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EEG /MEG inverse dipole fit approaches

One possibility is the restriction to a limited number of dipoles, the focal
source model |336; 275; 214; 381]. The various spatio-temporal focal source
models differ in the manner in which they describe the time dependence of the
data. Generally, they are grouped into three classes, the unconstrained dipole
model (so-called moving dipole), dipoles with temporally fixed location (rotating
dipole) and dipoles with fixed location and fixed orientation (fixed dipole). 1f
only one single time “snapshot™ is taken into account, the three classes merge in
a spatial dipole model, the so-called instantaneous state dipole model |391].
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8.3 Reconstruction of focal sources

Mosher et al. [214] showed how a common linear algebraic framework can be
formulated for the three spatio-temporal focal source models, described in the in-
troduction to this chapter. One can conclude from this formulation that measured
fields depend nonlinearly on dipole location (and, for the fixed dipole, the fixed
orientation) and linearly on dipole moment strength. Thus, after having chosen
the number of sources, nonlinear algorithms should determine their locations (and
possibly fixed orientations) and embedded linear methods their moment strength.
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EEG /MEG inverse dipole fit and deviation
scan approaches

It is thus the goal to find an influence node location tuple g for a chosen
number of p dipoles (in practice p is always much smaller than 10) and the cor-
responding r x T strength matrix J, such that

H(q) = |[U¢ —U™|[? =||LgJ; — U™||% = min (8.1)

where the m X r matrix L is the overdetermined lead-field matrix (thus m > r),
corresponding to the location tuple g, the m x T matrix U™ are the noise-free
measurements (EEG/MEG) and || - ||z is the Frobenius-norm. Using the normal-
constraint, the number r of columns of L, and rows of J, equals the number p of
dipoles, without this constraint it is r = 3p.
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EEG /MEG inverse dipole fit and deviation
scan approaches

The minimization task can thus be split into two problems. The first problem
is to find the dipole location tuple g which gives a good approximation of the
global minimum of H in a feasible calculation time. Second, a physiologically
and mathematically suitable model should be developed for the shape of the func-
tional graph H. Every evaluation of H for a given location tuple g contains the
construction of the corresponding lead-field matrix Lq and the subsequent deter-
mination of the dipole direction and strength matrix J, with respect to the noise
U*? in the measured data U™ = U™ + U*.
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8.3.1 A downhill simplex optimizer in continuous parameter space

Nelder and Mead’s simplex method [217], formulated as an uphill approach in
Section 4.5.1 (Algorithm 1), was described as a nonlinear optimization approach
for the maximization of the mutual information between two MR images within
the registration process. The concept of the Continuous Downhill Simplex (CDS)
method used here is quite comparable. The CDS is used for the determination of
the nonlinear parameters for simple focal source models in continuous parameter
space, e.g., the continuous one dipole model. Main differences to Algorithm 1
are that the ordering is reversed and a downhill pivoting based on H instead of an
uphill pivoting based on the mutual information is carried out. Furthermore, in
order to speed up the optimization, the restriction to a Freudenthal triangulation
was abolished. After each simplex reflection, which is still constructed to con-
serve the volume of the simplex and thus avoid degeneracy, the possibility of a
moderate expansion in order to take larger steps was implemented.
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Reminder: Nelder-Mead optimization for
image registration: The cost function

It is the
goal of the registration of the PD- onto the T1-MRI to find transformation param-
eters P, which maximize the mutual information between both images, i.e.,

P* = argmax Cxy, x, (P) (4.10)
PcR?

with
Cxry xpp (P) := M1 (thxrg{m]))
(see Equation (4.9) for the definition of Tp).
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Optimization

