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Abstract

The estimation of the activity-related ion currents by measuring the induced electromagnetic fields at the head surface is a chal-
lenging, severely ill-posed inverse problem. Especially the recovery of brain networks involving deep-lying sources by means of
EEG/MEG recordings is still a challenging task for any inverse method. Recently, hierarchical Bayesian modeling (HBM) emerged
as a unifying framework for current density reconstruction (CDR) approaches comprising most established methods as well as
offering promising new methods. Our work examines the performance of fully-Bayesian inference methods for HBM for source
configurations consisting of few, focal sources when used with realistic, high resolution Finite Element (FE) head models. The main
foci of interest are the right depth localization, a well known systematic error of many CDR methods, and the separation of single
sources in multiple-source scenarios. Both aspects are very important in clinical applications, e.g., in presurgical epilepsy diagnosis.
For these tasks, HBM provides a promising framework, which is able to improve upon established CDR methods like minimum
norm estimation (MNE) or sLORETA in many aspects. For challenging multiple-source scenarios where the established methods
show crucial errors, promising results are attained. In addition, we introduce Wasserstein distances as performance measures for
the validation of inverse methods in complex source scenarios.

Keywords: EEG, inverse problem, source localization, current density reconstruction, hierarchical Bayesian modeling, Full-MAP,
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1. Introduction

Electroencephalography (EEG) and magnetoencephalogra-
phy (MEG) recordings are used in a wide range of applications
today, ranging from clinical routine to cognitive science (Nie-
dermeyer and da Silva, 2004). One aim in EEG and MEG is to
reconstruct brain activity by means of non-invasive measure-
ments of the associated bioelectromagnetic fields. This task
poses challenging mathematical problems: Simulating the field
distribution on the head surface for a given current source in
the brain is called the EEG/MEG forward problem (e.g., Sar-
vas, 1987; Hämäläinen et al., 1993). The reconstruction of the
so-called primary or impressed currents (a simplified source
model, see Sarvas, 1987; de Munck et al., 1988; Hämäläinen
et al., 1993) is called the inverse problem of EEG/MEG. In its
generic formulation, the inverse problem lacks a unique solu-
tion: Infinitely many source configurations - often with ex-
tremely different properties - can explain the measured fields.
All inverse methods rely on the usage of a-priori information on
the source activity to choose a particular solution from the set of
possible solutions. This a-priori information can reflect compu-
tational constraints as well as neurological considerations. Nev-
ertheless, since the problem is heavily under-determined, the
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results of the different methods for one and the same measure-
ment data differ considerably. Up to date, there is no universal
inverse method available: Most methods work well for certain
source-configurations while failing to recover others. There-
fore, a careful examination of the performance of the methods
for different source scenarios is still mandatory. This article fo-
cuses on the results of estimation methods based on a certain
class of inference strategies called hierarchical Bayesian mod-
eling (HBM). While we investigate source scenarios including
multiple focal primary currents that occur, e.g., in clinical ap-
plications like presurgical epilepsy diagnosis (Boon et al., 2002;
Stefan et al., 2003; Rampp and Stefan, 2007) or the analysis of
evoked potentials (Pantev et al., 1989; Buchner et al., 1997),
the framework easily extends to recover spatially distributed
sources encountered, e.g., in cognitive neuroscience. This work
comprises results from a diploma thesis, Lucka (2011). In
the following, we will outline the development of HBM for
EEG/MEG current density reconstruction (CDR) and motivate
our interest in scenarios where the source activity results from
networks of few and focal sources.

1.1. Inverse Methods for EEG/MEG

From the mathematical point of view, the inverse problem
of EEG/MEG is a severely-ill-posed one (Engl et al., 1996;
Hämäläinen et al., 1993; Lucka, 2011). As a practical conse-
quence, a variety of different approaches exist that aim to recon-
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struct solutions reflecting certain a-priori information. A first
classification can be made into focal current modeling, spatial
scanning/beamforming and distributed current modeling. Fo-
cal current modeling tries to reconstruct the real current by a
small number of equivalent current dipoles having arbitrary
location and orientation (Scherg and Cramon, 1985; Mosher
et al., 1992; Jun et al., 2008). When the number of sources
is unknown or the current distribution might have a larger spa-
tial extent, focal current models are not suitable. Spatial scan-
ning methods/beamforming repeatedly optimize the estimate at
a single location or a small region while suppressing crosstalk
from other areas (Sekihara and Nagarajan, 2008; Dalal et al.,
2008). In distributed current models, the current is discretized
by a large number of focal elementary sources having a fixed
location and orientation, which is called current density recon-
struction (CDR). Then, a-priori information on the global prop-
erties of the solution is incorporated (e.g., minimum norm esti-
mation, Hämäläinen and Ilmoniemi, 1994).
Concerning CDR methods, two main concepts dominated the
formulation of how the a-priori information is introduced: Reg-
ularization (see Sarvas, 1987 for the introduction to EEG/MEG,
and Engl et al., 1996 for a general reference) and Bayesian
inference (see Hämäläinen et al., 1987 for the introduction to
EEG/MEG, and Kaipio and Somersalo, 2005 for a general ref-
erence).
The focus of our work is on the most recent branch of Bayesian
inference for CDR called hierarchical Bayesian modeling, for
which we will examine fully-Bayesian inference methods (in
contrast to, e.g., Variational or Semi Bayesian inference meth-
ods, see Wipf and Nagarajan, 2009).

1.2. Brain Networks Involving Deep-lying Sources

The location of the source space nodes is a crucial choice
for CDRs: First, high resolution structural imaging scans (CT
or MRI) from the cortex where the neural generators of the
EEG/MEG signal are located (Nunez and Srinivasan, 2005)
have to be taken. Due to its deep but thin sulci and strong
folding, sophisticated segmentation algorithms are needed to
process this data. Instead, often only flattened and smoothed
representation of the cortical surface are used which do not in-
clude deep-lying gray matter areas, or areas encased by white
matter, e.g., the insular, the cingulate cortex, the hippocampus
or the thalamus. Working with such surface representations is
reasonable and advantageous for a wide range of experimen-
tal designs. Nevertheless, active brain networks often involve
deep-lying sources as well (Lütkenhöner et al., 2000; Parkko-
nen et al., 2009; Santiuste et al., 2008; Dalal et al., 2010). One
example are networks involving the hippocampus which plays
an important role in memory and navigation (Duvernoy, 2005;
Andersen, 2007). Concerning its pathology, it is often the focus
of epileptic seizures: Hippocampal sclerosis is the most com-
monly visible type of tissue damage in temporal lobe epilepsy
(Chang and Lowenstein, 2003; Stefan et al., 2009). To recover
networks involving the hippocampus, a complete representa-
tion of the gray matter compartment by source space nodes is
mandatory.

Accounting for the complete gray matter, many more deep-
lying locations form the source space and a phenomenon called
depth bias gains fundamental importance: Many inverse meth-
ods fail to reconstruct deep-lying sources in the right depth, re-
constructing them too close to the skull (see, e.g., Figure 2(e)).
This is a well known systematic error (e.g., Ahlfors et al., 1992;
Wang et al., 1992; Gencer and Williamson, 1998) and was
subject to many studies (e.g., Ioannides et al., 1990; Pascual-
Marqui, 1999; Fuchs et al., 1999; Pascual-Marqui, 2002; Wag-
ner et al., 2004; Greenblatt et al., 2005; Sekihara et al., 2005;
Lin et al., 2006; Grave de Peralta et al., 2009). The depth
bias can be a crucial error, e.g., in the presurgical diagnosis for
epilepsy patients, where the task is to determine the right loca-
tion of the resection volume (Boon et al., 2002; Stefan et al.,
2003).
Another effect related to the depth bias is the masking of deep-
lying sources by superficial ones: If the real source configura-
tion consists of multiple, spatially separated sources with dif-
ferent depths, many inverse methods only recover the sources
close to the skull (see, e.g., Wagner et al., 2004). This ef-
fect can lead to crucial errors in the presurgical diagnosis for
epilepsy patients suffering from multi focal epileptiform dis-
charges: This form of epilepsy is correlated to a worse postop-
erative outcome regarding seizure freedom and complicates the
presurgical diagnosis (Chang and Lowenstein, 2003). Often, an
operation is not possible at all. The correct detection and sep-
aration of multiple sources is hence of greatest importance to
guide the presurgical diagnosis and operation planning.

1.3. Contributions and Structure of this Study

This article examines fully-Bayesian inference for HBM for
the source scenarios described above in a systematic way. In
Section 2.1, we will outline CDR approaches from the per-
spective of Bayesian inference. This will then lead us to the
hierarchical Bayesian modeling in Section 2.2, for which we
will describe the fully-Bayesian inference methods (which we
will call CM and MAP1) and propose improved Full-MAP esti-
mation methods in Sections 2.3-2.4, which we will call MAP2
and MAP3. In Section 2.5, a new performance measure, earth
mover’s distance (EMD), will be introduced that is needed for
an appropriate validation of inverse methods in complex source
scenarios. Section 3 describes the setting and results of the sim-
ulation studies. For the forward computation, we will use a
realistic, high resolution Finite Element (FE) head model. In
Section 4 results, limitations and future directions of research
are discussed and Section 5 contains the final conclusions.

