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Structure (segmentation)

 Fuzzy segmentation techniques
e Geometric deformable model reconstructions

« Segmentation scripts



|G. Lohmann, Volumetric Image Analysis, John Wiley & Sons, 1998]
[C.Wolters, Vorlesungsskriptum)|

Unsupervised clustering

e Clustering methods classify voxels by simple intensity range
partitioning
* A clustering method is called unsupervised, if it automatically

determines the intensity ranges for a user-given number [@ of

clusters

 The ISODATA algorithm is a representative of unsupervised
clustering, minimizing the following objective function:

C—1
Jisopara(cj) = Z Z b(x) — ¢j| — min!

j=0 xcClust;




|G. Lohmann, Volumetric Image Analysis, John Wiley & Sons, 1998]
[C.Wolters, Vorlesungsskriptum]|

Unsupervised clustering: The ISODATA algorithm

Algorithm 1 ISODATA : (IN € IMG(3),C € Ny) — (OUT €
IMG(3), i ,.,.,cgﬂle{'u: 0,...255})

[ =0, hHUahzec V;
repeat
[=1+1
for all voxels x of IN do
m.in = BIGNUM
C—1do
ﬂ|b() (Wliﬁﬁnthen
k = j, min = |b(x) |
end if
end for
Put x into Clust;

end for
for j =0

f-{r‘ = {m ExEClust_; b(x)]

end for
until EC .

m
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[J.K. Udupa & S. Samarasekera, Graph. Models and Image Processing, 58, 1999]
[C.Wolters, Vorlesungsskriptum)|

Fuzzy C-means segmentation

 Fuzzy C-Means (FCM) segmentation algorithms do not force

 FCM thus takes partial volume averaging effects into account.

 FCM minimizes the following objective function:

C—1
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[D.L. Pham & J.L. Prince, Pattern Recognition Letters, 20, 1999]
[C.Wolters, Vorlesungsskriptum]|

Adaptive Fuzzy C-means segmentation

e The following factors cause intensity inhomogeneities in MRI:
— Radio frequency excitation field inhomogeneity (McVeigh et al., Med. Phys., 1986)
— eddy current driven field gradients (Simmons et al., Magn.Reson.Med., 1994)

— REF penetration and standing wave effects (Bottomley & Andrew, Phys.Med.Biol., 1978)
 Inhomogeneities are well modeled by the product of the original image with a

smoothly varying multiplier field ygg (X) (Dawant et al., IEEE Trans.Med.Imag., 1993)

* Functional of the adaptive fuzzy C-means (AFCM) algorithm:

(Dixm)(x) = m(x+e)—m(x)
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AFCM: Derivation of the algorithm
(centroids c)
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AFCM: Derivation of the algorithm
(membership function u)
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[D.L. Pham & J.L. Prince, Pattern Recognition Letters, 20, 1999]

AFCM: Derivation of the algorithm
(multiplier m)
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[D.L. Pham & J.L. Prince, Pattern Recognition Letters, 20, 1999]

AF C M : T h e alg O rit hm [C.Wolters, Vorlesungsskriptum]

Algorithm 2 AFCM : (MRI € IMG(3),C € N, A1,22,€,0 € R) — (MRIFT €
IMG(3), MRI®™ € IMG(3), c3fem, . cafem ¢ )

Initialize: [ =0, Vx : m'Y (x) =1,V =
repeat
1. Compute new memberships, Vj = 0,

(1) \bfx} -

uj (x) =

2. Compute new centroids, Vj =

R (”'
C —

¥ =
: (.-:f,'-

3. Comp. new mult. field (solve up to relative accuracy 9):
Am!™Y = f

4. 1=1+1

until max, {max),—_g_mc_l |ufr-”( ) — ui,# Yix )|} <€

Save \_b{x)ffm”)(xﬂ to MRI®™(x )
Save {k\ui,”( ) =max;_g ¢ lu x)} to MRIY™(x)




Example (PD-MRI): Results of ISODATA and AFCM™




Example (PD-MRI): Results of ISODATA ‘and AFCM™
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Example (PD-MRI): Results of ISODATA ‘and AFCM ™
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Example (PD-MRI): Results of ISODATA ‘and AFCM ™
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Example (T1-MRI): Results of ISODATA and AFCM™




Example (T1-MRI): Results of ISODATA and AFCM™
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Example (T1-MRI): Results of ISODATA and AFCM ™
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Cortical segmentation: Differences between C-Welters Vorlesungssiripum]
ISODATA and AFCM

Coronal Sagittal

Figure 4.18: Difference between the cortical layer thicknesses of the ISODATA
and the AFCM segmentation results.




Importance Of preconditioned conj ugate [C.Wolters, Vorlesungsskriptum]
gradient (PCG) solver for AFCM

Model histo ISODATA AFCM(SOR)
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Figure 4.13: Comparison of segmentation results of Algorithms 3 and 4 for a
sphere model with sinusoidal intensity inhomogeneities. Top row: The model
(left), its histogram (middle, left), the classification result of ISODATA (mid-
dle, right) and the AFCM (SOR) intensity corrected model (right). Bottom row:
AFCM (PCG) intensity corrected model (left), its histogram (middle) and the rel-
ative residuals d((;)) (see (4.13)) for the first 5000 inner iterations of the PCG and
the SOR (for various ®) solver.




