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Dipole scan
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[Holtershinken, Erdbriigger & Wolters, arXiv:2409.07459, 2024]

Dipole scans in different inner product spaces

Definition 1 (Hilbert norm). Let C be a positive definite operator on some Hilbert space. Then we can define
an inner product via

(z,9)c = (C - z,y)

and a corresponding norm via

|zllc = V(C .z, z).
We call a norm arising in this way a Hilbert norm.
Note that the choice C = Id reproduces the original inner product and norm.

[n the following, let zy,...,zp € R® denote a set of source positions with corresponding leadfields Ly, ..., Ly €
RN >3 Furthermore, let d € RV denote a measurement vector.

Definition 2 (Generalized dipole scan). Let C be a positive definite operator defining a Hilbert norm || - ||¢.
For each 1 < i < M we then estimate a dipole moment j; via

4i = argmin ||d — L; - j||%.
JC_RS

We then define the goodness of fit (GOF) of the source at position z; to be

ai. ”d 5 Li Jl”%

GOF(i,C) =1 ;
(’ ) ”d é‘

The dipole scan is then given by searching for the index ¢ which maximizes the goodness of fit.

The standard GOF-scan now corresponds to the choice C = Id on RY equipped with the standard inner
product.
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Standardized LOw Resolution Electromagnetic
TomogrAphie (sLORETA)
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[Pascual-Marqui, Meth & Find. In Exp. & Clin. Pharmacol., 2002]
[Holtershinken, Erdbriigger & Wolters, arXiv:2409.07459, 2024]

sLORETA: Dipole scan in a different inner product space

Definition 3 (generalized sSLORETA, vector case). Let C € RV*N be a symmetric matrix defining a positive
definite operator on a space containing the range of the leadfields. Then define for 1 < i < M the vector

JUYORETA _ (LTCL,)™1 L]Cd € R®.

As defined in [1], the generalized sSLORETA method now consists of searching for large values of |7 ONETA |2,

The classical sSLORETA approach now corresponds to the choice C = (LLT +aH)", where L = (Ly, ..., L)
is the complete leadfield, H is the orthogonal projection onto {1}*, and a > 0 (as defined by Pascual-Marqui)
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[Vorlesungsskriptum]

[Lucka, PhD thesis in Mathematics, 2015]

[Lucka, Burger, Pursiainen & Wolters, NeuroImage, 2012]
[Lucka, Diploma thesis in Mathematics, March 2011]

Current density reconstruction methods (CDR)

Figure A.18.: MNE result (red-yellow cones) for a single dipole (green cone).
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[Lucka, Burger, Pursiainen & Wolters, NeuroImage, 2012]

ABSTRACT

The estimation of the activity-related ion currents by measuring the induced electromagnetic fields at the
head surface is a challenging and severely ill-posed inverse problem. This is especially true in the recovery
of brain networks involving deep-lying sources by means of EEG/MEG recordings which is still a challenging
task for any inverse method. Recently, hierarchical Bayesian modeling (HBM) emerged as a unifying frame-
work for current density reconstruction (CDR) approaches comprising most established methods as well as
offering promising new methods. Our work examines the performance of fully-Bayesian inference methods
for HBM for source configurations consisting of few, focal sources when used with realistic, high-resolution
finite element (FE) head models. The main foci of interest are the correct depth localization, a well-known
source of systematic error of many CDR methods, and the separation of single sources in multiple-source sce-
narios. Both aspects are very important in the analysis of neurophysiological data and in clinical applications.
For these tasks, HBM provides a promising framework and is able to improve upon established CDR methods such
as minimum norm estimation (MNE) or sLORETA in many aspects. For challenging multiple-source scenarios where
the established methods show cruaal errors, promising results are attained. Additionally, we introduce Wasserstein
distances as performance measures for the validation of inverse methods in complex source scenarios.
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[Lucka, Burger, Pursiainen & Wolters, NeuroImage, 2012]