2. Methods

2.1. Bayesian Formulation of the Inverse Problem

We will briefly introduce the Bayesian formulation of the in-
verse problem, revisit some commonly known inverse methods
and introduce the hierarchical model we will examine. More
details on the concepts of Bayesian modeling can be found
in Kaipio and Somersalo (2005) and Lucka (2011), Chapter
2. Subsequently, all random variables are denoted by upper
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case letters (e.g., X), their corresponding concrete realizations
by lower case letters (e.g., X = x), and their probability den-
sity functions by p(x). Assume that we have k locations ri,
i = 1, . . . , k within the brain and place d focal elementary
sources with different orientations at each of these locations.
A current distribution can be described as a linear combination
of the elementary sources and the corresponding coefficients
s ∈ Rn (where n := d · k) will become the main parameters
of interest in the following (also called sources). The measure-
ments b ∈ Rm at the sensors caused by s can be calculated via:

b = L s, (1)

where L ∈ Rm×n denotes the lead-field or gain matrix (see
Hämäläinen and Ilmoniemi, 1984; Sarvas, 1987; Hämäläinen
et al., 1993). For calculating its entries, one needs to solve the
forward problem, which includes head and source modeling
and an appropriate (numerical) solution scheme (see Section
3.1.1). The ill-posedness of the inverse problem is reflected in
L: Since m � n, (1) is under-determined and furthermore, L is
ill-conditioned.
Central to the Bayesian approach is to account for every uncer-
tainty concerning the value of a variable explicitly: The variable
is modeled as a random variable, but this randomness is not a
property of the objects itself, but rather reflects our lack of in-
formation about its concrete value. In our situation, we first
model the (additive) measurement noise by a Gaussian random
variable E ∼ N(0,Σε). For simplicity, we assume Σε = σ2Im

here, where Im is the m-dim. identity matrix. This leads to the
likelihood model

B = L S + E (2)

Note that we changed b and s to the random variables B and
S as well. The conditional probability density of B given S is
determined by (2) and is thus called likelihood density:

pli(b|s) =

(
1

2πσ2

) m
2

exp
(
−

1
2σ2 ‖b − L s‖22

)
(3)

Due to the ill-posedness of (1), inference about S given B is not
feasible by (3). We need to encode a-priori information about
S in its density ppr(s) which is hence called prior. Then the
model can be inverted via Bayes rule:

ppost(s|b) =
pli(b|s)ppr(s)

p(b)
(4)

The conditional density of S given B is called posterior. In
Bayesian inference this density is the complete solution to the
inverse problem. The term p(b) is called model-evidence and
has its own importance, as it can be used to perform model
averaging or model selection. For interesting applications in
EEG/MEG see Sato et al. (2004); Trujillo-Barreto et al. (2004);
Henson et al. (2009b,a, 2010). The common way to exploit the
information contained in the posterior is to infer a point esti-
mate for the value of S out of it. There are two popular choices.
The first, called maximum a-posteriori-estimate (MAP), is the
highest mode of the posterior, whereas the second, called con-
ditional mean-estimate (CM), is the mean or expected value of

the posterior:

ŝMAP := argmax
s∈Rn

ppost(s|b) (5)

ŝCM := E [s|b] =

∫
s ppost(s|b) ds (6)

Practically, computing the MAP estimate is a high-dimensional
optimization problem, whereas the CM estimate is a high-
dimensional integration problem.
To revisit some commonly known inverse methods, we consider
Gibbs distributions as priors:

ppr(s) ∝ exp
(
−

λ

2σ2P(s)
)

(7)

Here,P(s) is an energy functional penalizing unwanted features
of s. Now, after suppressing terms not dependent on s, the MAP
estimate is given by

ŝMAP : = argmax
s∈Rn

{
exp

(
−

1
2σ2 ‖b − L s‖22 +

λ

2σ2P(s)
)}

(8)

= argmin
s∈Rn

{
‖b − L s‖22 + λ P(s)

}
(9)

This is a Tikhonov-type regularization of equation (1) (Engl
et al., 1996). For EEG/MEG, the choice of P(s) = ‖s‖22, which
corresponds to a white noise Gaussian prior, yields the mini-
mum norm estimate (MNE, Hämäläinen and Ilmoniemi, 1994).
P(s) = ‖Σ

−1/2
s s‖22 corresponds to a general Gaussian prior with

covariance Σs and yields the weighted minimum norm estimate
(WMNE, Dale and Sereno, 1993). Multiple depth-weighting
matrices have been introduced chosen to reduce the depth-bias
of the MNE (Ioannides et al., 1990; Fuchs et al., 1999). We
will examine `2 weighting (Fuchs et al., 1999) and regularized
`∞ weighting (Fuchs et al., 1999):

Σ`2
s = diag

i=1,...,n

(
(‖L(·,i)‖

2
2)−1

)
;

Σ
`∞,reg
s = diag

i=1,...,n

 χ2
i

(χ2
i + β2)2

 ,
with χi = ‖L(·,i)‖∞; β = max(χ) ·

m σ2

‖b‖22

The well known sLORETA method (Pascual-Marqui, 2002) re-
lies on computing a non-diagonal weighted norm of a MNE and
will be examined as well. More methods relying on formulation
(9) are listed on page 9 in Lucka (2011).

2.2. Hierarchical Modeling in EEG/MEG

Brain activity is a complex process comprising many differ-
ent spatial patterns. No fixed prior can model all of these phe-
nomena without becoming uninformative, i.e., not able to de-
liver the needed additional a-priori information. This problem
can be solved by introducing an adaptive, data-driven element
into the estimation process. The idea of hierarchical Bayesian
models (HBM) is to let the same data determine the appropri-
ate model used for the inversion of this data: By extending the
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model by a new level of inference, the prior on S is not fixed
but random, determined by the values of additional parameters
γ ∈ Rh, called hyperparameters. These parameters follow an
a-priori assumed distribution (the hyperprior) and are subject
to estimation schemes, too. As this construction follows a top-
down scheme, it is called hierarchical modeling:

p(s,γ) = ppr(s|γ) phpr(γ) (10)

⇒ ppr(s) =

∫
ppr(s|γ) phpr(γ)dγ (11)

⇒ ppost(s,γ|b) ∝ pli(b|s) ppr(s|γ) phpr(γ) (12)

We refer to MacKay (2003) and Gelman et al. (2003) for a gen-
eral reference on hierarchical Bayesian modeling. The hierar-
chical model used in most methods for EEG/MEG relies on a
special construction of the prior called a Gaussian scale mix-
ture or conditionally Gaussian hypermodel (Wipf and Nagara-
jan, 2009; Calvetti et al., 2009): ppr(s|γ) is a Gaussian density
with zero mean and a covariance determined by γ:

S |γ ∼ N(0,Σs(γ)) (13)

The total source covariance Σs is a weighted sum of covariance
components Ci belonging to a predefined set C ⊂ Rn×n of sym-
metric, positive, semi-definite matrices. The weighting between
them is controlled by a (positive) hyperparameter γ ∈ Rh:

Σs(γ) =

h∑
i=1

γiCi where Ci ∈ C

⇒ ppr(s|γ) = (2π)−n/2|Σs|
−1/2 exp

(
−

1
2

(
s Σ−1

s st
))

(14)

The first important choice is choosing an appropriate set C. A
variety of approaches encoding different a-priori information on
the spatial source covariance pattern have been proposed, e.g.,
spatial smoothness components (Phillips et al., 2005; Mattout
et al., 2006) or multiple sparse priors (Friston et al., 2008). A
recent overview is given in Lucka (2011), page 19. In this study,
we will rely on single location priors (Id denotes the identity
matrix in d dimensions):

C =
{
eie

t
i ⊗ Id, i = 1, . . . , k

}
,

Thus the number of hyperparameters equals the number of
source locations: h = k. For instance, if d = 3, Ci is a ma-
trix where only the entries (i, i), (k + i, k + i) and (2k + i, 2k + i)
have the value 1 whereas all others are 0. As compared to the
minimum norm estimate (which corresponds to C = {In} ), each
source location is given an individual variance in this approach.
The second crucial point is the choice of the hyperprior. For a
general discussion, see Lucka (2011), page 20. For our stud-
ies, we only consider hyperpriors that factorize over the single
hyperparameters γi. Furthermore, since we do not want to bias
our model to certain source locations a-priori, all single hyper-
parameters should be distributed equally. Finally, since we are
looking for focal solutions, hyperpriors leading to sparse esti-
mates of γ will be used, i.e., hyperpriors forcing most hyper-
parameters to be (nearly) zero, while few are allowed to have

a large amplitude. Our particular choice for this purpose is the
inverse-gamma distribution:

phpr(γ) =

k∏
i=1

pi
hpr(γi) =

k∏
i=1

βα

Γ(α)
γ−α−1

i exp
(
−
β

γi

)
(15)

The parameters α > 0 and β > 0 determine shape and scale of
the distribution, whereas Γ(x) denotes the Gamma function.
This choice of prior and hyperprior was also used in Sato et al.
(2004); Nummenmaa et al. (2007a,b); Calvetti et al. (2009);
Wipf and Nagarajan (2009). Due to the diagonal shape of Σs

the full posterior for this model reads (cf. (3), (14) and (15)):

ppost(s,γ|b) ∝ exp

−1
2

 1
σ2 ‖b − L s‖22 +

k∑
i=1

‖si∗‖
2

γi

+2
k∑

i=1

(
β

γi

)
+ 2

(
α +

5
2

) k∑
i=1

ln γi


 , (16)

where we abbreviated the sum of the `2-norms of the d sources
at location i with ‖si∗‖

2. For a more detailed derivation of this
formula, we refer to Lucka (2011), page 41. The analytical ad-
vantage of such a model over other possible approaches is that
the expression within the brackets in (16) is quadratic with re-
spect to s and the γi’s are mutually independent. This simplifies
and accelerates many practical computations with this model.