Importance of preconditioned conjugate (C-Wolters, Vorlesungsskriptum]
gradient (PCG) solver for AFCM

ISODATA | AFCM (PCG AFCM (SOR Multiplier residuals

PD-MRI: AFCM (C=2), step 3: solver convergence
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Figure 4.14: PD-MRI: Comparison of segmentation results of Algorithms 3 (left)
and 4 with scaled CG Solver (left middle) and with SOR solver (right middle) and

the relative residuals d ( see (4.13)) for the first 1500 inner iterations of PCG
and SOR (for various 0)) Solver (right).
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e Geometric deformable model reconstructions

« Segmentation scripts



[Han, Xu and Prince, IEEE Trans.Pattern Anal. Mach.Intell., 25, 2003]
[Han, Pham, Tosun, Rettmann, Xu & Prince, NeuroImage, 23, 2004)
[M.Burger, Talk at IBB, May 2008

Geometric deformable models

* Geometric deformable models are based on the theory of
front evolution and are implemented using the level set

numerical method (Osher & Sethian, 1988; Sethian, 1999)

* The level set technique represents the boundary contour

of a domain [§] implicitly as the zero level of a level set

VM)W D(x,7) R xR - R Q(t) = {x|®(x,1) <0}

[(1) = {x]|P(x1) =0}

« In a velocity field |, each point evolves via the ODE




[Han, Xu and Prince, IEEE Trans.Pattern Anal. Mach.Intell., 25, 2003]
[Han, Pham, Tosun, Rettmann, Xu & Prince, Neurolmage, 23, 2004]
[M.Burger, Talk at IBB, May 2008

Geometric deformable models

For any parametric representation | NGEEREACKINERD

and due to the definition of the level set function PEAERIRIENY

-

d = o dx. o 0
—P(x(S.1).1t) =VDO(x(S.t).t)—(S.t)+ —(x(S.1).t
ZP(x(S,1),1) = VO(x(S,1),1) == (S,1) + == (x(S,1), 1)

VO (x(S,1),t)-V(S,t)+ —(x(S,
W ! ] Y W D d I W -.

e We thus obtain:




[Han, Xu and Prince, IEEE Trans.Pattern Anal. Mach.Intell., 25, 2003]
[Han, Pham, Tosun, Rettmann, Xu & Prince, NeuroImage, 23, 2004)
[M.Burger, Talk at IBB, May 2008

Geometric deformable models

For any parametric representation | NGEEREACKINERD

and due to the definition of the level set function PEAERIRIENY

we additionally find [ERIECHRE

By the chain rule:

d
0 = Tfl}{xi% 1), r}—?cbmx 1), r}—{% t)
L L

Because gy

direction:




[Han, Xu and Prince, IEEE Trans.Pattern Anal. Mach.Intell., 25, 2003]
[Han, Pham, Tosun, Rettmann, Xu & Prince, Neurolmage, 23, 2004]
[M.Burger, Talk at IBB, May 2008

Geometric deformable models

* This finally leads to the so-called Hamilton-Jacobi equation




[Han, Xu and Prince, IEEE Trans.Pattern Anal. Mach.Intell., 25, 2003]

Example: Topology-preserving Geometric Deformable
Model (TGDM)

* For the reconstruction of the gray matter/white matter boundary of the
human brain, a combination of an expansion/contraction speed R and the

mean curvature Kk was proposed for the normal velocity: ENIHEL GOET Lt

 Choice of expansion/contraction speed: [} (1') = 2Uym (1' ) — 1

« TGDM: “Simple point” constraint that prevents topology-change

Original contour Pass over simple point Split at non-simple point



M . [Han, Xu and Prince, IEEE Trans.Pattern Anal. Mach.Intell., 25, 2003]
Geometrlc deformable mOdelS . [Han, Pham, Tosun, Rettmann, Xu & Prince, Neurolmage, 23, 2004]

Th e T GD M alg 0 rith m Marching cubes: http://users.polytech.unice.fr/~lingrand/MarchingCubes/algo.html

Algorithm 3 Topology-preserving Level Set Method
e Initialize: m = 0,19 = 0, P (-.0) signed distance function of the initial
(1 ifd(x.0)<0

contour, Bx) = 5 .
o otherwise

repeat
e Built the narrow band: Find all grid points y; such that [ (v;.1,,)| <
Wap with Wy, being the user-defined narrow band width.
for all narrow band points y; do
o Compute Diemplyi) = Plyi.tm) + AMAD{y;. 1) with AD{y; 5 )
being an upwind finite difference approximation to the right-hand
side of the Hamilton-Jacobi equation.
if sign{@emp(yi) = sign{P(yi.1)) then
e Dlyityi) = ‘chmP (vi)
else
if y; is a simple point then
o D(yity 1) = DLiemp (i)
o Biy;) = (Bly;)+1) mod2
else
o To preserve the topology, do not allow the sign change:
DGyt ) = € sign(P(y;. 1, ) ) with a small positive number
end if
end if
end for
e Reinitialize: If the zero level set of ®(-, 4, 1) is near the boundary
of the current narrow band, reinitialize &(-.#,,,1) to be the signed
distance function of its zero level set.
o m=m+ 1
until Zero level set is no longer moving
e Use connectivity consistent marching cubes algorithm to produce an
explicit representation of the final contour from the zero level set.




