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Basic definitions

Definition 1.1. Let d € N. A function b : R¢ — R is called a d-dimensional
image, if

. b is compactly supported,

2. 0<b(x) <o VrERY,

3. Jra b (x)dx is finite for k > 0.

The set of all images is denoted by

Img(d) := {b: RY — R|b is d — dimensional image}.




Basic definitions

Definition 1.2. Let d € N, Q :=]0,1[¢, and n1,...,ny € N be some given
numbers. The points

: : VA
Xjt s = K1y esXjy)" € QUIL,

where | < jj<mand 1 <[ <d, are called grid pDintS. The array

is called the grid matrix.

Let N := ]_L_] ni and let the numbers je N( 1 < j<N)and(j1,...,jq) €
Nd (1 < ji<mny, 1 <1<d)berelated by a one-to-one lexicographical or-
dering, j = Zﬂ ]]{jw | — l)]_[ 1y +j1. The vector X :— (xj)j=1..N €
RN, where Xj=Xj, .. j» 18 called the grid vector. The set L2 := {,x'j,j —
l,....N}tiscalledanny x ... X ng grid.




Basic definitions

Definition 1.3. Letd,q € N and ¥ = (Ky,...,Kg) € N4, The polynomials
of degree q are defined by

H{;{:Ed:} =Y R R | y(x) = Z OLex™, Oy € T_FLI

K| <g J

; - ma c K K
where |K| = K1+ ...+ %4 and for x € R? we set x* := xit-..oxf. The set
of d-dimensional polynomials of degree q is defined by

I (RY) := — R @ €T, (RY), [ =1,...c




Structure

« Parametric image registration techniques
 Non-parametric image registration techniques

 Non-parametric registration for DTI



Structure

« Parametric image registration techniques
— Landmark-based parametric registration
— Landmark-based smooth registration
— Parametric registration technigques
 Intensity-based registration

 Mutual information-based registration



andmark-based parametric registration:
The problem

Template image




andmark-based parametric registration:
The problem

Problem 1.4. For @ = (Q1,...,Qy), find parameters o, rER k=1,...,n,
[ =1,....,d, such that D*"[¢p] — min.




Landmark-based parametric registration:
The solution

m d n

DM, L L < Mt Z(.ué_k:‘lﬁ’k(ﬂ?T'

)=1 £=] k=1




Landmark-based parametric registration when using
7 linear polynomial

Result of landmark
registration (Fig.4.1, linear)

Template image




Landmark-based parametric registration when using
: guadratic polynomial

Result of landmark
Registration (Fig.4.1, quadratic)

Template image



Diffeomorphism (from Wikipedia)

Definition [edit]

Given two manifolds M and N, a differentiable map f: M = N is called a diffeomorphism if it is a bijection and its inverse ! :
N — M s differentiable as well. If these functions are rtimes continuously differentiable, fis called a C™-diffeomorphism.

][ LA AT

77777711117
The image of a rectangular gridona =
square under a diffeomorphism from the
square onto itself.




Landmark-based parametric registration

INterpolatlol.
The main disadvantage is, however, that the transformation from the para-

metric approach is in general not diffeomorphic. Figure 4.1 shows the results for
a linear (p € I¢(R%)) and a quadratic (¢ € [1¢(R9)) parametric registration.
As is apparent from this figure, the linear approach yields satisfactory results,
though the fit of the landmarks is not perfect. After quadratic registration, all

landmarks are mapped perfectly. However, since ¢ is a quadratic polynomial, the
map is not diffeomorphic and leads to a “mirrored” image, which is certainly not
a satisfactory registration. Note that mn this example, the landmarks are chosen
such that the interpolation problem is well-posed.




Structure

« Parametric image registration techniques

— Landmark-based parametric registration

— Landmark-based smooth registration (only of academic interest for

us)
— Parametric registration techniques
 Intensity-based registration

 Mutual information-based registration



Landmark-based smooth registration:
Basic definitions

(fs 9o =19}, = [ flz)g(z)dx
Jpd

(=)0 extD £, Dg),

| Ni=Y

X = H'N C(RY) U My (RY)



