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Abstract
Electro- and magneto-encephalography (EEG/MEG) based source analysis has
risen to a promising brain imaging tool in the field of neuroscience and in medical
research and diagnosis. In this work, it is shown to what extent spatial resolution
of both EEG and MEG source analysis is dependent on the modeling accuracy
of the embedded forward problem, i.e., the simulation of EEG and MEG fields
for a given dipolar source in the brain using a volume conduction model of the
head. Multimodal magnetic resonance imaging (MRI) and computed tomogra-
phy registration and segmentation techniques are presented for the generation of
realistically shaped head volume conductor models. A low resolution conduc-
tivity estimation method is developed and a technique based on diffusion-tensor
MRI is used to individually estimate head tissue conductivity inhomogeneity and
anisotropy. The finite element (FE) method is proposed for the forward problem.
A key component in FE based source analysis is the numerical modeling of the
singularity introduced into the differential equation by the current dipole and its
interplay with the conductivity inhomogeneity and anisotropy. For a subtraction
potential approach, a proof for existence and uniqueness of a weak solution in the
function space of zero-mean potential functions and convergence properties of
the FE method for the numerical solution to the correction potential are given. A
combination of a full subtraction approach with high quality constrained Delau-
nay tetrahedralization FE meshes is shown to lead to forward modeling accuracies
which, so far as the author knows, have not yet been presented before. A transfer
matrix approach for both EEG and MEG is derived and its combination with al-
gebraic multigrid preconditioned conjugate gradient solver techniques is shown
to yield huge speedup factors and to enable mesh resolutions which seemed to
be impossible before. An FE approach in a geometry-adapted hexahedral model
is shown to outperform a collocation double layer boundary element approach
with regard to both accuracy and computational speed. A new and fast spatio-
temporal regularization procedure for an improved current density reconstruction
is presented. Sensitivity studies show the importance of realistic volume conduc-
tor modeling. Using modern EEG and MEG inverse approaches, the developed
methods are then successfully applied in the fields of evoked responses and in
presurgical epilepsy diagnosis.
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Chapter 1

Introduction

1.1 Brain imaging techniques
Important research in the neurosciences is devoted to the question, how the hu-
man brain processes information (M.S.Gazzaniga et al. [2002]; Andrä and Nowak
[2002]). The brain’s activity involves a complex interplay of electrical, chemical
and mechanical processes, extending over both space and time. This vast diver-
sity of phenomena carrying information on brain functions naturally leads to a
great variety of possible means by which this information can be extracted. Brain
imaging techniques are characterized by the brain process that they monitor, by
their degree of invasiveness, and by their spatial and temporal resolutions. Meth-
ods relying on metabolic and hemodynamic changes in the brain tissue indirectly
reflect neuronal activity, as for example positron emission tomography (PET) and
functional magnetic resonance imaging (fMRI). These represent different degrees
of invasiveness (radioactive substances, large magnetic fields), and good spatial
and poor temporal resolution. Much more direct and completely non-invasive
measure of the activity of nerve cells is delivered by electroencephalography
(EEG) and magnetoencephalography (MEG) to which this work is dedicated.

1.2 EEG and MEG
EEG and MEG are based on the fact, that electric currents in the dimension of a
few nAm are flowing in the active cortical areas. These so-called primary cur-
rents produce electric potentials on the surface and magnetic fields outside the
head. The first measurement of a human EEG was carried out in 1929 by Berger
[1929]. Around forty years later, Cohen [1968] for the first time recorded the
magnetic fields produced by the brain, the MEG. The sensitivity of the MEG
and therefore its importance was increased when superconducting quantum in-
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2 CHAPTER 1. INTRODUCTION

terference devices (SQUIDs) were invented. Cohen [1972] reported about the
first MEG measurement using SQUIDs. In contrast to fMRI and PET, EEG and
MEG can be recorded with a high temporal resolution of less than one millisec-
ond, which is a further advantage of EEG and MEG methods. The question of
spatial resolution, where especially the EEG is often considered to be rather poor,
is treated in detail below.

1.3 Relevant application fields of EEG and MEG to this
work

EEG and MEG methods have many important clinical applications. The reasons
for this stem from the fact that there are predictable EEG and MEG signatures
associated with different behavioral states. For example, in deep sleep, EEG and
MEG are characterized by slow, high-amplitude oscillations, presumably result-
ing from rhythmic changes in the activity states of large groups of neurons. In
other phases of sleep and during wakeful states, this pattern changes, but in a pre-
dictable manner. Since the normal EEG and MEG patterns are well-established
and consistent among individuals, EEG and MEG recordings can detect abnor-
malities in brain function such as for example in the assessment and treatment of
epilepsy.

1.3.1 Presurgical epilepsy diagnosis
About 0.5%-1% of the world population has epilepsy and in 70-80% a drug
therapy is successful (P.Kwan and M.J.Brodie [2000]). For those patients who
are still pharma-resistent after the administration of two up to three different
drugs, the probability of a success of a further drug is only 5-10% (P.Kwan
and M.J.Brodie [2000]). Surgical resection of epileptogenic cortical tissue in
pharmaco-resistant epilepsy patients was shown to safely and effectively con-
trol seizures, recover function, improve quality of life and even save lives, but
epilepsy surgery is still underused in developed countries and non-existent in
most developing countries (Wiebe et al. [2001]). Of the many forms of epileptic
seizures, generalized seizures have no known locus of origin and appear bilat-
erally symmetrical in EEG and MEG records. Focal seizures, in contrast, begin
in a restricted area and spread throughout the brain (Stefan et al. [2003]). Focal
seizures frequently produce the first hint of a neurological abnormality. They can
result from congenital abnormalities such as a vascular malformation or can de-
velop as a result of a local infection, enlargement of a tumor, or residual damage
from a stroke or traumatic event. Because of the movements of the patient and
the rigid MEG helmet, most tonic-clonic seizures can only be registered by the
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EEG. However, quite often, the damaged brain areas produce inter-ictal (occur-
ring between seizures) spikes without body movements which can be measured
by both EEG and MEG (Stefan et al. [2003]).

The precise localization of the epileptogenic areas in the brain, preferably
with non-invasive methods, is the major goal of the presurgical evaluation (Rosenow
and Luders [2001]; Waberski et al. [1998]). It will be discussed in detail in Chap-
ter 2.17 how surface EEG measurements can be exploited for this task.

1.3.2 Evoked responses
Besides focal seizures in epilepsy, which might lead to considerable current flows
in the brain and resulting EEG potentials and MEG fields extracted at the head
surface, the raw EEG and MEG signal is otherwise limited in providing insight to
brain processes because the recordings tend to reflect the brain’s global electrical
activity. A more powerful approach used by many neuroscientists focuses on
how brain activity is modulated in response to a particular task. The method
requires extracting an evoked response from the global EEG and MEG signals.
The procedure is the following: EEG and MEG measurements from a series of
trials are averaged together by aligning the records according to an external event
such as the onset of a stimulus (trigger). The averaging procedure decreases
variations in the brain’s electrical activity that are unrelated to the trigger and
extracts the signal of interest which might be related to sensory (somatosensory
evoked potentials or fields, SEP/SEF) (Buchner et al. [1996]), auditory (auditory
evoked potentials or fields, AEP/AEF) (Pantev et al. [1989]), visual (visually
evoked potentials or fields, VEP/VEF) (Makeig et al. [2002]) or cognitive events
(Friederici et al. [2000]). Besides of the general usefulness of evoked responses
in the field of neuroscience, the reconstruction of the underlying sources can also
have clinical importance. This has, e.g., been shown by Roberts et al. [1998],
where analysis of SEF sources in a patient with a brain tumor near the central
sulcus revealed that somatosensory cortex was anterior to the lesion, so that the
motor area could not be affected since it is anterior to the somatosensory cortex.
If the tumor extends into the precentral sulcus, surgery might be avoided as it is
likely to damage motor cortex and leave the patient with partial paralysis.

The localization of the sources underlying simultaneously measured tactile
SEP and SEF data will be discussed in detail in Chapters 2.11 and 2.16.

1.4 EEG and MEG source analysis
The question for spatial resolution of EEG and MEG necessitates a deeper insight
into the methodology of source analysis. The activity that is measured in EEG
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and MEG is the result of movements of ions, the so-called impressed or primary
currents, within mainly the apical dendrites of the large pyramidal cells (Mu-
rakami and Okada [2006]). The impressed currents are generally formulated as a
mathematical point current dipole (Brazier [1949]; de Munck et al. [1988]; Sarvas
[1987]), which is a convenient representation in the case of synchronous polariza-
tion of a small patch of cortical tissue (Hämäläinen and Sarvas [1989]; Bertrand
et al. [1991]; de Munck and Peters [1993]; Yvert et al. [1995]; Zanow and Peters
[1995]; van den Broek [1997]; Awada et al. [1997]; Marin et al. [1998]; Fuchs
et al. [1998]). The current dipole causes ohmic return or secondary currents to
flow through the surrounding medium. The EEG measures the potential differ-
ences from the return currents at the scalp surface, whereas the MEG measures
the magnetic flux of both impressed and return currents. The reconstruction of
the dipole sources is called the EEG and MEG inverse problem. A critical com-
ponent of the inverse problem is the numerical approximation method used to
reach an accurate solution of the associated EEG and MEG forward problem,
i.e., the simulation of potentials and fields at measurement sensors for a known
dipole source in the brain.

1.4.1 The forward problem

For the forward problem, the electrical conduction properties of the human head
(the volume conductor) have to be modeled. It is obvious that a completely real-
istic volume conductor model currently cannot be accomplished in routine source
analysis, but it is important to specify those characteristics of the system which
play a dominant role.

Head tissue geometries

Magnetic resonance imaging (MRI) or computed tomography (CT) provides the
geometry information for the brain, the cerebrospinal fluid (CSF), the skull, and
the scalp ([Pham and Prince, 1999; Huiskamp et al., 1999; Wolters, 2003; Ramon
et al., 2004]). MRI has the advantage of being a safe and quasi-noninvasive
method for imaging the head, while CT provides better definition of hard tissues
such as bone. However, while CT can be used in clinical examinations, it is not
justified for routine physiological studies in healthy human subjects. In this work,
a combination of T1-weighted MRI, which is well suited for the identification
of soft tissues (scalp, brain) and proton-density (PD) weighted MRI, enabling
the segmentation of the inner skull surface, will be proposed. This approach
leads to an improved modeling of the skull thickness over standard T1-MRI based
approches.
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Head tissue conductivities

Source analysis is sensitive to the conductivities of the head tissues, which vary
across individuals and within the same individual due to variations in age, disease
state, and environmental factors. First attempts to measure the conductivities of
biological tissues were made in vitro, often using samples taken from animals
(Geddes and Baker [1967]). Brain white matter was measured to have a direction
dependent (anisotropic) conductivity with a ratio of about 1 to 9 normal to par-
allel to the fibers (Nicholson [1965]). The conductivity of human cerebrospinal
fluid (CSF) was measured by Baumann et al. [1997] and that of skull by Akhtari
et al. [2002]. The human skull consists of a soft bone layer (spongiosa) enclosed
by two hard bone layers (compacta). Since the spongiosa has a much higher mea-
sured conductivity than the compacta (Akhtari et al. [2002]), the skull is often
described by an anisotropic conductivity (Rush and Driscoll [1968]; de Munck
[1988]; van den Broek [1997]; Marin et al. [1998]). Recently, it has been pro-
posed to determine in vivo conductivities of head tissues by using an electrical
impedance tomography (EIT) based approach (Gonçalves et al. [2003a]) or by
estimating them from measured EEG data (Gutierrez et al. [2004]; Vallaghé et al.
[2007]), EEG and simultaneous intra-cranial data (Lai et al. [2005]) or combined
EEG and MEG data (Gonçalves et al. [2003b]). A deep insight into the EIT
method is given in (Somersalo et al. [1992]). However, EIT is not likely to re-
solve the anisotropy of the intra-cranial tissues, instead, an indirect determination
of the anisotropic brain conductivity through diffusion tensor magnetic resonance
imaging (DT-MRI) was proposed (Basser et al. [1994]; Tuch et al. [1999, 2001]).
The underlying assumption of these models is that the same structural features
that result in anisotropic mobility of water molecules (detected by DT-MRI) also
result in anisotropic conductivity. The quantitative expression for this assumption
is that the eigenvectors of the conductivity tensor are the same as those from the
water diffusion tensor (Basser et al. [1994]). Even more specifically, Tuch et al.
[1999, 2001] have applied a differential effective medium approach to porous
brain tissue and derived a linear relationship between the eigenvalues of the DT
and the conductivity tensors.

Analytical and boundary element approaches

Different numerical approaches for the forward problem have been used. For the
EEG, de Munck and Peters [1993] presented a quasi-analytical solution of a vol-
ume conductor model consisting of an arbitrary number of concentric/confocal
anisotropic layers of different conductivities. For the MEG, an analytical for-
mula has been derived for a spherically symmetric conductor by Sarvas [1987].
It appears that the magnetic field outside the sphere is completely independent of
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the conductivity profile, radial sources do not produce any magnetic field outside
the sphere and return currents only contribute to tangential magnetometers, not
at all to radial ones. Besides the fact that those models are still frequently used
in source analysis routine, they also serve as validation tools for more realistic
numeric modeling.

In order to better take into account the realistic shape of the scalp and skull
surfaces, boundary element (BE) head models have been developed, being ade-
quate for piecewise homogeneous isotropic compartments (Barnard et al. [1967]).
Numerical accuracy of the BE approach could be improved through the isolated
skull approach (ISA) (Hämäläinen and Sarvas [1989]; Meijs et al. [1989]), the
use of linear basis functions with analytically integrated elements (de Munck
[1992]), quadratic elements (Frijns et al. [2000]), local mesh refinement around
the source (Yvert et al. [1995]; Zanow and Peters [1995]) and virtual mesh re-
finement techniques (Fuchs et al. [1998]). Most often, a collocation method for a
double layer potential approach was used (Hämäläinen and Sarvas [1989]; Meijs
et al. [1989]; de Munck [1992]; Yvert et al. [1995]; Zanow and Peters [1995];
Fuchs et al. [1998]), but it was shown by Mosher et al. [1999] and Kybic et al.
[2005] that a Galerkin approach yields superior results. Finally, a very promising
symmetric BE approach was presented by Kybic et al. [2005] where single layer
and double layer potential approaches were combined and significantly higher
accuracies were achieved than with the alternative methods.