Bayesian formulation of the static inverse problem

We will briefly introduce the Bayesian formulation of the static
inverse problem, revisit some commonly known inverse methods and in-
troduce the hierarchical model that we will study here. More details on
the concepts of Bayesian modeling can be found in Kaipio and
Somersalo (2005) and Lucka (2011), Chapter 2. Subsequently, all
random variables are denoted by upper case letters (e.g., X), their corre-
sponding concrete realizations by lower case letters (e.g, X=x) and
their probability density functions by p(x). Assume that we have k loca-
tions r;, i=1,...,k within the brain and place d focal elementary sources
with different orientations at each of these locations. A current distribu-
tion can be described as a linear combination of the elementary sources
and the corresponding coefficients sER" (where n:=d - k) will become
the main parameters of interest in the following (also called sources).
The measurements bER™ at the m sensors caused by s can be calculated

b=Ls, (1)

where LER™" denotes the lead-field or gain matrix (see Himaldinen and
Ilmoniemi, 1984; Hamadldinen et al., 1993; Sarvas, 1987). For calculating
the entries of the lead-field matrix, one needs to solve the forward prob-
lem, which includes head and source modeling and an appropriate (nu-
merical) solution scheme (see Head model and source space section).
The ill-posed nature of the inverse problem is reflected in L. Because
m<&n, Eq. (1) is under-determined, and furthermore, L is ill-conditioned.
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Hierarchical Bayesian Modeling (HBM):
Mathematics: The likelihood model

» Central to Bayesian approach: Accounting for each uncertainty concerning the
value of a variable explicitly: The variable is modeled as a random variable
* In this study, we model the additive measurement noise by a Gaussian random

variable

O~ N(O-. 2¢) 2o = (-TEL-H

* For EEG/MEG, this leads to the following likelihood model:
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[Lucka, Burger, Pursiainen & Wolters, Neurolmage, in revision]
[Lucka, Burger, Pursiainen & Wolters, Biomed.Eng., 2011 |
[Lucka, Diploma thesis in Mathematics, March 2011]

Hierarchical Bayesian Modeling (HBM):
Mathematics: The likelihood model

» The conditional probability density of B given S is called likelihood density, in our
(Gaussian) case, it is thus:

|w—Lmﬂ

207

-
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Hierarchical Bayesian Modeling (HBM):
Mathematics: Prior and Bayes rule

* Due to the ill-posedness, inference about S given B is not feasible like that, we
need to encode a-priori information about S in its density p,(s), which is called

 \WWe call the conditional density of S given B the : Ppost (S[b)
*Then, the model can be inverted via Bayes rule:

Pii(DIS)ppr(5)

Ppo ET(S”)) — D ( b)

* The term p(b) is called , (see Sato et al., 2004; Trujillo-Barreto et
al., 2004; Henson et al., 2009, 2010). Here, it is just a normalizing constant and not
important for the inference presented now
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Hierarchical Bayesian Modeling (HBM):
Mathematics: MAP and CM

» The common way to exploit the information contained in the posterior is to infer a
point-estimate for the value of S out of it

* There are two popular choices, the (MAP, the highest
mode of the posterior) and the (CM, the expected value of the
posterior):

argmax. pp, s1( S|b )
seR”

K [s|b] = f S Pposi(S|b) ds

* Practically, the MAP is a high-dimensional optimization problem and the CM is a
high-dimensional integration problem
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Hierarchical Bayesian Modeling (HBM):
Mathematics: Specific priors used in EEG/MEG

* To revisit some commonly known inverse methods, we consider Gibbs distribution
as prior:

/

-1
207 a S'))

Ppr(8) o< exp (—

» Here, P(s) is an energy functional penalizing unwanted features of s
* The MAP-estimate is then given by:

| 1 . 1 |
argmax {exp (— P |b — Ls||5 - 2 P( .5*))}

sclR

argmin {||b — L .s*||§ + A P( S)}
selR”
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Hierarchical Bayesian Modeling (HBM):
Mathematics: Some choices for P(s) used in EEG/MEG

A | 1 /l |
Smap - = argmax {exp (— b — L .5'||§ + —P( .5'))}

2 02 20

seRn

= argmin {||b — L .5'||§ + A P( .s*)}
seR”

9_7-) S"l — |lg 2K (MNE), see
ke E— ke 9. Hamalainen and Ilmoniemi, 1984
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Hierarchical Bayesian Modeling (HBM):
Mathematics: Some choices for P(s) used in EEG/MEG

| 1 o) /?. |
= argmax {exp (— 10— Ls|l; + =% .s*))}

9)
seR 20° 200

= argmin {||b — L .5'||§ + A P( .s*)}
seR”

£ = diag ((ILeol?)™)

i=1,...n

g
mo-

with  xi = [|L¢pllos B = max(y) - TE
1
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Hierarchical Bayesian Modeling (HBM):

