
integrals are replaced by summations over these triangle
areas. Different assumptions about the variation of the
potential over the triangle area can be applied (van Oos-
terom and Strackee, 1983; de Munck, 1992; Ferguson et al.,
1994; Schlitt et al., 1995): averaged, regionally constant,
linear, and quadratic dependencies. The potential values or
the coefficients of the basis functions, used to approximate
the potentials on the surface elements, form a vector of
unknowns which can be solved through the following
matrix formulations:

j̄ V =j0V0 +AV ⇒ V = (j̄ −A) −1j0V0 (10)

B=B0 +C V ⇒ B=B0 +C j̄ −A
� �−1

j0V0 (11)

If one explicitly solves Eqs. (10) and (11) just for the fixed
number of measurement positions, a transfer matrix is
obtained, that relates the sensor signals to the homogeneous
potentials/fields (e.g. Fletcher et al., 1995).

2.3. Lead-field formulation

Due to the linearity in the dipole components of all
volume conductor models, the so called lead-field formula-
tion provides a more compact notation comprising all
s = se + sm sensor signals in column vectors:

V =LV j andB=LBj (12)

The lead-field matricesLV(3*se) and LB(3*sm) contain all
geometric information, such as dipole and sensor positions,
and volume conductor properties, whereas the linear dipole
componentsj and thereby the dipole orientations are sepa-
rated.

To combine both modalities, a common lead-field matrix
has to be set up after the transformation to common units
(signal-to-noise-ratios) has been performed. For that pur-
pose, each calculated sensor signal is normalized by its
individual noise amplitude determined from the measured
data as described above (nie andnim, Eqs. (1)–(4)). Then the
columns of magnetic lead-field matrix (sm sensors (rows))
are appended to the corresponding columns of the electric
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lead-field matrix (se sensors (rows)). The measured data,M,
are treated similarly:

L j =
L̂V

L̂B

2
4

3
5 j =

l̂V1x l̂V1y l̂V1z

… … …

l̂Vsex l̂Vsey l̂Vsez

l̂B1x l̂B1y l̂B1z

… … …

l̂Bsmx l̂Bsmy l̂Bsmz

2
666666666664

3
777777777775

jx

jy

jz

2
664

3
775

andM =
M̂V

M̂B

" #
=

m̂1e

…

m̂see

m̂1m

…

m̂smm

2
666666666664

3
777777777775

(13)

In a spatiotemporal formulation, the vector,M, containing
the measured data, has to be extended to a matrixM , where
each column vector represents one sample. Accordingly the
current component vector,j, has to be extended. For keep-
ing the expressions better readable, the vector and matrix
underlines are omitted in the following equations
(j → j, L → L, M → M).

2.4. Conductivity matching

The combination of electric and magnetic data for
merged reconstructions with real measured data may fail,
since the exact in-vivo values of the electric conductivities
are not well known (Geddes and Baker, 1963). The calcu-
lated electric fields are inversely proportional to the con-
ductivity of the source space for simple volume conductor
geometries (infinite homogeneous conductors or spheres)
and depend on the conductivity ratios and differences for
more complicated and more realistic models (spherical
shells and BEM). The magnetic fields of simple models
(infinite homogeneous media, or spherically symmetric con-
ductors) do not at all depend on the electric conductivities
and for more realistic models there is only a weak depen-
dency on the conductivity ratios of the BEM model com-
partments used.

To overcome this problem, the absolute conductivity
values can be scaled by a common factor, so that the con-
ductivity ratios remain unchanged and the electric poten-
tials are affected by this approach only. This factor can
then be fitted as an additional non-linear parameter during
the minimization procedure that optimizes the dipole posi-
tion(s) (see below). In order to obtain a reliable result for
the conductivity matching factor, latencies or latency
ranges should be used, where good signal-to-noise-ratios

of both data modalities have been acquired, a single tan-
gentially oriented dipolar source is dominant, and where a
low residual fit variance can be achieved. The conductiv-
ities are not assumed to depend on the source orientations
and the timepoint, so their fitted values will be used
throughout the entire evaluation procedure and for any
reconstruction algorithms.

2.5. The inverse problem

The best-fit solution of the inverse problem is deter-
mined by minimizing the residual varianceD2 (squared
deviation) between the measured data and the forward
calculated fields using the Frobenius norm of an (m*n)
matrix A:

lAl2 = ∑
m

i =1
∑
n

k =1
a2

ik (14)

D2 = lM −Ljl2 (15)

M is the spatiotemporal measured data matrix (s sen-
sors*t samples), the lead-field matrixL (s*c current
dipole components) comprises the dipole positions, the
volume conductor characteristics, and the sensor geome-
try, and j contains the (c* t) temporal loadings or
strengths of the (c = 3*d dipoles) dipole components.
The best-fit currents,̂j, that minimize Eq. (15) in the
overdetermined case (more knowns than unknowns:
s . c) are given by (Lawson and Hanson, 1974; Ben-
Isreal and Greville, 1976):

ĵ = LTL
ÿ �−1

LTM (16)

The best-fit dipole positions can be found by non-linear
minimization algorithms (e.g. Nelder–Mead simplex
(Nelder and Mead, 1965)). For each dipole position or
configuration the lead-field matrix,L, has to be set up
and the best-fit deviation (Eq. (15) withj = ĵ) is calculated
by solving the linear problem for the dipole strengths (Eq.
(16)). The minimizer changes the non-linear parameters
(the dipole positions) and looks for the global minimum
of the error hypersurface.