Landmark-based smooth registration:
Basic definitions

The set of |coefficients { c. : |k| = ¢} is chosen such that the semi-norm is rotationally

nvariant. Explicitly, these parameters are specified via the formal expansion

2 K1
HCUHR% T Z CfixQHJ ST Z Crix% : (4.7)

|kl=q |kl=q

In particular for d = g = 2, we have

, 2
lollgs = (s +43) " = st + 208} + a3

<f7 Q>2 = /d am]ﬂ?']faaﬂxlg+Qacclwzfax1ng+8w2$zfa$z$zg dﬂf
R




andmark-based smooth registration:
Basic definitions

m

[F,9), = {9, + ) Flzs)glez;)
=1




[Rohr, Computational Imaging and Vision, 2001]
[Modersitzki, Numerical Methods for Image Registration, Oxford University Press, 2004]

andmark-based smooth registration:
Basic theory

Theorem 4.2 77uznuhalbmﬁsfﬂncmonfbr(—J)QE:hw_qcﬁLﬂ“'mgﬂwen

by

r24~ogr, d even,
it d odd, (4.14)

where
(_1)11*-l+f1:"2 (i
‘22(} -1 _ntf.,""!(q l ’!‘Q’ (_[",r.z)! ) (1 (‘4'\’(__:]]1
& {
22 d odd.

2?1[ T l.'v‘:" 2 ( (l ] }' b

pz(y) = p(lly — 2| ga)




[Light, Numerical Analysis, 1995]
[Modersitzki, Numerical Methods for Image Registration, Oxford University Press, 2004]

andmark-based smooth registration:
Basic theory

Theorem 4.5 Let d,m,q € N and d,; := dim(llq_1(Rd)) and let x; € R?,
i € R, '3 = 1, m, be given interpolation data. The mainimal norm

solution
) = arg min{[f, f]q , f € H and f(z;) =y, J =1,

is characterized by

g’ dq

Y = Z B Pz; + Z Bipj,
j=1

F=1

where py. = p(|| - — zj|lga) (see Theorem 4.2) and p,...,p4, s a basis
for M,—1(R%). The coefficients 8 := 61,...,0,,)" € R™ and B

€ R are determined by the following system of linear

K BT o Y ' 17
EDO-9 e

= (e eslin) € R,
B (ol )t ST 5 b (415D
and B := (pj(zk))i=1...4; € Raxm (4.19)

/]
k=1,...,m

equations,




Landmark-based smooth registration:
The problem

Thin Plate Spline (TPS) interpolation

Problem 4.6 Given a > 0, find a transformation g :

such that

aST"S[ip] + DM [p] — min,




L andmark-based smooth registration:
The solution




Landmark-based smooth registration:
” | An example

Result for alpha=10° (Fig.4.4)

Template image



andmark-based smooth registration:
; An example

Result for alpha=0 (Fig.4.4)

Template image



Landmark-based smooth registration

Figure 4.4 displays results for the landmark-based registration of reference and
template images which have already been shown in Fig. 4.1. As is apparent

from this figure, the registration ranges from an interpolation of the landmarks
(o = 0) to almost affine linear registration for large values of a. Note that the
registration is governed completely by the landmarks.




Landmark-based smooth registration

Fic. 4.5 TOP LEFT: reference image with landmarks (dots), TOP RIGHT: tem-
plate image with landmarks (dots), BOTTOM LEFT: template image after
TPS registration with landmarks and deformed grid, BOTTOM RIGHT: sign
of determinant of Jacobian of ¢ (white: det V¢ > 0, black: det Vi < 0).




Landmark-based smooth registration

Finally, Fig. 4.5 illustrates that landmark-based registration does not always
result in a meaningful registration. The landmarks are chosen such that
one expects a bending of the rectangular bar displayed in the template image.
Note that the landmarks are-chosen in a meaningful ordering. However, although

the transformation is smooth, it fails to be diffeomorphic. This can be seen in
the bottom right picture, where the sign of the Jacobian of the transformation,
i.c., sign(det V), is shown.




Structure

« Parametric image registration techniques
— Landmark-based parametric registration
— Landmark-based smooth registration
— Parametric registration technigues
 Intensity-based distance measure

« Mutual information-based distance measure



Intensity-based registration

Definition 6.1 Let d € N and R,T' € Img(d). The sum of squared differ-
ences (SSD) distance measure D>P s defined by D°°P : Img(d)* — R,

1O . _I. . ‘ 1 o \ o T B T
DSP(R,T] = 31T~ BIE, = 5 [ (T(w) — R@))’de.
2 - 2 JRd -
For a transformation o : R — R* we also define

and for a parametric transformation @, we set

TPONIRTS o) = D21 o],




Restricted transformations

In many applications there exist implicit requirements with respect to the trans-
formation. A typical example is that the transformation has to be smooth or even
diffeomorphic. Approaches based on regularization are investigated in Part II.
Explicit parametric requirements are even more popular in the literature and
typical example are given below.