Mathematics:
* Brain activity is a complex process comprising many different spatial patterns
* No fixed prior can model all of these phenomena without becoming
, that is, not able to deliver the needed additional a-priori
information
* This problem can be solved by introducing an adaptive, data-driven element into
the estimation process
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Hierarchical Bayesian Modeling (HBM):

Mathematics:

* The idea of (HBM) is to let the same data
determine the appropriate model used for the inversion of these data by extending
the model by a new level of inference: The prior on S is not fixed but random,
determined by values of additional parameters called
* The hyperparameters y follow an a-priori assumed distribution (the so-called

Pnp(¥)) and are subject to estimation schemes, too.
* As this construction follows a top-down scheme, it is called hierarchical modeling:

p(S, 7) — Pp;--(~5'|7) phpr(y)

= P p?‘(S_) — f P p?(5|7) Php;--(?/)d?’

= Pposi(S, ¥|b) o< pii(DIS) ppr(s1¥) Pipr(¥)
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Hierarchical Bayesian Modeling (HBM):
Mathematics for EEG/MEG application

* The hierarchical model used in most methods for EEG/MEG relies on a special
construction of the prior called or

(Calvetti et al., 2009; Wipf and Nagarajan, 2009)
* P,:(8| ¥) is a Gaussian density with zero mean and a covariance determined by y :

h
Xi(y) = Z viCi where C,eC
i=1

9 —1/2 1 —_
= pur(sly) = @) " exp (—; (527" s”))

e
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Hierarchical Bayesian Modeling (HBM):
Mathematics for EEG/MEG application

The first important choice is in choosing an appropriate set C. A
variety of approaches that encode different a priori information on
the spatial source covariance pattern have been proposed, e.g., spatial
smoothness components (Mattout et al., 2006; Phillips et al., 2005) or
multiple sparse priors (Friston et al., 2008). A recent overview is given

in Lucka (2011), page 19. In this study, we will rely on single-location
priors (I; denotes the identity matrix in d dimensions):

C= {e,-ef@fd._f: 1,..., Is:}»._

Therefore the number of hyperparameters equals the number of
source locations: h=k. For instance, if d= 3, C; is a matrix where
only the entries (i, i), (k+1i, k+1) and (2 k+1i, 2 k+1i) have the
value 1 whereas all others are 0. As compared with the minimum
norm estimate (which corresponds to C = {I,}), each source location
is given an individual variance in this approach.
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Hierarchical Bayesian Modeling (HBM):
Mathematics for EEG/MEG application

The second crucial point is the choice of the hyperprior. For a gen-
eral discussion, see Lucka (2011), page 20. For our studies, we only
consider hyperpriors that factorize over the single hyperparameters
vi. Furthermore, because we do not want to bias our model to certain
source locations a priori, all single hyperparameters should be identi-
cally distributed. Finally, because we are searching for focal solutions,
hyperpriors leading to sparse estimates of y will be used, i.e., hyper-
priors forcing most hyperparameters to be (nearly) zero, while few
hyperparameters are allowed to have a large amplitude. Our particu-
lar choice for this purpose is the inverse-gamma distribution:

kO
Pror (Y nphpr Y = ey exp(—?). (15)

LiT(@ "

The parameters >0 and 3> 0 determine the shape and the scale
of the distribution, whereas I'(x) denotes the Gamma function.

This choice of prior and hyperprior was also used in Sato et al.
(2004), Nummenmaa et al. (2007a,b), Calvetti et al. (2009) and
Wipf and Nagarajan (2009). Due to the diagonal shape of X, the full
posterior for this model becomes (cf.,, Eqgs. (3), (14) and (15)):
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[Lucka, Diploma thesis in Mathematics, March 2011]

Hierarchical Bayesian Modeling (HBM):
Mathematics for EEG/MEG application

cond crucial point is the choice of the hyperprior.
i ee Lu 2011), page 20. For our stud:

factorize over the single hyperparameters
we do not want to bias our model to certain
single hyp ers should be identi-
ly distributed. Finally, 1se we are hing for focal solutions,
hyperpriors leading to sparse estimates of y will be used hyper-
priors forcing most hyperparameters to be (nearly) zero, while few
hyperparameters are allowed to have a large amplitude. Our particu-

lar choice for this purpose is the inverse-gamma distribution:

(15)

. Due to the diagonal shape of 3, the full
posterior S comes (cf, Egs. (3), (14) and (15)):

