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Structure

« Parametric image registration techniques
 Non-parametric image registration techniques

 Non-parametric registration for DTI
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General framework

T(z —ux)) = (o))

Problem 8.1 Given two tmages R. T, and a posthive reqg ularizing para-
meter o € R~q, find a deformation 1, sich that

Jlu} == D[R, T;u] + aS[u] = min.



General framework: Gateau differentiability

1
dS[u; v = lim — u[u + ho, v + ht] — alu, u]) = alu, V]
h—0 2

/ (Alul(z),v(x)
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General framework

Y b € y o T d _, pd
Theorem 8.1 Letd € N and R, T € Img(d), T € C 2(RY), u,v: R R¢,

Q :=]0,1[¢. The Gitecuz derivatwe of D[R, T';ul,
(8.10)

D[Rﬂ 1 u] = DbSD[RaTu] = §||Tu - RHLQ(S'E)

with respect to v i8S guen by

dD(R, T;u;v| = —/ (f(z,u(z)),v(x))pa d,

where f = RY x R¢ — Re,
f(z,u(x)) = (R(z) - T.(z))VT(x).




General framework

Proof We take advantage of a Taylor expansion of 7 (# — u(x) — hv(z)) with
respect to h at the expanding point z — u(x)

b ]

T'(x — u(x) — hv(x)) = Ty(z) — h (VT (2), v(Z))ga + O(h?).

Thus,

d'D[H? Toue 'L-‘]
1 .
= lim — (D[R, T;u + hv] — D[R, T u))

h—0 h /

lim / (Tu(z) — R (VTy(z),v(z))ge + O(h?) — H’.(:;t))2
h—02h Jo ;

(jlu (.[) " R(’)) 2(l;’1?

‘/<(R(I) - Tu(z) )VTu(z), v(x)) ga dz.
§2




General framework: Euler-Lagrange
equations

dS[u; v = '1'1113) T (a[u + hv, v + ht| — alu, u]) = alu, v

= / (Alu(x),v(z))ga dT.

dD[u;v] = / Sz, u(x)), v(x))pa do
JRd &

Alu|(z) — f(z,u(z)) =0, forall z e Q.




General framework: Discretization

glz + h i€5) — 29(2) + g(x — hje;

('):lt‘,xj.(]{\‘r..' = SN e e =

Oz;z, 9(T) = Th; by (9(x +hje; + hrer) — g(@ — hje; + hrey)

—g(z+hje; — hrer) + g(x hi€s — h,kc:;\f))
Nh2 1 12
+ O (h3 + hi),

S4 denotes a convolution filter connected with the PD operator A and with a
lexicographical ordering of the grid points, a linear equation system arises.



General framework: The algorithm for
non-parametric registration

Algorithm 8.2 General registration algorithm.
Initialize k = 0, X'(H, and U®) = (.

For k=0,1,2,... 10 )
compute force FE) = £(X,U™);

: o 2R ATT(k+1) — —‘(k)-
solve partial differential equation, AT o e

if converged, stop, end;
end.
B R e e




Structure

 Non-parametric image registration techniques

— Elastic registration

— Fluid registration



[Modersitzki, Numerical Methods for Image Registration, Oxford University Press, 2004)

Elastic registration using Navier-Lamé equation

AN
a [TL:, TJ] :—/Q z Z (Vug + Oy, 1, VU ) ga + Adivudivede (9.12)
k=1

2 alu, u| + blu,

Theorem 9.4 Let J be defined by egn (9.14), a be defined by eqn (9.12),
and b be defined by eqn (9.13), respectively. Moreover, let u € (C?(R4))4.

For the perturbation v € (C?(R%))%, the Giteauz derivative of J is given
by

dJ [u; v] = / (f — pAu — (p+ A)Vdivu, v)ga de.
JQ




Elastic registration

Proof A computation gives

dJ [u;v] = lim ,1(:J [ + he] — J[u]) = alu,v] + bv]

h—0 10

d
= / E 1 {Vug + 0z, u, Vorga +Adivudive + (f,v)ga do
Q)

2 k=1

d

= / Il E Vi (Vg + Oz 1, M) ga + Adivu (v, R)pa dr
0 1

I / (f — wlAu — (g + A)Vdiv u, v)ga da,
J

where 77 denotes the outer normal vector on 9€). Exploiting the implicit boundary
conditions divu = (Vug + 0, %, )ga = 0 on 942, the boundary integral vanishes,
which completes the proof. O




Elastic registration

* The arising PDE is called the Navier-Lamé equation.