[Han, Pham, Tosun, Rettmann, Xu & Prince, NeuroImage, 23, 2004)

Example: Topology-preserving Geometric Deformable
Model (TGDM)

Inner cortical surface for wz=1 and w,=-0.02
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[C.Wolters, Vorlesungsskriptum)|

Example of a segm_bin
segmentation script:
We thus now
furthermore need to
learn about basic
components such as,
e.g., morphological
operations

Figure 4.16: Intermediate results for the generation of the head mask.

Script 4.7.1. HEAD : (MRI € MR I1,C € N,Aj.%.£.8 € R.d,,db.d;
No,OSS € B1) — (HEAD,SCALP € B1)

- (MRI™  MRIm, V") = AFCM(MRI,C %, )0,€,8) /% class. *

. segm_bin = BINARIZE (MRIT™ g,(C), g(C)) /% fusion *

. borders = BORDER(BIGGESTCOM P(segm_bin)) /% closing holes *
. eroded_ bg = BIGGESTCOMP(BINARIZE (DIST (borders),d ,e))

. back_dilated = BINARIZE (DIST (eroded_bg),d| ,)

. HEAD = SMOOTHING (back_dilated,d>) /* smoothing *

. SCALP = AND(HEAD, DILATE (0SS, d3)) /* for multi-tissue model *



[Vorwerk et al., Neurolmage, 2014]

..m.YA. y
1.?4.?}&5»:
R AT VAV i
AT,

.\h.r..l.n.
5 Traa X
LT X AT
e

6 compartment FE head model

4T )

A ey STATAYAT

I A ATl
KA




Thank you for your attention!
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[C.Wolters, Vorlesungsskriptum)|

Example of a segm_bin
segmentation script:
We thus now
furthermore need to
learn about basic
components such as,
e.g., morphological
operations

Figure 4.16: Intermediate results for the generation of the head mask.

Script 4.7.1. HEAD : (MRI € MR I1,C € N,Aj.%.£.8 € R.d,,db.d;
No,OSS € B1) — (HEAD,SCALP € B1)

- (MRI™  MRIm, V") = AFCM(MRI,C %, )0,€,8) /% class. *

. segm_bin = BINARIZE (MRIT™ g,(C), g(C)) /% fusion *

. borders = BORDER(BIGGESTCOM P(segm_bin)) /% closing holes *
. eroded_ bg = BIGGESTCOMP(BINARIZE (DIST (borders),d ,e))

. back_dilated = BINARIZE (DIST (eroded_bg),d| ,)

. HEAD = SMOOTHING (back_dilated,d>) /* smoothing *

. SCALP = AND(HEAD, DILATE (0SS, d3)) /* for multi-tissue model *
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[C.Wolters, Vorlesungsskriptum)|

Basic definitions

4.4.1 Definitions of images and meshes

A three dimensional 1mage 1s composed of a stack of two-dimensional slices,
which are indexed from top (slice 0) to bottom (the orientations are already given
with respect to the measured object, i.e., the human head). Each two dimensional
slice 1s discretized into rows (front to back) and columns (left to right), resulting

in the image lattice

L=1{(s,r,c) e N3|(0 < s < nslices),(0 < r < nrows), (0 < ¢ < ncolumns)} .

A feature space G represents the set of values of an image intensity function
[: L — G. The feature space is restricted here to the one-dimensional case, so
that each image lattice address (s,r,c) is assigned a one-dimensional intensity
I(s,r,c). Cartesian coordinates X, € R? of the lattice address (s,r,c) are cal-
culated by multiplying each component with its discretization size, denoted by
ssize € R, rsize € R and csize € R. A cubic volume element with barycentre
X(s.r.c)» cubic edge lengths ssize, rsize and csize and the constant intensity (s, r.c)
throughout its volume will be called a voxel. We denote the number of vox-
els with N, i.e., Ny = nslices - nrows - ncolumns. In order to simplify indices, a
voxel is identified with its image lattice address, so that denotations like x € L,
x = (s,r,¢) and I(x) := I(s,r,c) are used.




[C.Wolters, Vorlesungsskriptum)

Basic definitions

Definition 4.4.1. A “general 3D image” GI = (L,G,I) consists of the image
lattice L C N2, a feature space G C R, also called “gray code” and an intensity
function I : L — G. The set of all 3D images GI will be denoted by G I.