Rigid transformation, o(z) = Qz + b, where @ € R4*? is orthogonal with
det Q) = 1'and 6 € R?. The transformation is called rigid because only
rotations and translations of the coordinates are permitted.

(Affine) linear transformation, plx] = Az +Db, A € R4¥4 with det A > 0,
b ¢ RY. Note that in contrast to other authors we allow for individual
scalings.

Polynomial transformation, ¢ € llg'(]Rd); cf., Definition 3.6.

B-spline transformation,

o=y il 0g)" R - R% where ¢y € Spliney,q(]Rd),

where Spliney’q(Rd) is a d-dimensional spline space spanned by B-splines
of degree g with respect to the knots y, b =1 ..., Kjuel, es. De Boor
(1978). ’




Intensity-based affine registration

We start by introducing a set of feasible transiormations, w
upposed to be affine linear maps, i.e., ¢ € Hjl(IRd); cf., Definition 3.6.
\ mathematical formulation of the registration problem then reads as follows.

Problem 6.1 Find ¢ € II$(R?) such that D]yp] = min.

The essential point here is that the set € II{(R?%) can be parameterized. For
;pecific element ¢ of € II¢(R%), we make use of the notation p,, where

d
(Pa;ﬁ(m):ae,OJr E g 5, = loow ) vud
j=1

I'he parameters ag ; are gathered together in a vector,

a = (a'l,Oa"°>a1:d7"'7 a'd.,()a"'aa'd,d)_r ERn7 n:d(d+l)




Intensity-based affine registration

Vioreover, we set

D(a) :=Dlyp,] and T, :=T o p,. ‘ (6.1)

'hus, Problem 6.1 may be reformulated in terms of a parameterized finite-
Jimensional optimization problem.




| ntensity-based affine registration:
An example

F1G. 6.1 Optimal intensity-based affine linear registration; reference (TOP LEFT),
template (TOP RIGHT), template after rigid registration (BOTTOM LEFT),
template after affine linear registration (BOTTOM RIGHT).




Structure

« Parametric image registration techniques
— Landmark-based parametric registration
— Landmark-based smooth registration
— Parametric registration technigues
 Intensity-based distance measure

e Mutual Information-based distance measure



Mutual information-based registration

Definition 6.6 Let ¢ € N and p be a density on RY, ie., p: R — R,
] p(z) =0, and [p, p(z)dz = 1. The ( differential) entropy of the density is
defined by

H(p) := —E, [log p| = — /Ip' plog p dg.




[Collignon et al., Computational Imaging and Vision 3, 1995]

[Maess et al., IEEE Trans.Med.Imag., 16 (2), 1997]
[Modersitzki, Numerical Methods for Image Registration, Oxford University Press, 2004]

Mutual information-based registration

Definition 6.7 Let d € N, R, T € Img(d). The mutual information (MI)
distance measure DM! is defined by DM : Img(d)® — R,

DMUR,T] := H(pr) + H(pr) — H(pr,T);
where pr,pr, and prr denote the gray-value densities of R, T, and the
joint gray-value distribution, respectively. ;
For a transformation ¢ : R — R we also define

and for a parametric transformation @, we set

DMY(R.T;a) = D[R, T o} (6.10)

Dl\-’II [R, T]

/ pr.1(9R, gT)l0g pr.1(9R, 97)
R PR\JR)PT\GT

Kullback-Leibler measure




Kullback-Leibler measure iIs identical to
M distance measure

pPr.T(9R, 9T)

d(gr, g7
pr(gr)pr(gr) " 7)

/ pr.T(9R, 97)l0g
J IR2

= / (log pr.1(91,92) — log pr(91) — log pr(g2))pr.7(91,92) d(g1,92)
R2
= —H(prT) — / /;/)1::1'(!]1-!‘/2) dg> log pr(g1) dg
JR JR
i / / | pr,7(91,92) dg1 log pr(g2) dgs
JER JER
= —H(prT) — //)R(!Jl)log pPr(91) dg1 — //?1 (92) log pr(g2) dga;
JIR o B

= H(pr) + H(pr) — H(pR,T)




Maximization of M1 distance measure:
An example

o=0, MI=1.709 M » —
a=35 MI=0.798

Rotation of reference by alpha=0 degree Rotation of reference by alpha=5 degree



[Wolters, lecture scriptum, chapter 4.5]

MI-based registration for brain research: An

example

Appropriate for segmentation of
Scalp surface
Outer skull surface
Gray Matter surface
White Matter surface
Ventricle surfaces

Appropriate for segmentation of
Inner skull surface.