7 7 the optimal trans-
formation parameters are considered to maximize the function Cy,, x,, : RN — R
with, in our case, N = 9. Nelder-Mead’s simplex method is an algorithm, which
tries to determine a local extremum 1n multidimensional space [216]. The con-
cept of the algorithm (see, e.g., [254]) was based on a Freudenthal triangulation,
described by Allgower and Georg [6]

a = oV eRY
QI—I_EL*VI:l*aNa

a

with e; the #” unit basis vector of R, in order to avoid degenerate simplices and
to be successful for the considered application. The resulting method, presented
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in Algorithm 1, starts with a simplex with vertices s,... .5y, € RY, being im-
ages of Freudenthal’s triangulation under an affine map, i.e.,

s;=d-DIAG(l,,....In)-a;+ Py Vi=1,.... N+1

with the user-given N X N diagonal matrix of scaling factors /;, the resolution
parameter d and the starting transformation vector P . In the next step, a per-
mutation 7 from the set of all permutations of the integers 1 to N 4+ 1, Sy.1,
is determined, arranging the vertices with respect to the corresponding value of
mutual information. The simplex is then pivoted by reflection away from the
minimal vertex value of Cx,, x,, with the reflection function

refl(s;) := pre(s;) — s; + suc(s;)

based on the cyclic left/right shift order-relation

re(s;) = s it i=2...N+1
pre(s;) = v i i1

) — s;q if i=1,...,N
suel) = { S if i=N+1

for the simplex vertices with suc(s;) the successor and pre(s;) the predecessor
of s5; [6]. After pivoting, the algorithm restarts with a new shrunk version of a
simplex at the actual maximum. It terminates, when the resolution parameter d
falls under the predefined resolution bound djp.
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Algorithm 1 SIMP:(T1,PD € M R I,P,,] € RY dyury, dsiop € R) — (P* € RY)

» = start?

Initialize: P = Py, d = dgart
while d > d, do

sp =P /* starting simplex */
Sipg=d-li-e;+s; Vi=1,...,N
repeat

Determine 7 € Sy with: /* ordering and uphill pivoting */

CX;-“] Xpp (ET[(;)) S CXT] Xpp (ETE(H—])) Vi=1 yoes ,N
for i=1....,N+1 do
if CXTI XppD (r6ﬂ (EK(E) )) > CX}'[ Xpp (i‘]’c(:)) then
Sy = refl(sp i)
Leave the for-loop

end if
end for
until No more replacement of any s;
P=syns+1y, d=4d/2 /* translate and contract */
end while

Pr=pr
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EEG /MEG inverse dipole fit approaches

The CDS optimizer needs a-priori chosen seedpoints and, dependent on the
seed dipoles, it can converge to local minima. This was shown for brain-stem au-
ditory evoked potentials by Gerson et al. [101], where the CDS produced larger
errors for even a simple one dipole model. Huang et al. [146] examined a multi-
start CDS in order to imitate a global optimization technique for fitting multi-
dipole, spatio-temporal MEG data.
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Algorithm 24 SA:(H. p, MAX € N,tye,. TOL € R) = gop
DETERMINE fy,q CHOOSE Gyq, dud = dopt = BIGNUM, 1 = fgiarq, gum = 0
while ((dyq > TOL) A (ngym < MAX)) do
Rcount — Haccept — 0
while ((”accept < ”inf) A (”count <10 *ﬂinf)) do
Gtmp — MNDOM(QUtd)a Reount = Meount T 1

d’rmp = H(thp)
if dyyp < dop then

Yopt = Ytmp; dopt — dtmp

end if
a=RANDOM [0, 1]) /* Metropolis */

if e~/ > g then
Gutd — qtmp: dytd = dtmpe Raccept = Maccept 1 1
end if
else
qutd = Gtmp; dutd — dtmpa Maccept — Maccept +1
end if
end while
I =1 — Istep, Msum = Msum 1 Fcount
end while
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8.3.2 A simulated annealing algorithm on discretized influence space

The second presented optimization approach for the nonlinear source parameters
tries to globally minimize the cost function H in a discretized parameter space
and does not need any seedpoints. Theoretically, it would be possible to test all

( Rinf ) __ Minf!
p (ninf —p)! p!