An image, resulting from a restriction to the set of integer gray codes G =
Gurr = {i|li =0,...,255} will be denoted by MRI with the corresponding class
MR I. “Black” and “white” are used for the gray codes 0 and 255, respec-
tively, while the intermediate values represent various shades of gray. An image,
resulting from a restriction to the triplet (L,Go 1,1) with the set of boolean gray
codes Go1 = {i|li = 0,1} will be called a “binary image” or a “binary mask”
and will be denoted by BI with the corresponding class B 1. A voxel X with inten-
sity [(x) = 0 will be called a “background” or “black” voxel and with intensity
I[(x) = 1 a “foreground” or “white” voxel. An image, resulting from a restric-
tion to the triplet (L,Gn,,I) with Gn, = {i|i € No} will be called a “positive
integer image” Pl with the corresponding class P 1. An image, resulting from a
restriction to the triplet (L,Gc,I) with Gc = {i|li =0,...,C — 1} will be called a
“C-class positive integer image” CPI with the corresponding class CP 1.




[C.Wolters, Vorlesungsskriptum)|

Basic definitions

Definition 4.4.2. The image histogram /yr; : Gyrr — Gyo with Gyo = {i]i =
Ny} counts the occurrence of each gray code in MRI € M R I, i.e., hygi(g) =

| {X|X c L /\I(X) = g} | A 2D histogram hMRIl MRL - GMRI X GMRI — GNP f()?

MRI ,MRI, € M R I with intensity functions I and I, resp., is defined through

hvrn MRE (81,82) = [{X | X €L AL(X) =g1 ANL(X) =g} |-




[C.Wolters, Vorlesungsskriptum)|

Basic definitions

In the following, cuts through a 3D image with fixed value for s will be called
axial, cuts with fixed value for r coronal and with fixed value for ¢ sagittal. Some

basic definitions about neighborhood, adjacency and connectivity in an image
lattice L have to be made, formulated in




[C.Wolters, Vorlesungsskriptum)

Basic definitions
6-neighborhood | 18-neighborhood | 26-neighborhood

L] E

Figure 4.5: Neighborhoods in 3D from Lohmann [180].

Definition 4.4.3. The set of the 6 neighbors of a voxel X in the 3D image lattice
L, differing (by one) in at most one coordinate is called the 6-neighborhood, the
set of those, differing in at most two coordinates is called the 18-neighborhood
and the set of voxels with at most three different coordinates is called the 26-
neighborhood.
Two voxels are said to be n-adjacent, iff both are n-neighbors of one another:
A set of voxels is called n-connected if for any two of them, a sequence of vox-
els (x;,
n-adjacent.




[C.Wolters, Vorlesungsskriptum)|

Basic definitions

The gray code of a voxel did not play a role in the above definition. In order
to make sure for Bl € B 1, that a closed m-connected surface of foreground vox-
els completely encloses a k-connected background component and thus divides
the background into two k-connected components (the one interior to the closed
foreground surface and the one exterior to it, see Figure  above  as an illus-
tration in 2D), the restriction to the (m, k) pairs (26,6), (6,26), (18,6) and (6, 18)
has to be made [180].

In the following, (m,k) = (26,6) will be used for all Bl € B1:




[C.Wolters, Vorlesungsskriptum)|

Basic definitions

Definition 4.4.4. For Bl € B 1, two foreground voxels are called adjacent if they
are 26-adjacent and two background voxels are called adjacent if they are 6-
adjacent. A set of foreground voxels is called connected if it is 26-connected and
a set of background voxels is called connected if it is 6-connected.

Definition 4.4.5. For Bl € B 1, a foreground voxel is called border voxel, iff at
least one of its 6-neighbors is a background voxel.




[C.Wolters, Vorlesungsskriptum)|

Basic definitions

The Euler number is an important measure for several topological character-
istics [180], so that it will be defined in

Definition 4.4.6. The Euler number of a binary object IN € B1I is defined as
the number of connected components plus the number of cavities, i.e., totally

enclosed components of the background, minus the number of handles (imagine
a handle of a tea-cub).

A binary object is topologically equivalent to a sphere, if it has the Euler number 1



[C.Wolters, Vorlesungsskriptum)|

Basic definitions

Definition 4.4.7. Two markers, STOP and PASS, for an MRI € M R I are in-
troduced, offering a possibility to influence image segmentation independently of
the image intensity. Each marker can be seen as a binary image, defined on the
image lattice of its corresponding MRI, so that each lattice point X of the " ex-
tended” image MRI,y has three attributes, a gray value 1(x) and a binary value

(0 for “not set” or deleted and 1 for “set”) for each of its two markers ST OP(X)
and PASS(x). For each X, the setting of one of the markers is automatically fol-
lowed by the deletion of the other, i.e., the combination STOP(x) = PASS(x) = 1
is impossible. The class of extended images MRI,,; will be denoted by M R I,




[C.Wolters, Vorlesungsskriptum)|

Basic definitions

The rest of this subsection is concerned with structures for geometrical mod-
els on irregular grids. A geometrical model 1s composed of a tuple (v,A) of ver-
tices v and primitives A. To make an example, such a model could be a triangu-

lated surface in 3D, i.e. a 2D manifold with v; the 3D Cartesian coordinates of
the triangle node i and A; the description of the ith triangle by means of its three
node points v;,, v;, and v;,.