Finite element approaches

Besides the finite difference (FD) (Saleheen and Kwong [1997]; Mohr [2004];
Hallez et al. [2005]) and the finite volume (FV) (Mohr [2004]; Cook and Koles
[2006]) methods, finite element (FE) volume conductor modeling is able to treat
both realistic geometries and inhomogeneous and anisotropic material parame-
ters (Yan et al. [1991]; Bertrand et al. [1991]; Haueisen et al. [1995]; Awada
et al. [1997]; Buchner et al. [1997]; van den Broek [1997]; Marin et al. [1998];
Ollikainen et al. [1999]; Weinstein et al. [2000]; Schimpf et al. [2002]; Uitert
et al. [2003]; Gencer and Acar [2004]; Ramon et al. [2004]). Sensitivity studies
have been carried out in realistic 3D models for the influence of skull anisotropy
(van den Broek [1997]; Marin et al. [1998]) and realistic white matter anisotropy
(Haueisen et al. [2002]) on EEG and MEG. Those studies support the hypothesis
that modeling skull and white matter anisotropy is crucial for accurate EEG and
EEG/MEG source reconstruction, respectively. It has furthermore been shown
that skull conductivity inhomogeneities (Ollikainen et al. [1999]) such as skull
sutures (Pohlmeier et al. [1997]) have a non-negligible effect on EEG source
analysis, while they hardly influence the MEG (van den Broek [1997]). Lo-
cal conductivity changes around the primary source (Haueisen et al. [2000]) as
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caused by especially brain lesions (van den Broek [1997]) or skull incisions from
trepanation (van den Broek [1997]) have a non-negligible effect on both EEG and
MEG.

A key component in FE-based source analysis is the numerical modeling of
the singularity introduced into the equation by the current dipole and its interplay
with the conductivity inhomogeneities and anisotropies. Different FE approaches
for modeling the singularity are known from the literature: a subtraction ap-
proach (Bertrand et al. [1991]; van den Broek [1997]; Awada et al. [1997]; Marin
et al. [1998]), a partial integration direct method (Yan et al. [1991]; Awada et al.
[1997]), and a Venant direct method (Buchner et al. [1997]). The subtraction
approach divides the total potential into the analytically known singularity poten-
tial and the singularity-free correction potential, which can then be approximated
numerically using an FE approach. Both the partial integration and the Venant
direct FE methods approximate the dipole through monopolar sources and sinks
on neighboring FE nodes with the constraint to optimally match the given dipole
moment vector.

From the mathematical perspective, a satisfying FE theory was not yet de-
rived for any of the above approaches.

Validation of numerical forward approaches

Validation of numerical forward approaches in EEG and MEG source analysis is
generally carried out in multilayer sphere models where analytical solutions exist
(de Munck and Peters [1993]; Sarvas [1987]). For a given dipole source in the
inner sphere (brain), the EEG or MEG is simulated numerically and this vector is
validated against the analytically computed one.

Three error criteria are commonly evaluated in source analysis (Meijs et al.
[1989]; Bertrand et al. [1991]; van den Broek [1997]; Marin et al. [1998]). The
first is the relative Euclidian (RE) error(Bertrand et al. [1991]), which is generally
well known for the evaluation of numerical algorithms. In order to distinguish
between the topography (driven primarily by changes in dipole location and ori-
entation) and the magnitude error (indicating changes in source strength), Meijs
et al. [1989] introduced the relative difference measure (RDM) and the magnifi-
cation factor (MAG), respectively.

A second important point in validation studies is the examined source eccen-
tricity. The eccentricity is defined as the percent ratio of the distance between
the source location and the model midpoint divided by the radius of the inner
sphere (brain). It is well-known that with increasing eccentricity, the numerical
accuracy in sphere model validations decreases. This is not only the case for the
FE subtraction approach (Bertrand et al. [1991]; van den Broek [1997]; Awada
et al. [1997]; Marin et al. [1998]), but also for the direct approach in FE model-
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ing (Yan et al. [1991]; Buchner et al. [1997]) and in BE modeling (Hämäläinen
and Sarvas [1989]; Meijs et al. [1989]; Yvert et al. [1995]; Zanow and Peters
[1995]; Fuchs et al. [1998]; Mosher et al. [1999]; Kybic et al. [2005]). When
considering a three-shell model (skin, skull, brain), the dipoles that are located
in the cortex will have an eccentricity of maximally 92% as reported by Marin
et al. [1998]. However, the three-compartment model ignores the CSF compart-
ment between the cortex and the skull. The CSF has a much higher conductivity
than the brain compartment (Baumann et al. [1997]). Additionally, it is shown
to have a significant influence on the forward problem (Ramon et al. [2004]). In
four-compartment models, this layer is taken into account, but source eccentricity
then has to be determined with regard to the inner CSF surface, i.e., the most ec-
centric sources are only 1 or 2mm apart from the next conductivity discontinuity.
Therefore, eccentricities of more than 98% have to be examined, a much harder
numerical task.

The consideration of mesh resolutions is important when comparing numer-
ical approaches. Due to the excessive computational burden created by previous
FE techniques in source analysis (and surely also because of limited computa-
tional resources at the time of the examination), evaluation studies often only used
sub-optimal numbers of nodes (Bertrand et al. [1991]; van den Broek [1997];
Marin et al. [1998]; Waberski et al. [1998]).

The following shortly summarizes the achieved accuracy of previous FE stud-
ies in source analysis. In a locally refined (around the source singularity) tetrahe-
dral mesh with 12,500 nodes of a four layer sphere model with anisotropic skull,
Bertrand et al. [1991] reported numerical accuracies up to a maximal eccentricity
of 97.6%. A maximal RE of above 20% and a maximal MAG up to 70% were
documented for the most eccentric source. van den Broek [1997] also used a lo-
cally refined (around the source singularity) tetrahedral mesh with 3,073 nodes
of a three layer sphere model with anisotropic skull. For the maximal examined
eccentricity of 94.2%, an RDM of up to 50% was given. It was mentioned in
the conclusion that in some cases the accuracy could not further be improved by
adding points globally as the numerical stability of the matrix equation that had
to be solved was reduced. Marin et al. [1998] restricted the finest tetrahedral
mesh of 87,907 nodes to eccentricities of 81% in order to reach a sufficient ac-
curacy for radial dipole forward solutions in a three compartment sphere model
with anisotropic skull. Schimpf et al. [2002] investigated an FE subtraction ap-
proach in a four layer sphere model with isotropic skull and sources up to 1mm
below the CSF compartment. In their article, a regular 1mm hexahedral model
was used and a maximal RDM of 7% and a maximal MAG of 25% was achieved.
Papadopoulo and Vallaghé [2007] investigated a partial integration FE approach
in a three layer sphere model with anisotropic skull and sources up to 3.5mm
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below the inner skull surface. In their article, a 1mm hexahedral approach was
used. In order to avoid the stair-like approximation of the smooth tissue bound-
aries with regular hexahedra, the FE stiffness matrix was computed from levelset
segmentations of the tissue boundaries, i.e., elements through which a levelset
surface passed, were properly integrated for both participating tissues. For their
approach, a maximal RDM of 2% was reported.

Computational complexity of the finite element approach

One impediment to using the FE method has been the high computational cost
of carrying out the simulations, especially when many evaluations of the forward
problem are needed, e.g., in source localization schemes. It was speculated that
BEM models are less computationally intensive compared to FEM models, while
providing improved computational accuracy relative to simple analytical models
(Plis et al. [2007]). The state-of-the-art approach in FE based source analysis was
to solve one FE equation system for each source (Bertrand et al. [1991]; Buchner
et al. [1997]; Awada et al. [1997]; van den Broek [1997]; Waberski et al. [1998];
Schimpf et al. [2002]). Due to the excessive computational burden created by
such FE-based techniques, evaluation studies often only used sub-optimal num-
bers of FE nodes and/or sub-optimal numbers of possible sources in the brain
(Bertrand et al. [1991]; Buchner et al. [1997]; van den Broek [1997]; Waberski
et al. [1998]). For example, Buchner et al. [1997] reported that the setup of a
lead field matrix with 8,742 unknown dipole components in a tetrahedral FE ap-
proach with 18,322 nodes took roughly a week of computation time. Waberski
et al. [1998] used a tetrahedral FE model with only 10,731 nodes and mentioned
in the discussion that, for a general clinical use of FE source analysis, a finer FE
discretization and parallel computing is needed.

With regard to FE solver techniques, a direct banded LU factorization for a
2D source analysis scenario (Awada et al. [1997]) or, for 3D scenarios, iterative
solver techniques like the conjugate gradient (CG) method without precondition-
ing (Bertrand et al. [1991]), Jacobi-preconditioned CG (Zhukov et al. [2000]),
incomplete Cholesky (IC) preconditioned CG (Buchner et al. [1997]) or the suc-
cessive over-relaxation method (Schimpf et al. [2002]) were used. Therefore,
specific symmetrical implementations were carried out which are only useful in
a spherical volume conductor (Schimpf et al. [2002]) or local mesh refinement
strategies around the source location were proposed to reduce the otherwise un-
acceptably large numerical errors for eccentric sources (Bertrand et al. [1991];
van den Broek [1997]). However, with regard to the inverse problem, the setup of
source-location dependent locally refined meshes is difficult to implement and
time-consuming to compute and thus might not be practicable for an inverse
source analysis.
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For the EEG, it was shown for the FD method (Vanrumste et al. [1998]) and
later for the FE method (Weinstein et al. [2000]) how the principle of reciprocity
can be used to reduce the number of large sparse linear equation systems that
have to be solved to the number of measurement electrodes. This was a major
step forward in the reduction of the computational complexity for FE- or FD-
based EEG source analysis, but it was still unclear if a similar approach can be
derived for the MEG.

Finite element mesh generation

Mesh generation in FE based EEG and MEG source analysis generally influences
greatly the accuracy of the results. It is thus important to determine a meshing
strategy well adopted to achieve both acceptable forward modeling accuracy and
reasonable computation times and memory usage. The FE method is generally
considered to be quite flexible with regard to an accurate modeling of the geom-
etry, but the difficult construction of the volume discretization is often seen to
be a major disadvantage of the FEM compared to the BEM which only requires
the use of surface triangulation meshes (Kybic et al. [2005]). So far, surface-
based ordinary Delaunay tetrahedralizations (ODT) were mainly used (Bertrand
et al. [1991]; Awada et al. [1997]; van den Broek [1997]; Buchner et al. [1997];
Marin et al. [1998]; Wolters [2003]). However, three-dimensional constrained
Delaunay tetrahedralizations (CDT) are known to perform better (Si [2004]; Si
and Gärtner [2005]) and, so far as the author knows, were not yet applied to
source analysis. Only few studies examined regular hexahedral elements exploit-
ing the spatial discretization inherent in medical tomographic data (Schimpf et al.
[2002]). The problematic stair-like approximation of curved boundaries with reg-
ular hexahedra has been addressed by Camacho et al. [1997] in a biomechanical
context, where it was shown that a geometry-adaptation approach can signifi-
cantly reduce errors in von Mises stress at the surface, in spite of detrimental
effects of deformed elements.

1.4.2 The inverse problem

The non-uniqueness of the EEG and MEG inverse problem implies that assump-
tions on the source model, as well as anatomical and physiological a-priori know-
ledge about the source region and sometimes even results from other techniques
like fMRI (Menon et al. [1997]; Opitz et al. [1999]; Dale et al. [2000]) should be
taken into account to obtain a unique solution. Therefore, different inverse ap-
proaches for continuous and discrete source parameter space have been proposed.
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Spatio-temporal dipole fit

The first class of inverse approaches that will be used in this work are the clas-
sical spatio-temporal dipole modeling approaches, where the number of possible
dipoles is restricted to only some few (Scherg and von Cramon [1985]; Mosher
et al. [1992]; Knösche [1997]; Wolters et al. [1999]). The spatio-temporal focal
source models differ in the manner in which they describe the time dependence
of the data. Generally, they are grouped into three classes, the unconstrained
dipole model (moving dipole), a dipole with temporally fixed location (rotat-
ing dipole) and a dipole with fixed location and fixed orientation (fixed dipole)
(Mosher et al. [1992]). Optimization of the resulting cost function (Mosher et al.
[1992]) is most often performed with a Nelder-Mead simplex optimizer (Nelder
and Mead [1965]) which is started from appropriate seed-points and finds the
next local minimum of the cost function (Knösche [1997]). The goodness of fit
(GOF) of the spatio-temporal dipole model to the data can then be used as an
index of the models quality. The simplex optimizer needs a-priori chosen seed-
points and, dependent on the seed dipoles, it can converge to local minima which
are not identical to the global minimum. This was shown for brain-stem audi-
tory evoked potentials by Gerson et al. [1994], where the optimizer produced
significant errors for just a single dipole model. Huang et al. [1998] examined a
multi-start simplex in order to imitate a global optimization technique for fitting
multi-dipole, spatio-temporal MEG data. The method of simulated annealing
(SA) utilizes concepts of combinatorial optimization for globally minimizing a
given cost function in acceptable time and it was shown by (Gerson et al. [1994];
Haneishi et al. [1994]; Wolters et al. [1999]) that the SA optimization stabilizes
the spatio-temporal dipole modeling.

The independent component analysis (ICA) has not only proven to be an ef-
fective method for removing eye and muscle activity artifacts from EEG data and
thus increasing the effective signal-to-noise ratio (SNR) of subsequent analysis
(Jung et al. [2000]), but it was also shown to enable the disentangling of multi-
ple current generators (Kobayashi et al. [2001]; Makeig et al. [2002]) underlying
the measured data, so that ICA topography patterns are generated that are most
often dipolar or in some few cases bi-dipolar, i.e., two strongly time-correlated
sources located near symmetrically in both brain hemispheres, possibly supported
by dense connections via the corpus callosum (Makeig et al. [2002]). The ICA-
driven inverse problem is thus reduced to spatio-temporal dipole fits of only one
or two focal sources for the ICA spatial topography patterns of interest. This
approach is used in Chapter 2.17.2.
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Scanning method

This work will furthermore exploit a so-called least-squares scanning or goal
function scan (GFS) inverse method (Mosher et al. [1992]; Knösche [1997]).
The GFS scans systematically position by position of a predefined discrete source
space. At each position, a least squares fit is performed to the chosen data sam-
ples, i.e., an optimal rotating dipole is computed for the considered location. As
a result, the GOF at each position is displayed as a color map on cross-sections
of the source space mesh. The GFS is not subject to pitfalls of non-linear search
algorithms, such as being trapped in local minima or slow convergence. Ad-
ditionally, if the underlying sources have distinct EEG and MEG topographies
and comparable strength, areas of similar GOF can serve as confidence regions
(Knösche [1997]) and GFS results can be used as seed-points for spatio-temporal
dipole models. Since a single dipole at each source space mesh node is fitted to
the data, this method will naturally work, if a single focal source is underlying
the measured data. However, the GFS might fail, e.g., when there are multiple
sources which are close to each other, sources that produce overlapping topogra-
phies or EEG and MEG’s of greatly differing intensities (Mosher et al. [1992]).