combinations of a choice of p source locations without repetition out of nj,f influ-
ence nodes for their functional value H. In practice, this is generally not senseful
because the number of elements in the configuration space is too large and can-
not be explored exhaustively. The method of Simulated Annealing (SA) utilizes
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concepts of combinatorial optimization for searching the minimum of H in ac-
ceptable time [255; 24; 41; 101; 136; 381]. It simulates the process of a slow
cooling (annealing) of a melted solid. If the annealing process is carried out
slowly enough, then the crystal lattice of the solid finds the most regular and
stress-free state, i.e., the state of lowest energy. If the heated solid is frozen too
fast, then it can be that only a local energy minimum is achieved and stress re-
mains in the crystal lattice. Analogous to the described annealing, the final state
of the SA is determined by control parameters in the minimization algorithm. If
the cooling is slow enough, the global minimum of the considered process will be
found [149]. At high temperatures, the atomic mobility of the solid and therefore
the probability of a displacement is increased. The mobility is lost proportionally
to the cooling. In the minimization algorithm, this process is simulated with the
Metropolis-criterion [206].



Algorithm 24 SA:(H, p,MAX € N, 4, TOL € R) = gop

DETERMINE {45t CHOOSE gud, dyta = dopt = BIGNUM, = tyarr, Hggm =0
while ((dyq > TOL) A (ngum < MAX)) do
fcount = Haccept — 0
while ((accept < Rint) A (Neount < 10 % nin) ) do
qtmp = RANDOM (qwd)a Reount = Meount + 1
drmp = H(qrmp)
if dipmp < dop; then
Yopt = Gtmp> dopl - dlmp

end if
if dif = (dimp — dua) > O then
a=RANDOM([0,1]) /# Metropolis */

if e 9/t ~ 4 then

Guid = Jtmp; dytg = dtmps Raccept = Haccept + 1
end if

else

Jutd = Yump; dyg = dlmpa Paccept = Maccept 1 1
end if

end while

I =1 —Istep, Msum = Nsum + Heount
end while

[Wolters, Vorlesungsskriptum, Chapter 8.3.2]

The transfer of the SA algorithm into the application field of the focal inverse
source reconstruction is shown in Algorithm 24, following [254; 24]. Within the
inner loop, one source location of the up-to-date combination gy is randomly
changed by the function RANDOM and saved in gymp. the temporary source com-
bination. The functional [ is then evaluated for the temporary sources. If the
residual dyy,, is smaller than the current optimum, d,,p, then the sources are saved
as the new optimal combination together with its discrepancy to the data. The
temporary combination becomes the up-to-date one, if its defect to the data is
smaller than dyq4. Especially in case of high system temperature, also a deterio-
ration with regard to the defect is accepted. The coupling of the acceptance of a
less favored source configuration to the temperature of the system is controlled
by the Metropolis criterion. If the criterion is fulfilled, the less-favored source
configuration becomes the up-to-date one. The starting high temperature results
in a high probability of accepting a less favored configuration in order not to get
stuck in a local extremum. The temperature is decreased by means of fgep. if
either the number of accepted configurations, n,ccep. reaches the number of in-
fluence nodes, or the number of all tested source tuples, ngoun, gets larger than
many times the number of nj,;. At the beginning of the algorithm, the starting
temperature has to be determined. Therefore, an initial value for 7y, is chosen
and this value is increased during initial SA iterations as long as the condition
Maccept /Meount < 0.99 is true. The algorithm thus adapts itself to the size of the
influence space and, concerning the starting temperature, to the different scaling
of EEG and MEG data. SA is terminated, if either the defect is falling under a
given tolerance or a maximum of source configurations has been tested.
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H(q) = ||U = U™||% = ||LgJ, — U™||% = min (8.1)