2.3. Inference for Hierarchical Models

Note that the posterior (16) depends on two kinds of param-
eters, the ones of main interest, s, and the hyperparameters, γ.
This offers more ways of inference than the simple CM and
MAP estimation scheme introduced in Section 2.1. Five main
approaches are established:

• Full-MAP: Maximize ppost(s,γ|b) w.r.t. s and γ.

• Full-CM: Integrate ppost(s,γ|b) w.r.t. s and γ.

• S -MAP: Integrate ppost(s,γ|b) w.r.t. γ, and maximize
over s (Type I approach).

• γ-MAP: Integrate ppost(s,γ|b) w.r.t. s, and maximize over
γ, first. Then use ppost(s, γ̂(b)|b) to infer s (Type II ap-
proach, Hyperparameter MAP,Empirical Bayes).

• VB: Assume approximative factorization of ppost(s, γ|b) ≈
p̂post(s|b) p̂post(γ|b). Approximate both with distributions
that are analytically tractable (VB = Variational Bayes).

In the traditional Bayesian framework, all kinds of parameters
should be treated equally that is why the first two schemes
are also referred to as fully-Bayesian methods. Still, practi-
cally, the hyperparameters have been introduced with the ex-
plicit intention that they have a different meaning than the nor-
mal parameters, hence a different treatment can be justified
from the methodical point of view. The corresponding schemes,
S -MAP and γ-MAP, are usually classified as semi-Bayesian
methods (see Wipf and Nagarajan, 2009 for a comprehensive
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discussion). Variational Bayesian techniques (often referred to
as approximate-Bayesian methods) actually rely on more ad-
vanced considerations than a simple approximation, but this
cannot be pursued in detail here (Friston et al., 2007; Nummen-
maa et al., 2007a; Wipf and Nagarajan, 2009). The focus of our
work lies on the fully-Bayesian methods.

2.4. Algorithms for Fully-Bayesian Inversion

None of the estimates mentioned in the last section can be
computed explicitly. In this section, we outline the ideas behind
the algorithms we utilize for computing the full-MAP and full-
CM estimate numerically. Details, especially concerning a fast
and stable implementation, are presented in the appendix.

CM Estimation
Due to the high dimension of the source space, the integra-

tion (cf. 2.1) is intractable by means of traditional quadratures.
Integration by Monte Carlo methods can avoid these difficul-
ties: A sequence of points (si,γi), i = 1, . . . ,M is constructed
that is distributed like the posterior. Optimally, they should be
drawn independently, because in this case, the law of large num-
bers would guarantee that

1
M

M∑
i=1

(si,γi)
M→∞
−−−−→ (s,γ)CM =

∫
Rn×Rk

(s,γ) ppost(s,γ|b) ds dγ

almost surely and in `1 with rate O(M−1/2), i.e., the empirical
mean of the sequence converges to the expected value of the
posterior (Klenke, 2008). A difficulty in our setting is that the
posterior is not given in a form that allows for drawing inde-
pendent samples, since it is only known up to a normalizing
constant (the model-evidence) and does not belong to a class
of distributions for which such sampling schemes are known.
However, due to the strong ergodic theorem, the above conver-
gence and its rate still hold if the sequence is dependent, but
originates from an ergodic Markov chain that has ppost(s,γ|b)
as its equilibrium distribution (Klenke, 2008). Techniques to
construct such chains are called Markov chain Monte Carlo
(MCMC) methods. For our application, we rely on a blocked
Gibbs sampling scheme (MacKay, 2003; Gelman et al., 2003)
proposed in Nummenmaa et al. (2007a); Calvetti et al. (2009).
It exploits the special structure of (16) by drawing from the
posterior either conditioned on s or on γ at a time:

Algorithm 1 (Blocked-Gibbs-Sampling algorithm).
Initialize γ by γ[0]

i = β/α for all i and set j = 1. Define the
desired sample size M and burn-in size Q;
For j = 1,. . .,M + Q do:

1. Draw s[ j] from ppost(s|γ[ j−1], b) ∝ ppost(s,γ[ j−1]|b) using
the conditional normality of ppost;

2. Draw γ[ j] component-wise from ppost(γ|s[ j], b) ∝

ppost(γ, s[ j]|b) using the factorization over γi;

Approximate (ŝ, γ̂)CM by the empirical mean of the samples j =

Q + 1,· · · ,Q + M.

This sampling technique is a very simple, but also very pow-
erful one. A main advantage over other MCMC schemes is that
it does not need any manual tuning of sampling parameters. The
sampling problem in step 1 is solved by a reformulation into a
least-squares problem, the sampling problem in step 2 can be
solved efficiently utilizing the conjugacy of the inverse gamma
hyperprior and the factorization. For readers interested in the
technical details, references are given in Appendix A.

MAP Estimation
Our main tool for the MAP estimation will be a cyclic al-

gorithm taking advantage of the special form of the posterior,
called Iterative Alternating Sequential (IAS). The form we use
was introduced by Calvetti and Somersalo (Calvetti and Som-
ersalo, 2007a, 2008a; Calvetti et al., 2009), inspired by a simi-
lar, more general algorithm called half quadratic minimization
(Aubert and Kornprobst, 2006):

Algorithm 2 (Iterative Alternating Sequential).
Initialize γ by γ0 and set j = 1. Define the desired iteration
number T; For j = 1,. . .,T do:

1. Update s by s[ j] = argmax{ppost(s|γ[ j−1], b)} =

argmax{ppost(s,γ[ j−1]|b)};
2. Update γ by γ[ j] = argmax{ppost(γ|s[ j], b)} =

argmax{ppost(γ, s[ j]|b)};

Approximate (ŝ, γ̂)MAP by the last sample (s[T ],γ[T ]).

(Note that the conditional densities are always proportional
to the corresponding joint density by a factor only dependent
on the conditioned parameter).

As for the CM estimation, step 1 is solved by a reformulation
into a least-squares problem and step 2 can be solved explicitly
by utilizing the conjugacy of the inverse gamma hyperprior and
the factorization. Further details are given in Appendix A.
Note that we did not specify an initialization rule for γ, yet.
This choice will turn out to be the crucial point due to the
following difficulty: The IAS algorithm as a component-wise
gradient-based optimization method is only locally convergent,
i.e., it will end up in one of the local minima around the initial-
ization point. While this is not a problem as long as the pos-
terior energy (i.e., the negative natural logarithm of its density
function) is convex and thus a unique minimum exists, a poten-
tial problem in our setting is the multimodality of the posterior
(16): It results from the non-convexity of the energy of the in-
verse gamma hyperprior, i.e., the negative natural logarithm of
its density function. Details and illustration of this phenomenon
are given in Nummenmaa et al. (2007a) and Lucka (2011), Sec-
tion 4.4.2. The multimodality is always present to some extend,
however, the concrete choice of the parameters α and β and
the interplay with the under-determinedness of the likelihood
equation (2) determine to what extend it affects the estimation
process practically.
For these reasons we examine three different initialization
schemes:
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• MAP1: A uniform initialization by γ[0]
i = β/α for all

i. This corresponds to the method used in Calvetti et al.
(2009) and yields a very fast MAP estimation method.

• MAP2: A CM estimate is computed first, and γ[0] = γCM.

• MAP3: U very rough approximations to the CM estimate
(ŝ, γ̂)i

CM, i = 1, . . . ,U are computed first by using very small
sample sizes M. Then they are used as seeds for the IAS
algorithm: γ[0],i = γi

CM, i = 1, . . . ,U. The results (ŝ, γ̂)i
MAP,

i = 1, . . . ,U are compared with respect to their posterior
probability, and the result achieving the highest probability
is chosen as a final MAP estimate.

Choosing CM estimates as initialization for MAP estimation
seems unmotivated at this point, yet the methods MAP2 and
MAP3 will turn out to perform best in all simulation studies.
Especially, they are able to improve upon the performance of
the CM estimate they rely on. We will outline reasons for this
in the discussion section.