* The proot of the Theorem shows that implicit boundary
conditions are needed. NI RNA IR T Rl AL

e In practice: Influence of boundary conditions is limited, therefore
explicit periodic boundary conditions are often used, since they
allow the computation of eigenfunctions and eigenvalues of the
Navier-Lame operator and thus the development of an O(N log N
direct FFT-solver of the discrete system.
w1 (0, 20, 23) = u1 (1, 22, 23)
uo(xy,0,23) = uo(xy, 1, 23)

* Elastic registration needs affine pre-registration since it
penalizes linear deformations u(x)=Cx+d



Elastic registration

Alu] = pAu + (A + p)Vdivu

(N4 24) 0y 0, w1 + 10zsz,tu1 + (A + )0z, 2, U2
N+ 1)O0,zpu1 + 0z, 2, u2 + (A + 216) Oz, U2

1,1 [u'.] (\, :‘, 4 A] 2[“2] ( X I)
9. U ( X \ L ./42‘2[“.2] ( X :l

S % up(X)
£ up (X) + 527 % ug(X)

A (n;=5, n,=7) for periodic
boundary conditions
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Elastic registration: An example
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Elastic registration: An example

Reference image
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Structure

 Non-parametric image registration techniques

— Elastic registration

— Fluid registration
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Fluid registration
p(x,t) = x4+ u(x,t)




[Modersitzki, Numerical Methods for Image Registration, Oxford University Press, 2004)

Fluid registration

= I — u(Z,1),

Using the initial coordinates x of the particles P as the reference coordinate
system is also called the Lagrange frame, whereas tracking the particles with
respect to their actual position & is called the Euler frame: see also Section 3.3.2
and Remark 9.2. Since the displacement and the velocity of a particle are physical
properties and thus independent of the reference frame, we have

u(z,t) = u(z,t) and w(z,t) = 0(3,t),

where the velocity of the particle P is defined as the partial time derivative of
the transformation,

z = @(P,0).

Note that

> -

R T (1~§ : L0 ._:Ii;. PR LT R O ol R
olE. 1) = d—t"z.z,(:l:, t) = Vu(z,t)0 + 0gu(Z,t) = Va(z, t)o(z,t) + 0y, t).




Fluid registration

* For Stokes fluids with very slow motion flow, we get the PDE for

fluid registration:

UAT + (A + p)Vdivo = [l = dyu + Vuw



Fluid registration

* The only difference to the algorithm of elastic registration is the
additional Euler step to compute the deformation from the

s — ). + Vo

* The Euler step can be implemented using a centered finite
dlfference approximation for \Wg¥f and a forward FD approx.

where ]lfq = 5




[Modersitzki, Numerical Mathematics and Scientific Computation, 2004)
Fluid registration: An example
e ‘___ , —

k=200

Result for periodic boundary conditions. lambda=0, mu=5000.

Fluid registration provides a powerful tool since in principle, it is possible to deform any template
to any reference image. However, especially this feature is certainly not appropriate for certain
applications, since physically elastic objects like brains do not deform in general like honey.
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« Parametric image registration techniques
 Non-parametric image registration techniques

 Non-parametric registration for DTI
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EPI susceptibility artifact: An example
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Introduction: Reason for field distortions

* Fast (whole brain images in seconds) acquisition
scheme of echo-planar imaging (EPI) is most frequently
used for diffusion-weighted imaging (DWI) and
diffusion-tensor imaging (DTI) (Stehling et al., 1991)

* Low acquisition bandwidth in phase encoding gradient
direction (v) causes high sensitivity against small
perturbations of the magnetic field (Chang &
Fitzpatrick,1992)

* Field inhomogeneities are caused by susceptibility
differences and they scale with the B, field strength
(Jezzard & Clare, 1999)



Introduction: Correction approaches

* Field map approaches (Jezzard & Balaban, 1995) suffer
from long acquisition time and subject motion as well as
regularization to overcome problems near tissue edges and
regions with large inhomogeneities (Holland et al., 2010)