[Wolters, lecture scriptum, chapter 4.5]

MI-based registration for brain research: An
example

« Parametric transformation (translation, rotation, scaling)
[de Munck et al., IEEE Trans.Biomed.Eng., 15 (5), 1996]

« Distance measure: Mutual information
[Maess et al., IEEE Trans.Med.Imag., 16 (2), 1997]

Y ._ PRI (..gl\--'IR.I%)
P (‘X MRI — gMRI ) = o/

DMUTL PD. v, := P(X1m = gn, Xppe = gppe) log
[T1, PD, @] Z (X711 = 911, Xppe = gppe) log P(Xn = 91)P(X poe = gre)

gT1,9ppc

« Optimization: Simplex on Gauss-Pyramid
[Allgower and Georg, 1990]

o = max ,DMUTL, PD, p,]




[Wolters, lecture scriptum, chapter 4.5]

Visual validation of MI-based registration
of PD-MRI on T1-MRI

Sagitad

Figure 2.9: Registration result: The outer surfaces of the brain (top) and of the
head (bottom), extracted from the T'1-, are mapped on the registered PD-MRI.




[Wolters, lecture scriptum, chapter 4.5]

Influence of MI-based registration of T1/PD-MRI
on Inner skull segmentation

Figure 2.17: Comparison of the inner skull segmentation results, using the bi-
modal data set and Script 2.6.4 (border of 1SS, vellow) or exclusively the T1
image and Script 2.6.5 (border of EISS, red).




[Wolters, lecture scriptum, chapter 4.5]

Influence of MI-based registration of T1/PD-MRI
on inner skull segmentation

Result if only T1-MRI is available Result if also well-registered PD-
MRI is available



Thank you for your attention



	Slide 1: Mathematical Methods for the Registration of Medical Images: Part I (parametric approaches)
	Slide 2
	Slide 3: Literature
	Slide 4: Basic definitions
	Slide 5: Basic definitions
	Slide 6: Basic definitions
	Slide 7: Structure
	Slide 8: Structure
	Slide 9: Landmark-based parametric registration: The problem
	Slide 10: Landmark-based parametric registration: The problem
	Slide 11: Landmark-based parametric registration: The solution
	Slide 12: Landmark-based parametric registration when using linear polynomial
	Slide 13: Landmark-based parametric registration when using quadratic polynomial
	Slide 14: Diffeomorphism (from Wikipedia)
	Slide 15: Landmark-based parametric registration
	Slide 16: Structure
	Slide 17: Landmark-based smooth registration: Basic definitions
	Slide 18: Landmark-based smooth registration: Basic definitions
	Slide 19: Landmark-based smooth registration: Basic definitions
	Slide 20: Landmark-based smooth registration: Basic theory
	Slide 21: Landmark-based smooth registration: Basic theory
	Slide 22: Landmark-based smooth registration:  The problem
	Slide 23: Landmark-based smooth registration: The solution
	Slide 24: Landmark-based smooth registration: An example
	Slide 25: Landmark-based smooth registration: An example
	Slide 26: Landmark-based smooth registration
	Slide 27: Landmark-based smooth registration
	Slide 28: Landmark-based smooth registration
	Slide 29: Structure
	Slide 30: Intensity-based registration
	Slide 31: Restricted transformations
	Slide 32: Intensity-based affine registration
	Slide 33: Intensity-based affine registration
	Slide 34: Intensity-based affine registration: An example
	Slide 35: Structure
	Slide 36: Mutual information-based registration
	Slide 37: Mutual information-based registration
	Slide 38: Kullback-Leibler measure is identical to  MI distance measure 
	Slide 39: Maximization of MI distance measure:  An example
	Slide 40: MI-based registration for brain research: An example
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45: Thank you for your attention