2.6. Generalized error function

A generalized formulation for the minimum norm solu-
tion of the inverse problem can be written as follows:

D2 = lD(M −Lj)l2 +l2lCjl2 (17)

Here the varianceD2 consists of the weighted (byl2) sum
of the data termlD(M −Lj)l2 and the minimum norm model
term lCjl2. M, L, and j are defined as above (Eq. (15)). A
weighting of the sensors can be applied by the (s*s) matrix
D, whereas a weighting of the current dipole components is
described by the (c*c) matrix, C. The best-fit solution,̂j,
that minimizes Eq. (17) in the overdetermined case is given
by (Lawson and Hanson, 1974):
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ĵ =C−1 C−1TLTDTDLC−1 +l2ÿ �−1
C−1TLTDTDM (18)

2.7. Singular value decomposition of the lead-field matrix

Analyzing the unweighted lead-field matrix,L, by per-
forming a singular value decomposition (SVD) (Press et al.,
1992) yields the principal dipole components, their gains,
and their partial field-patterns. In the magnetic case for one
dipole and a boundary element method (BEM) model of the
human head the quasi-tangential and the low-gain quasi-
radial dipole orientations can thus be determined (Fuchs et
al., 1998b). Small gain dipole components have to be reg-
ularized to avoid overemphasizing of the corresponding cur-
rent strengths.

The solution of the linear problem (matrix inversion in
Eqs. (16) and (18)) can be found by performing an SVD of
the (weighted) lead-field matrix,̃L =DLC−1, and the regu-
larization can be applied:

L̃ =USVT with UTU =1 andVTV =VVT =1 (19)

The orthonormal matrix,U(s*c), contains the principal nor-
malized field-patterns, the diagonal matrix,∑(c*c), the cor-
responding gains (gain of theith component:ji = jii ), and
the orthonormal rotation matrix,VT(c*c) the principal
dipole orientations.

The generalized minimum norm solution is found by
inserting Eq. (19) into Eq. (18):

ĵ =C−1VS−1QUTDM (20)

with the diagonal regularization matrix

Q =
1

1+l2=j2
i

� �
(21)

The bracketed term symbolizes a diagonal matrix (ith ele-
ment) derived from theith element of the diagonal gain
matrix (ji) and the regularization parameter,l.

The termUTDM(c* t) comprises the projections of the
weighted, normalized principal field patterns (generated
by the principal dipole components) onto the weighted,
measured data. Regularization takes place in the unique
principal coordinate system (rotated byVT). The (real-
world) dipole current components are recovered by back-
rotation into the original coordinate system (by matrix V in
Eq. (20)).

The best-fit variance in the generalized form follows by
insertion of Eq. (20) into Eq. (17):

D2 = ∑
t

k =1
MT

k DTDMk − ∑
t

k =1
MT

k DTUQUTDMk (22)

with the kth column of the spatiotemporal data matrixM
denoted asMk (so the summations are over allt samples).
This formula shows that the minimum residual variance,
D2, is the difference between the total data variance
(squared, weighted measured data,DM) and the forward
calculated, explainable variance, consisting of the squared,

regularized (byQ) projections (UTDM) of the field patterns
(UT), that are generated by the principal dipole components,
onto the weighted data,DM.

2.8. Standard minimum norm weights

From now on we will consider two special cases of the
current components weighting without any sensor weight-
ing (D = 1). First the standard minimum norm case (C = 1)
will be discussed. In this case the unweighted lead-field
matrix is decomposed (L̃ =L =USVT), and the best-fit solu-
tion of Eq. (17) is:

ĵ =VS −1QUTM (23)

leading to

D2 = ∑
t

k =1
MT

k Mk − ∑
t

k =1
MT

k UQUTMk (24)

The remaining problem in this case is to find the correct
value of the regularization parameterl. One possibility is
to determinel by the so called L-curve method, i.e. by
plotting data- against model-term on double logarithmic
scales as a function ofl and choosingl from the point
of largest curvature (Hansen, 1992). The units ofl are gain
factors (nAm)−1, principal dipole components with gains of
ji = l will be damped by a factor ofqi = 0.5 (Eq. (21), Fig.
1).

Special care has to be taken for the tendency of minimum
norm solutions to overemphasize sources close to the sen-
sors (Crowley et al., 1989; Gorodnitzky et al., 1992),
because they can generate similar fields at lower loadings
compared to more distant sources. This leads to an increased
data-term, but a decreased model-term in Eq. (17), so that
the sum of both becomes minimal at more superficial source
locations. In order to compensate for this effect at least
partially, an appropriate lead-field normalization should be
introduced (Lawson and Hanson, 1974; Ko¨hler et al., 1996).

2.9. A new measure for minimum norm weighting

A second method of current component weighting is to
use the projections of their field patterns (UT) onto the mea-
sured data and in that way their ability to explain these data
and minimize the rest varianceD2 (Eqs. (22) and (24)). This
is done by choosing the model term matrix according to:

C =WVT andC−1 =VW−1 (25)

with the diagonal weighting matrix,W, that weights the
principal current dipole components (which are determined
by an SVD of the weighted lead-field matrixDL = USVT)
according to their projections (UTDM) and their gainsji:

wi =ji=

����������������������������������������
∑
t

k =1
MT

k DTUiU
T
i DMk

s
(26)

The ith diagonal element ofW (wi) is calculated from the
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projections ofUi (the ith column ofU, containing the field
pattern generated by theith principal dipole component
(VTj i)) onto the weighted, measured dataDM. The denomi-
nator of Eq. (26) represents the partial contribution of the
ith principal dipole component to the explainable total
deviation. From Eq. (18) it follows for this special case:

ĵ =VS −1Q̃UTDM (27)

with the diagonal matrix

Q̃ =
1

1+l2w2
i =j

2
i

� �
= 1+l2= ∑

t

k =1
MT

k DTUiU
T
i DMk

�−1� ��
(28)

and a residual variance expression similar to Eq. (24) with
Q replaced by this regularization matrix. With this new
method, the regularization parameter is now in the units
of the measured data (SNRs). Principal dipole components
that explain a partial variance ofl2 (or a partial deviation of
l) will be damped by a factor ofqi = 0.5 (Eq. (28), Fig. 1).
If the noise in the data is estimated correctly, a value of
l = 1 should be a good choice, since then those compo-
nents are damped, that can produce statistically-insignifi-
cant contributions to the measured data only. Thus a long-
lasting search for the correct value of the regularization
parameter is avoided and a more practical measure is
used instead of the abstract dipole gains of the standard
method.

Furthermore, lead-field normalization is less critical com-
pared to the standard minimum norm scheme, since the new,
more indirect measure punishes insignificant contributions
without using the component’s gains, instead of suppressing
low-gain components leading to large strengths in the model
terms. The applicability of this new regularization technique
to underdetermined problems (minimum norm least

squares/current density reconstructions) will be the subject
of another publication (work in progress).

2.10. .Simulations

Simulations with tangentially- and radially-oriented test
dipoles were carried out for 19 different EEG and MEG
sensor configurations representing high-to-low number
electrode montages as well as a full coverage whole head
magnetometer system to a low coverage first-order gradi-
ometer system (Fig. 2). Three spherical shells fitted to the
electrodes have been used as volume conductor model
(radii: 85, 92, 100 mm; conductivities: 0.33, 0.0042, 0.33
(Qm)−1). Forward calculations were performed for radial
and tangential test dipoles at 12 different heights (depths
in vertical direction) ranging from−30 to 80 mm (center of
the volume conductor at 0 mm, stepsize 10 mm). White
noise was added to the calculated field distributions and
averaging was performed in order to get statistically-rele-
vant results for mean SNRs and mean dipole mislocaliza-
tions. From each test position, 200 field-patterns have been
derived by adding noise of a fixed variance. In order to
simulate different quality measurements, 5 noise classes
were generated by selecting different noise amplitudes. At
the largest eccentricity (94%) the noise was adjusted to
yield mean SNRs of about 100, 50, 20, 10, and 5 for the
different sensor configurations. Overall 460 000 field pat-
terns were calculated and the same number of dipole fits
was performed.

The different sensor set-ups could thus be tested for
their depth sensitivities and their equivalent dipole locali-
zation accuracy in single as well as in combined modality
evaluations. Due to the spherical test volume conductor
symmetry in the magnetic case tangential dipoles could
be used only. For the mixed EEG+ MEG studies also
tangential dipoles were used only, since the magnetic
data would yield no additional information for radial
sources (SNR= 0).

2.11. .Evoked somatosensory field examinations

In order to verify the simulation results with real mea-
sured data, a standard SEP/SEF experiment was used. The
left medianus nerve of a female, right-handed subject was
electrically stimulated at the wrist with an intensity of twice
the motor threshold. Rectangular current pulses of 0.2 ms
duration and a repetition frequency of 3.1 Hz were used
(Buchner et al., 1994). The electric (31 electrodes) and
magnetic (31 first-order gradiometers (PHILIPS MEG)) sig-
nals were sampled over periods of 128 ms pre- and 128 ms
post-stimulus with a sampling rate of 1k Hz. The data were
filtered in a frequency range from 5 to 200 Hz. Four replica-
tions of 1000 epochs each were averaged for SNR improve-
ment.

The electrodes were unevenly distributed across the head
to improve spatial sampling over the right somatosensory

Fig. 1. Regularization weightsqi (compare Eqs. (21) and (28)) as a func-
tion of the reduced regularization parameterx = l/ji. For small reduced
parameters no damping occurs, forx = 1 the weight is 0.5, and for large
parameter values strong attenuation takes place (≈ x−2).
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areas corresponding to left medianus nerve stimulation
(Figs. 3 and 10). The reference electrode was placed at
Fz, the measured data were finally rereferenced to a com-
mon average reference and the same procedure was applied
to the calculated potentials.

The electrode positions as well as 4 additional landmarks
for registration of the MEG cryostat were marked with fat
capsules that produce a good contrast in magnetic resonance
(MR) images. The landmarks were replaced by magnetic
coilsets, that were localized before and after each session
by the MEG system (Fuchs et al., 1995). For the anatomical
data-set 128 sagittal MR slices (1.6 mm thick) with an

image matrix of 256× 256 pixels and a field of view of
300 mm were taken with a 1.5 T system and a strongly
T1-weighted gradient echo pulse sequence.

2.11.1. BEM model setup
The evoked somatosensory measurements were analyzed

with both modalities combined, and compared to the corre-
sponding single modality evaluations. In all cases a realis-
tically-shaped volume conductor model (BEM) was used.
The MR data were interpolated to an isotropic data cube and
the skin surface with the electrode markers was segmented
by radial raycasting from the outside (Fig. 3). The electrode

Fig. 2. Sensor set-ups used for the EEG and MEG simulations with 3 spherical shells volume conductor models. Left column: frontal views, right column:left
side views.
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positions were read out by a mouse-controlled cursor in a 5-
side-views presentation of this surface. The cortical surface
was segmented by 3D region growing with a single intensity
threshold value representing the border layer between white
and gray matter. The 3 BEM model compartments were also
segmented from the MR data starting with the inside of the
skull, which was approximated by a smoothed, dilated
envelope of the gray matter layer. The outside of the skull
was then found by filling the first compartment with pass-
markers (which are transparent for region growing), a dila-
tion of about 7 mm and converting the outside to stop-mar-
kers (which block the region growing) to avoid bleeding to
the lower parts of the head, followed finally by region grow-
ing with a threshold value representing the border between
bone and skin and a smoothing operation. The skin itself
was segmented by filling the skull-compartment with pass-
markers, further dilation of 14 mm, setting the outside to
stop-markers, region growing with a threshold of the skin–
air transition, and smoothing.