* Point Spread Function strategy (Robson et al., 1997) also
takes several minutes for a full brain (Holland et al., 2010)

* Direct registration of EPI to anatomical images (Merhof et
al., 2007; Tao et al., 2009)

* Reversed gradient approach (Chang & Fitzpatrick, 1992;
Morgan et al., 2004)

Our contribution: Reversed gradient approach with
diffeomorphic transformation and thus meaningful intensity

modulations (Ruthotto et al., 2012)



Outline

Introduction
Method
Results

Discussion



Method

» Assuming a known field inhomogeneity and the known
direction of spatial mismatch SR8 , a forward model that relates the

unobservable undistorted image to the observation
was introduced by (Chang & Fitzpatrick, 1992):

I1x)=21x+Bx)v) - (1 +0oB) Vxe

* Requirement (Chang & Fitzpatrick, 1992): Measurement parameters have to
be chosen such that the intensity modulation remains positive,
corresponding to the invertibility of the mapping:

(1 +0yB(x)) € 10, o0



Method

1(x) =211(x+Bx)v) - (1 +0vB) =ZLr(x—BXx)v) - (1 —0B) Vx €



Method: Functional to be minimized

mBin J(B) :="D(I,,1I,; B)

D) = 5 f (T (x4 BOOY) - (1 + 0vB) — To(x — BEOV)(1 — 0yB))? dx
Q2

(Holland et al., 2010)

(Rl;thott(; et al-., 2012)
min J (B) :=D(Z, Ip; B) + a ST (B) + BS*(B)




Method: Functional to be minimized

min J (B) := D(Z, I»: B) + a S (B) 4+ BS™(B)

D) = 5 f (T (x4 BOOY) - (1 + 0vB) — To(x — BEOV)(1 — 0yB))? dx
Q2

1 ,,
S9(B) = X / VB(x)Pdx
2 Jo

(1 4+ 0yB(x)) € ]0, ool and (1 — 0yB(x)) € ]0, ool

which 1s equivalent to

IvB(x) € |-1, 1]




Method: Functional to be minimized

min J (B) := D(Z}, Io: B) + aS""(B) + BS™ (B)

S(B) = / $(dyB(x)) dx, with ¢ (z) = ——
Q2

L 0

p

Figure 1. Plot of the proposed penalty function ¢ (z) acting on dyB(x), see (7). The growth behavior
of ¢(z) to infinity as |z| — 1 is crucial to ensure that the intensity modulations are positive almost
everywhere and thus (5) is fulfilled. Since 1 &£ dyB(x) is the Jacobian determinant of the mapping
x £+ B(x)v, this condition is equivalent to the diffeomorphy of the geometric transformation.




Method: Implementation and discretization

* Follow guidelines of (Modersitzki, 2009)

« our model is implemented in SPM (google for SPM HYSCO)
and as an extension to the freely available FAIR toolbox in
Matlab (Modersitzki, 2009)

« Use a discretize-then-optimize approach on a hierarchy of
levels to improve stability against local minima and give
speed (Modersitzki, 2009)

 For computationally expensive routines such as image
interpolation and regularization, parallelized C-code in a
matrix free fashion is used (Modersitzki, 2009)

 Memory consumption is kept to a minimum and method
runs on standard computer



Method: MR measurements

 DT-MRI measured using Stejskal-Tanner spin-echo EPI

» Voxels of 1.875mm x 1.875mm x 3.6mm

e Contrast parameters: TR=9473, TE=95ms

« 20 direct. images, equally distrib. on sphere (Jones, 2004)
 Bandwidth in phase-encoding direction - selected as
anterior-posterior- was 9.1 Hz pixel, in frequency-encoding
direction, it was 1675 Hz pixel-

» With one exception (difference 14%), the difference of mass
(i.e. integral over 1;-I,) was less than 1.5%

» Also only the image pair with “flat” diffusion gradient

(b=0 s mm-?) is required for our correction, we acquired two
full data sets with reversed gradients to investigate the
impact of correction on Fractional Anisotropy (FA)



[Wolters, Vorlesungsskriptum, 2016]

Definition of Fractional Anisotropy (FA)

sand

Figure 5.6: Fractional anisotropy index, FA (see Equation (5.16)), of the DT-
MRI, masked with the WM mask.