8.3.3 Determination of the linear parameters

Assuming that a dipole location tuple g has been proposed, the problem (8.1) with
noisy data UZ" should then be solved in order to compute the dipole strengths.
Linear least square methods have to yield the “best” (will be defined) fit between
measured and simulated fields. Refer to Zeidler [399, Chapter 37] or Lawson
and Hansen [177] for a survey. If dipole components are proposed which “nu-
merically” (nearly) project into the data null space, the corresponding lead-field
matrix becomes ill-conditioned. In combination with noisy data, simple least
square algorithms such as the generalized inverse can yield physiologically un-
explainable results for dipole moment strengths, especially when overestimating
the number of active sources. This problem can be alleviated with dipole fit reg-
ularization methods as shown in the following.
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H(q) = ||U = U™||% = ||LgJ, — U™||% = min (8.1)

Singular Value Decomposition and Generalized Inverse

The first three presented methods to solve the linear least square problem (8.1) do
not take the noise in the measured data into account. They are based on different
decompositions of the overdetermined m X r (m > r) lead-field matrix L. The
first two methods, the QR decomposition and the Complete Orthogonal Factor-
ization (COF), are discussed in [381; 373]. The third strategy is based on the
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Dipole fit and deviation scan approaches:
Determination of the linear parameters

Singular Value Decomposition (SVD) of the lead-field matrix

SR ) [

m-—r

with the orthogonal m x m matrix V, the m X r matrix S with £ = DIAG(gy,...¢)
and the orthogonal r x r matrix W [186; 365]. ¢ € R are the eigenvalues and v; €
R™ the eigenvectors of Ly and ¢? the eigenvalues and w; € R” the eigenvectors
of L’q’Lq. Furthermore, it is

Lgw; = Giy; i=1,....r, (8.2)
and
Ztiqu - gfﬁra izl:"'ara
WL, = @), i=rtl..m
Thus, the space spanned by {v,...,v,} is called the column space and
span{v,,....v,,} is the so-called left null space of L,. The singular values ¢

are automatically arranged by the SVD such that ¢; > ¢, > ... > ¢, > 0, if full
rank of L, has been assumed. In practice, the right singular vectors w; and the
left singular vectors y; are both arranged with increasing spatial frequency. In
vector notation, the SVD can be written in the form

’
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Without respect to the noise in the data and using the above SVD, the least
square problem (8.1) can be solved by means of the generalized inverse [186;
365] of the lead-field matrix, in matrix form

Lyum = (LOL,)  LOUm =wWstvrur
— (E],...,%)(Z_' 0)(31,...,5?1)”U2"6,

or, in vector notation,

|
— (™ +u®,v;)w,. (8.3)

—1
[:[ gf

As with the QR and the COF decomposition [381; 373], the only goal of the
generalized inverse is to minimize the residual variance to the noisy data. Non-
regularized dipole fit methods use this algorithm to solve the linear least square
problems embedded in the nonlinear optimization process.

L-l— Hme o

Mw
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Truncated singular value decomposition

In practice, Ly often suffers from large condition numbers conda(Ly) = ‘;—‘ during
the SA-optimization process. Thus, the singular values, ¢;, get very small and the
high spatial frequency components of the noise in the data in Equation (8.3) can
be extremely amplified. This has an effect on those spatial dipole components,
which “numerically” (nearly) lie in the kernel of L,. It can lead to source config-
urations, where dipoles with a large strength nearly cancel each other with regard
to their surface field distribution and only explain noise (for both EEG and MEG
inverse problem), the so-called ghost sources. When considering the MEG in-
verse problem, radial dipoles are such ghosts and they can get a big strength only
to explain MEG noise. Both problems especially appear if the number of active
sources 1s overestimated. The problem can be alleviated with a regularization 7
of the generalized inverse

Z F?n. g-! U 1_)r)

_q zlg‘!

where F, is called a filter, as described by Louis [186].
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Dipole fit and deviation scan approaches:
Determination of the linear parameters

The choice of
gz
F ==
1(9) g2+l2

leads to the so-called Tikhonov-Phillips regularization, where the high spatial
frequency components in the source space, strongly influenced by the noise in

the data space, are attenuated. As discussed with more detail in Section 8.4.1,
Tikhonov-Phillips regularization amounts to minimizing the functional