To get a triangular representation of the compartment
surfaces needed for the BEM-meshes and visualization pur-
poses, the surfaces were thinned with different radii (8 mm
for the liquor/brain-, 10 mm for the skull-, and 12 mm for
the skin-compartment, Fig. 3). This procedure yielded a
total of 2772 nodes (5532 triangles) for the BEM-model
with 1212 nodes (2420 triangles) for the innermost compart-
ment, that was treated separately, in an isolated problem
approach (IPA) (Ha¨mäläinen and Sarvas, 1989). The set-
up time for both IPA-BEM matrices (27722 ⇒ 61.4 MB
and 12122 ⇒ 11.8 MB storage requirement) with a linear
potential approximation (Schlitt et al., 1995) over virtually
refined triangles (Fuchs et al., 1998b) took about 9 min on
an UltraSparc 1/170 workstation with 128 MB memory. The
LU-decomposition of the BEM matrices and the set-up of
the transfer matrices containing all sensor positions (and
orientations for the MEG) needed about 2 min altogether.

Fig. 3. Head and brain surfaces segmented from 3D MR data. Upper row: skin with electrodes and cortical gray matter layer. Lower row: 3 BEM
compartments: skin (12 mm mean triangle edge length, 755 nodes), outside skull (10 mm, 805 nodes), and inside skull (8 mm, 1212 nodes).
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2.11.2. Source reconstruction methods
Single moving dipole reconstructions representing the

centers of the (in this case overlapping) cortical activations
of the tangentially oriented N20 and the radially oriented
P22 generators were overlaid onto the MR data of the sub-
ject and the segmented cortical surface. In addition, corti-
cally-constrained deviation scans (Fuchs et al., 1998a) were
performed at different latencies for the single and merged
modality cases and spatiotemporal methods (Scherg and
von Cramon, 1985; Mosher et al., 1992) were applied.
The deviation scans were carried out on the segmented
gray matter layer surface with mean support point distances
of 2.3 mm for a patch containing the upper part of the right
hemisphere only (3135 points). At each node of this cortical
surface representation the best-fit residual deviation (Eq.
(22)) was calculated and 1-deviation was plotted in a
color-coded fashion (Fig. 9), so 1 corresponds to 0% relative
deviation (perfect fit) and 0 to 100% deviation (no fit pos-
sible). The cortically constrained MUSIC scan was per-
formed on all 18 681 nodes of the whole brain surface
(mean node distance 3.3 mm). The surface normals, which
could have been used to further constrain the reconstruc-
tions in view of the dipole orientations, were not taken into
account.

The single equivalent dipole fits as well as the cortically
constrained deviation scans were performed at latencies
between 18 and 24 ms, so the onset of the tangentially-
oriented N20 and the transition to the radially oriented
P22 was covered. The spatiotemporal approaches were
applied for the whole interesting latency range of 10–60
ms and up to 3 fixed dipole sources have been calculated
sequentially. In this approach, the dominating tangential
dipole patterns in the latency range of 18–21 ms were fitted
first by a fixed dipole. Next, the mixed tangential/radial
patterns in the time-range from 22 to 26 ms were fitted
with a second fixed dipole, while keeping the first,
already-fitted dipole, fixed in position and orientation.
Finally, a third dipole was fitted in the range from 14 to
17 ms, keeping both previously-fitted dipoles fixed in posi-
tion and orientation. Then, with all 3 sources fixed, their
strengths and residual variances were determined for all
samples from 10 to 60 ms. The results of this approach
depend on the order of the time-ranges chosen and their
extents, and were thus compared to the more objective
MUSIC scan results. The source volume for all dipole fits
was restricted to the inside of the innermost boundary ele-
ment compartment (inside of the skull).

3. Results

3.1. Simulations

First the mean SNRs were plotted against the depths of
the dipoles. Thus the depth sensitivities of the different
single and combined modality set-ups can be studied by

analyzing the reduced SNRs, which are equivalent to the
relative system sensitivities. The mean SNR values of the
most superficial dipole position were used for normaliza-
tion. After performing single dipole fits, the mean misloca-
lizations (averaged spatial distances between true and fitted
dipole positions) were plotted as a function of the test dipole
depths. Fig. 4 displays the sensitivity results for all single
modality set-ups. On the semi-logarithmic scaling nearly
linear dependencies can be found for the EEG montages,
visualizing an exponential decrease of the SNRs with dipole
depth.

The EEG simulations with 3 different montages (81, 61
and 32 electrodes, Fig. 2) were analyzed for radially- and
tangentially-oriented test dipoles. As expected, the slopes
differ for different montages and different dipole orienta-
tions. For the largest coverage set-up with 81 electrodes, the
SNRs of dipoles at the center position drop to 44%, 62% and
72% compared to the most superficial position for radial,
front–back tangential, and left–right tangential source
orientations. The results for front–back oriented tangential
dipoles are very similar to the results for the left–right
oriented tangential sources, thus their averages are dis-
played only. With smaller coverage (61 and 32 electrode

Fig. 4. Normalized SNRs (system sensitivities) for different EEG mon-
tages (E81, E61, and E32) with tangentially and radially oriented test
dipoles in a 3 spherical shells volume conductor model. The MEG simula-
tions for different magnetometer/gradiometer set-ups (M148, M70, M31,
and G37) were performed with tangential test dipoles only. The upper part
shows a linear SNR scale, while the lower part has a logarithmic scale to
better visualize the small SNR values.