2.5. Validation Means and Inverse Crimes
While subsequent work will perform validation of the fully-

Bayesian methods by means of real data, this paper focuses
on extensive simulation studies to work out their basic prop-
erties. When using synthetic data produced by an invented
source-configuration, it is crucial to avoid an inverse crime, i.e.,
model and reality are identified (Kaipio and Somersalo, 2005),
as this usually leads to overly optimistic results. In our case,
one should not produce synthetic data with the same lead-field
matrix used for the inversion, which would correspond to the
assumption that the real current sources are also restricted to
the locations of the chosen source space nodes but rather place
them independent of them. As a number of commonly used
measures do rely on an inverse crime, as they assume that ref-
erence and estimated source come from the same space (Rn in
our case), we will rather use the following measures to evaluate
our results: For single sources, the well known dipole localiza-
tion error (DLE) is the distance from the location of the ref-
erence dipole source to the source space node with the largest
estimated current amplitude. We further introduce the spatial
dispersion (SD) as an illustrative measure of the spatial extent
of the estimated current (see Appendix B for the details of our
definition, which differs from the one used in (Molins et al.,
2008)).
While the DLE can only be used for single sources (the exten-
sion to multiple sources is not trivial) and is only sensitive to lo-
calization, the SD does not account for localization at all. Many
other measures in EEG/MEG also only work for specific source
scenarios, specific source forms or measure only specific as-
pects. To overcome these limitations, we introduced and exam-
ined a novel validation measure in Lucka (2011), Section 1.3.3
that is sensitive to localization, relative amplitude and spatial
extent, works in arbitrary complex source scenarios and with ar-
bitrary estimation formates (sLORETA, Pascual-Marqui, 2002,
e.g., yields standardized activity estimates rather than real cur-
rent amplitudes): The earth mover’s distance (EMD) is a dis-
tance measure between probability densities. Strictly speaking,

it is a type of Wasserstein metric originating from the theory
of optimal transport (Ambrosio et al., 2008): It measures the
minimal amount of (physical) work to transfer the mass of one
density into the other. Illustratively, one can think of one den-
sity as a pile of sand, and of the other as a bunch of holes. Then
the EMD is the minimal amount of work one needs to fill up the
holes with the sand. While the EMD can be computed for ar-
bitrary complex real and estimated source scenarios, it reduces
to intuitive measures in simple situations (e.g., for two dipoles,
one reference and one estimated, it yields the spatial distance
between them, i.e., it reduces to the DLE). Mathematical details
and a closer examination of its features are given in Appendix
B and in Lucka (2011), Section 4.7.
Finally, to examine the phenomena of depth bias in more detail
(see 1.2) we define the depth of a location in the head model as
the minimal distance to one of the sensors.

3. Results

3.1. Setting for the Studies

3.1.1. Head model and Source Space
For the numerical approximation of the forward problem we

use the finite element (FE) method, because of its flexibility
with regard to a realistic modeling of the head volume con-
ductor and its computational speed. Although working with
a head model that is as realistic as possible is in general prefer-
able (see the references in the description below), the specific
aims of our studies require some simplifications: We do not
want to include the inner brain compartments (csf, gray mat-
ter and white matter) because we want to focus on the effect of
depth bias separate from others, e.g., from the effects caused
by the anisotropy of the white matter (which also makes the re-
sults comparable to those obtained using BEM models, which
cannot capture the anisotropy and normally do not differenti-
ate between the inner brain compartments as well). In addition,
to facilitate the interpretation of the results, we need a homo-
geneous innermost compartment without holes and enclosures
where we can place the test sources. Another important aspect
for practical EEG/MEG studies is the effect of insufficient sen-
sor coverage: For an optimal scan of the electromagnetic field
pattern, the sensors should be placed uniformly distributed in
every spatial direction. However, for practical reasons, this is
not possible in realistic settings: The neck causes a semi shell
like sensor distribution which is not able to record fields in the
direction of the feet. Especially deep lying sources suffer from
this insufficiency. The influence of insufficient sensor coverage
should not be mixed with the effects of depth bias in this first,
basic study. Therefore we will use an artificial sensor configu-
ration consisting of 134 EEG sensors distributed uniformly over
the surface of the head model (see Figure D.8).
In the following, we will outline the model generation pipeline,
which is also depicted in Figure 1: T1- and T2- weighted mag-
netic resonance images (MRI) of a healthy subject were mea-
sured on a 3T MR scanner. A T1w pulse sequence with fat
suppression and a T2w pulse sequence with minimal water-fat-
shift, both with an isotropic resolution of 1, 17 × 1, 17 × 1, 17
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Figure 1: Model generation pipeline.

mm, were used. The T2-MRI was registered onto the T1-MRI
using an affine registration approach and mutual information as
a cost-function as implemented in FSL 1. The compartments of
skin, skull compacta and skull spongiosa were segmented using
a grey-value based active contour model (Vese and Chan, 2002)
and thresholding techniques. The segmentation was carefully
checked and corrected manually. Because of the importance
of skull holes on source analysis (Van den Broek et al., 1998;
Oostenveld and Oostendorp, 2002), the foramen magnum and
the two optic canals were correctly modeled as skull openings.
Following (Bruno et al., 2003, 2004; Lanfer et al., 2010), the
inferior part of the model was not directly cut below the skull,
but was realistically extended to avoid volume conduction mod-
eling errors. The software CURRY 2 was then used for the seg-
mentation of the cortex surface as well as the extraction of high
resolution meshes of the surfaces of skin, eyes, skull compacta,
skull spongiosa and brain from the voxel-based segmentation
volumes. The surfaces were smoothed using Taubin smooth-
ing (Taubin, 1995) to remove the blocky structure which results
from the fine surface sampling of the voxels. For the aims of our
specific studies only the surfaces of skin, eyes, skull compacta
and skull spongiosa were then used to create a high quality 3D
Delaunay triangulation via TetGen3. In total, the resulting tetra-
hedral finite element (FE) model consists of 512.394 nodes and
3.176.162 tetrahedral elements. The conductivity values (de-
noted in S/m) for the different compartments were chosen to
be 0.43 for skin (Dannhauer et al., 2010), 0.505 for eyes (Ra-
mon et al., 2006), 0.0064 for skull compacta and 0.02865 for
skull spongiosa (Akhtari et al., 2002; Dannhauer et al., 2010)

1FLIRT - FMRIB’s Linear Image Registration Tool,
http://www.fmrib.ox.ac.uk/fsl/flirt/index.html

2CURrent Reconstruction and Imaging (CURRY),
http://www.neuroscan.com/

3TetGen: A Quality Tetrahedral Mesh Generator and a 3D Delaunay Trian-
gulator, http://tetgen.berlios.de/

and 0.33 for the inner brain compartment (Dannhauer et al.,
2010). Within the inner compartment, a source space consist-
ing of 1.000 source locations based on a regular grid is cho-
sen, the grid size is 10.99 mm (see Figures D.10). At each
node, d = 3 orthogonal dipoles in Cartesian directions are
placed. For computing the corresponding lead-field matrix dif-
ferent FE approaches for modeling the source singularity are
known from the literature: a subtraction approach (Bertrand
et al., 1991; Schimpf et al., 2002; Wolters et al., 2007; Drech-
sler et al., 2009), a partial integration direct method (Weinstein
et al., 2000; Schimpf et al., 2002; Vallaghé and Papadopoulo,
2010) and a Venant direct method (Buchner et al., 1997). In
this study we used the Venant approach based on comparison of
the performance of all three in multilayer sphere models, which
suggested that for sufficiently regular meshes, it yields suitable
accuracy over all realistic source locations Lew et al. (2009);
Vorwerk (2011). This approach has the additional advantage of
high computational efficiency when used in combination with
the FE transfer matrix approach (Wolters et al., 2004). Standard
piecewise linear basis functions were used. The computations
were performed with SimBio4. In Figure D.9, the sum of the
`2-norms of the three gain-vectors is depicted.

3.1.2. Inverse Methods
In this section, we list the methods we use together with the

choice of their internal parameters. For the hierarchical model,
choosing α and β is in fact a difficult practical and methodical
question. Our choice relies on preliminary computations and
considerations which can be found in Lucka (2011), Section
4.4.2. We tried to choose the parameters for each method in an
optimal way to have a fair comparison of their performance. A
further reference dealing with this issue is Nummenmaa et al.

4SimBio: A generic environment for bio-numerical simulations,
https://www.mrt.uni-jena.de/simbio.
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(2007a).
The following methods will be examined in our studies:

• Full-CM estimation via the algorithm described in 2.4 for
the HBM introduced in 2.2. Abbreviated by CM from now
on. Parameters: α = 0.5 and β = 5 · 10−8.

• Full-MAP via the three methods MAP1-3 described in 2.4
for the HBM introduced in 2.2. Parameters: α = 0.5, β =

5 · 10−6 for MAP1 and α = 0.5 and β = 5 · 10−8 for MAP2
and MAP3.

• MNE as described in Section 2.1 (Hämäläinen et al.,
1993).

• WMNE with `2 and regularized `∞ weighting as described
in Section 2.1 (Fuchs et al., 1999).

• sLORETA as described in Section 2.1 (Pascual-Marqui,
2002).