When extracting the anisotropic part of the matrix of the diffusion tensor,
A € R>*, by means of
traceD _
A:=D-— 3 Id, (5.15)
the fractional anisotropy index FA 1s defined as [21]

3VACA 3
FA := \ﬁ : with B:C= Y Bl (5.16)
2 \/ D:D 1'_j2_1

Figure 5.6 shows a map of the fractional anisotropy index of the registered DT
data, masked with the WM mask. With FA = (.74, the highest value for fractional
anisotropy was found in the splenium of the corpus callosum. Note also the strong
anisotropy of the pyramidal tract in the figure.
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Results

initial data difference
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Results

Dataset

DTI-1
DTI-2
DTI-3
DTI-4
DTI-5
DTI-6

Table 1. Results of susceptibility correction for the six DTI datasets: reduction in the distance
measure D (second column), normalized cross-correlation between Z| and Z, before (NCC(0),
third column) and after (AV'CC(B), fourth column) registration. The range dyB (fifth column) is a
measure of registration regularity and the range of B (sixth column) is a measure of the maximal
deformation. Runtime (seventh column) and number of iterations on the different levels (from
coarse to fine) of the multi-level optimization approach (eighth column).

NCC(0)

0.74
0.74
0.66
0.69
0.72
0.72

NCC(B)

0.98
0.98
0.97
0.97
0.98
0.98

Range 0,B

[—0.92, 0.86]
[—0.91, 0.89]
[—0.89, 0.91]
[—0.90, 0.84]
[—0.91, 0.90]
[—0.91, 0.89]

Range(B)

[—18.5, 30.3]
[—16.0, 28.8]
[—24.1, 29.1]
[—19.7, 24.1]
[—14.1, 30.6]
[—16.3, 22.8]

Runtime (s) Iterations

133 [10, 4, 4,
100 [10,5, 3,
80 [10,6, 4,
70 [10, 4, 3,
87 [10, 3, 3,
63 [10,4, 3,
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Results: Fractional Anisotropy (FA)

I "i& }ﬂ'ﬂ&; s,

) FA map uncorrected data ) FA difference = 100 %

3;&.

F3.4E }’h_‘?ﬁ'

(g) FA map after correction (h) FA difference = 63 %




Results

(a) final distance D(B%) (b) range of 9, B*
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Figure 4. Comparison of diffusion regularization scheme (A, B = 0) as in Holland et al (2010)
with the proposed extension by the nonlinear regularization term S in (7) (%, 8 = 1;0, g = 10).
The final image distances, depicted in a semi-logarithmic plot (a) for & increasing from 1 to 70, are
at a comparable level for all tested choices of . As to be expected, the image distance is reduced
marginally more for § = 0. However. in plot (b), visualizing the range of d,B%, it can be seen that
the regularity condition (6) is violated for g = 0 and small values of «. For g = 1, 10, the range
is in the interval [—0.99, 0.84] for all tested «.
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Discussion

 Necessary additional amount of measurement time: <1min
« Compared to (Holland et al., 2010), a key novelty of our

is the additional nonlinear
regularizer that guarantees positive intensity modulations
and diffeomorphic geometrical transformations independent
of the actual choice of regularization parameters
* Not very sensitive to choice of regularization parameters,
our choice was fine for all 6 of our investigated DTI datasets
- Effective reduction of distortions and further reduction
possible when combining our approach with parallel imaging
* When compared to (Chang & Fitzpatrick, 1992; Morgan et
al., 2004; Weiskopf et al., 2005), our approach doesn’t need
any pre-segmentation and edge detection



Discussion

« When compared to (Andersson et al., 2003; Skare &
Andersson, 2005), computational expenses were lowered
due to non-parametric transformation, high-end optimization
and multi-level techniques

* Approach is not limited to EPI, as the underlying physical
distortion model was first developed for any inhomogeneity-
induced artifacts in MR (Chang & Fitzpatrick, 1992)

* The assumption of no signal loss (mass-preservation) is
well satisfied by spin-echo, but it is only approximately
fulfilled by gradient echo schemes commonly used in fMRI,
but first fMRI results suggest that our method is also
valuable for fMRI



Thank you for your attention
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