Current density reconstruction

The last class of inverse approaches addressed in this work are the current density
reconstruction (CDR) methods. The CDR methods act on a distributed source
model, where the restriction to a limited number of focal sources is abolished,
i.e., sources are allowed to be simultaneously active on all discrete mesh nodes
of a predefined source space (e.g., all nodes of a cortical triangle mesh). The
non-uniqueness of the resulting problem is compensated by the assumption that
the dipole distribution should be minimal with regard to a specific norm. Dif-
ferent norms have been proposed, such as the L2-norm (Hämäläinen and Il-
moniemi [1984]; Knösche [1997]), which is often denoted as the minimum norm
least squares (MNLS) or Tikhonov-regularization method. The MNLS leads to
a smooth current distribution with minimal source energy. The choice of an L1-
norm results in a more focal distribution as shown by (Wagner et al. [1996]; Fuchs
et al. [1999]). It is well-known that a regularization without any depth-weighting
gives preference to superficial sources (Fuchs et al. [1994]). Therefore, the use of
a source weighting matrix with L2-norms of the corresponding lead field columns
as diagonal entries was proposed by Fuchs et al. [1994]. However, as reported by
Pascual-Marqui [2002], despite of all weighting efforts, linear solutions such as
MNLS produced at best images with systematic non-zero localization errors. In
contrast, in a large series of single test source simulations at arbitrary positions
and depths in the volume conductor, a standardization of the MNLS as performed
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within the standardized low resolution electromagnetic tomography (sLORETA)
was shown to produce zero-localization error (Pascual-Marqui [2002]). Most
distributed source models are instantaneous models, i.e., they only make use of
a spatial regularization with a single time sample of data. Recent developments,
however, showed that spatio-temporal CDR approaches can help stabilizing the
inverse reconstruction process (Schmitt et al. [2002]).

1.4.3 Spatial resolution of EEG versus MEG
As discussed above, the EEG is strongly dependent on accuracy aspects of vol-
ume conductor modeling with regard to both geometry and conductivity prop-
erties of the different head tissues. Moreover, the synchronous activity of large
populations of cells is required to produce measurable extra-cranial signals. As a
consequence, current EEG source analysis methods are often considered to have
a rather poor spatial resolution (M.S.Gazzaniga et al. [2002]; Andrä and Nowak
[2002]). MEG monitors the same electrical brain activity as EEG and shares
many of its properties, but, as it will also be shown in this work, it is less disturbed
by the complex conductivity profile of the head tissues, because mainly the pri-
mary currents are contributing to the typical MEG measurement sensors. There-
fore, MEG source analysis is considered to have a higher spatial reconstructabil-
ity of the brain processes (Hämäläinen et al. [1993]; M.S.Gazzaniga et al. [2002];
Andrä and Nowak [2002]). However, another typical trait of MEG in comparison
to EEG is the different sensitivity profile, which largely excludes deep primary
currents and those primary currents that flow perpendicular to the cranial surface
(Sarvas [1987]; Hämäläinen et al. [1993]; Andrä and Nowak [2002]). Further-
more, in order to extract the extremely weak magnetic fields of the considered
brain activity from environmental noise, techniques such as the passive shield-
ing by means of measurements in a magnetically shielded chamber and active
noise-cancellation such as gradiometer schemes (Hämäläinen et al. [1993]; Vrba
[2000]; Vrba and Robinson [2001]) are needed for the MEG.

Spatial resolution aspects of MEG versus EEG will be covered in Chap-
ters 2.5 and 2.16 of this work.

1.5 Scope of this habilitation
In light of the above discussion, this habilitation work will cover the following
topics:

Chapter 2.1 Because of a lack of a satisfying FE theory in the FE source analy-
sis literature, a proof for existence and uniqueness of a weak solution in the
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function space of zero-mean potential functions and convergence proper-
ties of the FE method for the numerical solution to the correction potential
are given for the subtraction dipole approach. An FE projected subtraction
approach is then implemented and validated in tetrahedral and hexahedral
meshes.

Chapter 2.2 A transfer matrix approach (also called lead field bases approach)
is derived for both EEG and MEG which limits the number of FE equation
systems to be solved to the number of sensors and can be applied to both
the direct potential approaches and the subtraction approach.

Chapter 2.3 It is shown that an algebraic multigrid preconditioned CG method
with multiple right-hand side treatment can be used for an efficient compu-
tation of the EEG and MEG transfer matrices.

Chapter 2.4 For both the Venant and the subtraction dipole model and for EEG
and MEG, the computational speed of the transfer matrix approach is com-
pared to the state-of-the-art approach, i.e., solving one FE equation system
for each source.

Chapter 2.5 is dedicated to a comparison of the projected subtraction approach
and the Venant direct FE approach for the EEG and the MEG in ordinary
tetrahedral and regular hexahedral meshes.

Chapter 2.6 The projected subtraction approach is compared to the direct FE
approaches partial integration and Venant in a regular hexahedral model
for the EEG.

Chapter 2.7 reports on the accuracy improvements of geometry-adapted versus
regular hexahedral meshes for the Venant method and the projected sub-
traction approach.

Chapter 2.8 A full subtraction approach is developed which takes special care
to appropriately evaluate the right-hand side integral with the objective of
achieving highest possible convergence order for linear basis functions.
The combination of the full subtraction approach with high quality CDT
meshes leads to RDM and MAG accuracies below 0.4% for a maximal
examined eccentricity of 98.7% in an anisotropic four-compartment sphere
model.

Chapter 2.9 compares the efficiency of algebraic multigrid (AMG), IC and Ja-
cobi preconditioners for the CG method for iteratively solving the FE based
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EEG forward problem. The interplay of the three solvers with a full sub-
traction approach and the two direct potential approaches Venant and par-
tial integration is examined in specifically-tuned CDT FE meshes.
Additionally, inverse single dipole reconstruction errors are discussed that
result from the numerical FE forward modeling errors for the full sub-
traction method and the Venant approach in specifically-tuned CDT FE
meshes. Furthermore, a method is proposed for the treatment of forward
modeling error oscillations of the direct FE potential approaches.

Chapter 2.10 will show that a double layer collocation BE approach using the
ISA and linear basis functions with analytically integrated elements is out-
performed by a Venant FE approach in a geometry-adapted hexahedral
model with regard to both accuracy and computational speed.

Chapter 2.11 A low resolution conductivity estimation (LRCE) method using
SA optimization on high-resolution FE models is proposed that individu-
ally optimizes a realistically-shaped volume conductor with regard to the
tissue conductivities and likely produces a more robust estimate of source
location.

Chapter 2.12 A new and fast spatio-temporal regularization procedure for cur-
rent density reconstructions, STR, is proposed. It is shown in statistical
tests that STR shows superior reconstruction results compared to the tem-
porally uncoupled MNLS.

Chapter 2.13 reports on the influence of remote tissue conductivity anisotropy
on EEG and MEG field and return current computation.

Chapter 2.14 is dedicated to the influence of local tissue conductivity anisotropy

Chapter 2.15 presents the influence of volume conduction effects on the EEG
and MEG reconstruction of the sources of the Early Left Anterior Negativ-
ity (ELAN) using an L1-norm CDR approach.

Chapter 2.16 First, the MEG machine at the Institute for Biomagnetism and
Biosignalanalysis of the University of Münster is presented. The Chap-
ter introduces into the active noise cancellation with gradiometer schemes,
since its modeling is necessary for proper MEG forward simulations. In the
second part, simultaneously measured tactile somatosensory evoked poten-
tials (SEP) and fields (SEF) will be analyzed. It will be shown that, with
a proper realistic head model and a larger number of trials for the EEG
than for the MEG, both EEG and MEG correctly localize in the primary
somatosensory cortex.
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Chapter 2.17 first evaluates whether non-invasive surface EEG (sEEG) source
analysis based on 1mm anisotropic FE head modeling can provide ad-
ditional information for presurgical epilepsy diagnosis. Therefore, GFS,
MNLS, spatio-temporal current dipole modeling and sLORETA inverse
approaches are applied to averaged ictal spikes of a medically-intractable
epilepsy patient and the reconstruction results are successfully validated
with the outcome of intra-cranial EEG (iEEG) recordings.
In the second part, an ICA based source reconstruction of surface (sEEG)
and intra-cranial EEG (iEEG) data of a medically-intractable epilepsy pa-
tient is presented with a special focus on the FE modeling of the skull
incision from trepanation and the iEEG silastic pads.
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NUMERICAL MATHEMATICS OF THE SUBTRACTION METHOD
FOR THE MODELING OF A CURRENT DIPOLE IN EEG SOURCE
RECONSTRUCTION USING FINITE ELEMENT HEAD MODELS∗
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Abstract. In electroencephalography (EEG) source analysis, a dipole is widely used as the
model of the current source. The dipole introduces a singularity on the right-hand side of the
governing Poisson-type differential equation that has to be treated specifically when solving the
equation toward the electric potential. In this paper, we give a proof for existence and uniqueness
of the weak solution in the function space of zero-mean potential functions, using a subtraction
approach. The method divides the total potential into a singularity and a correction potential.
The singularity potential is due to a dipole in an infinite region of homogeneous conductivity. We
then state convergence properties of the finite element (FE) method for the numerical solution to
the correction potential. We validate our approach using tetrahedra and regular and geometry-
conforming node-shifted hexahedra elements in an isotropic three-layer sphere model and a model
with anisotropic middle compartment. Validation is carried out using sophisticated visualization
techniques, correlation coefficient (CC), and magnification factor (MAG) for a comparison of the
numerical results with analytical series expansion formulas at the surface and within the volume
conductor. For the subtraction approach, with regard to the accuracy in the anisotropic three-
layer sphere model (CC of 0.998 or better and MAG of 4.3% or better over the whole range of
realistic eccentricities) and to the computational complexity, 2mm node-shifted hexahedra achieve
the best results. A relative FE solver accuracy of 10−4 is sufficient for the used algebraic multigrid
preconditioned conjugate gradient approach. Finally, we visualize the computed potentials of the
subtraction method in realistically shaped FE head volume conductor models with anisotropic skull
compartments.
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anisotropy
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1. EEG source reconstruction. Electroencephalography (EEG) based source
reconstruction of cerebral activity (the EEG inverse problem) with respect to the
individual anatomy is common practice in clinical routine and research and in cogni-
tive neuroscience. The inverse methods are based on solutions to the corresponding
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SEP data Source analysis result

Fig. 1.1. Left: Tactile somatosensory evoked potentials (SEP): Butterfly plot of the averaged
EEG data. The peak of the SEP signal component of interest at 35.3ms is marked. Right: Recon-
structed current dipole in somatosensory cortex (SI) with a remaining variance to the data of less
than 1%.

forward problem, i.e., the simulation of the electric potential in the head volume con-
ductor for a primary source. The primary sources to be reconstructed in the inverse
problem are electrolytic currents within the dendrites of the large pyramidal cells of
activated neurons in the cortex sheet of the human brain. A primary source is gen-
erally formulated as an ideal or mathematical point current dipole [22, 24]. Such a
focal brain activation can, e.g., be observed in epilepsy [29] (interictal spikes) or can
be induced by a stimulus in neurophysiological or neuropsychological experiments,
e.g., somatosensory or auditory evoked fields [20, 25]. Source analysis of individual
somatosensory evoked potential (SEP) data is of high clinical interest for precise non-
invasive localization of the central sulcus in the case of lesions lying in or adjacent
to the sensorimotor region. This example from the wide application field of EEG
source analysis will now be used to give a general motivation for this paper: Tactile
stimuli were presented onto the right index finger tip of a 39 year old healthy male
right-handed subject using balloon diaphragms driven by bursts of compressed air.
Following [20], the optimal interstimulus interval of 1 sec. (± 10% variation) was
used and 3 runs of 600 epochs each were recorded. After band-pass filtering and
artifact rejection, the remaining epochs were averaged, resulting in a signal-to-noise
ratio of more than 21. A butterfly plot of the measured SEP is shown in Figure 1.1
(left). A current dipole was then reconstructed at the peak of the early component at
35.3ms using a simulated annealing (SA) optimization procedure on a presegmented
triangulated surface 2mm below the cortex surface. A finite element head model with
anisotropic skull compartment was used to solve the corresponding forward problems.
The remaining variance of the dipole solution to the data was less than 1%. The result,
shown in Figure 1.1 (right), agrees well with a recent paper showing that the early
tactile somatosensory component arises from area 3b of the primary somatosensory
cortex (SI) contralateral to the side of stimulation [20].

2. Introduction. In addition to the finite difference method (see, e.g., [15]),
the finite element (FE) method [36, 2, 1, 5, 6, 18, 30, 17, 27, 21, 34] has become
popular to solve the forward problem because it allows a realistic representation of
the head volume conductor with its various tissue geometries and conductivities. Im-
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proved mathematical algorithms, increased power of state-of-the-art computational
platforms, and modern imaging methods allow today’s use of the FE method for
practical localization problems [30, 31, 11, 32]. In [5, 18, 34], the influence of con-
ductivity anisotropy of the human skull, and in [17, 34], the influence of conductivity
anisotropy of brain white matter were examined with regard to source reconstruction,
motivating the use of three-dimensional (3D) methods when compared to spherical
head models (see, e.g., [23]) or the boundary element method (see, e.g., [10]). In FE
analysis, it is yet theoretically unclear how to treat local (in contrast to the above
remote) anisotropy, i.e., tissue conductivity anisotropy in the direct environment of
the source (cortical conductivity anisotropy). Because of its moderate anisotropy, the
cortex is generally modeled as isotropic.