1Ly, — |3+ 32117, .

or, in equivalent denotation,

ILqj, — 5213

_ L _ ume
S () e = (F)

As shown by Himmerlin and Hoffmann [133], the condition number of the Tikhonov
regularized least square problem is then ameliorated to

_ g2_|_l2
COIldg(Lq) =1 / ﬁ,

This regularization concept for nonlinear dipole fit methods has recently been ap-
plied to source localization in [94].

with
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[Wolters, Beckmann, Riendcker, Buchner, Brain Topography, 1999]

Another way is to choose the filter

[ 1 ifg>A

leading to a regularization called the Truncated Singular Value Decomposition
(TSVD), which was proposed for source localization in [381]. This algorithm is
simple to implement and has the effect of a lowpass filter. The high spatial fre-
quency components of the data, ¢;(-,w;)y;, are lying below the noise level and, as
a consequence, the high spatial frequency components in the source space cannot
be reconstructed. Using regularization, information will be lost but otherwise the
amplification of the high frequency data components would have a more nega-
tive effect on the solution, especially in combination with an overestimation of
the number of active sources. Like Tikhonov-Phillips regularization, the TSVD
ameliorates the condition of the problem.
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The SA-TSVD algorithm [381], described in the following, is an iterative
procedure. In every step of the SA optimization, Lq is changing and thus the
condition of the least square problem. Therefore, an automatic determination
of the regularization parameter A is essential. One possibility is provided by
the so-called discrepancy principle (see, e.g., the overview article of Hanke and
Hansen [137]) where the defect d to the measured data

,
d:=|(I-LaB)u|l7 = [lug®— ) FG) (g, vivil[3
i=1

,
= (w3 = Y F (Gl (g, vi)

i=1

TSVD
= |lu€|3 - X [ vi)l

Gi>A

is not only minimized, but chosen in dependence of the condition number of L
and of the noise u® in the data.
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Let C be the m x m sample noise covariance matrix, determined e.g. from the
signal-free pre-stimulus interval of the measurements, averaged over all epochs.
This matrix reflects the spatial distribution and correlation of the measurement
noise. C is a symmetric and positive definite matrix, which can be decomposed
into C = DD’ by means of a singular value decomposition. If the noise statistics
are known, i.e., if the number of epochs is sufficiently high in order to obtain a
good estimate of the noise covariance matrix, the process of data pre-whitening
can be used, as described by Knosche et al. [162]. Thus, we can restrict the theory
to spatially uncorrelated noise where D is a diagonal weighting matrix.
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If we consider only one time point and Gaussian distributed and heteroscedas-
tic (different in each channel) noise with zero mean, every channel i should be
weighted according to its own noise standard deviation &; = | (u®)| using the
diagonal weighting matrix D™! with entries 1/¢;. We thus get the weighted least
square problem

HY(q) = [lLoj, | = 1D~ (Lo, — )] 3 < min,

the weighted regularized inverse

(S (D7 v )wy,

-1 /—

-

W Wiy— 1
=D =) =
i=1 gi
where {¢,v¥, w!} is the singular system of the weighted lead-field matrix D~'L,
and the weighted defect

) TSVD

d" = ||[(I-D7'LeB") D™ u”|lz D™ |3~ ) [(D™ g vy,

G >h



Algorithm 25 TSVD:(R) — d

J=0,i=0, J:HD—'umeH%

Compute {g, v, w}'} = SVD(D™'Lg)

while (i <
i=i+1
o = (v}
Jy = I3

end while

d=d

r)A(d > R?*) do

)er | me
+ o w‘"(x_t, d=d— ooy
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[Wolters, Beckmann, Riendcker, Buchner, Brain Topography, 1999]

The instantaneous state (7' = 1, 0 is a scalar) TSVD regularization procedure
with so-called a-posteriori regularization parameter choice [186; 189], exploiting
the discrepancy principle, is presented in Algorithm 25. Within this algorithm,
the regularization parameter is coded by the free parameter R. The TSVD can be
shown to be an order optimal regularization procedure [327; 186]. The larger R
is chosen, the stronger the regularization will be. Because of the small number r
of source components, good experience has been made with a choice of R = 1.0.