101M. Fuchs et al. / Electroencephalography and clinical Neurophysiology 107 (1998) 93–111



montages), the mean sensor sensitivities drop slightly faster
(to 27% for the radial and to about 58% for the tangential
dipole orientations). No significant dependency on the elec-
trode density (spatial sampling) could be found when com-
paring the 61 and 32 sensor set-ups. The differences
between the 81 electrodes montage and the lower sensor
number set-ups, especially for radial dipoles, has its reason
in the smaller coverage of those systems, so that the signals
of deeper radial sources cannot be detected as well as by the
full coverage system.

The results for the different MEG systems are shown for
tangential source orientations only. The shielding effects of
the volume conductor can clearly be seen in the sharply
decreasing SNRs with depth (approaching 0 at the center
of the sphere). This decrease is over-exponential for deep
sources, which are consequently suppressed and cannot be
localized very well. The 1st order gradiometer system exhi-
bits the steepest SNR versus depth slope and is therefore
worst for localizing deeper dipoles.

The combined EEG+ MEG results are displayed in Fig.
5. Again, tangentially oriented dipoles were used only. The
SNRs at small eccentricities are dominated by the electric
signals, whereas at larger eccentricities, both modalities
contribute. The number of sensors of one modality makes
up its weight in the averaging. This is the reason why the 81
electrodes combined with 70 or 31 magnetometers have a
slower decrease in sensitivity than the combination with 148
magnetic sensors. For the latter the faster-decreasing MEG
sensitivity dominates, whereas for the other configurations
the 81 electrodes ‘win’.

The corresponding mean dipole mislocalizations are dis-
played in Figs. 6 and 7. Of course their order is reversed
compared to the mean SNRs, meaning that the best SNR test
positions have the smallest localization error and that these
errors increase for decreasing SNRs and thus decreasing
eccentricities. The localization errors were found to be
inversely proportional to the mean SNRs for all 5 measure-
ment quality classes (SNRs,100, ,50, ,20, ,10 and

,5). Therefore the curves in Figs. 6 and 7 were normalized
to the mean SNRs. This allows to universally use these plots
for the estimation of confidence intervals for fitted single
dipoles, given the sensor montage, the dipole depth, and the
data-SNR (if no systematic errors are present).

For sources at larger eccentricities the increased resolu-
tion of the MEG systems can be seen, compared to the
electric cases (the corresponding curves cross each other).
Taking into account that EEG data often suffer from lower
SNRs (by a factor of about two, see SEP/SEF example), the
crossover-points will slightly shift towards smaller eccen-
tricities for real world applications.

Fig. 5. Normalized SNRs (system sensitivities) for combined EEG+ MEG
simulations with tangentially oriented dipoles. All combinations of the 3
different electrode montages (E81, E61, and E32) with the 4 different
magnetometer/gradiometer systems (M148, M70, M31, and G37) are dis-
played.

Fig. 6. Normalized dipole mislocalizations for different EEG and MEG
set-ups (compare Figs. 2 and 4) as a function of the test dipole depth. For a
given SNR all curves have to be scaled by a factor of 100/SNR to get the
mean fit errors in mm. The MEG simulations (M148, M70, M31, and G37)
were performed with tangentially oriented dipoles only.

Fig. 7. Normalized dipole mislocalizations for different combined
EEG + MEG set-ups (compare Figs. 2 and 5) as a function of the test
dipole depth. For a given SNR all curves have to be scaled by a factor
of 100/SNR to get the mean fit errors in mm. All simulations were per-
formed with tangentially oriented dipoles only.
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In the MEG case a more prominent saturation of the mis-
localizations for deep sources can be found, compared to the
EEG case. This is due to the restriction of the sources to the
inside of the spherical volume conductor. These
artifacts have been omitted in Fig. 6, but the effect can
be estimated easily by comparing the sphere radius to the
large mislocalizations of the MEG systems at low eccentri-

cities.
The results of the combined EEG+ MEG evaluations can

be seen in Fig. 7. Due to the larger number of sensors and
the complementary field distributions, the combined results
are always better than the corresponding single modality
evaluations. For superficial source positions the superior
magnetic localization power (compared to the EEG cases)

Fig. 8. Butterfly-plots (from−10 to 100 ms) of the measured signals evoked by electric medianus nerve stimulation, mean global field powers, and potential/
field-maps (middle column). The right column displays SVD analyses of the selected time range (18–24 ms) with contour maps (left) and time courses (right)
of the two dominant field patterns. Upper half: 31 electrodes EEG (somatosensory evoked potentials (SEP)), lower half: 31 gradiometers MEG (somato-
sensory evoked fields (SEF)).
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is further improved by the additional information content of
the electric channels. The steep increase in localization
errors of the MEG systems alone for deeper sources cannot
be found in the merged studies, where the electric data are
capable of localizing deep sources with smaller errors.