In the case of a point current dipole in the brain, the singularity of the potential
at the source position can be treated with the so-called subtraction method, where
the total potential is divided into the analytically known singularity potential and
the singularity-free correction potential, which can then be approximated numerically
using an FE approach [2, 1, 5, 18, 27]. In addition to the subtraction method, di-
rect approaches to the total potential were developed, where either partial integration
over the point source on the right-hand side of the weak FE formulation was used,
approximating the source singularity by means of a projection in the function space
of the FE trial-functions [30, 21], or the point dipole was approximated by a smoother
monopolar primary source distribution [36, 6, 31, 27]. Even if it is known that the
direct approaches perform reasonably well in locally isotropic spherical head model
validation studies, it is impossible to formulate a satisfying FE theory if the mathe-
matical dipole, being widely used in source reconstruction (especially also sphere and
BE forward modeling) [22, 24], is used as the model for a primary source. Our study
will therefore focus on the computationally more expensive (when compared to the
direct approaches) FE subtraction method, where also, until now, no sufficient the-
ory concerning existence and uniqueness of a solution and FE convergence properties
was shown. Furthermore, the theory of the subtraction method was presented only
for multicompartment models with an isotropic conductivity in the source environ-
ment. Either tetrahedra [2, 5, 18] or regular hexahedra [27] elements were used, but
no comparison of different element types was found with regard to their numerical
properties. The use of standard direct (banded LU factorization for a two-dimensional
(2D) source analysis scenario [1]) or iterative (conjugate gradient (CG) without pre-
conditioning [2] or successive overrelaxation (SOR) [27]) FE solver techniques limited
the overall resolution. Therefore, local mesh refinement strategies around the source
location were proposed to reduce the otherwise unacceptably large numerical errors
for eccentric sources [2, 5], or specific symmetrical implementations were carried out
which are useful only in a spherical volume conductor [27]. With regard to the in-
verse problem, local mesh refinement strategies around the source location are rather
complicated to implement and time-consuming to compute and thus might not be
appropriate for practical application.

In this paper, we formulate the theory of the subtraction approach for both locally
isotropic and anisotropic conductivity and give a proof for existence and uniqueness
of a weak solution in a zero-mean function space. We examine the FE convergence
properties for the singularity-free correction potential and thus gain deep insight into
the theory and practice of the method. The presented theory is valid for both EEG
but also magnetoencephalography (MEG) source reconstruction. We examine the
necessary accuracies of an algebraic multigrid preconditioned CG (AMG-CG) solver
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for the correction potential and describe how the subtraction approach is combined
with our recent work on lead field bases [32]. This combination also allows sufficiently
fast solutions to the EEG and MEG inverse problems. We then consider 3D three-
layer sphere model scenarios to validate our approach in isotropic models and in
models with an anisotropic skull compartment. The validation of other anisotropy
types would exceed the scope of this paper. We use globally high mesh resolutions for
both tetrahedra and hexahedra elements which results in a sufficient accuracy for the
whole range of realistic source eccentricities. We show that regular hexahedra and
especially geometry-conforming node-shifted hexahedra elements perform better than
tetrahedra elements. We finally apply the method to three-compartment realistically
shaped volume conductor models with anisotropic skull compartments obtained from
MR images of the human head.

3. Forward problem formulation.

3.1. The Maxwell equations. Let us begin with the introduction of the neces-
sary notation: let E and D be the electric field and electric displacement, respectively,
ρ the electric free charge density, ε the electric permittivity, and j the electric current
density. By μ we denote the magnetic permeability and by H and B the magnetic
field and induction, respectively.

In the considered low frequency band (frequencies below 1000 Hz), the capacitive
component of tissue impedance, the inductive effect, the electromagnetic propagation
effect, and thus the temporal derivatives can be neglected in the Maxwell equations
of electrodynamics [26]. It can be assumed that μ is constant over the whole volume
and equal to the permeability of vacuum [26]. Therefore, the electric and magnetic
fields can be described by the quasi-static Maxwell equations

∇ · D = ρ,

∇× E = 0,

∇× B = μj,(3.1)

∇ · B = 0(3.2)

with the material equations

D = εE,

B = μH,

since biological tissue mainly behaves as an electrolyte [26]: The electric field can be
expressed as a negative gradient of a scalar potential:

(3.3) E = −∇Φ.

In the field of bioelectromagnetism, the current density is divided into two parts [26],
the primary or impressed current, jp, and the secondary or return currents, σE,

(3.4) j = jp + σE,

where σ : Ω → R
3×3 denotes the 3 × 3 conductivity tensor.
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3.2. The forward problem. Taking the divergence of (3.1) (divergence of a
curl of a vector is zero) and using (3.3) and (3.4) give the Poisson equation

(3.5) ∇ ·
(
σ∇Φ

)
= ∇ · jp = Jp in Ω,

which describes the potential distribution in the head domain Ω due to a primary
current jp in the cortex sheet of the human brain. We find homogeneous Neumann
boundary conditions on the head surface Γ = ∂Ω,

(3.6) 〈σ∇Φ,n〉
∣∣
Γ

= 0,

with n the unit surface normal, and a reference electrode with given potential, i.e.,

(3.7) Φ(xref) = 0 .

3.3. The primary currents. The primary currents are movements of ions
within the dendrites of the large pyramidal cells of activated regions in the cortex
sheet of the human brain and at already small distances equal to the size of the
activated region only the dipolar moment of the source term is visible [24]. The
mathematical dipole model at position x0 ∈ R

3 with the moment M ∈ R
3 can be

formulated as [22]

(3.8) Jp(x) = ∇ · jp (x) := ∇ · Mδ(x− x0) .

3.4. The subtraction approach. In the following, it is assumed that we can
find a nonempty subdomain Ω∞ ⊂ Ω around the source position x0 with homogeneous
constant conductivity σ∞, so that x0 ∈ Ω∞ / ∂Ω∞.

For the subtraction method, the conductivity σ is then split into two parts,

(3.9) σ = σ∞ + σcorr,

so that σ∞ is constant over the whole domain Ω and σcorr is zero in the subdomain
Ω∞: σcorr(x) = 0 for all x ∈ Ω∞. The total potential Φ can now be split into two
parts,

(3.10) Φ = Φ∞ + Φcorr,

where the singularity potential Φ∞ is defined as the solution for a dipole in an un-
bounded homogeneous conductor with constant conductivity σ∞. An analytic formula
for Φ∞ will be derived in the following. Let us first discuss the case of a homogeneous
and isotropic conductivity σ∞|Ω∞ = σ∞ Id, σ∞ ∈ R. In this case, the solution of
Poisson’s equation

(3.11) ΔΦ∞ = Jp/σ∞

can be formed analytically by use of (3.8) [26]:

(3.12) Φ∞(x) =
1

4πσ∞
〈M, (x− x0)〉

|x− x0|3
.

In the case that the conductivity σ∞ is homogeneous and anisotropic in Ω∞, we find
[12]

(3.13) Φ∞(x) =
1

4π
√

detσ∞
〈M, (σ∞)−1(x− x0)〉

〈(σ∞)−1(x− x0), (x− x0)〉3/2
.
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In both cases the potential Φ∞ has a singularity at x = x0 but is smooth everywhere
else. Inserting (3.9)–(3.11) into (3.5) yields a Poisson equation for the correction
potential

(3.14) −∇ ·
(
σ∇Φcorr

)
= f in Ω, f := ∇ ·

(
σcorr∇Φ∞)

,

with inhomogeneous Neumann boundary conditions at the surface:

(3.15) 〈σ∇Φcorr,n〉 = g on Γ, g := −〈σ∇Φ∞,n〉.

After solving this numerically toward Φcorr, the unknown scalar potential Φ can then
be calculated using (3.10). The gain of the reformulation using the explicit representa-
tion of Φ∞ is that the singularity on the right-hand side of (3.5) has been eliminated:
let Φ̄∞ denote a smooth extension of Φ∞|Ω\Ω∞ to Ω. Then Φ̄∞ is globally smooth
and σcorr∇Φ∞ = σcorr∇Φ̄∞ (σcorr vanishes in Ω∞), so that the right-hand side f is
square-integrable over the whole domain Ω. For the given right-hand side f and the
linear operator ∇ · σ∇, we can apply a standard FE discretization and thus derive
standard FE convergence results.

3.5. Existence and uniqueness of the solution. In the following, we use
the definitions of the scalar products, norms, seminorms, function spaces, and weak
derivatives as used in the FE standard literature (see, e.g., [4, 14]).

Equation (3.14) can only be understood in the classical sense under the condition
σ ∈ C1

(
Ω,R3×3

)
. For the multilayer model with conductivity jumps between the

compartments, we search for a weak solution in the Sobolev space H1(Ω).
Theorem 3.1 (variant of Friedrichs’s inequality [4]). Let Ω be a domain with

volume μ(Ω) that is contained in a cube with edge length s. We then find for all
u ∈ H1(Ω)

||u||0 ≤ |u|
√
μ(Ω) + 2s|u|1, u :=

∫
Ω

u(x)dx/μ(Ω).

For existence and uniqueness of a solution for the correction potential, we will
make use of the following specific subspace of H1(Ω):

H1
∗ (Ω) :=

{
v ∈ H1(Ω)

∣∣∣ ∫
Ω

v(x)dx = 0

}
.

We now formulate the bilinear form a : H1(Ω) × H1(Ω) → R and the functional
l : H1(Ω) → R for our application:

(3.16) a(u, v) :=

∫
Ω

〈σ(x)∇u(x),∇v(x)〉dx, l(v) :=

∫
Ω

f(x)v(x)dx +

∫
Γ

gvdΓ,

with f and g from (3.14) and (3.15).
Definition 3.2 (continuous bilinear form). Let H be a Hilbert space. A bilinear

form B : H ×H → R is called continuous if there is a constant Ccont > 0, so that

∀u, v ∈ H : |B(u, v)| ≤ Ccont||u||H ||v||H .

Lemma 3.3. The bilinear form a(·, ·) from (3.16) is continuous on H1(Ω) ×
H1(Ω).
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Proof. Let σmax be the largest eigenvalue of any conductivity tensor σ(x), x ∈ Ω.
Then the bilinear form is continuous,

|a(u, v)| (3.16)
=

∣∣∣∣
∫

Ω

〈σ(x)∇u(x),∇v(x)〉dx
∣∣∣∣ ≤ σmax

∫
Ω

‖∇u(x)‖‖∇v(x)‖dx

Hölder
≤ σmax‖∇u‖L2(Ω)‖∇v(x)‖L2(Ω) ≤ σmax‖u‖H1(Ω)‖v‖H1(Ω),

with continuity constant Ccont = σmax.

Definition 3.4 (H-ellipticity). A symmetric, continuous bilinear form B is
called H-elliptic if there is a constant Cell > 0 so that

∀u ∈ H : B(u, u) ≥ Cell||u||2H .

Lemma 3.5. The bilinear form a(·, ·) from (3.16) is H1
∗ (Ω)-elliptic.

Proof. Let σmin be the smallest eigenvalue of any conductivity tensor σ(x), x ∈ Ω.

Let u ∈ H1
∗ (Ω), and let s be the constant from Friedrichs’s inequality. Then the

ellipticity

a(u, u) =

∫
Ω

〈σ(x)∇u(x),∇u(x)〉dx ≥ σmin

∫
Ω

〈∇u(x),∇u(x)〉dx = σmin|u|21

=
σmin

1 + 4s2
(|u|21 + 4s2|u|21)

|ū|=0
=

σmin

1 + 4s2
(|u|21 + (|ū|

√
μ(Ω) + 2s|u|1)2)

Th. 3.1
≥ σmin

1 + 4s2
(|u|21 + ‖u‖2

0) =
σmin

1 + 4s2
‖u‖2

1

holds with ellipticity constant Cell = σmin/(1 + 4s2).

Lemma 3.6. The functional l(·) in (3.16) is well defined and bounded on H1(Ω),
particularly l(·) ∈ (H1

∗ (Ω))′.

Theorem 3.7 (existence and uniqueness). Let Ω be compact with piecewise
smooth boundary (e.g., polygonal). Then the variational problem

seek u ∈ H1
∗ (Ω) : ∀v ∈ H1(Ω), a(u, v) = l(v)

has exactly one solution u ∈ H1
∗ (Ω).

Proof. The bilinear form a(·, ·) is H1-continuous (Lemma 3.3) and H1
∗ (Ω)-elliptic

(Lemma 3.5) and the functional l(·) is bounded (Lemma 3.6). Due to Lax–Milgram
we find exactly one u ∈ H1

∗ (Ω) that solves the variational problem for all v ∈ H1
∗ (Ω).

For ṽ ∈ H1(Ω) we use the splitting ṽ = v + c · 1, v ∈ H1
∗ (Ω), and find that first

a(u, ṽ) = a(u, v) + c · a(u, 1) = a(u, v)

and, with Ω′ := Ω \ K(x0, ε) (K(x0, ε) being a small ball with radius ε around the
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source position at x0),

l(ṽ) = l(v) + c · l(1) = l(v) + c ·
(∫

Ω

f +

∫
Γ

g

)

= l(v) + c ·
(∫

Ω

∇ ·
(
σcorr∇Φ∞)

−
∫

Γ

〈σ∇Φ∞,n〉
)

Gauß
= l(v) + c ·

(∫
Γ

〈σcorr∇Φ∞,n〉 −
∫

Γ

〈σ∇Φ∞,n〉
)

= l(v) − c

∫
Γ

〈σ∞∇Φ∞,n〉

Gauß
= l(v) − c

(∫
Ω′

∇ ·
(
σ∞∇Φ∞)

−
∫
∂K(x0,ε)

〈σ∞∇Φ∞,n〉
)

= l(v).

In the last step of the above equation, both integrals are zero: The volume integral is
zero, because Φ∞ defined in (3.12) or (3.13) is a solution of the homogeneous problem
and Jp(x) = 0 for all x ∈ Ω′. The surface integral is zero, because Φ∞ is the potential
for a dipole in the center of the spherical integration domain, and, when dividing the
domain into two half-spheres, the surface integral over the one is exactly the negative
of the other.

3.6. FE formulation and implementation issues. A numerical method is
needed for the field simulation in a realistically shaped head volume conductor. We
will use the FE method because of its ability to treat geometries of arbitrary shape
and inhomogeneous and anisotropic material parameters. As a first step, we will use
partial integration on the right-hand side of (3.14) (see (3.14), (3.15), and (3.16)):

(3.17) l(v) = −
∫

Ω

〈∇v(x), σcorr(x)∇Φ∞(x)〉dx−
∫

Γ

〈σ∞∇Φ∞(x),n(x)〉v(x)dx.