The regularization parameter λ for MNE, WMNE and
sLORETA are chosen by the discrepancy principle (e.g., Engl
et al., 1996; Kaipio and Somersalo, 2005), since we assume to
know the noise variance σ2 (or assume to have a good estimate
of it, e.g., based on pre-stimulus data).

To get an initial visual impression of the different methods,
their results for a single dipole source (located in-between the
source space nodes to avoid an inverse crime, cf. Section 2.5)
are depicted in Figure 2.

3.2. Study 1: Single Dipole Reconstruction

3.2.1. Setting
For the first study, 1000 single unit-strength source dipoles

with random location and orientation were placed in the in-
ner compartment (not necessarily on the source space nodes
to avoid an obvious inverse crime, cf. Section 2.5). The fol-
lowing restriction on their depth was posed: First, the nearest
sensor is searched. For that sensor, the nearest source space
node is searched. The position for the dipole is only accepted if
its depth (cf. Section 2.5) is larger than the depth of the source
space node plus 10 mm. This way, dipoles that are closer to the
sensors than any source space node are avoided, which facili-
tates the interpretation of the results (dipoles that are closer to
the surface than any source space nodecannot be reconstructed
too superficial).
Measurement data is generated using the same forward compu-
tation procedure used for the lead-field generation, and Gaus-
sian noise at the noise level of 5% is added: In line with Cal-
vetti et al. (2009) we will speak of a (relative) noise level of x if
the standard deviation of the measurement noise (i.e., σ in our
notation) fulfills σ = x · ‖b0‖∞, where b0 are the measurements
in the noiseless case. Since we found no systematic effect of
adding noise on depth bias and masking, a comparison to other
noise level is omitted here. The full results can be found in
Lucka (2011), Section 4.5.

Table 1: Statistics of validation measures for 1000 single unit-strength dipoles
(mean ± std)

Method DLE SD EMD

CM 6.16 ± 2.37 1.3e-3 ± 1.1e-3 7.32 ± 2.31
MAP1 27.00 ± 11.90 9.8e-3 ± 5.8e-2 28.18 ± 11.54
MAP2 5.85 ± 2.16 2.2e-4 ± 3.3e-4 6.08 ± 2.22
MAP3 5.79 ± 2.13 7.1e-6 ± 4.5e-5 5.84 ± 2.21
MNE 29.46 ± 11.24 2.4e-1 ± 1.0e-1 53.20 ± 2.74
WMNE `2 30.65 ± 13.52 2.5e-1 ± 1.1e-1 52.17 ± 2.53
WMNE `∞,reg 29.40 ± 14.81 2.2e-1 ± 8.0e-2 49.56 ± 3.64
sLORETA 6.10 ± 2.35 1.9e-1 ± 6.8e-2 40.58 ± 2.48

3.2.2. Results

General properties. The mean distance from the reference
dipoles to the next source space node was 5.27 mm, which is
the lower bound for DLE and EMD for all methods. Table 1
shows DLE, SD and EMD, averaged over all dipoles. To give
an idea of the practicality of the HBM methods, we note that
our current implementations of CM, MAP2 and MAP3 in Mat-
lab take about 5 minutes of computation time for each inverse
reconstruction on a normal desktop PC.

Depth bias. We now focus on the first phenomenon introduced
in Section 1.2: The depth bias. We will rely on a visual presen-
tation using scatter plots. In Figures 3(a) - 3(h), the depth (cf.
2.5) of the reference source is plotted on the horizontal axis,
whereas the depth of the source space node with the largest
source estimate amplitude is plotted on the vertical axis. A
mark within the area underneath the y = x line indicates that the
dipole has been reconstructed too close to the surface, whereas
a mark above the line indicates the opposite. By qab we denote
the percentage of marks above the y = x line minus 0.5. If a
method shows a clear tendency to favor the lower area and qab

is considerably below 0, it suffers from depth bias (e.g., it is
well known that MNE suffers from it which can be seen clearly
in 3(a), and is reflected in a qab of -0.441). A method performs
well if its marks in this type of scatter plot are tightly distributed
around the y = x line as this does usually not only indicate a lo-
calization in the right depth but also in total.

3.3. Study 2: Masking of Deep-lying Sources in Two-Dipole
Scenarios

3.3.1. Setting

The single dipoles that we used in the first study are now
combined to form source configurations consisting of a deep-
lying and a near-surface dipole: The dipoles are evenly divided
into three parts by their depth. For each of the 1000 source
configurations used in this study, one dipole from the part with
the largest, and one from the part with the smallest depth are
randomly picked. Noise at a noise level of 5% is added to the
measurements.
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Table 2: Statistics of validation measures for study 2 (mean ± std)

Method EMD SD

CM 14.57 ± 4.98 3.0e-3 ± 1.9e-3
MAP1 42.10 ± 11.00 1.4e-3 ± 6.2e-4
MAP2 12.25 ± 6.30 8.3e-4 ± 3.0e-4
MAP3 12.41 ± 6.50 7.6e-4 ± 2.8e-4
MNE 44.63 ± 2.23 2.1e-1 ± 6.4e-2
WMNE `2 43.75 ± 1.97 2.5e-1 ± 8.7e-2
WMNE `∞,reg 41.79 ± 2.06 2.4e-1 ± 7.6e-2
sLORETA 36.38 ± 2.51 1.9e-1 ± 5.6e-2

3.3.2. Results
Initial example. We show an initial example, where the effect
of masking is very pronounced5. In Figure 4(a) the reference
sources are represented by two green cones. One is very close
to the sensors whereas the other one is very distant. Figure 4(b)
shows the (vector) MNE result with red-yellow cones, Figure
4(c) shows the (scalar) sLORETA result as red-yellow spheres.
Even a careful successive thresholding of the estimated source
amplitudes does not reveal any evidence for the presence of the
deep-lying source. In practice, these two results would proba-
bly not provoke a user to try out other inverse methods in ad-
dition. Hence the deep-lying source is most likely overlooked.
The CM result (cf. Figure 4(d)) seems only capable of marking
an ambiguous region around and in-between the support of the
true sources6. The MAP3 method (cf. Figure 4(e)) is able to
detect both sources (remember that the test sources are placed
in between the source space grid nodes, cf. 2.5). The results of
the other methods are omitted here.

General properties. Table 2 shows EMD and SD, averaged
over all source configurations (remember that the DLE is not
available in a multiple source scenario anymore, cf. 2.5).

3.4. Comparison between MAP approximations
We briefly compare the different MAP estimation algorithms

concerning the posterior probability of their results. They all
use different seed-points for their optimization, but rely on
the same HBM, still only methods that rely on the same pa-
rameter set can be compared. Since MAP1 uses a different
setting than MAP2 and MAP3, the results for MAP1 were
recomputed using the same parameter setting as MAP2 and
MAP3. These results will be named MAP1 cmp. However,
note that MAP1 cmp performs even worse than MAP1 con-
cerning EMD, DLE and SD. In Table 3 the average rank of the
three methods within the three studies is depicted: For each
source configuration in a study, a ranking of the methods is
computed by comparing the (rounded) probabilities of the MAP
approximations found by the different methods. The method

5It was chosen by visual inspection after viewing the results for the first five
source configurations of the study.

6The CM result actually looks as if the MCMC method has not converged
yet. To check this, a large sample with M = 20 000 000 was used as well. The
results look very similar, and are therefore not depicted. It is still possible that
the Markov chain is not ergodic for practical reasons.

Table 3: Mean ranking of different MAP estimation algorithms in the first study.

Method Study 1 Study 2

MAP1 cmp 2.390 2.640
MAP2 1.398 1.547
MAP3 1.002 1.093

that found the approximation with the highest probability is
ranked at the first place. Methods that found an approximation
with the same probability are ranked at the same place. Sub-
sequently the mean rank of each method is computed over all
1000 dipoles.

3.5. Recovery of 3 Dipoles
As a last illustration, we show the results for a source con-

figuration consisting of three dipoles: In Figures 5(a)-5(d) the
turquoise cones represent three sources of which two are quite
close to the sensors whereas one is very distant. Figure 5(a)
shows the (vector) MNE result with red-yellow cones, Figure
5(b) shows the (scalar) sLORETA result as red-yellow spheres.
Again, a careful successive thresholding of the estimated source
amplitudes does not reveal any evidence for the presence of the
third, deep-lying source, the sLORETA estimate even hardly
recovers the second, less deep-lying one. The CM result (cf.
Figure 5(c)) finds some evidence for all three sources (although
this is hardly visible in the picture). The MAP2 method (cf.
Figure 5(d)) is able to detect all sources and yields an EMD of
9.19, which suggests that the localization of the single sources
is quite good. The results of the other methods are omitted here.

4. Discussion

We examined new hierarchical Bayesian inference methods
(HBM) for the EEG inverse problem and compared them to
the results of established current density reconstruction (CDR)
methods. In particular, we compared the fully-Bayesian con-
ditional mean (CM) and maximum a-posteriori (MAP) esti-
mates to minimum norm estimates (MNE, Hämäläinen and Il-
moniemi, 1994), different weighted minimum norm estimates
(WMNE, Fuchs et al., 1999) and sLORETA (Pascual-Marqui,
2002). For MAP estimation we examined three different ap-
proaches, MAP1, which was proposed in (Calvetti et al., 2009),
and MAP2 and MAP3 which we proposed in Section 2.4.

