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Dipole scan
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[Höltershinken, Erdbrügger & Wolters, arXiv:2409.07459, 2024]

Dipole scans in different inner product spaces
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Standardized LOw Resolution Electromagnetic 

TomogrAphie (sLORETA)
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[Pascual-Marqui, Meth & Find. In Exp. & Clin. Pharmacol., 2002]

 [Höltershinken, Erdbrügger & Wolters, arXiv:2409.07459, 2024]

sLORETA: Dipole scan in a different inner product space
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[Lucka, PhD thesis in Mathematics, 2015]

[Lucka, Burger, Pursiainen & Wolters, NeuroImage, 2012]

 [Lucka, Burger, Pursiainen & Wolters, Biomag2012, 2012]

[Lucka, Diploma thesis in Mathematics, March 2011]
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[Lucka, Diploma thesis in Mathematics, March 2011: 

http://www.sci.utah.edu/~wolters/PaperWolters/2011/LuckaDiplom.pdf]
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[Lucka, PhD thesis in Mathematics, 2015

http://www.sci.utah.edu/~wolters/PaperWolters/2015/LuckaDissertation.pdf]
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Current density reconstruction methods (CDR)

[Vorlesungsskriptum]

[Lucka, PhD thesis in Mathematics, 2015]

[Lucka, Burger, Pursiainen & Wolters, NeuroImage, 2012]

 [Lucka, Diploma thesis in Mathematics, March 2011]
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[Lucka, Burger, Pursiainen & Wolters, NeuroImage, 2012]
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[Lucka, Burger, Pursiainen & Wolters, NeuroImage, 2012]
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Hierarchical Bayesian Modeling (HBM):

Mathematics: The likelihood model

• Central to Bayesian approach: Accounting for each uncertainty concerning the 

value of a variable explicitly: The variable is modeled as a random variable

• In this study, we model the additive measurement noise by a Gaussian random 

variable

• For EEG/MEG, this leads to the following likelihood model:
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Hierarchical Bayesian Modeling (HBM):

Mathematics: The likelihood model

[Lucka, Burger, Pursiainen & Wolters, NeuroImage, in revision]

 [Lucka, Burger, Pursiainen & Wolters, Biomed.Eng., 2011]

[Lucka, Diploma thesis in Mathematics, March 2011]

• The conditional probability density of B given S is called likelihood density, in our 

(Gaussian) case, it is thus:
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Hierarchical Bayesian Modeling (HBM):

Mathematics: Prior and Bayes rule

• Due to the ill-posedness, inference about S given B is not feasible like that, we 

need to encode a-priori information about S in its density ppr(s), which is called 

prior

• We call the conditional density of S given B the posterior: ppost (s|b)

•Then, the model can be inverted via Bayes rule:

• The term p(b) is called model evidence, (see Sato et al., 2004; Trujillo-Barreto et 

al., 2004; Henson et al., 2009, 2010). Here, it is just a normalizing constant and not 

important for the inference presented now
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Hierarchical Bayesian Modeling (HBM):

Mathematics: MAP and CM

• The common way to exploit the information contained in the posterior is to infer a 

point-estimate for the value of S out of it

• There are two popular choices, the Maximum A-Posteriori (MAP, the highest 

mode of the posterior) and the Conditional Mean (CM, the expected value of the 

posterior):

• Practically, the MAP is a high-dimensional optimization problem and the CM is a 

high-dimensional integration problem
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Hierarchical Bayesian Modeling (HBM):

Mathematics: Specific priors used in EEG/MEG

• To revisit some commonly known inverse methods, we consider Gibbs distribution 

as prior:

• Here, P(s) is an energy functional penalizing unwanted features of s

• The MAP-estimate is then given by:

-
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Hierarchical Bayesian Modeling (HBM):

Mathematics: Some choices for P(s) used in EEG/MEG

• Minimum Norm Estimation (MNE), see 

Hämäläinen and Ilmoniemi, 1984
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Hierarchical Bayesian Modeling (HBM):

Mathematics: Some choices for P(s) used in EEG/MEG

• Weighted Minimum Norm Estimation 

(WMNE), see Dale and Sereno, 1993

• Specific choices for WMNE: Fuchs et al., 1999



Carsten.wolters@uni-münster.de

Hierarchical Bayesian Modeling (HBM):

Mathematics: 
• Brain activity is a complex process comprising many different spatial patterns

• No fixed prior can model all of these phenomena without becoming 

uninformative, that is, not able to deliver the needed additional a-priori 

information

• This problem can be solved by introducing an adaptive, data-driven element into 

the estimation process
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Hierarchical Bayesian Modeling (HBM):

Mathematics: 
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Hierarchical Bayesian Modeling (HBM):