The linear space H1(Ω) is discretized by the FE space

VN := span{ϕi(x) | i = 1, . . . , N} ⊂ H1(Ω)

spanned by piecewise affine basis functions ϕi at nodes ξi, i.e., ϕi(x) = 1 for x = ξi
and ϕj(x) = 0 for all j �= i. The singularity potential Φ∞ can be projected into this
FE space (required only in the smooth part Ω \ Ω∞):

(3.18) Φ∞(x) ≈ Φ∞
h (x) :=

N∑
i=1

ϕi(x)u∞
i , u∞

i := Φ∞(ξi).

Now we seek coefficients uj for the discrete approximation of Φcorr(x) ≈ Φcorr
h (x) :=∑N

j=1 ϕj(x)uj ; i.e., we solve the problem

find u ∈ H1(Ω) so that ∀v ∈ H1(Ω) : a(u, v) = l(v)

in the discrete space VN :

(3.19) find u ∈ VN so that ∀v ∈ VN : a(u, v) = l(v).
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The coefficient vector u := (u1, . . . , uN ) solves the corresponding linear system

(3.20) Ku = j∞, j∞ := −Kcorru∞ − Su∞,

where u∞ := (u∞
1 , . . . , u∞

N ) is the coefficient vector for Φ∞
h and

Ki,j :=

∫
Ω

〈σ(x)∇ϕi(x),∇ϕj(x)〉 dx,

Kcorr
i,j :=

∫
Ω

〈σcorr(x)∇ϕi(x),∇ϕj(x)〉 dx,

Si,j :=

∫
Γ

〈σ∞(x)∇ϕj(x),n(x)〉ϕi(x) dΓx.

The computation of the matrix entries is simple, because the gradients of the basis
functions are piecewise constant. We used the template C++ library COLSAMM
described in detail in [8]. Additionally, the supports of the basis functions are small
and local so that the number of entries in K,Kcorr, S is O(N).

In the next section we will see that the L2-error of the approximation

εN := ‖Φcorr
h − Φcorr‖L2(Ω)

behaves like h2 = N−2/3, so we have to use a finite dimensional but large space VN .
In order to solve the large linear system (3.20) for the correction potential, we apply
an AMG-CG solver [13, 31]. For the special case of a homogeneous conductivity σ∞

in the source area (the cortex), it was shown in [32] that one can compute lead field
bases for EEG and MEG which then strongly reduce the computational burden for
the FE-based inverse problem in EEG and MEG.

3.7. Convergence analysis. For our FE approximation Φcorr
h , we are interested

in estimates of the form

(3.21) ||Φcorr − Φcorr
h || ≤ Chk

with the largest possible quantitative order k. h denotes the edge length of a finite
element. In general, the order depends on the regularity of the solution, on the degree
of the FE trial-functions, on the chosen Sobolev norm, and on the approximation
properties of the triangulation to the geometry.

For a one-layer model with homogeneous conductivity, we have the following
property.

Theorem 3.8 (quantitative error estimate for one-layer model [14]). Let us
assume a sufficiently regular solution Φcorr ∈ H2(Ω). For an appropriate triangulation
(hexahedrization), linear (trilinear) FE trial-functions, and a continuous and elliptic
bilinear form a(·, ·), we find a constant C1 which is independent of Φcorr and h with

||Φcorr − Φcorr
h ||1 ≤ C1h||Φcorr||2.

The regularity assumption Φcorr ∈ H2(Ω) is typically fulfilled because the bound-
ary of the domain Ω is piecewise smooth.

Lemma 3.9 (Aubin–Nitsche [14]). Let us assume a sufficiently regular solution
Φcorr ∈ H2(Ω). For an appropriate triangulation (hexahedrization), linear (trilin-
ear) FE trial-functions, and a continuous and elliptic bilinear form a(·, ·), we find a
constant C2 which is independent of Φcorr and h with

||Φcorr − Φcorr
h ||0 ≤ C2h

2||Φcorr||2.
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For a multilayer model with different conductivities on each compartment, we can
only assume Φcorr ∈ H1(Ω). Following Hackbusch [14], we can hope that the general
error bounds ||Φcorr − Φcorr

h ||1 = O(h) and ||Φcorr − Φcorr
h ||0 = O(h2) can be achieved

by means of isoparametric, i.e., geometry conforming, finite elements.

With regard to our specific application, we can give a statement concerning the
property of the constant C in (3.21), which will be of practical interest (see section
4).

Lemma 3.10. Let δ be the distance between the source position x0 and the closest
location of the next conductivity jump on ∂Ω∞. If δ gets small, then the constant
C(δ) in

|l(v)| ≤ C(δ)||v||L2(Ω) ∀v ∈ H1(Ω),

with l(v) from (3.17), is proportional to δ−5/2 (c1(δ) ≈ δ−5/2).

Proof. When defining r := x−x0, we find |ΔΦ∞| ≈ 1/|r|4 and, with Ω̄ := Ω\Ω∞,

||ΔΦ∞||L2(Ω̄) =

√∫
Ω̄

(ΔΦ∞)
2
dx ≈

√∫
|r|≥δ

1/r8dr ≈
√

1/δ5 = δ−5/2 =: c1(δ).

We then find constants C(δ) and c2, so that

|l(v)| =

∣∣∣∣
∫

Ω

∇ ·
(
σcorr∇Φ∞)

vdx−
∫

Γ

〈σ∇Φ∞,n〉vdΓ
∣∣∣∣

≤
∫

Ω

∣∣∇ ·
(
σcorr∇Φ∞)

v
∣∣ dx + c2||v||L2(Ω)

≤ σcorr
max

∫
Ω̄

||ΔΦ∞|| ||v||dx + c2||v||L2(Ω)

Hölder
≤ σcorr

max||ΔΦ∞||L2(Ω̄)||v||L2(Ω̄) + c2||v||L2(Ω)

≤ (σcorr
maxc1(δ) + c2) ||v||L2(Ω) ≤ C(δ)||v||L2(Ω).

Lemma 3.10 has to be interpreted in the following way. If the source approaches a
next conductivity jump, i.e., if δ goes to 0, then the constant for the upper estimation
of the right-hand side functional l gets larger (with exponent 5/2). Because of the
assumed H2-regularity, we find [4]

||Φcorr − Φcorr
h ||0 ≤ C2h

2||Φcorr||2 ≤ C2h
2||l||0 ≤ C(δ)C2h

2.

For sources close to the next conductivity jump (e.g., sources with high eccentricity;
see section 4), we have to be aware of possibly larger numerical errors because of a
strongly increasing constant C(δ).
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4. Validation and numerical experiments.

4.1. Validation in multilayer sphere models.

4.1.1. Analytical solution. In [23], series expansion formulas were derived for
a mathematical dipole in a multilayer sphere model, denoted now as “the analytical
solution.” A rough overview of the formulas will be given in this section. The model
consists of shells S up to 1 with radii rS < rS−1 < · · · < r1 and constant radial,
σrad(r) = σrad

j ∈ R
+, and constant tangential conductivity, σtang(r) = σtang

j ∈ R
+,

within each layer rj+1 < r < rj . It is assumed that the source at position x0 with
radial coordinate r0 ∈ R is in a more interior layer than the measurement electrode
at position xe ∈ R

3 with radial coordinate re = r1 ∈ R. The spherical harmonics
expansion for the mathematical dipole (3.8) was expressed in terms of the gradient
of the monopole potential with respect to the source point, using an asymptotic
approximation and an addition-subtraction method to speed up the series convergence
[23]. This resulted in

Φ(x0, xe) =
1

4π

〈
M, S0

xe

re
+ (S1 − cosω0eS0)

x0

r0

〉

with ω0e being the angular distance between source and electrode and with
(4.1)

S0 =
F0

r0

Λ

(1 − 2Λ cosω0e + Λ2)
3/2

+
1

r0

∞∑
n=1

{(2n + 1)Rn(r0, re) − F0Λ
n}P ′

n(cosω0e)

and
(4.2)

S1 = F1
Λ cosω0e − Λ2

(1 − 2Λ cosω0e + Λ2)
3/2

+

∞∑
n=1

{(2n + 1)R′
n(r0, re) − F1nΛn}Pn(cosω0e).

The coefficients Rn and their derivatives R′
n can be computed analytically and the

derivative of the Legendre polynomial can be determined by means of a recursion
formula. Refer to [23] for the derivation of the above series of differences and for the
definition of F0, F1, and Λ.1 Here, it is important only that the latter terms can
be computed from the given radii and conductivities of layers between source and
electrode and of the radial coordinate of the source and that they are independent of
n. The computation of the series (4.1) and (4.2) are stopped after the k term if the
following criterion is fulfilled:

(4.3)
tk
t0

≤ υ, tk := (2k + 1)R′
k − F1kΛk.

In the following simulations, a value of 10−6 was chosen for υ. Using the asymptotic
expansion, no more than 30 terms were then needed for the series computation for
each electrode.

4.1.2. Model generation and error criteria. In source reconstruction, head
modeling is generally based on segmented magnetic resonance (MR) data, where
curved tissue boundaries have a stair-step representation. We therefore created a

1The following is a result of a discussion with J. C. de Munck: While constants in formulas (71)
and (72) in the original paper [23] have to be flipped, our versions of S0 and S1 in (4.1) and (4.2)
are correct.
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three-compartment sphere model (S = 3 in section 4.1.1) in MR format with 1mm3

voxel resolution as a basis for our validation studies. Starting from the outside, the
layers represent the compartments skin, skull, and brain with outer surfaces of radii
r1 = 90mm, r2 = 80mm, and r3 = 70mm, respectively. In the isotropic simulations,
we chose conductivities of σ1 = 0.33 S/m, σ2 = 0.0042 S/m, and σ3 = 0.33 S/m for
the three compartments [27], while we chose σrad

2 = 0.0042 S/m and σtang
2 = 0.042

S/m for the simulations with a 1:10 anisotropic skull compartment [18].
Comparisons between the numeric and the analytic solutions were made for

dipoles located on the y-axis at depths of 0% to 95% (in 1mm steps) of the inner
layer (70mm radius) using both radial and tangential orientations. We defined ec-
centricity as the percent ratio of the distance between the source location and the
model midpoint divided by the radius of the inner sphere. As reported in [18] and
further explained in the discussion, the dipoles that are located in the cortex will
have an eccentricity lower than 92%. Tangential sources were oriented in the +z-axis
and radial dipoles in the +y-axis. The dipole moments were 1nAm. To achieve error
measures which are independent of the specific choice of the sensor configuration, we
distributed electrodes in a most regular way over a given sphere surface: we generated
134 electrode configurations on the surface of the outer sphere (90mm, surface-EEG
sEEG) and under the skull (radius 70mm, internal-EEG iEEG).

We used two error criteria that are commonly used in source analysis [19, 2, 18,
27]—the correlation coefficient (CC) and the magnification factor (MAG). The CC is
defined as

(4.4) CC =

m∑
i=1

(Φana
i − Φ̄ana)(Φnum

i − Φ̄num)√
m∑
i=1

(
Φana

i − Φ̄ana
)2√ m∑

i=1

(
Φnum

i − Φ̄num
)2 ,

where m denotes the number of sensors, Φana ∈ R
m and Φnum ∈ R

m the analytic
or numeric solution vectors at the measurement positions, respectively, and Φ̄ana and
Φ̄num the sample means. The CC is a measure for the topography error, driven
primarily by changes in dipole location and orientation (minimal error: CC = 1).
The second similarity measure, the MAG, is defined as

(4.5) MAG =

√
m∑
i=1

(Φnum
i )

2

√
m∑
i=1

(Φana
i )

2

,

and indicates changes in the source strength (minimal error: MAG = 1).

4.1.3. Hexahedra mesh generation. Our hexahedra mesh generation ap-
proach takes advantage of the spatial discretization inherent in MR images. The
voxel-based approach directly converts image voxels to eight-noded hexahedra ele-
ments, so that a 1mm3 FE hexahedra model (model cube3130 in Table 4.1) exactly
represents the segmented tissues. In order to keep the computation amount within
a reasonable limit, our mesh generator allows a lower resolution with edge lengths of
e times the edge length of a voxel-sized cube (e being an integer multiple). In this
case, the generated cube is assigned the most frequent label of its e3 interior voxels.
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Table 4.1

Hexahedra models: Mesh description.

Model Nodes Elements Mesh resolution (in mm)

cube3130 3, 130, 496 3, 053, 617 1.0 regular

cube398 397, 634 378, 384 2.0 regular

cube398ns 397, 634 378, 384 2.0 node-shift

cube52 52, 138 47, 272 4.0 regular

Table 4.2

Tetrahedra models: Mesh description. With increasing depth, the thinning distance was in-
creased as indicated in the table for models tet57 and tet156.

Model Nodes Elements Thinning Erosions (in mm)
(mm) skin skull brain

tet606 605, 959 3, 680, 234 1.1 4 × 2.0 4 × 2.0 all 2.0

tet234 234, 314 1, 412, 813 2.0 4 × 2.0 4 × 2.0 all 2.0

tet156 156, 074 930, 175 2.0-5.0 3.0, 4.0 3.0, 3.0, 2.0 2.0, 2.0, then 5.0

tet57 57, 033 328, 511 3.0-7.0 3.0, 4.0 3.0, 4.0 all 7.0

Material interfaces of regular hexahedra models are characterized by abrupt transi-
tions and right angles. In [7], a node-shift approach was proposed for a biomechanical
FE application in order to smooth the irregular boundaries, leading to a better rep-
resentation of the interfaces between different tissue compartments. The node-shift
hexahedra approach was used for mesh cube398ns in Table 4.1. The table summa-
rizes the properties of all hexahedra models that we used for validation purposes in
this study.