4.1. Study 1 (Single Dipole Reconstruction)
HBM methods. The MAP2 and MAP3 methods perform
well with respect to the performance measures (cf. Table 1) and
further, they do not seem to suffer from depth bias (cf. Figures
3(g) and 3(h) ), with the MAP3 method slightly outperforming
the MAP2 method. Compared to the other MAP approxima-
tion schemes, MAP3 also clearly attains the highest posterior
probability (cf. Table 3), which suggests that it should be seen
as the best approximation to the real MAP estimate examined
here. The CM method shows good results, however, an inter-
esting observation is the fact that the MAP2 method, which di-
rectly relies on the CM estimate, can clearly improve upon it.
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Since the additional computation time is negligible, this result
suggests to always perform a subsequent optimization after an
initial CM estimation. The MAP1 scheme did not show con-
vincing results, both with regard to DLE, SD and EMD (cf.
Table 1) as well as with respect to depth bias (cf. Figure 3(f)).
Compared to MAP2 and MAP3, it also attains less high poste-
rior probabilities on average (cf. Table 3), which suggests that
it might often only find a minor mode of the posterior and might
thus not yield a reliable representation of the MAP estimate.
Our work was partly motivated by the results of Calvetti et al.
(2009): Within a simplified geometry, a single deep-lying
source was reconstructed (cf. Figures 1-4 on pages 893-894
in Calvetti et al., 2009). The CM approximation with an in-
verse gamma hyperprior (which corresponds to the CM method
used here) yielded the best result, both in location and in extend
of the estimated source. Moreover, it seemed to have no depth
bias whereas MAP approximation by the uniformly initialized
IAS algorithm (which corresponds to the MAP1 method used
here) seemed to suffer from it. In our work, we confirmed the
impression about the CM estimate by a study in a realistic 3D
head model over a larger number of single dipoles and by as-
sessing performance measures. However, we also found that
depth bias is not a feature of the MAP estimate itself, as sug-
gested in the discussion section in Calvetti et al. (2009), but
rather of the algorithm used to compute it. Due to the results
in Section 3.4, we can be sure that the MAP3 result is closer
to the real MAP estimate in terms of posterior probability than
MAP1, and it even performs slightly better than the CM esti-
mate with regard to depth bias (qab = -0.007 to qab = -0.058, cf.
Figure 3).

Minimum norm based methods. The WMNE schemes used in
this study are modifications of the original MNE explicitly aim-
ing to improve the depth localization. Figures 3(a) - 3(c) clearly
show that they succeed in this aspect (although the Figure 3(c)
and qab = 0.095 suggests that the WMNE with regularized `∞
slightly exaggerates this aspect). These results confirm former
studies on this topic, see, e.g., Fuchs et al. (1999). Concern-
ing EMD, DLE and SD, the conclusion is less clear (cf. Ta-
ble 1). The visualizations in Figure 2 do not yield a clear im-
pression on the different characteristics of the estimates either.
Hence more detailed examinations are needed. The sLORETA
estimate (which is also essentially minimum norm based, as
it consists of computing a non-diagonal weighted norm of a
MNE, see Pascual-Marqui (2002)) performs well concerning
DLE and depth bias (cf. Table 1 and Figure 3(d)). Yet, Figure
2(h) suggests that the sLORETA result overestimates the spatial
extent of the reference source scenario considerably. The aver-
age EMD and SP of sLORETA clearly confirm this impression
(cf. Table 1). These results are in line with several other theo-
retical and numerical studies, see, e.g., (Pascual-Marqui, 2002;
Sekihara et al., 2005; Wagner et al., 2004; Lin et al., 2006).

Direct comparison. The direct comparison for the single focal
reference source scenario shows that compared to established
methods like MNE and sLORETA the HBM-based methods
like CM, MAP2 and MAP3 clearly show better results con-

cerning EMD and SD (cf. Table 1) and the visual impression is
more convincing as well (cf. Figures 2(a) - 2(h)). However, it
is important to stress that the above results were only attained
for the specific source scenario examined in this study. Without
further examinations, their significance might be very limited,
since the ability to localize single dipoles is a rather trivial and
largely uninformative property, as shown by Grave de Peralta
et al. (2009). Nevertheless, reconstructing single dipoles is a
starting test for every inverse method for CDR, and the results
for the methods based on HBM clearly motivate to examine
their use in more detail.

4.2. Study 2 (Masking of Deep-lying Dipoles)
The initial example showed that the source scenario exam-

ined in this study is a very challenging one for inverse methods
(see Figures 4(b) and 4(c), and the studies in (Wagner et al.,
2004)). The methods that performed best in the first study, i.e.,
the MAP2 and MAP3 scheme, also performed best in this study
(cf. Table 2 and Figure 4(e)). The comparison with the results
from MNE and sLORETA shows that HBM is able to improve
upon established inverse methods in this source scenario by de-
tecting the deep-lying source despite the presence of the near-
surface one.
Compared to each other the MAP3 scheme still outperforms the
MAP2 scheme with regard to the posterior probability (cf. Ta-
ble 3), but no longer concerning the EMD. This needs to be ex-
amined in more detail. Similar to the first study, Table 2 shows
that again, the MAP2 result improves upon the corresponding
CM result it is based on. The results also suggest that the pos-
terior distribution for these scenarios is more complex than for
single sources.

4.3. Recovery of three dipoles
Despite the fact, that only a single source configuration of

three dipoles was presented here, the results confirm the impres-
sion of Study 2, that HBM is better able to detect and separate
multiple sources than MNE and sLORETA (see Figure 5).

4.4. The Value of the EMD as a Performance Measure
In this work, we introduced the earth mover’s distance

(EMD) in order to have a measure that is both sensitive to local-
ization and spatial extent of estimate (cf. Section 2.5). Table 1
shows that the EMD fulfills these needs: Only methods attain-
ing a low DLE and SD will produce a low EMD. However, with
regard to the sLORETA estimate, it would be preferable if more
weight is on the right localization. Even though the sLORETA
method has a small DLE and is commonly used due to its lo-
calization properties, its EMD is much larger than for methods
that produce focal estimates but mis-localize considerably (e.g.,
the MAP1 scheme). The big advantage of the EMD is that it is
applicable to more complex source scenarios just as well. In
contrast, the extension of other localization measures like the
DLE is not straight forward, neither from the implementation
site nor for the interpretation of the results. For the two and
three sources scenarios investigated in this work, the EMD re-
mained the only measure sensible to localization that did not
rely on an inverse crime (cf. Section 2.5).
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4.5. Limitations and Outlook

Confirming the present results with real data provides an
important future work to complement the present simulation
study. Our studies especially aimed at situations that are
encountered, e.g., in presurgical epilepsy diagnosis (cf. 1.2),
i.e., focal source configurations that are measured at a single
time instant (e.g., the time slices from averaged inter-ictal
spike activity). A validation with such data will be carried out
and reported in near future.
Motivated by epilepsy diagnosis, our current focus was on
focal source scenarios incorporating up to three active focal
sources. The HBM we used was tailored for such situations.
In the future, we will examine extended source scenarios and
extended HBM for their recovery which might be of more
interest for research in the area of cognitive neuroscience.
Only two of the possible estimation methods that the HBM
offers (cf. Section 2.3) were examined concerning our specific
questions (cf. Section 1.2). As most other publications using
HBM deal with Variational Bayesian inference methods (VB,
see, e.g. Sato et al. (2004); Nummenmaa et al. (2007a);
Friston et al. (2008)) a direct comparison will be next topic for
simulation studies.
The present results concerning MAP2 and MAP3 estimates,
introduced in this article, clearly show that superior results
concerning performance measures and visual impression can
be achieved as compared to the approach of Calvetti et al.
(2009). To further improve the MAP estimation performance,
yet alternative non-convex optimization schemes for finding
the true (global) MAP will be considered. MAP2 and MAP3
rely on searching for the MAP estimate in the vicinity of the
CM estimate, and the present results clearly motivate research
into this direction. Additionally, the actual cause for the depth
bias, and why some methods suffer from it, has to be examined
also from a theoretical perspective.
For this first, elementary study, we simplified the brain volume
conduction properties as homogeneous and isotropic, as it is
often done in source analysis (see, e.g., Fuchs et al., 1998;
Kybic et al., 2005; Acar and Makeig, 2010). Future studies
will investigate the interplay of HBM and more realistic head
modeling, e.g., by incorporating the inner brain compartments
and the white matter anisotropy (Haueisen et al., 2002; Hallez,
2008).
Only CDR methods were compared, while no comparison to
dipole fitting methods and scanning/beamforming methods
was carried out (cf. Section 1.1 for references). This will be an
interesting direction for further studies.