0.5 1.5

Figure A.1: Plots of the pdfs of inverse gamma (left) and gamma distribution (right).
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Hierarchical Bayesian Modeling (HBM):
Mathematics: Our chosen posterior

1{ 1 [
Pposi(s,¥|b) < exp| —= | =IIb - L5 +

2|0~ TS i

-I-ZZ(%)+2((L’+ )Zln%

where we abbreviated the sum of the ¢,-norms of the d sources at
location i with ||s;,||*. For a more detailed derivation of this formula,
we refer to Lucka (2011), page 41. The analytical advantage of such a
model over other possible approaches is that the expression within
the brackets in Eq. (16) is quadratic with respect to s and the ;s
are mutually independent. This advantage simplifies and speeds up
many practical computations with this model.
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Hierarchical Bayesian Modeling (HBM):
Mathematics:

Inference for hierarchical models

Note that the posterior (Eq. (16)) depends on two types of parame-
ters: the parameters of main interest, s, and the hyperparameters, y.
This situation offers more methods of inference than the simple CMand
MAP estimation scheme introduced in Bayesian formulation of the
static inverse problem section. Five main approaches are established:

Full-MAP: Maximize ppos(S,y|b) w.r.t. s and 7;

Full-CM: Compute the expectation of ppese(s,y|b) w.r.t. s and 7y;
S-MAP: Compute the expectation of ppes(s,y|b) w.r.t. 7y, and maxi-
mize over s (Type I approach);

y-MAP: Compute the expectation of pyos(s,y|b) w.r.t. s, and maxi-
mize over v, first; then, use p,.(s,”y (b)|b) to infer s (Type Il approach,
Hyperparameter MAP, Empirical Bayes);

VB: Assume an approximative factorization of pp,¢ (S, ¥|b)=P pos (S|D)
Dyost(Y|D); approximate both with distributions that are analytically
tractable (VB =Variational Bayes);
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Hierarchical Bayesian Modeling (HBM):
Mathematics:

« CM estimation: Blocked Gibbs sampling, a Markov chain Monte Carlo
(MCMC) scheme (Nummenmaa et al., 2007; Calvetti et al., 2009)
* MAP estimation: Iterative alternating sequential (IAS) (Calvetti et al., 2009)

The IAS algorithm as a component-wise gradient-based optimization
method is only locally convergent, i.e., it will terminate in one of the
local minima around the initialization point. This is not a problem as
long as the posterior energy (i.e. the negative natural logarithm of its
density function) is convex, and thus, a unique minimum exists. Howev-
er, a potential problem in our setting is the multimodality of the posterior
Eq. (16). This problem results from the non-convexity of the energy of the

inverse gamma hyperprior, which is the negative natural logarithm of the
density function. Details and illustration of this phenomenon are given in
Nummenmaa et al. (2007a) and Lucka (2011), Section 4.4.2. The multi-
modality is always present to some extent; however, the concrete
choice of the parameters & and 3 and the interplay with the under-
determinedness of the likelihood Eq. (2) determine to what extent
the multimodality practically affects the estimation process.
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[Lucka, Diploma thesis in Mathematics, March 2011]

Hierarchical Bayesian Modeling (HBM):
Mathematics:

Table 4.4: EMD of IAS result for different parameters of the inverse gamma hyperprior, averaged over
1000 single unit-strength dipole sources.

o —

0.5 0.6 0.7 0.8 0.9 5 1.2 1,5 2.0

28.82 2894 29.04 29.17 29.22 2935 29.66 30.08 31.21
28.18 2828 2836 2849 28.66 2888 29.29 2998 31.67

3200 3350 33.00 3444 3508 350 3734 ISOBCHNENSAN

The parameters which we will use later (i.e.. « = 0.5. 8 =5-107%) vield the best results while
exhibiting moderate computation times.
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Hierarchical Bayesian Modeling (HBM):
Mathematics:

For these reasons, we examine three different initialization schemes:

MAP1: A uniform initialization by y/°' = p/afor all i. This corresponds

to the method used in Calvetti et al. (2009) and yields a very fast MAP

estimation method;

MAP2: A CM estimate is computed first, and y'°! = yeu:

MAPB U very rough approximations to the CM estimate (S, ?’)r:m
U are first computed using very small sample sizes M.

[0),i — iy

Then they are used as seeds for the IAS algorithm: 7y
i=1,...,U. The results (5,¥)yup, i=1,...,U are compared with re-
spect to their posterior probability, and the result with the highest
probability is chosen as the final MAP estimate.