4.1.4. Tetrahedra mesh generation. For the tetrahedra meshing approach,
we used the software CURRY [9] to create a surface-based tetrahedral tessellation of
the segmented and auxiliary surfaces of the three-layer sphere model. The procedure
exploits the Delaunay criterion, enabling the generation of compact and regular tetra-
hedra. In Table 4.2, we indicate the thinning-distance parameter, which is used for the
computation of FE vertices on the segmented and auxiliary surfaces. Furthermore,
the erosion parameters for defining intermediate auxiliary surfaces within each layer
are shown. As an example, for model tet156 in Table 4.2, we have used a thinning
of 2mm for the compartments skin and skull and increased the thinning distance to
maximally 5mm within the brain compartment. We furthermore used skin surface
erosions of 3.0 and 4.0mm to generate auxiliary surfaces at 87 and 83mm for the skin
compartment and auxiliary surfaces of 77, 74, and 72mm for the skull compartment
before tetrahedra mesh generation.

4.1.5. Isotropic three-layer sphere modeling. Figure 4.1 plots CC and MAG
for the total surface potentials at 134 sEEG measurement electrodes on the outer
surface (r1 = 90mm) for the different source eccentricities. The performance of the
subtraction method is completely satisfying for model cube3130 and cube398ns, with
a CC of 0.999 or better and a MAG of 1.028 or better at all depths and for both source
orientations. For high eccentricities, the errors begin to rise—a behavior which has
also been observed in [27] in a regular 1mm hexahedra model. For the 2mm regu-
lar cube model cube398, we also get very satisfying CC results, while, due to the
stair-step approximation of the compartment boundaries, we face about 10% MAG
error over the whole range of eccentricities. This magnitude problem, which is a
consequence of the rough geometry description, can be alleviated with the node-shift
approach, where, with maximally 1.6% for model cube398ns, we achieve the smallest
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Topography error Magnitude error

Fig. 4.1. Isotropic three compartment sphere model: Numerical accuracy for hexahedra models
at 134 sEEG electrodes.

Topography error Magnitude error

Fig. 4.2. Isotropic three compartment sphere model: Numerical accuracy for tetrahedra models
at 134 sEEG electrodes.

MAG errors of all tested hexahedra models. Model cube52 is too coarse to appropri-
ately represent the volume conductor. Even if sufficient CC accuracies are achieved
for eccentricities up to 90% and therefore for the vast majority of realistic source
positions, the results for higher eccentricities fall below a CC of 0.99, and also the
MAG is equipped with an error of up to 26%.

Figure 4.2 shows the sEEG (r1 = 90mm) similarity measures CC and MAG for the
tetrahedra models for the different source eccentricities. We observe larger topography
errors and sharper declines at high eccentricities than for the best hexahedra models
(note the different CC scalings in Figures 4.1 and 4.2), but with a CC of 0.99 or
better, the performance of the subtraction method over the whole range of practically
interesting eccentricities is still satisfying for most of the examined models. Even
the coarsest model tet57 gives sufficient CC accuracies for eccentricities up to 94%,
but the CC then declines strongly below a value of 0.99 for the highest evaluated
eccentricity. With regard to the potential magnitude, with a maximal MAG error of
1.9% over all eccentricities and for both source orientations, the best result is achieved
with model tet156.
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4.1.6. Three-layer sphere models with anisotropic skull compartment.
The importance of well-defined skull conductivity tensor eigenvectors was already
pointed out in [18]. For anisotropy modeling of the middle (“skull”) compartment in
a three-layer sphere model, the conductivity tensor eigenvector in a radial direction
can be determined by means of normalizing the vector from an element barycenter
to the midpoint of the sphere model, denoted now as the optimal sphere procedure.
The vector product can then be used to define both tangential directions. With
regard to a realistic head model, we also evaluated another procedure. We eroded the
segmented outer surface of the middle “skull” compartment by half of the “skull’s”
thickness, strongly smoothed (important only in the case of a realistic head model)
and triangulated it with an edge length of x mm (denoted now as the smooth surface
model (SSM) SSMx). We then exploited the SSM surface normals for the definition
of the radial tensor direction. Because the triangulated mesh is generated from a
staircase-like surface, it is obvious that the edge length of the mesh should not be
chosen too small. We evaluated CC and MAG in a model with 1 to 10 radial to
tangential skull anisotropy when using SSM2, SSM5, SSM10, SSM20, and the optimal
sphere procedure. In Figure 4.3, results are presented for SSM10, which, besides the
optimal sphere procedure, led to the smallest errors. As the figure shows, the results
are similar to the results in the isotropic volume conductor. Model cube398ns again
overall performs best with a CC of more than 0.999 and a MAG of maximally 4.3%.

In a last examination, we plotted the exactness of the numerical approach versus
the relative solver accuracy of the AMG-CG for the correction potential for different
source eccentricities. The AMG-CG solver process was stopped if the relative error in
the controllable KhC

−1
h Kh-energy norm (with C−1

h being one V-cycle of the AMG)
was below the value indicated on the x-axis (for further information, see [31]). Errors
at 134 sEEG (90mm) and at 134 iEEG (70mm) electrodes are shown in Figure 4.4.
It can be observed that the higher the eccentricity of the source, the more important it
is to accurately determine the correction potential. A relative solver accuracy of 10−4

was sufficient for the tested eccentricities; the solution exactness no longer increased
with higher relative solver accuracies.

4.2. Validation in a realistic anisotropic head model. A three tissue re-
alistic head model with compartments skin, skull, and brain and an isotropic voxel
size of 1mm3 was segmented from a T1- and proton-density-weighted MR dataset of
a healthy 32 year old male subject. The bimodal MR approach allowed an improved
modeling of the skullshape as described in detail in [34]. 71 electrodes were positioned
on the model surface using the international 10/20 system.

The model was then meshed using the different mesh generation approaches de-
scribed in sections 4.1.3 and 4.1.4. Table 4.3 summarizes the parametrization of the
different meshes. For hexahedra model cube386ns, a node-shift was used at the com-
partment boundaries skin, outer skull, and inner skull. For tetrahedra model tet265,
the following surfaces were included in the meshing procedure as also indicated in
Table 4.3: skin, 2mm eroded skin, outer skull, 2mm eroded outer skull, inner skull,
and continuous 2mm erosions into the depths. Following the results of section 4.1.6,
a strongly smoothed triangular mesh with 10mm edge length (SSM10) from a 3mm
eroded outer skull surface was used for the modeling of 1 to 10 quasi-radial to quasi-
tangential skull conductivity anisotropy. While, in a multilayer sphere model, CC
and MAG errors for the numerically computed potential distribution serve for indi-
rect validation of the modeled skull conductivity tensors, those error metrics are not
available in a realistic head model. It is therefore important to at least visualize the
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Topography error Magnitude error

Fig. 4.3. Three compartment sphere model with a 1:10 anisotropic middle (“skull”) layer:
Numerical accuracy at 134 sEEG electrodes for hexahedra models cube398ns and cube398 and tetra-
hedra model tet156 when using SSM10 for the determination of the “skull” conductivity tensor
eigenvectors.

Errors at sEEG electrodes.

Errors at iEEG electrodes.

Fig. 4.4. Three compartment sphere model with a 1:10 anisotropic middle (“skull”) layer,
FE model cube398ns: CC (left) and MAG (right) error at 134 sEEG electrodes on “skin” surface
r1 = 90mm (top) and at 134 iEEG electrodes on “inner skull” surface r3 = 70mm (bottom) with
increasing AMG-CG relative solver accuracy for sources at 95%, 50%, and 0% eccentricity.

tensors in order to check for correct skull tensor registration and eigenvector direc-
tions. Figure 4.5 shows the anisotropic conductivity tensor ellipsoids of the human
skull compartment with the underlying T1-MRI. The figure shows that the ellipsoids
are oblate with minor axis in a quasi-radial direction through the skull compartment.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

40 WOLTERS ET AL.

Table 4.3

Realistically shaped three compartment head models: Mesh description.

Model Nodes Elements Thinning Resolution (in mm)
(in mm) skin skull brain

cube386ns 385, 901 366, 043 2.0 2.0ns 2.0ns 2.0ns

cube386 385, 901 366, 043 2.0 2.0 2.0 2.0

tet265 265, 313 1, 620, 794 1.8 2.0, rest 2.0, rest all 2.0

Fig. 4.5. 1:10 (Quasi-radial to quasi-tangential) anisotropic conductivity tensor ellipsoids of
the human skull compartment when using SSM10 with underlying T1-MRI. Visualization, carried
out using BioPSE [3], is important to validate if the ellipsoids are oblate with minor axis in a
quasi-radial direction through the skull compartment.

Singularity pot. Correction pot. Total pot. Electrode pot.

Tangentially oriented somatosensory source

Radially oriented somatosensory source

Fig. 4.6. Realistically shaped head model cube386ns with 1 to 10 quasi-radial to quasi-tangential
anisotropic skull compartment: Visualization results for the singularity potential, the correction
potential, and the total potential in the volume conductor and at the 71 surface electrodes for a
quasi-tangentially and a quasi-radially oriented source in the somatosensory cortex. Visualization
was carried out using BioPSE [3].

In a first study, we computed the singularity, the correction, and the total po-
tential in model cube386ns for a radially and a tangentially oriented source at an
eccentric location in the somatosensory cortex. Figure 4.6 presents the visualization
results.

We then compared the results for the different mesh generation techniques. As
the node-shifted hexahedra model showed the best accuracies in the three-layer sphere
validations, we chose this model as a reference. In Table 4.4 we present the differences
from the solutions in other models. With a CC above 0.998 and a maximal MAG
of 6.9%, the differences among the three models are fairly small. Again, the regular
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Table 4.4

Realistic three compartment head models, comparison of results using different meshing tech-
niques: Differences between the forward computations at 71 electrodes using the subtraction approach
for an eccentric source in the somatosensory cortex. The reference results are the ones in the node-
shifted 2mm cube model, because this model performed best in the sphere validation studies.

Differences for somatosensory source
Tangential Radial

Model CC MAG CC MAG

cube386 0.9989 1.0643 0.9982 1.0689

tet265 0.9997 1.0009 0.9997 0.9849

Table 4.5

Realistic volume conductor modeling: Computation times (see (3.20)) and maximal mem-
ory usage. (a) Has to be done once per head geometry. (b) Following [32], this has to be done
max(nb sour,nb sens) times. (c) Has to be done nb sour times.

Model Computation times (in sec.) Max. mem.
(a) (b) (c)

K,Kcorr S AMG setup Ku = j∞ u∞

cube386ns 17.2 14.8 16.6 6.2 0.3 795MB

tet265 28.1 40.3 8.2 3.6 0.14 675MB

2mm hexahedra model cube386 exhibits the highest magnitude difference because of
its rough approximation of the interfaces.

In a final study, the computation times and the maximal amount of memory
in our current implementation were measured for models cube386ns and tet265

(Table 4.5). In Table 4.5, nb sour is the number of sources and nb sens the number of
measurement sensors. The experiment was run on a Linux-PC with an Intel Pentium 4
processor (3GHz). The computation time for S contains the times for finding the
source element (determination of σ∞), for determining surface finite elements, and
for computing the integration over all surface elements. For the determination of a
surface element, the property was used that it has at least one face that is not a face
to any other element. A list structure was therefore built up where, for each mesh
node, all neighboring finite elements were administered. A face of an element is then
a face of the surface of the volume conductor if the intersection of the finite elements
of all face nodes is just a single finite element. For the AMG-CG, the relative solver
accuracy was chosen to be 10−4. The multiplication of a sparse matrix times a fully
populated vector as for −(Kcorr + S)u∞ in (3.20) can be neglected (0.03 sec. for
cube386ns and 0.02 sec. for tet265).

With regard to the inverse problem, the computation of K, Kcorr, and S and the
setup of the AMG preconditioner have to be carried out only once per head geometry.
nb sour is generally by far larger than nb sens and the lead-field basis approach
should be applied [32]. It reduces the necessary computation to mainly nb sens

times the solution of an equation system of the form Ko = p with a fully populated
right-hand side vector p (Table 4.5 (b)) to built the lead-field basis B∞

eeg, a fully
populated matrix with nb sens−1 rows and N columns. Each forward computation
then involves only the computation of u∞ (Table 4.5 (c)) and its multiplication with
the lead-field basis, i.e., B∞

eegu
∞ (0.68 sec. for model cube386ns and 0.47 sec. for

model tet265).

5. Discussion. In this paper, we presented the theory of the subtraction
approach to model a point dipole in the finite element (FE) method based electroen-
cephalography (EEG) source reconstruction for isotropic and anisotropic volume con-
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ductors. We proved existence and uniqueness of a weak solution for the potential in
zero-mean function space. We embedded our numerical approach for the correction
potential in the general FE convergence theory and showed that the constant in the
FE convergence proof largely depends on the distance of the source to the next con-
ductivity jump. Therefore, higher FE trial-functions or, if linear trial-functions are
used, a higher integration order and/or multiple element layers are needed between
the source and the next conductivity jump; otherwise one would have to be aware of
probably larger and unacceptable numerical errors. Since the magnetoencephalogra-
phy (MEG) forward problem is also based on the computed electric potential (see,
e.g., [32]), our results are also applicable to MEG source reconstruction. Besides the
presented clear mathematical theory, a further important advantage of the subtraction
approach is the fact that, as soon as the corresponding singularity potential function
is known, the implementation of any other primary source model is straightforward.
Our theoretical statements are thus valid for any such primary source model. Despite
the fact that the bioelectric primary current sources in EEG and MEG are naturally
continuous throughout the cortical tissue (which would also reduce numerical errors),
they are usually modeled with a mathematical point dipole [22, 24].

The main aim of our study was therefore to validate the subtraction approach
for the usual model, i.e., a point current dipole in a three-layer sphere with piecewise
homogeneous conductivity, for which series expansion formulas are available [23]. As
a measure of similarity, we used two common criteria [19, 6]: The first and by far more
important one, the correlation coefficient (CC), indicates defects in the topography of
the potential distribution and therefore, with regard to the inverse solution, defects in
the localization and orientation of the sources. Another frequently used topography
error measure is the relative difference measure (RDM), introduced in [19]. For the
used zero-mean data, CC and RDM can be related through RDM =

√
2(1 − CC),

and a CC above 0.99 has been associated with a localization error of no more than
1mm, while a CC of 0.98 led to dipole localization errors of 5–8mm on average,
maximally 1.5cm [27]. In source localization practice, an accuracy of 1mm is more
than satisfactory because main limitations are then due to other sources of error
such as the limited data signal-to-noise ratio, segmentation errors, inaccuracies in the
determination of the conductivities, etc. The second error measure, the magnification
factor (MAG), indicates changes in the potential amplitude and thus in the source
strength. In our sphere validation studies, we placed dipole sources at positions
along the y-axes from the center of the model in 1mm steps toward the inner skull
surface up to an eccentricity of 95%. As reported in [18], the dipoles that are located
in the cortex will have an eccentricity lower than 92%. The reasons are that first,
compartments such as the arachnoid cavity, the subdural cavity, and the dura mater,
whose conductivities are generally approximated with the conductivity of the brain
compartment [5, 6, 18], are located between the cortex and the inner skull surface,
and second, the dipoles are located some millimeters below the cortical surface (see,
e.g., [24]). Our validation has been carried out for two different classes of elements,
FE hexahedra and tetrahedra. In the class of hexahedra, we examined regular and
geometry-conforming node-shifted elements.