3.2. Evoked somatosensory field examinations

The measured EEG data are displayed in Fig. 8, together
with field-maps at two selected latencies (20 and 23 ms)

and singular value decomposition (SVD) analyses of the
time range, that was selected for source reconstructions
(18–24 ms). For comparison, the corresponding MEG
data are analyzed and displayed in the same fashion in
the lower part of Fig. 8. The noise amplitudes were esti-
mated in the pre-trigger periods of both data (from−120 to
−10 ms). The EEG data are noisier (max. SNR: 25) than
the MEG data (max. SNR: 52) and exhibit several struc-
tures that cannot be found in the MEG traces. For example,
the small peak at latencies around 15 ms and the shoulder

Fig. 9. Single moving dipole reconstructions (at 20, 23, and 18–24 ms) with an enlarged view of the right central sulcus (upper left to lower right). First row:
EEG data only, middle row: MEG data only, lower row: EEG+ MEG used together. Left and middle columns: two single latency dipole reconstructions
together with cortically constrained, color-coded deviation scans, right column: dipoles for all latencies overlaid with a rendering of the cortical gray matter
layer.
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at the decreasing slope of the first large peak around 24 ms
are missing in the MEG signals. Furthermore, the different
amplitude ratios of the large peaks are obvious. All these
features can be explained by the missing sensitivity of the
MEG sensors to (quasi-) radially oriented source compo-
nents.

3.2.1. Single equivalent dipoles and cortically constrained
deviation scans

The SVD analyses show, that in the selected latency
range two EEG patterns (one apparently tangential, and
one apparently radial) are present, which are comparable
in amplitude (around 2:1), whereas in the MEG case one
pattern is clearly dominating (amplitude ratio 10:1).

Before the dipole reconstructions and deviation scans were
performed, a factor for matching the conductivities of the
BEM volume conductor model was fitted at latencies around
20 ms, where a tangential source clearly dominates both EEG
and MEG data. Fig. 9 shows single moving dipole recon-
structions at two selected latencies (20 and 23 ms), when
tangential and radial patterns are pre-dominant in the EEG
data, and for the whole selected latency range (18–24 ms).

For visualization of the anatomical correlation an enlarged
view of the cortical surface segmented from the MR data is
overlaid. The right central sulcus can clearly be identified
(anterior: right, posterior: left, compare Fig. 3 field-maps).

In order to verify the dipole fit results and to show con-
fidence regions (provided that there are no systematic errors
like sensor mislocalizations, oversimplified volume conduc-
tor models or incorrect source models) for the single dipole
solutions, cortically constrained deviation scans are also
displayed as color-coded surfaces together with the single
latency dipoles.

At all latencies the single dipole source model was able to
explain the measured data very well in both EEG and MEG
cases (best fit at 21 ms: EEG: 11.8% relative deviation
(normalized to the measured data)= 1.4% residual var-
iance, MEG: 4.9% dev.= 0.2% res. var., EEG+ MEG:
7.7% dev.= 0.6% res. var.). Details can be found in Table
1, where source locations for single and combined modality
evaluations are compared to the results of EEG+ MEG
with regularization. At a latency of 20 ms all modalities
without and with regularization yield the same result for
the tangential source (largest distance 0.6 mm). The dipole

Fig. 10. Spatiotemporal analysis of the EEG data in the latency range of 10–60 ms. On the left side, the leading 3 SVD field-patterns and -loadings can be
seen together with the loadings of 3 sequentially-fitted fixed dipoles and the explained deviation (lowest row). The right column displays the dipole positions
and orientations (shown as dark bars) overlaid to the cortical surface and the electrodes in different projections.
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positions differ for the single modality results (compare Fig.
9), especially at latencies with lower SNRs (e.g. MEG at 24
ms). These results have larger confidence regions and are
thus not well defined. Furthermore at the later timepoints the
radial dipole develops in the EEG data, and therefore the
EEG dipole positions differ as well from the MEG and the
combined results.

Regularization affects mainly the latencies with lower
SNRs at the beginning and the end of the analyzed peak
by suppressing insignificant contributions to the residual
variance. Thus the explained variances are slightly smaller
with regularization (compare also Table 2) and the dipole
positions are shifted.

The EEG dipoles exhibit a transition from a tangential
source at 20 ms located in the posterior wall of the central
sulcus to a radial source at a latency of 23 ms. The confi-
dence regions of the reconstructions are larger and more
isotropic as compared to the MEG case. There the typical
ellipsoidal shape with a narrow confidence range perpendi-
cular to the dipole direction and smaller specificity along its

direction (and in the depth, which cannot be clearly seen in
Fig. 9) can be found. The MEG dipoles are all tangentially
oriented and are rather stable in position (except for laten-
cies with very small SNRs).

The combined evaluations (Fig. 9, lowest row) profit
from both EEG and MEG properties. At latencies where
the tangential component is dominating, an improved spa-
tial resolution compared to both single modality evaluations
can be seen with a confidence area shape similar to the MEG
case (since the SNR of the MEG data is twice as large as in
the EEG data, the MEG data dominate at this latency). At
later latencies, when the radial dipole comes up in the EEG
data and when in the MEG case only the decreasing tangen-
tial dipole component can be reconstructed, the EEG data
dominate and determine the dipole orientation and the more
isotropic confidence region. The remaining MEG signals of
the decreasing tangential source force the radial dipole posi-
tion towards lower locations, thus deteriorating the common
fit quality due to an inadequate source model (two different
sources are present with overlapping activation profiles).