Mathematics for EEG/MEG application
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Hierarchical Bayesian Modeling (HBM):

Mathematics for EEG/MEG application
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Hierarchical Bayesian Modeling (HBM):

Mathematics for EEG/MEG application
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Hierarchical Bayesian Modeling (HBM):

Mathematics for EEG/MEG application

[Lucka, Diploma thesis in Mathematics, March 2011]
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Hierarchical Bayesian Modeling (HBM):

Mathematics: Our chosen posterior



Carsten.wolters@uni-münster.de

Hierarchical Bayesian Modeling (HBM):

Mathematics: 
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Hierarchical Bayesian Modeling (HBM):

Mathematics: 

• CM estimation: Blocked Gibbs sampling, a Markov chain Monte Carlo 

(MCMC) scheme (Nummenmaa et al., 2007; Calvetti et al., 2009)

• MAP estimation: Iterative alternating sequential (IAS) (Calvetti et al., 2009)
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Hierarchical Bayesian Modeling (HBM):

Mathematics: 

[Lucka, Diploma thesis in Mathematics, March 2011]
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Hierarchical Bayesian Modeling (HBM):

Mathematics: 
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Hierarchical Bayesian Modeling (HBM):

Goal of our study
delete11.tiff                                                  0005FD18500.11 Festplatte              7C2686E3:

• Step 1: Computed forward EEG for reference source (green dipole)

• Step 2: Computed HBM inverse solution without indicating the number of 

sources (yellow-orange-red current density distribution on source space) 
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Hierarchical Bayesian Modeling (HBM):

Validation means: DLE and SP 
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Hierarchical Bayesian Modeling (HBM):

Validation means: EMD
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Hierarchical Bayesian Modeling (HBM):

Validation means: Source depth
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Hierarchical Bayesian Modeling (HBM):

Methods: Head model
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Hierarchical Bayesian Modeling (HBM):

Methods: Head model
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Hierarchical Bayesian Modeling (HBM):

Methods: EEG sensors
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Hierarchical Bayesian Modeling (HBM):

Methods: Full-cap (f-cap), realistic cap (r-cap)
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Hierarchical Bayesian Modeling (HBM):

Methods: Source space and EEG lead field
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Hierarchical Bayesian Modeling (HBM):

Methods: Source space
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Hierarchical Bayesian Modeling (HBM):

Study 1: Single dipole reconstruction
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Hierarchical Bayesian Modeling (HBM):

Methods: Generation of noisy measurement data
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Hierarchical Bayesian Modeling (HBM):

Results: Single focal source scenario
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• Step 1: Computed forward EEG for reference source (green dipole), add noise

• Step 2: Computed HBM inverse solution without indicating the number of 

sources (yellow-orange-red current density distribution on source space) 
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Hierarchical Bayesian Modeling:

Single focal source scenario
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Hierarchical Bayesian Modeling:

Single focal source scenario
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Hierarchical Bayesian Modeling:

Single focal source scenario

HBM: Conditional Mean (CM) estimate
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Hierarchical Bayesian Modeling:

Single focal source scenario

HBM: CM followed by Maximum A-Posteriori estimate (MAP)
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Hierarchical Bayesian Modeling:

Study 1: Single focal source scenario
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Hierarchical Bayesian Modeling:

Study 1: Single focal source scenario
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Hierarchical Bayesian Modeling :

Study 1: Single focal source scenario

• A mark within the area underneath the 

y=x line indicates that the dipole has 

been reconstructed too close to the 

surface 

• A mark above the line indicates the 

opposite

• qab denotes the percentage of marks 

above the y=x line minus 0.5 (optimally: 

qab= 0) 
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Hierarchical Bayesian Modeling :

Single focal source scenario
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Hierarchical Bayesian Modeling :

Single focal source scenario
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Hierarchical Bayesian Modeling:

Study 1: Single focal source scenario
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Hierarchical Bayesian Modeling:

Study 1: Single focal source scenario
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Hierarchical Bayesian Modeling (HBM):

Study 2: Two sources scenario
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MNE

sLORETA

CM
MAP1

MAP2 MAP3
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Hierarchical Bayesian Modeling:

Study 2: Two sources scenario

MAP
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Hierarchical Bayesian Modeling:

Study 2: Two sources scenario
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Hierarchical Bayesian Modeling:

Study 2: Two sources scenario
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Hierarchical Bayesian Modeling (HBM):

Study 3: Three sources scenario
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Hierarchical Bayesian Modeling:

Study 3: Three sources scenario



Carsten.wolters@uni-münster.de

Hierarchical Bayesian Modeling:

Study 3: Three sources scenario



Carsten.wolters@uni-münster.de



Carsten.wolters@uni-münster.de

Thank you for your attention!
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