5. Conclusions

HBM is a promising framework for EEG source localiza-
tion. For the important source scenarios we examined, fully-
Bayesian inference methods for HBM are able to improve upon
established CDR methods like MNE and sLORETA in many
aspects. In particular, they show good localization properties
for single dipoles and do not suffer from depth bias. As it

has been shown in this study, small localization errors for sin-
gle source scenarios are not sufficient to judge about the qual-
ity of an inverse method for EEG or MEG source analysis.
However, in contrast to established inverse methods like mini-
mum norm estimation and sLORETA, HBM based methods are
able to maintain good reconstructions in the presence of two or
three focal sources. Wasserstein metrics, in particular the earth
mover’s distance (EMD), are promising validation tools for fu-
ture research on more complex source scenarios with multiple
sources.
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(a) CM (b) MAP1

(c) MAP2 (d) MAP3

(e) MNE (f) WMNE with `2 weighting

(g) WMNE with regularized `∞ weighting (h) sLORETA

Figure 2: Results of different inverse methods for a single reference dipole source.12
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(a) MNE, qab = -0.441
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(b) WMNE with `2 weighting, qab = -0.410
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(c) WMNE with reg. `∞ weighting, qab = 0.095

10 20 30 40 50 60 70 80
10

20

30

40

50

60

70

80

Depth of the real source

D
ep

th
 o

f 
th

e 
es

ti
m

at
ed

 s
o

u
rc

e

(d) sLORETA, qab = -0.057
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(e) CM, qab = -0.058
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(f) MAP1, qab = -0.398
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(g) MAP2, qab = -0.007
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(h) MAP3, qab = -0.007

Figure 3: Scatter plots to visualize the depth bias of different inverse methods.
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(a) Reference sources: In the left subfigure, the bottom left source is very close to the sensors, whereas the top
right one is very distant.

(b) MNE (c) sLORETA

(d) CM (e) MAP3

Figure 4: Estimates of different inverse methods for a source configuration consisting of one near-surface and one deep-lying dipole.
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(a) MNE, EMD = 37.63 (b) sLORETA, EMD = 31.63

(c) CM, EMD = 16.45 (d) MAP2, EMD = 9.19

Figure 5: Estimates of different inverse methods for a source configuration consisting of three dipoles of different depth.
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Figure A.6: Sketch of alternated conditional moves for a multimodal posterior
(plotted via contour lines). Red stars mark subsequent states, circles mark half
steps. Left: Algorithm 1; the blue lines correspond to step 1, the green lines to
step 2. Right: Algorithm 2; the blue lines correspond to step 1, the green lines
to step 2.

Appendix A. Algorithmical Details

The blocked Gibbs Sampler, Algorithm 1, and the IAS, Algo-
rithm 2, are based on sampling or optimizing conditional den-
sities. In more abstract words, they rely on alternated condi-
tional moves through the parameter space Rn × Rk to construct
a sequence of points (si,γi) ∈ Rn × Rk, i = 1, . . . , t: In a first
half step (step 1 in both algorithms) the value of s is changed
keeping γ fixed, while in the second half step (step 2 in both al-
gorithms), the value of γ is changed while keeping s fixed. This
is sketched in Figure A.6. While the CM approximation is in-
ferred from that sequence by computing its empirical mean, the
MAP approximation is given by the last point of the sequence.
From Figure A.6, it is apparent why the IAS algorithm might
get stuck in local minima when used with a multimodal poste-
rior. However, Gibbs Samplers are known to exhibit problems
with multimodality as well (especially, if s and γ are strongly
correlated).
As a consequence of this similar foundation, steps 1 and 2 in
both algorithms can be solved in a surprisingly similar fashion.

Step 1
In step 1, the sampling and optimization of a conditional

Gaussian density with expectation and covariance given by

Ep(s|γ,b)(s) = ΣsLt
(
LΣsLt + σ2Idm

)−1
b

Covp(s|γ,b)(s) = Σs − ΣsLt
(
LΣsLt + σ2Idm

)−1
LΣs

=

(
Σ−1

s +
1
σ2 LtL

)−1

,

has to be solved (a derivation is given in Kaipio and Somer-
salo, 2005 and Lucka (2011), Section A.1.4). Remind that
Σs = Σs(γ) changes every step j, so a direct computation of
the above quantities is not preferable with respect to computa-
tion time (and with respect to stability for the covariance ma-
trix). Instead, both optimization and sampling can be realized
by solving a relaxed weighted least squares problem:[

L
σΣ

−1/2
s

]
s[ j] ls

=

[
b
0

]
+ σ

[
ωm

ωn

]
, (A.1)

where we set ωm = 0, ωn = 0 to attain the conditional mode and
draw ωm and ωn from standard normal distributions of dimen-
sion m and n to attain a sample from the conditional distribution
(the details and derivation of this reformulation can be found in
Lucka (2011), Section A.1.4).

Iterative Solvers. Solving (A.1) can be done by using Krylov
subspace methods such as the conjugate gradient least squares
method (CGLS) with a preconditioning by Σ

−1/2
s (γ) as proposed

in Calvetti et al. (2009): Applied to iterative solvers for inverse
problems, this technique is called priorconditioning (Calvetti
and Somersalo, 2007b). In our hierarchical framework, the
prior covariance itself is not fixed but relies on the fixation of
the hyperparameters on their current values. The idea of us-
ing this present state of information, updated in every step of
composite conditional walks is referred to as a hyperpriorcon-
ditioning (Calvetti et al., 2009).
Using preconditioned iterative solvers for problem (A.1) was
proposed in Calvetti et al. (2009) and seems to be a canoni-
cal choice with regard to the high dimension of the problem.
The advantage is that these schemes can easily be transferred
to other fields of inverse problems, where the forward map-
ping is not given in explicit matrix form (Kaipio and Somer-
salo, 2005; Calvetti and Somersalo, 2007a,b, 2008a,b). In ad-
dition the CGLS solver allows for the construction of blocked
inversion schemes, where multiple right hand sides are inverted
simultaneously which results in a considerable gain in speed
(details on this can be found in Lucka, 2011, Section 3.6).

Explicit Solution. Due to the small number of sensors in EEG
(we usually use m < 150), we found a very simple alternative
implementation that is competitive to the iterative approaches in
terms of computation speed can be found: Using some matrix
identities, the explicit solution of the systems can be computed
very efficiently:

s[ j] =

(
Σs − ΣsLt

(
LΣsLt + σ2Idm

)−1
LΣs

)
·(

Lt(σ−2b + σ−1ωm) + Σ−1/2
s ωn

)
This formula can be implemented in a straight forward manner:

Algorithm 3 (Explicit Step 1 Solution).

1. Set r =
(
Lt(σ−2b + σ−1ωm) + Σ

−1/2
s ωn

)
;

2. Set s1 = Σs r;
3. Set t = L s1;
4. Set Σ̃b =

(
LΣ

1/2
s

) (
LΣ

1/2
s

)t
+ σ2Idm;

5. Solve Σ̃b x = t;
6. Set s2 = ΣsLt x;
7. The solution is given by s[ j] = s1 − s2;

Remember that the multiplication with Σs can be performed
componentwise. The computation of the projected source co-
variance LΣsLt within step 4. is the most computationally in-
tensive part of the algorithm, solving the linear system in step
5. is far less demanding: The system is only of size m × m
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and is symmetric positive definite. A solution via Cholesky de-
composition is still fast enough to be negligible in comparison
to the matrix-matrix multiplication in step 4. The solution of
(A.1) with this algorithm is considerably faster than with itera-
tive solvers (see Section A.1.10. in Lucka, 2011), and finding
an optimal implementation is less demanding. Furthermore, it
yields the exact solution of (A.1) within the bounds posed by
ill-condition and finite precision, and no stopping criteria have
to be chosen ad hoc. Another advantage is that the computation
time is effectively independent of the right hand side, which is
not the case for the iterative solvers we applied: Empirically,
it was observed that more complex source configurations also
result in a slower convergence of the CGLS algorithm.

Step 2
As the posterior factorizes over the single hyperparameters

γi (cf. (16)), optimization and sampling can be performed com-
ponentwise. The hyperparameter dependent single component
part of the posterior reads (cf. (16)):

ppost(γi|s, b) ∝ exp
(
−

1
2

(
‖si∗‖

2

γi
+ 2

(
β

γi

)
+ 2

(
α +

5
2

)
ln γi

))
Computing the first and second order conditions for a maximum
of this expression shows that the update rule is given by:

γ
[ j]
i =

1
2 ‖si∗‖

2 + β

κ
, with κ = α + 3/2

Concerning the sampling, the conditional distribution
ppost(γi, s|b) can be rearranged to:

ppost(γi, s|b) ∝ exp
− 1

2‖si∗‖
2 + β

γi
+ (−(α + 3/2) − 1) ln(γi)


This is also an inverse gamma distribution, with parameters
β̄ = 1

2 ‖si∗‖
2 + β and ᾱ = (α + 3/2) (cf. (15)). This invariance

property is called conditional conjugacy and simplifies the sam-
pling scheme considerably, as standard sampling routines can
be used.

Parameter Setting. The values for the parameters Q, M, T and
U used in the studies for the HBM-based methods are listed in
Table A.4.