With a CC of 0.998 or better over the whole range of realistic eccentricities at
the 134 regularly distributed surface or depths electrodes, we achieved completely
satisfying results for all tested 1mm and 2mm isotropic and anisotropic hexahedra
models. The node-shift reduced the maximal MAG error for the 2mm anisotropic
model from about 15% to only 4.3%. For the tetrahedra models, we observed larger
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topography errors and sharper declines at high eccentricities, but with minimal CC
values of 0.99 for the whole range of tested eccentricities, the three models with higher
resolutions still perform sufficiently well. In summary, with regard to the accuracy and
computational complexity, the 2mm node-shifted hexahedra model achieved the best
results. We found that with increasing eccentricity, a higher relative solver accuracy
is needed for the correction potential, a relative accuracy of 10−4 being sufficient
for the used AMG-CG approach. Using eccentric sources in human somatosensory
cortex in a realistically shaped three-compartment head model with anisotropic skull
compartment, we computed the potential distributions within the volume conductor.
Validation was carried out by visually inspecting and comparing the results when
using the different meshing techniques.

It is well known (and, in this paper, we have given a theoretical reasoning for
this fact), that with increasing eccentricity, the numerical accuracy in sphere model
validations decreases, especially with regard to radially oriented dipoles [2, 5, 18]. This
is the case not only for the subtraction approach in FE modeling, but also for the direct
approach in FE modeling [36, 6, 16, 21] and in boundary element modeling (see, e.g.,
[10]). In [2, 5, 18], coarser tetrahedra mesh resolutions were considered so that larger
numerical errors resulted with CCs below 0.98 for radial dipoles with eccentricities
above 90%. In [2, 5], local mesh refinement was used to achieve acceptable results
for all realistic eccentricities. Nevertheless, with regard to the inverse problem, the
setup of source-location dependent locally refined meshes is difficult to implement
and time-consuming to compute and thus might not be practical for an inverse source
analysis. We propose to use a single mesh that is sufficiently fine and that resolves the
geometry. For the efficient solution of the inverse problem the lead-field bases concept
can then be used [32]. As shown in [31], the amount of work for the computation of
the lead-field bases can be reduced by means of an AMG-CG solver.

In subsequent studies, we will perform profound comparisons of the subtraction
approach with the diverse direct methods [36, 6, 30, 27, 21] for the computation of
the EEG and MEG inverse problems both in anisotropic sphere models as well as in
realistic anisotropic head volume conductors in order to gain deeper insight into the
advantages and disadvantages of our new approach. A first comparison of the sub-
traction method with a direct potential approach using partial integration [30, 21] and
with a direct potential approach using the principle of Saint Venant [6] can be found
in [35]. As shown in the theory section of this paper, the subtraction approach enables
the inclusion of local anisotropy in the source area. It is well known that the human
cortex is about 1:2 anisotropic and that both EEG and MEG forward problems are es-
pecially sensitive toward local conductivity changes [16, 33]. As a final note, instead of
trying to reduce numerical errors for the probably “over-singular” mathematical point
dipole, it is important to reconsider other and especially smoother source models, tak-
ing into account the fact that the primary current sources are continuous throughout
the cortical tissue [28, 24]. This is where the FE-based subtraction method might
provide a further important contribution to EEG and MEG source analyses.
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A. Rienäcker, The properties of source localization of epileptiform activity using advanced
headmodelling and source reconstruction, Brain Topography, 10 (1998), pp. 283–290.

[30] D. Weinstein, L. Zhukov, and C. Johnson, Lead-field bases for electroencephalography source
imaging, Annals of Biomed. Engrg., 28 (2000), pp. 1059–1066.

[31] C. H. Wolters, M. Kuhn, A. Anwander, and S. Reitzinger, A parallel algebraic multigrid
solver for finite element method based source localization in the human brain, Comput.
Vis. Sci., 5 (2002), pp. 165–177.

[32] C. H. Wolters, L. Grasedyck, and W. Hackbusch, Efficient computation of lead field
bases and influence matrix for the FEM-based EEG and MEG inverse problem, Inverse
Problems, 20 (2004), pp. 1099–1116.

[33] C. H. Wolters, A. Anwander, X. Tricoche, S. Lew, and C. R. Johnson, Influence of local
and remote white matter conductivity anisotropy for a thalamic source on EEG/MEG
field and return current computation, Int. J. Bioelectromag., 1 (2005), pp. 203–206.

[34] C. H. Wolters, A. Anwander, D. Weinstein, M. Koch, X. Tricoche, and R. MacLeod,
Influence of tissue conductivity anisotropy on EEG/MEG field and return current compu-
tation in a realistic head model: A simulation and visualization study using high-resolution
finite element modeling, NeuroImage, 30 (2006), pp. 813–826.
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Abstract
The inverse problem in electro- and magneto-encephalography (EEG/MEG)
aims at reconstructing the underlying current distribution in the human brain
using potential differences and/or magnetic fluxes that are measured non-
invasively directly, or at a close distance, from the head surface. The simulation
of EEG and MEG fields for a given dipolar source in the brain using a volume-
conduction model of the head is called the forward problem. The finite element
(FE) method, used for the forward problem, is able to realistically model tissue
conductivity inhomogeneities and anisotropies, which is crucial for an accurate
reconstruction of the current distribution. So far, the computational complexity
is quite large when using the necessary high resolution FE models. In this paper
we will extend the concept of the EEG lead field basis to the MEG and present
algorithms for their efficient computation. Exploiting the fact that the number
of sensors is generally much smaller than the number of reasonable dipolar
sources, our lead field approach will speed up the state-of-the-art forward
approach by a factor of more than 100 for a realistic choice of the number of
sensors and sources. Our approaches can be applied to inverse reconstruction
algorithms in both continuous and discrete source parameter space for EEG and
MEG. In combination with algebraic multigrid solvers, the presented approach
leads to a highly efficient solution of FE-based source reconstruction problems.
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1. Introduction

It is common practice in cognitive research and in clinical routine and research to reconstruct
current sources in the human brain by means of non-invasive field measurements outside the
head domain. The activity that is measured in EEG and MEG is the result of movements of
ions, the so-called primary currents, within activated regions in the cortex sheet of the human
brain. The primary current can be modelled mathematically by means of a current dipole
[1–5]. The current dipole causes Ohmic return currents to flow through the surrounding
medium. The EEG measures the potential differences from the return currents at the scalp
surface, whereas the MEG measures the magnetic flux of both primary and return currents. The
reconstruction of the dipole sources is called the inverse problem of EEG/MEG. Its solution
requires the repeated simulation of the field distribution in the head for a given dipole in the
brain, the so-called forward problem. One of the major advantages of EEG and MEG source
reconstruction over other brain imaging techniques such as positron emission tomography
(PET) or functional magnetic resonance imaging (fMRI) is its high temporal resolution.

For the forward problem, the volume conductor head has to be modelled. It is known that
the head tissue compartments scalp, skull, cerebro-spinal fluid, brain grey matter and white
matter have different conductivities and that the layers skull and white matter are anisotropic
conductors [6–9]. Different numerical approaches for the forward problem have been used
such as multi-layer sphere [10], boundary element (BE) [11–13] and finite element (FE)
[4, 14–18] head modelling, where only the FE method is able to treat both realistic geometries
and inhomogeneous and anisotropic material parameters. In most cases, magnetic resonance
images (MRI) are exploited for the construction of BE and FE head models.

Figure 1 [18] shows an axial cut through a five tissue tetrahedra FE head model with
147 287 nodes and 892 115 elements. The tetrahedra of the layers scalp (light brown), skull
(green), cerebro-spinal fluid (light blue), brain grey matter (dark blue) and white matter
(yellow) are indicated with different colours. The model was generated by means of a bimodal
T1/PD-weighted MRI registration and segmentation approach [18, section 1] followed by a
surface-based Delaunay tetrahedrization [18, section 4.7.3]. It is generally assumed that the
weak volume currents outside the skull and far away from the EEG and MEG sensors have a
negligible influence on the measurements. Therefore, the parts of the head mask lying outside
a dilated outer skull surface mask have been cut away when generating the presented volume
conductor model. In figure 2 [18], the white matter conductivity anisotropy is shown on the
underlying T1-MRI by means of tensor ellipsoids (red) in the barycentres of the white matter
finite elements (not shown in the figure).

The influence of skull and white matter conductivity anisotropy on the EEG/MEG forward
problem was studied in realistic FE models in [17–20, 21]. In [15, 18, 21, 22], the sensitivity of
the EEG inverse problem towards skull conductivity anisotropy was examined. The sensitivity
of source reconstruction methods on realistic white matter anisotropy for both EEG and MEG
was studied in [18, 22]. In those studies it has been shown that an exact modelling of tissue
conductivity inhomogeneity and anisotropy is crucial for an accurate reconstruction of the
sources.

An important question is how to handle the computational complexity of FE-modelling
with regard to the EEG/MEG inverse problem. It is the state-of-the-art approach for the
EEG/MEG inverse methods to solve a forward problem for each possible dipolar source
[4, 10–13, 17, 23]. For the FE method, in general, iterative solvers such as the successive over-
relaxation (SOR) or the preconditioned conjugate gradient (CG) method with preconditioners
such as Jacobi (Jacobi-CG) or incomplete Cholesky (IC-CG) have been used (see, e.g., [4]). In
the last few years, algebraic multigrid (AMG) solvers have been developed (see, e.g., [24, 25]).
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For the considered application, it was shown in [26] that the AMG, used as a preconditioner
for the CG method, is more efficient than IC with or without threshold-techniques. In [27],
the AMG solver was found to be superior to an SOR method and to a symmetric SOR
preconditioned CG method in finite difference discretizations of the volume conductor. A
parallel AMG–CG approach for the forward problem in source localization has been used in
[18, 20, 23]. When comparing the parallel AMG–CG on the anisotropic head model shown in
figures 1 and 2 with a standard Jacobi-CG on a single processor, speed-up factors of about 80
have been achieved, 10 through multigrid preconditioning and 8 through parallelization on 8
processors [18, 20, 23]. Still, the repeated solution of such a system with a constant geometry
matrix for thousands of right-hand sides (the sources) is the major time consuming part within
the inverse localization process and limits the resolution of the models.

A further very efficient concept for the reduction of the computational complexity has
been described, the concept of reciprocity ([16, 28–30] and [18 section 6.3]). The theory
of reciprocity was already introduced in 1853 by [28] and was intensively studied for both
the electric and the magnetic cases in [29 sections 11, 12]. The reciprocity theorem for the
electric case states that the field of the so-called lead vectors is the same as the current field
raised by feeding a reciprocal current to the lead [29, section 11.6.3]. The concept allows
us to switch the role of the sensors with the dipole locations. For the FE-based EEG source
reconstruction, it was shown in [16] how to use this principle for the efficient computation of
a so-called node-oriented lead field basis, a matrix with ‘number sensors’ rows and ‘number
FE nodes’ columns. This matrix can then be exploited within the EEG inverse problem. In
[30], reciprocity was used for the efficient solution of the EEG inverse problem when using
the finite difference method for the forward problem. The application of reciprocity to MEG
is nontrivial and has been studied in [31], where the magnetic lead field theorem was proved.
Nevertheless, as far as we know, it is not yet clear how to efficiently compute the lead field
basis for the MEG in combination with the FE method for the forward problem.

In this paper, we will simply apply the mathematical law of associativity with respect
to the matrix multiplication. Then, for each head model, we only have to solve ‘number of
EEG/MEG sensors’ times a large sparse FE system of equations in order to compute the lead
field basis for both EEG and MEG. This set-up can be computed efficiently using the parallel
AMG–CG solver. Each forward solution is then reduced to the multiplication of the lead field
basis to a FE right-hand side vector.

The paper is organized as follows: in the next section we describe the electric and the
magnetic forward problems. In section 3, FE discretization aspects are discussed. Section 4
contains a brief description of inverse methods on discrete [12, 32–37] and on continuous
[11, 18, 38] source parameter space. In section 5, we estimate the complexity of the state-
of-the-art approach to the EEG/MEG inverse problem. Section 6 contains our new approach
resulting in two algorithms that solve the EEG and MEG inverse problem. In section 7, we will
discuss the applicability of the mathematical dipole model in combination with the subtraction
method in the context of our new approach. Finally, we conclude and give some perspectives
in section 8.

2. Forward problem formulation

2.1. The Maxwell equations

Let us begin with the introduction of some notation: let E and D be the electric field and electric
displacement, respectively, ρ the electric free charge density, ε the electric permeability and j
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the electric current density. By µ we denote the magnetic permeability and by H and B the
magnetic field and induction, respectively.

In the considered low frequency band (frequencies below 2000 Hz), the capacitive
component of tissue impedance, the inductive effect and the electromagnetic propagation effect
and thus the temporal derivatives can be neglected in the Maxwell equations of electrodynamics
[39]. It can be assumed that µ is constant over the whole volume and is equal to the permeability
of vacuum [39]. Therefore, the electric and magnetic fields can be described by the quasi-static
Maxwell equations

div D = ρ

curl E = 0

curl B = µj (1)

div B = 0 (2)

with the material equations

D = εE

B = µH,

since biological tissue mainly behaves as an electrolyte [39]. The electric field can be expressed
as a negative gradient of a scalar potential,

E = −grad u. (3)

The current density is generally divided into two parts [39], the so-called primary or impressed
current, jp, and the secondary or return currents, σE,

j = jp + σE, (4)

where σ denotes the 3 × 3 conductivity tensor. The sources to be localized during the inverse
problem and to be modelled in the forward problem, the primary currents jp, are movements
of ions within the dendrites of the large pyramidal cells of activated regions in the cortex sheet
of the human brain. Stimulus-induced activation of a large number of excitatory synapses of
a whole pattern of neurons leads to negative current monopoles under the brain surface and to
positive monopoles quite closely underneath. Various modelling possibilities for the primary
currents are discussed in the literature [1–5]. While the so-called mathematical dipole model
[2, 18] will be considered later in section 7, we will restrict ourselves in the following to the
blurred dipole model [4, 18].