[C.Wolters, Vorlesungsskriptum)|

Basic definitions

Definition 4.4.8. A mesh = {(v;,A;),i=1,...,N,,j=1,...,N,} consists of a
list of N, vertices v; € R* and a list of N » primitives A € A, where each primitive
consists of a subset of vertices of the mesh, i.e., A={v|lk=1,...A,}. The

number of vertices A,, a primitive is consisting of, depends on its type. A triangle
comprises A, = 3, a tetrahedron A, = 4 and a cube A, = 8 vertices. The class of
all meshes will be denoted by M E S 3 .




[C.Wolters, Vorlesungsskriptum)|

Basic definitions

Definition 4.4.9. The Euler characteristic of a triang. mesh is defined as the
number of vertices N, plus the number of faces N, minus the number of edges N.,.

A triangulated mesh is ropologically equivalent to a sphere, if it has the Euler
number 2 (Agoston, 1976 [1]).




[C.Wolters, Vorlesungsskriptum)|

Basic operations on images

4.4.2 Operations on images and meshes

Operations on 3D images

Within this subsection, the basic operations on 3D images will be presented by
definitions and short explanations which are frequently used later in this chapter.
Refer to [180] for a more detailed description. The first simple operation is




[C.Wolters, Vorlesungsskriptum)

Basic operations on images

Operation 4.4.10. By means of
OUT =AND(IN1,IN2),

each voxel of IN1 € G I will be taken over to OUT € G I, if it is a foreground
voxel in IN2 € BI. By means of

OUT = OR(IN1,IN2),

each voxel of IN1 € G I will be taken over to OUT € G I, if its intensity is not
equal to O or if it is a foreground voxel in IN2 € B 1.

If IN1 is restricted to a binary mask, the operation AND (OR) leads to a binary
mask QU T which is the minimum (maximum) of both input masks.




[C.Wolters, Vorlesungsskriptum)

Basic operations on images

Definition 4.4.5. For Bl € B1, a foreground voxel is called border voxel, iff at
least one of its 6-neighbors is a background voxel.

Remember Definition 4.4.5 for the following operation:
Operation 4.4.11. By means of

OUT = BORDER(IN),

border voxels of IN € B 1 are detected and written out as the new foreground of
OUT € B1.

Within the algorithm, which realizes the above operation, background voxels will
be searched in the 6-neighborhood of each foreground voxel of IN. As soon as
at least one is found, the examined foreground voxel is successfully detected as a
border voxel.




[C.Wolters, Vorlesungsskriptum)

Basic operations on images
Operation 4.4.12. By means of

OUT = LABEL(IN),

connected foreground components of IN € B I are detected and labeled in order.
The result is written to OUT € P 1. The operation

OUT = SELBIG(IN)
selects the connected component with the most frequent label value of IN € P 1.
All voxels of that component become foreground voxels in OUT € B 1. The com-
bination

OUT = BIGGESTCOMP(IN) := SELBIG(LABEL(IN))

finds a biggest connected component in IN € B1I.

The labeling algorithm begins by selecting an arbitrary foreground voxel and as-
signs the label ”1” to it. It then propagates this label recursively to all adjacent
foreground voxels, until no more foreground voxel connected to any already la-
beled one can be found. The algorithm then tries to find a further foreground
voxel, which has still not been labeled and starts a second round with label 72”.
The procedure is stopped when all foreground voxels have been labeled [180].
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OUT=BORDER(BIGGESTCOMP (IN))
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Basic operations on images

original euclidean chamfer

Figure 4.6: Original binary mask (left), iso-euclidian distance points (middle)
and iso-chamfer distance points (right).

Operation 4.4.13. The distance transform OUT = DIST (IN) on IN € B I with
OUT € ¥ I attaches a label to each background voxel which encodes the short-
est distance towards the closest foreground voxel. The distance within DIST is
measured by an euclidian metric, whereas the distance transform DIST _CHAM
uses a chamfer metric.

The operation DIST_CHAM can be seen as a fast method to approximate DIST .
To illustrate the difference: If a binary mask with only one foreground voxel
in the middle of the mask will be transformed, iso-euclidian distance points are
arranged as a circle and iso-chamfer distance points as a hexagon around this
foreground voxel, see Figure 4.6 [180].
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Basic operations on images

Operation 4.4.14. The operation OUT = BINARIZE (IN ,min,max) thresholds
IN € G I to produce OUT € B 1. The parameter min specifies the minimal and
the parameter max the maximal foreground value.

In Figure 4.6, all foreground voxels in the middle and the right figure have a
distance of 25 to the original foreground voxel, realized by choosing minimal
and maximal foreground value as 25.

OUT=BINARIZE(DIST(IN),25,25)

AT,
- )
~—

IN OUT
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Basic operations on images

Operation 4.4.15. The operation OUT = INVERT (IN) inverts IN € B I so that

foreground voxels in IN become background voxels in OUT € B I and vice versa.
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Based on the last three basic operations, the following morphological basis oper-
ations can be derived:

Operation 4.4.16. The operation OUT = DILATION(IN ,rad) with IN,OUT &€
B I will be defined by thresholding a distance transform, i.e.