Table 1

Results of single moving dipole fits in the latency range of 18–24 ms for EEG (SEP), MEG (SEF), and both, without (regul. 0) and with regularization

Latency
(ms)

EEG regul. 0 Regul. 1 MEG regul. 0 Regul. 1.5 EEG+ MEG regul. 0 Regul. 1

SNR Dev
(%)

Dr
(mm)

Dev
(%)

Dr
(mm)

SNR Dev
(%)

Dr
(mm)

Dev
(%)

Dr
(mm)

SNR Dev
(%)

Dr
(mm)

Dev
(%)

18 4.4 19.2 5.9 23.8 9.6 9.3 8.8 2.0 10.5 2.1 7.3 14.8 1.3 15.8
19 10.9 21.0 3.1 21.1 2.1 22.5 7.5 0.4 8.1 2.4 17.7 13.3 0.6 13.6
20 20.0 13.0 0.6 13.2 0.3 41.9 6.2 0.6 6.2 0.5 32.8 8.6 0.1 8.6
21 25.0 11.7 4.2 11.8 4.2 52.3 4.7 1.4 4.9 1.6 41.0 7.7 0.0 7.7
22 23.2 14.1 8.4 14.2 8.5 41.1 4.8 3.3 5.0 3.5 33.3 10.9 0.0 10.9
23 17.9 14.2 13.9 14.3 14.2 19.7 7.8 6.7 7.9 6.2 18.9 20.4 0.5 20.5
24 15.8 15.9 13.1 15.9 13.1 7.6 20.6 14.8 21.3 14.2 12.4 32.0 0.2 32.0

The SNRs, residual deviations (Dev), and spatial deviations (Dr) of the dipole locations from the reference result (EEG+ MEG with regularization) are
displayed.

Table 2

Results of the spatiotemporal dipole fits for all modalities without (regul. 0) and with regularization

Latency
(ms)

MEG EEG EEG+ MEG

Max SNR EEG regul. 0 (best res. dev. 11.7%) EEG regul. 1 (best res. dev. 13.3%)

dx dy dz dr dx dy dz dr

14–17 5.6 3.2 4.2 −21.8 −19.7 −11.1 31.4 −20.4 −39.9 −9.9 45.9
18–21 25.0 52.3 41.0 −1.7 1.5 0.1 2.3 1.2 −1.4 0.3 1.9
22–26 23.2 41.1 33.3 −4.2 −0.5 8.9 9.9 −2.3 −2.4 8.4 9.0

Latency
(ms)

MEG regul. 0 (best res. dev. 6.4%) MEG regul. 1 (best res. dev. 6.7%) EEG+ MEG regul. 0 (best res. dev. 8.2%)

dx dy dz dr dx dy dz dr dx dy dz dr

14–17 −12.6 −11.7 8.7 19.3
18–21 −0.7 − 0.6 0.5 1.0 −0.8 −0.3 0.7 1.1 0.0 −0.1 0.0 0.1
22–26 0.1 0.2 −1.4 1.4

Three dipoles were successively fitted in the latency ranges of 18–21 ms, 22–26 ms, and 14–17 ms (in this order). The spatial deviations of the sources from
the reference result (EEG (SEP)+ MEG (SEF) with regularization) are given in mm. In the MEG cases only one tangential dipole was fitted. Thex-axis
points from right to left, they-axis from anterior to posterior and thez-axis upwards.

106 M. Fuchs et al. / Electroencephalography and clinical Neurophysiology 107 (1998) 93–111



This motivates the use of spatiotemporal models.

3.2.2. Spatiotemporal dipole reconstructions
Spatiotemporal dipole modeling was performed for the

interesting latency range of 10–60 ms. SVD analyses of
these time ranges revealed 3 significant field patterns in
the EEG and one dominating pattern in the MEG case
(Figs. 10 and 11). Since the number of field patterns corre-
sponds to the minimum number of fixed source configura-
tions that might be able to generate the data, at least 3 fixed
dipoles are needed to explain the EEG data. In the EEG and
in the combined case (Fig. 12) the dipoles were sequentially
fitted in the latency ranges of 18–21 ms (tangential N20
dominating), 22–26 ms (radial P22 and decreasing N20),
and the remaining small peak between 14 and 17 ms (deep
source close to the brainstem (Buchner et al., 1995)). As
can be seen in Figs. 10 and 12 and Table 2, these 3 dipoles
were sufficient to explain the measured data reasonably well
(best residual deviations about 10% (best explained var-
iances about 99%). The deep source has its main loading
at very early latencies (P16, lowest loading trace), next the

tangentially-oriented source develops (N20, centered in the
posterior wall of the central sulcus, upper loading trace),
succeeded by the radial P22 (located in the postcentral
gyrus (Buchner et al., 1996), middle loading trace).

The MEG data could be explained reasonably well with
one single tangentially-oriented source in the posterior wall
of the central sulcus, adding a second source did not
improve the overall fit accuracy (lowest trace in Fig. 11).
The optimization was carried out with a regularization para-
meter l ≈ 1, assuming that the SNRs are estimated cor-
rectly. A value ofl = 1.5 was adequate to suppress quasi-
radial components in single latency MEG results (Figs. 8
and 9 and Table 1).

The results of the combined evaluation are displayed in
Fig. 12. Qualitatively, the dipole positions look similar to
the EEG localization results. The confidence intervals are
smaller in the combined case (compare Fig. 9), since the
larger number of sensors and the complementary nature of
both modalities stabilize the results. Details about the dipole
positions can be found in Table 2. The tangential dipole is
localized equally well by all methods, whereas differences

Fig. 11. Spatiotemporal analysis of the MEG data in the latency range of 10–60 ms. On the left side, the leading 3 SVD field patterns and loadings can be seen
together with the loadings of one fitted fixed dipole and the explained deviation (lowest row). The right column displays the dipole position and orientation
(shown as dark bar) overlaid to the cortical surface and the lower gradiometer pick-up coils in different projections.
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can be found for radial source position and especially for the
deep (P16) dipole. The latter is most affected by regulariza-
tion, due to the small SNR values (compared to the N20,
P22 components) and the therefore rather large confidence
volume of the dipole fit result at these very early latencies.