The extension of the SA-TSVD to spatio-temporal modeling (T > 1) is straight-
forward for the moving and for the rotating dipole model. In these cases, «; is the
1 x T vector

@ = (v)D Uz,
éﬂ}"gi is an r x 7" matrix and the euclidian norm should be exchanged for the

Frobenius-norm.
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Comparing Regularized and Non-Regularized
Nonlinear Dipole Fit Methods: A Study in a Simulated
Sulcus Structure

C.H. Wolters*®, R.F. Beckmann*, A. Rien&icker*, and H. Buchner*

Summary: The inverse problem arising from EEG and MEG is largely underdetermined. One strategy to alleviate this problem is the restriction to
a limited number of point-like sources, the focal source model. Although the singular value decomposition of the spatic-temporal data gives an
estimate of the minimal number of dipoles contributing to the measurement, the exact number is unknown in advance and noise complicates the
reconstruction. Classical non-regularized nonlinear dipole fit algorithms do not give an estimate for the correct number because they are not stable
with regard to an overestimation of this parameter. Tov many sources may only describe noise but can still attain a large magnitude during the
inverse procedure and may be indiscernible from the true sources. This paper describes a nonlinear dipole fit reconstruction algotithm with a new
regularization approach for the embedded linear problem, automatically controlled by the noise in the data and the condition of the occuring least
square problems. The algorithm is stable with regard to source components which "nearly” lie in the kernel of the projection or lead field operator
and it thus gives an estimate of the unknown number parameter. EEG simulation studies in a simulated sulcus structure are carried out for an
instantaneous dipole model and spatial resclution in the sulcus and stability of the new method are compared with a classical reconstruction algorithm
without regularization.

Key words: EEG/MEG; Nonlinear dipole fit; Simulated annealing; Regularization; Truncated singular value decomposition; Finite element method.
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Studies in a simulated sulcus structure

Figure 1. Tetrahedra mesh of the four layer sphere model with embedded sulcus structure. A cross-section through the
finite element mesh (left) and the influence space mesh, used for simulations (right).
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Studies in a simulated sulcus structure

Figure 2. Right view (left) and top view (right) on the electrode positions on the outer sphere surface.
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Studies in a simulated sulcus structure

Reference sources  Noisy potential distribution

Inverse reconstruction results
SA-TSVD SA-COF

6 dipoles

Figure 4. Activity on one sulcus wall: Simulation 1: Reference dipole configuration (top, left), the simulated noisy potential
distribution on the outer sphere surface rereferenced to common average (top, right) and the reconstruction results of
the SA-TSVD (bottom, leff) and SA-COF (bottom, right) when searching for 6 dipoles.
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Reference sources  Noisy potential distribution

Inverse reconstruction with fixed locations

TSVD COF
(10 times reduced strength)

Inverse reconstruction results
SA-TSVD SA-COF

5 dipoles

Figure 5. Activity on one sulcus wall; Simulation 2: Reference dipole configuration (top, left), the simulated noisy potential
distribution on the outer sphere surface rereferenced to common average (top. right). the solution of the least square
problem using the reference dipole locations with TSVD (middie, left) and with COF (ten times reduced dipole strength)
(middle, right) and the reconstruction results of SA-TSVD (bottom, left) and SA-COF (bottom, right) when searching for 5
and 8 dipoles.
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Reference sources  Noisy potential distribution

Inverse reconstruction results
SA-TSVD SA-COF

6 dipoles
[

7 dipoles

P4

-

Figure 6. Activity on both sulcus walls: Reference dipole configuration (top, leff), the simulated noisy potential distribution
on the outer sphere surface rereferenced to common average (top, right) and the reconstruction results of SA-TSVD
(bottom, left) and SA-COF (bottom, right) when searching for 6 and 7 dipoles.
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