Appendix B. Validation Measures

Spatial dispersion (SD). A standard approach to measure the
spatial spread of an estimated current distribution would be
to define a threshold q, and count the percentage of sources
whose amplitude is above q times the maximal source ampli-
tude max‖si∗‖2. We will call this measure f̊ (s, q). However,
f̊ (s, q) is not continuous, and involves some arbitrariness, since
q has to be chosen ad hoc. In Figure B.7 three plots of f̊ (s, q)
as a function of q are depicted for a simplified model geometry.
The curves for focal and widespread CDRs show quite obvious
differences. We therefore propose to use a normalized version
of the area below the curve as a measure for the spatial disper-
sion:

Table A.4: Parameters used in the simulation studies.

Method Parameter Study1 Study 2

CM Q 1 000 1 000
M 50 000 200 000

MAP1 T 50 50
MAP2 Q 1 000 1 000

M 50 000 200 000
T 50 50

MAP3 U 128 256
Q 25 25
M 200 200
T 50 50
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Figure B.7: The curves of N = f̊ (s, q) for s = ŝCM (red), s = ŝMNE (blue) and
s = ϕsLORETA (green) for a simplified model.

Definition 1 (Spatial dispersion, SD).

ΓSP :=
1

(k − 1)

(∫ 1

0
f̊ (s, q) dq − 1

)
=

1
(k − 1)

 k∑
i=1

‖si∗‖2

a?,∞
− 1

 , with a?,∞ = max
j
‖sj∗‖2

Note that this measure does not compare the spatial spread
of real and estimated source, but only yields information about
the estimate.

Earth Mover’s Distance (EMD). Supplementary to the text, we
give the mathematical definition of the EMD and some com-
ments on their practical computation. The EMD is a Wasser-
stein metric, which are distance measures between probability
distributions (Ambrosio et al., 2008):

Definition 2 (Wasserstein metric). Let µ and ν be two proba-
bility measures on a Radon space (Ω, d) that have a finite pth

moment for some p ≥ 1. Then the pth Wasserstein distance
Wp(µ, ν) is defined as:

Wp(µ, ν) =

(
inf

γ∈Γ(µ,ν)

∫
Ω×Ω

d(x, y)p dγ(x, y)
)1/p

,

where Γ(µ, ν) denotes the class of all transport maps, i.e., mea-
sures on Ω ×Ω with marginals µ and ν.

In our study, we are looking at the p = 1 Wasserstein distance
for the 3D-Euclidean distance d(x, y) = ‖x − y‖2, which is also
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called earth mover’s distance due to the following analogy: The
intuitive explanation behind this quantity dates back to Monge
who published it in 1781 as an optimal transport problem: The
idea is to think of the first probability measure as an amount of
sand piled on a space Ω, and of the second as a hole with the
same size. For a given distance function d, the minimum-cost
transport of the sand into the holes has to be found (where the
cost of a single assignment is understood as classical physical
work in terms of distance times amount of sand). This minimal
cost is the Wasserstein distance between the two measures.
The definition looks like a rather abstract concept for the practi-
cal task we are aiming at, but the lack of a more simple measure
that is commonly accepted may be rooted in the fact that the
task is not that simple after all: A good measure has to mimic
the way source estimates from inverse methods are interpreted
by the user, and compare this with the reference source activity.
To compute the EMD between reference and estimated source
activity, both are transferred into discrete probability distribu-
tions: In our setting, the reference source activity jre f was com-
posed of single current dipoles at locations r̄i, i = 1 . . . , τ:

jre f (r) =

τ∑
i=1

Mi · δi(r̄i − r) ∀r ∈ Ω

Now define a discrete signature P by:

P =
{
(p1,wp1 ), . . . , (pτ,wpτ )

}
with pi := r̄i; wpi :=

|Mi|

Mtot
; Mtot =

τ∑
i=1

|Mi|

For the estimated CDR, we define a signature Q by:

Q =
{
(q1,wq1 ), . . . , (ql,wqk )

}
with qi := ri; wqi :=

‖ si∗ ‖2

atot
; atot =

k∑
i=1

‖ si∗ ‖2

Finally, define the distance matrix D by letting D(i, j) be the 3D-
Euclidean distance between pi and q j. Now we are ready to
recast the computation of the EMD between P and Q into a lin-
ear programming problem as formulated by Kantorovich (Kan-
torovich, 1942; Kantorovich and Gavurin, 1949):

Definition 3 (Reformulation of the EMD). With the above def-
initions, find a transport plan Γ ∈ Rτ×k that minimizes the work

W(P,Q,Γ) =

τ∑
i=1

k∑
j=1

D(i, j) · Γi, j (B.1)

subject to the following constraints:

Γi, j ≥ 0, 1 ≤ i ≤ τ, 1 ≤ j ≤ k (B.2)
k∑

j=1

Γi, j = wpi , 1 ≤ i ≤ τ (B.3)

τ∑
i=1

Γi, j = wq j , 1 ≤ j ≤ l (B.4)

The minimal work resulting from this computation is the
EMD between P and Q. The constraints (B.2) - (B.4) ensure
that Γ is a valid transport plan:

(B.2) ensures that the mass is transferred from P to Q and
not vice versa.

(B.3) determines the amount of mass that has to be trans-
ferred from one position.

(B.4) determines the amount of mass that has to be trans-
ferred into one position.

In the studies we performed in this work, the size of P is usually
very small, and the problem can be solved with standard linear
programming toolboxes. The transformation of (B.1) into stan-
dard form can be found in Lucka (2011), Section A.1.6.
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Figure D.8: Artificial full coverage EEG sensor configuration consisting of 134 EEG sensors.

Figure D.9: The sum of the `2 norms of the three gain-vectors at a given position is depicted. The influence of the hole at the base of the skull (foramen magnum)
on the magnitudes of the deep-lying sources is noticeable (we checked that this feature is not due to our artificial sensor configurations but occurs with realistic ones
as well)
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Figure D.10: The locations of the 1000 source space nodes used in the studies
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Ambrosio, L., Gigli, N., Savaré, G., 2008. Gradient Flows in Metric Spaces
and in the Spaces of Probability Measures. Birkhauser.

Andersen, P., 2007. The Hippocampus Book. Oxford University Press, USA.
Aubert, G., Kornprobst, P., 2006. Mathematical Problems in Image Processing.

volume 147 of Applied Mathematical Sciences. Springer. 2nd edition.
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Silny, J., Pesch, J., 1997. Inverse Localization of Electric Dipole Current
Sources in Finite Element Models of the Human Head 102, 267–278.

Calvetti, D., Hakula, H., Pursiainen, S., Somersalo, E., 2009. Conditionally

Gaussian hypermodels for cerebral source localization. SIAM J. Imaging
Sci. 2, 879–909.

Calvetti, D., Somersalo, E., 2007a. A Gaussian hypermodel to recover blocky
objects. Inverse Problems 23, 733–754.

Calvetti, D., Somersalo, E., 2007b. Introduction to Bayesian Scientific Com-
puting. volume 2 of Surveys and Tutorials in the Applied Mathematical Sci-
ences. Springer New York.

Calvetti, D., Somersalo, E., 2008a. Hypermodels in the Bayesian imaging
framework. Inverse Problems 24, 034013 (20pp).

Calvetti, D., Somersalo, E., 2008b. Recovery of shapes: Hypermodels and
Bayesian learning, in: Journal of Physics: Conference Series, IOP Publish-
ing. p. 012014.

Chang, B.S., Lowenstein, D.H., 2003. Epilepsy. N Engl J Med 349, 1257–66.
Dalal, S., Guggisberg, A., Edwards, E., Sekihara, K., Findlay, A., Canolty, R.,

Berger, M., Knight, R., Barbaro, N., Kirsch, H., Nagarajan, S., 2008. Five-
dimensional neuroimaging: Localization of the time-frequency dynamics of
cortical activity. NeuroImage 40, 1686–1700.

Dalal, S., Jerbi, K., Bertrand, O., Adam, C., Ducorps, A., Schwartz, D., Gar-
nero, L., Baillet, S., Martinerie, J., Lachaux, J., 2010. Insights from Si-
multaneous Recording of MEG and Intracranial EEG, in: Front. Neurosci.
Conference Abstract: Biomag 2010 - 17th International Conference on Bio-
magnetism .

Dale, A.M., Sereno, M.I., 1993. Improved Localization of Cortical Activity by
Combining EEG and MEG with MRI Cortical Surface Reconstruction: A
Linear Approach. J. Cogn. Neurosci 5, 162–176.

Dannhauer, M., Lanfer, B., Wolters, C.H., Knösche, T.R., 2010. Modeling of
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Hämäläinen, M., 2006. Assessing and improving the spatial accuracy
in MEG source localization by depth-weighted minimum-norm estimates.
Neuroimage 31, 160–71.

Lucka, F., 2011. Hierarchical Bayesian Approaches to the In-
verse Problem of EEG/MEG Current Density Reconstruction. Mas-
ter’s thesis. University of Muenster, Germany. Http://wwwmath.uni-
muenster.de/num/burger/teaching/diplomanden.html.
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