DILATION(IN ,rad) := BINARIZE (DIST(IN),0, rad).

The operation OUT = EROSION (IN,rad) with IN,OUT € B 1 will be defined
by

EROSION(IN, rad) := BINARIZE (DIST(INVERT (IN)), rad, )).

It should be mentioned that the operations DILATION and EROSION are basi-
cally defined in mathematical morphology and that, in fact, they are only sim-
ulated by the above operations. Nevertheless, if a distance transform with an
euclidian metric is used, the result of the above procedures will be the same

as a morphological filtering with a sphere-shaped structuring element of radius
rad [180].
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By means of these two morphological basis operations, we can further define

Operation 4.4.17. The operation OUT = OPENING(IN,rad) with IN,OUT &€
B I will be defined by

OPENING(IN,rad) := DILATION(EROSION(IN,rad),rad).

The operation OUT = CLOSING(IN,rad) with IN,OUT &€ B 1 will be defined
by

CLOSING(IN,rad) := EROSION (DILATION (IN,rad),rad).
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original surface surface after opening surface after closing
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Figure 4.7: Visualization of two morphological operations from Lohmann [180)].

The operation OUT = SMOOTHING(IN,rad) with IN,OUT € B 1 will be de-
fined by

SMOOTHING(IN, rad) :== OPENING(CLOSING(IN., rad), rad).

Figure 4.7 illustrates the effect of opening and closing on a brain WM surface.
Thin gyri disappear during opening. The closing operator fills the sulci but does
not cause the gyri to rise.
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Two image filters will now be introduced. The first is the well-known op-
eration, which convolves an image with a Gauss filter with standard deviation
c [147]:

Operation 4.4.18. The operation OUT = GAUSS(IN,G) applies a Gauss-filter
with standard deviation G to the image IN € M R I in order to produce a smoothed
and noise-reduced OUT € M R 1.

The Gauss-filter also smoothes the edges of an image, which is not wanted
for certain applications. Lee filters, also called sigma filters [176], replace each
voxel with the mean value of its surrounding window, where the mean is taken
only from the neighboring voxels whose intensities do not differ by more than a
¢ threshold from the value of the current voxel.

Operation 4.4.19. The operation OUT = LEE (IN,G) applies a sigma filter with
a © threshold to the image IN € M R 1 and produces an edge-preserved smoothed
and noise-reduced OUT € M R 1.
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In Chapter 5, the following operation is needed for modifying the intensity values
of an MRI:

Operation 4.4.20. The operation
MRI,0a = MODINT (MRI,BI, ")

sets the intensity values of all those lattice points of the image MRI € M R I to
the new intensity value 1™ € Gyg;, which are foreground in the binary mask
Bl c BI.

The last two operations are concerned with the image markers.

Operation 4.4.21. The operation

MRI,,; = INTRODUCE _MARKERS(MRI)

extends MRI, i.e., copies the intensity for each lattice point and defines its mark-
ers as "not set”.

Operation 4.4.22. By means of the operation
MRI,; = MARK (MR, BI, marker),

the marker = ST OP, PASS of all those lattice points of the extended image MRI,,; €
M R 1, will be set, which are foreground in the binary mask BI € B 1.
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Mesh operations

The later introduced deformable models use mesh representations of surfaces
which are defined as iso-surfaces in digitized volumetric data. It will be focussed
here on the extraction of a border of a binary mask in form of a mesh consisting

of triangle elements (see Def.4.4.8). The marching tetrahedra algorithm (Payne
and Toga, 1990 [238]) is now presented as such an extraction method resulting
in a closed and oriented triangular surface mesh, i.e., the vertices of each trian-
gle are ordered so that, viewed from the outside, the vertex-cycle is traversed in
counterclockwise ordering.
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Basic operations on meshes

Mesh operations

The later introduced deformable models use mesh representations of surfaces
which are defined as iso-surfaces in digitized volumetric data. It will be focussed
here on the extraction of a border of a binary mask in form of a mesh consisting

of triangle elements (see Def.4.4.8). The marching tetrahedra algorithm (Payne
and Toga, 1990 [238]) is now presented as such an extraction method resulting
in a closed and oriented triangular surface mesh, i.e., the vertices of each trian-
gle are ordered so that, viewed from the outside, the vertex-cycle is traversed in
counterclockwise ordering.
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CASENl CASEm

LAV

Figure 4.8: Decomposition of an 8-cell into 5 tetrahedra (two figures left) and the
three cases for the intersection scenarios (three figures right)