Finally, a cortically constrained MUSIC scan was per-
formed over the same latency range. Three SVD patterns
and thus the same number of fixed dipole components were
taken into account. The result of the scan is displayed in Fig.
13 in a color-coded representation, overlaid to the cortical
surface. A separation of the tangential and the radial source
was not possible, nevertheless a more objective verification
(that does not depend on the time-ranges used for the
sequential fit procedure) of the results presented above
could be achieved. A rather restricted area around the N20
and P22 dipole positions lights up in the MUSIC scan,
whereas the deep P16 source is represented by a larger
basal cortical patch centered around the brain-stem.

4. Conclusions

A framework for combining bioelectric and biomag-
netic data on the basis of a signal-to-noise ratio transfor-
mation of the data was presented. Common realistic
volume conductor models were used and a new regular-
ization approach for the source reconstruction algorithms
was introduced, using the partial variances that can be
explained by the principal dipole components. In order
to test and verify the methods, extensive simulations
were carried out. Normalized sensitivity and dipole reso-
lution profiles for different EEG/MEG systems were
extracted from these synthetic data. Improved spatial reso-
lution of the combined data studies was revealed, which is
due to the complementary nature of both modalities and
the increased number of sensors, leading to improved data
statistics.

The sensitivity and single dipole resolution characteris-
tics of 19 different EEG/MEG set-ups (Fig. 2) were studied
by simulating dipolar field-patterns. For all configurations
and test dipole positions altogether 460 000 data-sets were

Fig. 12. Spatiotemporal analysis of the combined EEG+ MEG data in the latency range of 10–60 ms. On the left side the leading 3 SVD field patterns and
loadings can be seen together with the loadings of 3 sequentially fitted fixed dipoles and the explained deviation (lowest row). The right column displays the
dipole positions and orientations (shown as dark bars) overlaid to the cortical surface and the sensors in different projections.
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derived by adding white noise of 5 different levels to the
forward calculated fields. For each field-pattern of these
synthetic data a dipole fit was performed, followed by aver-
aging of the corresponding results in order to get statistically
relevant conclusions.

Normalized mean SNR curves representing the system
sensitivities were calculated by averaging (5*) 200 data-
sets per point (Figs. 4 and 5). The mean dipole mislocaliza-
tions were found to be inversely proportional to the corre-
sponding mean SNRs for all sensor montages, so a
normalized representation could be extracted (Figs. 6 and
7). This allows estimation of the confidence ranges of single
dipole solutions, given the SNR of the data, the sensor set-
up, and the depth of the fitted dipole. The shape of the
confidence region can be studied by high spatial resolution
deviation scans around the dipole location, that has been
determined by the preceding fit (Fig. 9).

The expected behavior of combined EEG and MEG data
was verified quantitatively by these simulations. Radial
sources can by detected by EEG only. The sensitivity dif-
ferences between radial and tangential dipoles are not as
dramatic as in the magnetic case, but differ only by a factor
of approximately 2 for deeper sources (Fig. 4). The depth
dependency of the sensor gain is much weaker in the EEG
cases, thus enabling still reasonable fit results for non-super-

ficial, deeper dipoles. The MEG systems exhibit an
improved resolution for superficial, tangential sources
(Fig. 6).

It can be seen from Fig. 5 that for radial source orienta-
tions the SNRs drop faster than for tangential dipoles and
thus the radial sources mislocalizations increase slightly
faster with depth for all EEG montages. The larger the cov-
erage, the better the localization accuracy for deeper
sources. By comparing the 61 and 32 electrode montages,
which have the same coverage, but different electrode den-
sities, we found that for tangential dipoles the coverage is
the most important factor (that determines the spatial reso-
lution), whereas the set-up with the lower number of sensors
is not well suited for localizing superficial radial sources,
due to a spatial under-sampling of the electric field-patterns.
MEG systems have superior resolution power for superficial
tangential sources, but the SNRs drop sharply and the loca-
lization errors increase rapidly for deeper dipole positions.

The combination of both modalities gives overall
improved results at all eccentricities (Figs. 5 and 7), due
to the increased number of sensors and the complementary
field distributions. For sources close to the center of the
volume conductor the electric data dominate, at medium
positions both modalities contribute, and for superficial
positions an increasing influence of the magnetic data can

Fig. 13. Spatiotemporal MUSIC reconstruction of the combined EEG+ MEG data in the latency range of 10–60 ms. For the cortically constrained MUSIC
scan the leading 3 (combined) field patterns have been used. The result is shown as color-coded overlay onto the cortical surface together with the electrodes
and the lower gradiometer pick-up coils.
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be found.
In order to verify the simulations with real measured data,

we have analyzed simultaneously acquired SEP/SEF data at
very early latencies with single dipole reconstructions, cor-
tically constrained deviation scans, spatiotemporal, multiple
dipole models, and compared single and combined modality
results. All approaches revealed dipolar sources in the right
central sulcus area, which should of course be expected
from left hand medianus nerve stimulation. The combined
EEG + MEG evaluations exhibit the best spatial resolution
with a smooth transition between both tangential and radial
dipole orientations, whereas the magnetic data alone contain
information of the tangential source only. The electric data
alone in this case suffer from smaller SNRs and less spatial
resolution due to volume conductor effects and large inter-
electrode distances.

Merged EEG/MEG evaluations thus indeed promise
increased localization accuracy and a better understanding
of the underlying neuronal processes, since also a better
differentiation between (quasi-) tangential and (quasi-)
radial source components is possible.
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