Choosing CM estimates as initializations for MAP estimation seems
unmotivated at this point; however, the MAP2 and MAP3 methods
will yield good performances in all the simulation studies. Specifically,
these methods are often able to improve upon the performance of the
CM estimate on which they rely. We will outline the reasons for this
phenomenon in the Discussion section.
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Hierarchical Bayesian Modeling (HBM):
Goal of our study

Figure A.18.: MNE result (red-yellow cones) for a single dipole (green cone).

» Step 1: Computed forward EEG for reference source (green dipole)
» Step 2: Computed HBM inverse solution without indicating the number of

sources (yellow-orange-red current density distribution on source space)
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Hierarchical Bayesian Modeling (HBM):
Validation means: DLE and SP

Validation means and inverse crimes

While subsequent work will focus on performing a validation of
the fully-Bayesian methods with real data, this paper focuses on ex-
tensive simulation studies to develop the basic properties these
methods. When using synthetic data produced using an invented
source configuration, it is crucial to avoid an inverse crime, i.e., the

model and reality are identified (Kaipio and Somersalo, 2005), as
this usually leads to overly optimistic results. In our case, one should
not produce synthetic data with the same lead-field matrix used for
the inversion, which would correspond to the assumption that the

real current sources are also restricted to the locations of the chosen
source space nodes; they should instead be placed independent of
these locations. As a number of commonly used measures do rely
on an inverse crime, as they assume that the reference and the esti-
mated source come from the same space (R" in our case), we will,
rather, use the following measures to evaluate our results, For single
sources, the well-known dipole localization error (DLE) is the distance
from the location of the reference dipole source to the source space
node with the largest estimated current amplitude. We further intro-
duce the spatial dispersion (SD) as an illustrative measure of the spa-
tial extent of the estimated current (see Appendix B for the details of
our definition, which differs from the one used in Molins et al., 2008).
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Hierarchical Bayesian Modeling (HBM):
Validation means: EMD

While the DLE can only be used for single sources (the extension to
multiple sources is not trivial) and is only sensitive to localization, the
SD does not account for localization at all. Many other measures in EEG/
MEG also only work for specific source scenarios, specific source forms
or measure only specific aspects. To overcome these limitations, we intro-
duced and examined a novel validation measure in Lucka (2011), Section
1.3.3 that is sensitive to localization, relative amplitude and spatial extent
and works with arbitrary complex source scenarios and with arbitrary es-
timation formats (SLORETA, Pascual-Marqui, 2002, e.g., yields standard-
ized activity estimates rather than real current amplitudes). The earth
mover’s distance (EMD) is a distance measure between probability densi-
ties. Strictly speaking, it is a type of Wasserstein metric originating from the
theory of optimal transport (Ambrosio et al., 2008). The EMD measures the
minimal amount of (physical) work required to transfer the mass of one
density into the other density. Illustratively, one can visualize one density
as a pile of sand and the other density as a bunch of holes. Then, the EMD
is the minimal amount of work one needs to perform to fill up the holes
with the sand. While the EMD can be computed for arbitrary complex
real and estimated source scenarios, it reduces to intuitive measures in
simple situations (e.g., for two dipoles, one reference and one estimated,
it yields the spatial distance between the sources, i.e., it reduces to the
DLE). Mathematical details and a closer examination of the EMD's fea-
tures are given in Appendix B and in Lucka (2011), Section 4.7,
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Hierarchical Bayesian Modeling (HBM):
Validation means: Source depth

Finally, to examine the phenomena of depth bias in more detail (see
Brain networks involving deep-lying sources section), we define the

depth of a location in the head model as the minimal distance to one of
the sensors.
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Hierarchical Bayesian Modeling (HBM):
Methods: Head model

Head model and source space

For the numerical approximation of the forward problem, we use
the finite element (FE) method because of its flexibility with regard
to the realistic modeling of the head volume conductor at a fast com-
putational speed with respect to this degree of modeling accuracy.
Although working with a head model that is as realistic as possible is,
in general, preferable (see the references in the description below), the
specific aims of our studies require some simplifications. We do not

want to include the inner brain compartments (the CSF, gray matter
and white matter) because we want to focus on the effect of depth bias
separately from other sources of error, e.g., from the effects caused by
the anisotropy of the white matter (which also makes the results compa-
rable to those obtained using BEM models, which cannot capture the an-
isotropy and normally do not differentiate between the inner brain
compartments as well). Additionally, to facilitate the interpretation of
the results, we require a homogeneous innermost compartment without
holes and enclosures where we can place the test sources.
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Hierarchical Bayesian Modeling (HBM):
Methods: Head model
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Fig. 1. Model generation pipeline.
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Hierarchical Bayesian Modeling (HBM):
Methods: EEG sensors