The starting point within the algorithm is a decomposition of each so-called
8-cell (or cube) into 5 tetrahedra, where the vertices of the cube are the addresses
of 8 neighbored voxels in the image lattice (see Figure 4.8). Two such decom-
positions are possible and it must be alternated in a 3D checkerboard fashion
between both of them so that faces and edges of 8-cell tetrahedra match those
of neighboring ones. The second step in the algorithm is an identification of
those tetrahedra with vertices v;,,v;,, v, v;,, intersecting with the iso-surface of
the binary mask. This is controlled by means of a sign-change of I(v;, ) — Ip with
Ip €]0, 1[. The intersection points along the edges of a tetrahedron and thus the
vertices of the resulting triangle mesh, are dependent on the used interpolation
basis function. Gueziec and Hummel [111] proposed a bilinear basis function on
an 8-cell, since a linear led to an excessive spikeness of the resulting triangle sur-
face mesh. The bilinear basis function reduces to a linear along the edges of an
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8-cell and to a quadratic along 8-cell diagonals. Triangle vertices are calculated
as the zero-crossings of the interpolation function within a tetrahedron. Three
different intersection scenarios have to be distinguished, one of them results in
two triangles for the surface mesh, the other two in one (see Figure 4.8). During
the above process, the first surface triangle will be assigned a correct orientation
by appropriately ordering its vertices. Since any given edge of the mesh has to
be traversed in opposite directions by the vertex-cycles from the two neighboring
triangles, the correct orientation of the surface mesh can then be ensured by a
recursive procedure. The above explanations led to

Operation 4.4.23. The operation OUT = EXTRACT (IN) extracts the border
of IN € BI as a closed and well-oriented triangulated surface mesh OUT €
M ESH by means of the marching tetrahedra method.
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The extracted mesh generally consists of a large number of triangles. In order
to remove badly shaped ones and to coarsen the mesh in regions of small curva-
ture, a mesh simplification follows the extraction. In Gueziec and Hummel [111],
each edge (v;,,Vi,) goes through a deletion test and if the tests are positive, it will
be replaced by v = (v;, +v;,) /2, i.e., former edges to v;, and v;, will be replaced

by edges to v and two triangles are removed. If v;; and v;, denote the remaining
vertices of the two triangles which contain the edge (v;,,v;,), the first demand is,
that the distance between v;, and v;, is smaller than the distance between v;, and
vi,. A second prerequisite is a limit for the projection distance of v; and v;, on
the resulting surface after the deletion.
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N, = 50,000 N, = 15,000

Figure 4.9: Result of Operation 4.4.24 on a mesh, extracted from a brain mask
for different settings of N,.

Operation 4.4.24. The operation OUT = SIMPLIFY (IN,N,)) with IN,OUT €
M ESH simplifies an extracted mesh to N, vertices by a coarsening in regions
of small curvature and by removing badly shaped triangles.

Figure 4.9 shows the result of Operation 4.4.24 on a mesh with 750,000 vertices,
extracted from a brain mask for different settings of N,. It can be seen, that 5.000
vertices are no longer sufficient to correctly represent the neocortical surface.
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Later 1n this chapter, the transformation of a triangle mesh into a binary image
is needed. The following operation deals with this problem:

Operation 4.4.25. By means of mask =V OXELIZE (mesh) with mesh € M ‘E S H
consisting of triangle primitives (A, = 3), a triangle mesh is transformed into a
binary image mask € B 1. Therefore, each voxel of mask becomes a foreground

voxel, if the distance of its lattice point projection onto the closest triangle prim-
itive is smaller than /3 /2.

Operation 4.4.25 yields a mask, which has to be filled in certain situations. The
filling process is described in Script 4.4.26 and illustrated in Figure 4.10. In

the second step of the script, the contour of the transformed mesh is dilated as
the background component with the parameter d, so that the biggest connected
component of the resulting mask 1s the d eroded image background. The dilation
1s then canceled by a d erosion and the filled mask 1s achieved.




[C.Wolters, Vorlesungsskriptum)

Segmentation scripts for head modeling

dilated_cont_to_bg

eroded_bg

Figure 4.10: Example for Script 4.4.26: Filling the ISS mesh.

1. cont = VOXELIZE (mesh)

Script 4.4.26. FILL : (meshe M £59( ,d € R) — (mask € BI):

2. dilated_cond_to_bg = BINARIZE (DIST (cont),d, )
3. eroded_bg = BIGGESTCOMP(dilated_cont_to_bg)

4. mask = INVERT (BINARIZE (DIST (eroded_bg),0,d)))




Structure

Fuzzy segmentation techniques
Geometric deformable model reconstructions
Basic definitions and operations on images and meshes

Segmentation scripts
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Head mask
segmentation script

segm_bin

Figure 4.16: Intermediate results for the generation of the head mask.

Script 4.7.1. HEAD : (MRI € MR I1,C € N,Aj.%.£.8 € R.d,,db.d;
No,OSS € B1) — (HEAD,SCALP € B1)

. (MRI®™ MRI¥m, cjff “"y = AFCM(MRI,C, 1, %.€,8)  /*class. *
. segm_bin = BINARIZE (MRIT™ g,(C), g(C)) /* fusion *
. borders = BORDER(BIGGESTCOM P(segm_bin)) /% closing holes *
. eroded_ bg = BIGGESTCOMP(BINARIZE (DIST (borders),d ,e))

. back_dilated = BINARIZE (DIST (eroded_bg),d| ,)

. HEAD = SMOOTHING (back_dilated,d») /% smoothing *

. SCALP = AND(HEAD, DILATE (0SS, d3)) /* for multi-tissue model *
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Brain peeling segmentation script

Script 4.7.2. PEELING : (T1 e M R I1.,d,,d, € R) - (PEEL€ B1I)
. t1_filt = LEE(t1) /* binarize filtered T1 */
. bin = BINARIZE (ISODATA(t1_filt,2),1,1)
. andl = AND(bin, EROSION _SPEC (bin,d,)) /* erode */
. big = BIGGESTCOMP(OPENING (and1,3)) /* extract */
. and2 = AND (bin,DILATION _SPEC (big,d,)) /¥ inflate */

. PEEL =CLOSING(and2,12)
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Script for creating brain mask

AND(T1¥™ PEEL) bin BRAIN

r---

v ¥

Figure 4.17: Intermediate results of Script 4.7.3.