Another im-
portant aspect for practical EEG/MEG studies is the effect of insufficient
sensor coverage. For an optimal scan of the electromagnetic field pattern,
the sensors should be uniformly distributed in every spatial direction.
However, for practical reasons, this is not possible in realistic settings.
The neck causes a semi-shell-like sensor distribution, which is not able
to record fields in the direction of the feet. In particular deep-lying
sources suffer from this insufficiency. The influence of insufficient sensor
coverage should not be mixed with the effects of depth bias in this first,
basic study. Therefore, we will use two sensor configurations in our stud-
ies. First, an artificial sensor configuration consisting of 134 EEG sensors
distributed uniformly over the surface of the head model is created (ab-
breviated f-cap for full cap). From these sensor positions, a subset of 63
sensors, which represents a realistic sensor placement, are chosen as a
second sensor configuration (abbreviated r-cap for realistic cap). Fig. 8
shows both configurations.
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Hierarchical Bayesian Modeling (HBM):
Methods: Full-cap (f-cap), realistic cap (r-cap)
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Hierarchical Bayesian Modeling (HBM):
Methods: Source space and EEG lead field

Within the inner compartment, a source space consisting of 1.000
source locations based on a regular grid is chosen, and the grid size is
10.99 mm (see Fig. 10). At each node, d =3 orthogonal dipoles in Carte-
sian directions are placed. For computing the corresponding lead-field
matrices, different FE approaches for modeling the source singularity
are known from the literature: The subtraction approach (Bertrand
et al., 1991; Drechsler et al, 2009; Schimpf et al., 2002; Wolters et al,
2007b), the partial integration direct method (Schimpf et al., 2002;
Vallaghé and Papadopoulo, 2010; Weinstein et al, 2000) and the Venant
direct method (Buchner et al., 1997). In this study, we used the Venant
approach based on a comparison of the performance of all three in multi-
layer sphere models, which suggested that for sufficiently regular meshes,
the Venant approach yields suitable accuracy over all realistic source loca-
tions (Lew et al., 2009; Vorwerk, 2011). This approach has the additional
advantage that the resulting FEM approach has a high computational effi-
ciency when used in combination with the FE transfer matrix approach
(Wolters et al, 2004). Standard piecewise linear basis functions were
used. The computations were performed with SimBio.*
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Hierarchical Bayesian Modeling (HBM):
Methods: Source space
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Hierarchical Bayesian Modeling (HBM):
Study 1: Single dipole reconstruction

Study 1: single dipole reconstruction

Setting

For the first study, 1000 single unit-strength source dipoles with ran-
dom location and orientation were placed in the inner compartment (not
necessarily on the source space nodes to avoid an obvious inverse crime,
cf. Validation means and inverse crimes section). The following restriction
on their depth (measured in the f-cap) was posed: First, the nearest sen-
sor is searched for. For that sensor, the nearest source space node is
searched for. The position of the dipole is only accepted if its depth (cf,
Validation means and inverse crimes section) is larger than the depth of
the source space node plus 10 mm. Using this procedure, dipoles that
are closer to the sensors than any source space node are avoided, which
facilitates the interpretation of the results (dipoles that are closer to the
surface than any source space node cannot be reconstructed too
superficial).
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Hierarchical Bayesian Modeling (HBM):
Methods: Generation of noisy measurement data

Measurement data are generated for both caps using the same for-
ward computation procedure used for the lead-field generation, and
Gaussian noise is added at a noise level of 5%. In line with Calvetti et al.
(2009), we will refer to a (relative) noise level of x if the standard devi-
ation of the measurement noise (i.e., ¢ Iin our notation) fulfills

o=x"|lbgl., where b, are the measurements in the noiseless case.
Because we did not find any systematic effect of adding noise on the
depth bias and masking, a comparison to other noise levels is omitted
here. The full results can be found in Lucka (2011), Section 4.5.
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Hierarchical Bayesian Modeling (HBM):
Results: Single focal source scenario

Figure A.18.: MNE result (red-yellow cones) for a single dipole (green cone).