Th S
r 4
1.1 .

A

Script 4.7.3. GENBRAIN : (T19" ¢ c®1,PEEL € $1,d € N) —
(BRAIN € B1):

1. bin = BINARIZE(AND(T1%m PEEL),1,2)

2. BRAIN = DILATION(BIGGESTCOMP(EROSION (bin.d)),d)
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Inner skull surface (ISS) segmentation script

Script 4.7.4. ISS : (T'1,PD"™8 € M R I, A, A2,N, € N €8, 0, 0e,T,d €
R) — (ISSeB1)

. (PDeorr ppafem oFP IPy = AFRCM(PD'®,2,\,\2,€,8)  /* class. */

. segm_bin = BIGGESTCOMP(BINARIZE (PD% ™ 1,1)) /* peeling */

. small_inner = BIGGESTCOMP(EROSION (segm_bin,6))

. too_large_inner = DILATION (small_inner, 8)

. peeled_inner = AND(segm_bin,too_large_inner)

. del_iso_points = BIGGESTCOMP (peeled _inner) /* cleaning */

. IN =INVERT (BIGGESTCOMP(INVERT (del _iso_points)))

. IS = (DEFORM(PD"" IN, Ny, 2" @0 0p,T)) /% Improve /
9. ISS =FILL(IS.,d) /* fill %/
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Estimated (from T1-MRI) inner skull surface (EISS)
segmentation scripts

Script 4.7.5. EISS : (Tl € M R 1,BRAIN € BI1,M,A € Nyg,8,d,,d> €
R:Imimlmax S GMRI) — (EISS S QI)

1. (T1eor riafem (I I Yy = AFCM(T1,3,01,M2,€,8)  /* class. %/
2. close = CLOSING(BRAIN.d\)  /* Generate minimal inner mask */
. min_inner = DILATION(close,d>)
. max_inner = DILATION (min_inner,2) /* Gen. maximal inner mask */

. T1Y" = INTRODUCE _MARKERS(T1°°"") /* extend MRI */

ext

. T19" = MARK(T159"  min_inner, PASS)  /* Meninges/skull segm. */

ext ext

. T1<" = MARK (T15""  INV ERT (max_inner),ST OP)

ext ext 7

. meninges = ERG(T 152", 0, Lyin, Lnax)

ext ?

. EISS = OR(SMOOTHING (meninges,20),min_inner) /* Smoothing */
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Differences between ISS and EISS segmentation

Figure 4.20: Comparison of the inner skull segmentation results, using the bi-
modal data set and Script 4.7.4 (border of ISS, yellow) or exclusively the TI
image and Script 4.7.5 (border of EISS, red).
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Differences between ISS and EISS segmentation

EISSon Tl ELSS on PD ISSon Tl 1SS on PD

Figure 4.21: Magnification of the parietal area of the neurocranial roof where the
CSF layer is thicker than being estimated by means of the TI-MRI based EISS,
as the PD image and the border of the ISS show.
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Outer skull surface (OSS) segmentation script

Script  4.7.6. OSS : (T1"" € MR I1,ISSSHEAD € ®BI,elastic €
GO,] 7Iminvlmavav:Cgfcm7Cafcm E Namim‘v me,\‘l‘?fc E R) — (OSS E Q}' I)

1. T159" = INTRODUCE _MARKERS(T1'") /* extend MRI */

ext

2. min = DILATION(ISS,3) /* minimal outer mask */
. max = AND(DILATION (min,6),HEAD) /* maximal outer mask */

. T159" = MARK (T 159" min, PASS) /* segm. initial mask */

ext exr ?

. T1$9" = MARK (T15%" INV ERT (max),STOP)

ext ext

. O8S_in = OR(SMOOTHING(ERG(T 150", elastic, Lyin I pax ), 6),min)

ext

afem . _afcm

. 0S = DEFORM(T 1", 0SS_in, Ny, 10— @is, Op,T) /% Improve #/

. 0SS = FILL(OS, 1)
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Outer skull surface (OSS) segmentation script

Figure 4.22: Results of script 4.7.6: ERG surface results for low (left) and higher
(left middle) elasticity, border of OSS_in (right middle) and of OSS (right) on
underlying T1 image for high elasticity.
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3D rendering of segmented surfaces

ventricles

white matter

mnner skull

outer skull

Figure 4.23: 3D rendering of tissue boundaries in multicompartment head model.
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S5 compartment head model

Figure 4.24: The 5 tissue head model.
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