» Step 1: Computed forward EEG for reference source (green dipole), add noise
» Step 2: Computed HBM inverse solution without indicating the number of

sources (yellow-orange-red current density distribution on source space)
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Hierarchical Bayesian Modeling:
Single focal source scenario

Figure A.18.: MNE result (red-yellow cones) for a single dipole (green cone).
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Hierarchical Bayesian Modeling:
Single focal source scenario

Figure A.17.: sSLORETA result (red-yellow spheres) for a single dipole (green cone).

Carsten.wolters@uni-mlinster.de



Hierarchical Bayesian Modeling:
Single focal source scenario

HBM: Conditional Mean (CM) estimate
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Hierarchical Bayesian Modeling:
Single focal source scenario

HBM: CM followed by Maximum A-Posteriori estimate (M AP)
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Hierarchical Bayesian Modeling:
Study 1: Single focal source scenario

Table 1
Statistics of validation measures for study 1 for both sensor caps (mean + std).

DLE, f-cap

2946+11.24
30.65+13.52
29.40+14.81
6.10+£235
6.16+237
2700+11.90
5.85+216
5791213

DLE, r-cap

33.07 1265
35.08 £15.96
3538 +£17.42
6.60 £2.83
6.94+3.14
3277+14.32
6.39+2.74
6.14 £ 248

SD, f-cap

24e—14+10e—1
25e—1+1.1e—1
22e—14+80e—-2
1.9e—1+6.8e—2
1.3e—3+1.1e—3
98e—34+58e—2
22e—44+33e—4
71le—6+45e—5

SD, r-cap

25e—1+10e—1
25e—1+97e-2
22e—1+70e—-2
22e—1+71e-2
20e—3+19e—-3
27e—2+98e—-2
1lle—4+26e—4
28e—5+12e—4

EMD, f-cap

53.20+274
5217 +£253
49,56 +3.64
40.58 +2.48
7324231
28.18 +11.54
6.08 +2.22
5.84+2.21

EMD, r-cap

54.90 +4.50
53644335
51.08 +3.82
4343+3.42
8.851+3.33
33.76+13.70
6.45+2.74
6.15+2.49
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Hierarchical Bayesian Modeling:
Study 1: Single focal source scenario

Method DLE, f-cap DLE,r-cap EMD,f-cap EMD, r-cap

MNE 29.46 33.07 53.20 54.90
WMNE ¢, 30.65 35.08 52.17 53.64

WMNE (o, 29.40 35.38 49.56 51.08
SLORETA 6.10 6.60 40.58 43.43
CM 6.16 6.94 7.32 8.85
MAP 5.85 6.39 6.08 6.45
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Hierarchical Bayesian Modeling :
Study 1: Single focal source scenario

A mark within the area underneath the
N y=x line indicates that the dipole has

drift into depth ;ca"zed been reconstructed too close to the

in surface
/

/the A mark above the line indicates the
R * g, denotes the percentage of marks

above the y=x line minus 0.5 (optimally:
Qab™ O)
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Hierarchical Bayesian Modeling :
Single focal source scenario
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Hierarchical Bayesian Modeling :
urce scenario

MAP
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Hierarchical Bayesian Modeling:
Study 1: Single focal source scenario

Table 2
The resulting g, for 1000 single unit-strength dipoles for both sensor caps.

Method Jab, f-Ccap Gab, I-CaAp

MNE —0.441 —0.392
WMNE /5 —0.410 —0.256
WMNE /e reg 0.095 0.087
SLORETA —0.057 —0.049
M —0.058 —0.054
MAP1 —0.398 —0.322
MAP2 —0.007 —0.028
MAP3 —0.007 —0.019
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Hierarchical Bayesian Modeling:
Study 1: Single focal source scenario

Method qab, f-cap  qap, r-cap

MNE

-0.441

WMNE ¢, -0.410
WMNE (.. 0.095
SLORETA -0.057

CM
MAP

-0.058
-0.007

-0.392
-0.256
0.087
-0.049
-0.054
-0.028
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Hierarchical Bayesian Modeling (HBM):
Study 2: Two sources scenario

Study 2: masking of deep-lying sources in two-dipole scenarios

Setfing

The single dipoles that we used in the first study are now combined to
form source configurations consisting of a deep-lying and a near-surface
dipole. The dipoles are evenly divided into three parts according to their

depth (measured in the f-cap; depth ranges of the three groups: 23.76-

38.25, 38.25-49.41 and 4942-77.65). For each of the 1000 source config-

urations used in this study, one dipole from the part with the largest and

one from the part with the smallest depth are randomly picked. Noise
at a level of 5% is added to the measurements.
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Hg. 4. Estimates of different inverse methods fora source configuration consisting of one near-surface and one deep-lying dipole (green cones) using the rcap. The bottom left source is
very close to the sensors, whereas the top right source is very distant. From top to bottom and from left to right: MNE, WMNE with ¢, weighting, WMNE with regulanized 7, weighting,
SLORETA, CM, MAP1, MAP2 and MAP3. (For interpretation of the references to caorin this figure legend, the readeris referred to the web version of this article.)
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Hierarchical Bayesian Modeling:
Study 2: Two sources scenario

(a) Two sources chosen for visualization.
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Hierarchical Bayesian Modeling:
Study 2: Two sources scenario

Table 3
Statistics of the EMD for study 2 for both sensor caps (mean + std).

Method EMD, f-cap EMD, r-cap

MNE 4163 +2.23 4575+ 3.06
WNMNE £ 43,75+ 1.97 4462+ 228

WMME £ req 41.79 + .06 42178+ 220
sLORETA 36.38 +2.51 3807+ 270
CM 14.57 +4.98 1821+ 605
MAP] 4210 +11.00 4797+ 10598
MAP2 1225+ 6.30 1653+ 947
MAP3 12.41 +6.50 1583+ 937
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Hierarchical Bayesian Modeling:
Study 2: Two sources scenario

Method

EMD, f-cap EMD, r-cap

MNE

WMNE ¢,
WMNE /4 e,
SLORETA

CM
MAP

44.63
43.75
41.79
36.38
14.57
12.25

45.75
44.62
42.78
38.07
18.21
16.53
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Hierarchical Bayesian Modeling (HBM):
Study 3: Three sources scenario

Study 3: masking of deep-lying sources in three-dipole scenarios

Setting
The same setting as in study 2 is used except that the source configu-

rations consist of one deep-lying and two near-surface dipoles. A further
restriction 15 that the minimal distance between the different sources is
at least 50 mm.
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Hg. 5 Estimates of different inverse methods for a source configuration consisting of two near-surface and one deep-lying dipole (green cones) using the r-cap. The bottom sources are
very close to the sensors, whereas the top source is very distant. From top to bottom and from leftto right: MNE, WMNE with ¢, weighting WMNE with regulanized /. weighting, sSLORETA,
OM., MAP1, MAP2 and MAP3. ( For interpretation of the references to calar in this figure legend, the reader is referred to the web version of this article.)
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Hierarchical Bayesian Modeling:
Study 3: Three sources scenario

Table 4
Statistics of the EMD for study 3 for both sensor caps (mean + std).

Method

EMD, f-cap

EMD, r-cap

MNE
WMNE ¢,
WMNE .. 1o
SLORETA
CM

MAP1

MAP2

MAP3

39.59+1.72
39.02+1.56
37.97+1.52
3459+2.18
17.60+5.14

50.04+13.43

17.10+7.64
18.89+7.88

40.57 +2.37
39.78+1.83
38.76 +1.69
36.05+2.48
22.35+5.89
57.30+13.12
24.25+4+9.22
25.72+8.92
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Hierarchical Bayesian Modeling:
Study 3: Three sources scenario

Method EMD, f-cap EMD, r-cap

MNE 39.59 40.57
WMNE £, 39.02 39.78
WMNE (g req 37.97 38.76
sLORETA 34.59 36.05
CM 17.60 22.35
MAP 17.10 24.25
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Conclusions

HBM is a promising framework for EEG source localization. For the
important source scenarios we examined, fully-Bayesian inference
methods for HBM are able to improve upon established CDR methods
such as MNE and sLORETA, in many aspects. In particular, these
methods show good localization properties for single dipoles and do
not suffer from a depth bias. As has been shown in this study, small
localization errors for single source scenarios are not sufficient to

judge the quality of an inverse method for EEG or MEG source analy-
sis. However, in contrast to established inverse methods, such as min-
imum norm estimation and sLORETA, HBM-based methods are able to
yield good reconstructions in the presence of two or three focal
sources. Wasserstein metrics, in particular the earth mover’s distance
(EMD), are promising validation tools for future research on more
complex source scenarios with multiple sources.
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Thank you for your attention!
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