2.2. The electric forward problem

We now assume that the conductivity distribution σ in the head domain is given. Taking the
divergence of equation (1) (divergence of a curl of a vector is zero) and using equations (3)
and (4) gives the equation

−div(σ grad u) = −div jp in �, (5)

which describes the potential distribution in the head domain � due to a primary current jp in
the brain. For the forward problem, the primary current and the conductivity distribution in
the volume conductor are known, and the equation has to be solved for the unknown potential
distribution. The boundary condition

(σ
1
grad u1, n)|at surface = (σ

2
grad u2, n)|at surface
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Figure 1. Five tissue FE head model with 147 287 nodes and 892 115 elements. The tetrahedra of
the layers scalp, skull, cerebro-spinal fluid, brain grey matter and white matter are indicated with
different colors.

with n the unit surface normal expresses the continuity of the current density across any surface
between regions of different conductivity. We find homogeneous Neumann conditions on the
head surface � = ∂�,

(σ grad u, n)|� = 0, (6)

and, additionally, a reference electrode with given potential, i.e.,

uref = 0. (7)

2.3. The magnetic forward problem

Since the divergence of B is zero (see Maxwell equation (2)), a magnetic potential A with
B = curl A can be introduced and, using Coulomb’s gauge div A = 0, Maxwell’s equation (1)
transforms to

µ( jp − σ grad u) = curl (curl A) = grad (div A) − �A = −�A.

The source term is vanishing outside the volume conductor, so that the solution of this Poisson
equation is given by [40]

A(x) = µ

4π

∫
�

jp(y) − σ(y)grad u(y)

|x − y| dy. (8)

Let F be the surface enclosed by the MEG magnetometer flux transformer ϒ = ∂F . A typical
MEG magnetometer conduction loop ϒ is shown in figure 3(b). The magnetic flux 
 through
ϒ is determined as a surface integral over the magnetic induction for the coil area F, or, using
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Figure 2. White matter anisotropy modelled with conductivity tensor ellipsoids in the barycentres
of the white matter finite elements presented on an underlying magnetic resonance image.

Figure 3. (a) Sensors of whole head BTI-148-channel MEG system together with the outer surface
of the head model of figure 1 [18]. (b) A typical magnetometer flux transformer.

the Stokes theorem [40], as


 =
∫

F

B · df =
∮

ϒ

A(x) · dx
(8)=

∮
ϒ

µ

4π

∫
�

jp(y)

|x − y| dy · dx

+
∮

ϒ

µ

4π

∫
�

−σ(y) grad u(y)

|x − y| dy · dx.
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The first part of this magnetic flux is called the primary magnetic flux and in the following
denoted with 
p, and the second is the so-called secondary magnetic flux 
sec.


p is only dependent on the source model and can in general be computed by simply
evaluating an analytical formula [11, 18, 41, 42].

If we define

C(y) =
∮

ϒ

1

|x − y| dx, (9)

and if the potential distribution u is given, the final equation for 
sec emerges from the
secondary (return) currents and can be given by


sec = − µ

4π

∫
�

(σ(y)grad u(y), C(y)) dy. (10)

3. Discretization aspects for the forward problem

3.1. Discretizing the electric forward problem

For the numerical solution, we choose a finite-dimensional subspace with dimension N and a
standard nodal finite element basis ψ1, . . . , ψN . The numerical solution process depends on
the chosen model for the primary source. Here, we will refer to the literature for a deeper
discussion and restrict ourselves to the following remarks.

The mathematical dipole model together with the subtraction approach [14, 18, 43] will
be discussed later in section 7.

The blurred dipole model [4, 18] follows the law of St Venant and is made up from
monopolar loads on all neighbouring FE nodes so that the dipolar moment is fulfilled and the
source load is as regular as possible. The dipole moment is then only a means for visualization.
In this case, variational and FE techniques can be directly applied to equation (5) with boundary
conditions (6) and reference potential (7). This yields a system of linear equations

KN

N

Ku = jblur
(11)

where the stiffness or geometry matrix has entries

Kij =
∫

�

(grad ψj(y), σ (y)grad ψi(y)) dy ∀1 � i, j � N (12)

and is symmetric positive definite. The positive definiteness follows from the ellipticity of the
underlying bilinear form [18]. The right-hand-side jblur has only cnz non-zero entries, if cnz is
the number of neighbouring FE nodes to that FE node which is closest to the location of the
dipole. The vector u ∈ R

N denotes the solution vector for the total potential.
Let us further assume that the (seeg −1) non-reference EEG electrodes directly correspond

to FE nodes at the surface of the head model. It is then easy to determine a restriction matrix
R ∈ R

(seeg−1)×N , which has only one non-zero entry with the value 1 in each row and which
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maps the potential vector onto the non-reference EEG electrodes

R

N

–1seeg

Ru =: ueeg. (13)

3.2. Discretizing the magnetic forward problem

For the magnetic forward problem, the flux transformers of the MEG device have to be
modelled (see equation (9)). As an example, the sensors of the whole head BTI-148-channel
MEG system together with the outer surface of the head model of figure 1 are shown in
figure 3(a). A typical magnetometer coil ϒ is shown in figure 3(b). Following [42], we model
such a coil by means of a thin, closed conductor loop, using isoparametric quadratic row
elements. When approximating the potential u by means of its Galerkin projection, equation
(10) can be written in matrix form

S

N

smeg

Su =: 
sec (14)

with S ∈ R
smeg×N the so-called secondary flux matrix. S maps the potential onto the secondary

flux vector 
sec ∈ R
smeg . The secondary flux matrix has the entries

Sij = − µ

4π

∫
�

(σ(y)grad ψj(y), Ci (y)) dy ∀1 � j � N

where Ci (y) denotes the function (9) for the ith MEG magnetometer ϒi (1 � i � smeg). For
the computation of the matrix entries of S, a FE ansatz for the integrand and Gauss integration
is used [42].

4. The inverse problem

The non-uniqueness of the inverse problem in EEG and MEG implies that assumptions on the
source model, as well as anatomical and physiological a priori knowledge about the source
region, should be taken into account to obtain a unique solution.

In the following, we will distinguish two classes of inverse methods, those in discrete
source parameter space and those in continuous source parameter space. The dipole model
for the primary current is regarded as the ‘atomic’ structure for both classes.

4.1. Inverse methods for a discrete source parameter space

One piece of physiological a priori information about the source region (influence space) is
the assumption that the generators must be located on the folded surface of the brain inside
the cortex, ignoring white matter and deeper structures such as basal ganglia, brain stem
and cerebellum. If convolutions of the cortical surface are appropriately modelled by the
segmentation procedure, another addition is the anatomical information that the generators are
perpendicular to this surface [3, 44]. This limitation to normally oriented dipoles is called the
normal-constraint. Because the dipole models an active source region with a certain extent
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and the resolution of the inverse current reconstruction by means of noisy EEG or MEG data
is limited, most inverse methods (see, e.g., [12, 32–37]) and especially all so-called current
density methods [12, 32, 36, 37] are based on a discretized influence space. The discretization
can be represented, for example, by the vertices of a cortical triangulation when using the
physiological constraint. Other approaches use regular 3D discretizations of the whole brain
volume. The so-called influence nodes are the ninf vertices of the discretized influence space.
Since the differential equation is linear, it is possible to set up a so-called influence matrix
L ∈ R

s×r (often also called lead field matrix). A forward solution for a dipole on one of the
ninf influences nodes with unit strength in one Cartesian direction at the

s = seeg + smeg

EEG/MEG measurement sensors is stored as a column of L. If the physiological a priori
information and the normal-constraint are applied, there is only one possible dipole direction
for each influence node and thus every dipole location i ∈ {1, . . . , ninf} is represented by only
one column in the influence matrix, i.e. r = ninf . For the unconstrained case, three columns
in L represent the three orthogonal unit dipoles at a specific location, i.e. r = 3ninf .

If once, the discretization of the influence space has been fixed, the block of the r right-
hand sides jblur ∈ R

N (see section 7 for the mathematical dipole model) can be set up. The
goal is then a fast computation of the influence matrix L, which can subsequently be used for
the whole variety of inverse reconstruction methods for discrete source parameter space.

4.2. Inverse methods for a continuous source parameter space

The second class of inverse methods exploits a continuous source parameter space [11, 18,
38]. One could imagine, for example, the restriction of the inverse reconstruction to a limited
number of dipoles (with respect to the application: one up to three). Their nonlinear location
parameters are optimized continuously in the brain volume, while the remaining parameters
are determined with a linear fit to the measured EEG/MEG data within each optimization
step. This is done, e.g., within the so-called dipole fit methods [11, 18, 38]. The number r
of necessary forward simulations in such methods is dependent on the convergence speed of
the optimization method. This class of inverse algorithms cannot exploit the influence matrix
concept (apart from interpolation techniques [13]), since the new dipole parameters and thus
the new right-hand sides are only determined within the previous optimization step. Still, we
can apply our new approach successfully.

5. State-of-the-art approach in EEG/MEG source reconstruction

For the considered inhomogeneous and anisotropic volume conductor models, the AMG–CG
iterative solver [18, 20, 23, 26] turned out to be an asymptotically optimal solver method for
the numerical solution of (11), where the operation count and memory demand are of the order
O(N). Our approach can also be applied in combination with other solver methods, but in the
following we will only consider the AMG–CG.

We will now describe the state-of-the-art approach for the EEG/MEG inverse problem
which covers both classes of inverse methods. A new FE right-hand side vector is determined
by the inverse algorithm, and the AMG–CG solver is used for the numerical solution of the
potential distribution. For the computation of the secondary flux at the MEG-sensors, the
potential distribution is then multiplied by the secondary flux matrix following equation (14).
The restriction (13) terminates the forward computation.

The numerical tests are performed on a Sun Ultrasparc III with 900 MHz CPU clock rate.
We only use a single processor for the following computations.
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5.1. Complexity estimation for AMG–CG solver

We first estimate the complexity for an AMG–CG solution [23], following the MultiGrid
operation count of [45, section 10.4.4]. With cnz ∗ N being the sparsity of the geometry/

stiffness matrix, we assume CS ∗ cnz ∗ N operations for the smoother, CD ∗ cnz ∗ N for the
computation of defect and restriction and CP ∗ N for the prolongation of the error. Here,
CS denotes the cost factor for the smoother which is an iteration-specific constant. We use
Gauss–Seidel smoothing for which it is CS = 2 − 2/cnz [45, section 4.6.1]. CP and CD

depend on the chosen prolongation operator. As described in [23], our prolongation matrix
interpolates the value of a fine grid node (which is not at the same time a coarse grid node) only
from strong neighbour coarse grid nodes, i.e. CP � cnz. In our application, the restriction
matrix is the transpose of the prolongation matrix. We use a V-cycle with only one pre-
and one post-smoothing step within each preconditioning operation. We then obtain as an
approximation of the necessary work for the MG preconditioner [45, theorem 10.4.2]:

8
7 ∗ (2 ∗ CS + CD + CP /cnz) ∗ cnz ∗ N.

We furthermore have to count one matrix-vector multiplication (2 ∗ cnz ∗ N operations), two
scalar products (2 ∗ 2 ∗ N operations) and three vector additions (3 ∗ N operations) for the
CG step. If we assume that i iterations have to be carried out, we will need for one AMG–CG
solution approximately i ∗ k ∗ N operations with

k := 8
7 ∗ (2 ∗ CS + CD + 2 + (CP + 7)/cnz) ∗ cnz.

We will study the head model of figures 1 and 2 with N = 147 287 FE nodes as an example:
in order to reach a sufficient accuracy, we have to reduce the relative error by a factor of
108 which can be accomplished by i = 20 iterations of AMG–CG [18, 20, 23, 26]. On our
machine, each iteration takes 1.269 s, i.e. 25.38 s to solve for each right-hand side.

5.2. Complexity estimation for the state-of-the-art approach

Let us now have a look at the complexity of the state-of-the-art approach for the inverse
problem.

For the matrix-vector multiplication in equation (14), 2 ∗ smeg ∗ N operations are needed.
Let us neglect the work for the restriction u eeg = Ru and for the computation of the FE
right-hand side vector. Then, for each inverse algorithm with r different right-hand sides, the
state-of-the-art approach needs

r ∗ ((i ∗ k + 2 ∗ smeg) ∗ N)

operations.
In EEG/MEG source reconstruction, r is generally quite large, especially because the

results of various different inverse algorithms based on different hypotheses on the underlying
current distribution are compared to each other. Already an anatomically correct discretization
of the cortical surface, respecting all curvatures of the cortical sulci and gyri, results in at least
104 influence nodes [18, figure 2.5]. This number would be even exceeded in the case of a 3D
discretization of the whole brain volume. In contrast to that, the number of sensors s is rather
small. The most modern vector-MEG devices have at most 500 sensors and for the EEG, not
more than 150 sensors can be fixed on the head surface. In most applications, the number of
sensors is below 150 (see figure 3(a)) as an example).

In our model problem, we have smeg = 150 sensors and r = 30 357 right-hand sides
(possible dipoles). The solution of the FE system for 30 357 right-hand sides and subsequent
matrix-vector multiplication with S from equation (14) takes

774 331 s = 215 h,
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which is too expensive for realistic applications. In the next section, we explain how one can
severely reduce this complexity, down to 1 h.

6. Computation of the lead field basis and influence matrix

The inverse of the geometry/stiffness matrix, K−1, exists, but its computation is a difficult
task, since the sparseness of K will be lost while inverting. But with regard to the EEG inverse
problem, we are only interested in computing

N

–1 R

K

Beegeegs
–1 Beeg := RK−1 ∈ R

(seeg−1)×N , (15)

which describes the direct mapping of a FE right-hand side vector to the non-reference
electrodes:

Beegjblur (15)= RK−1jblur (11)= Ru
(13)= u eeg.

Weinstein et al [16] introduced the notation EEG lead field basis for Beeg. We will now see
that we face a comparable situation with regard to the MEG inverse problem. In fact, let us
define the MEG lead field basis:

N

S

K

Bsmeg meg

–1 Bmeg := SK−1 ∈ R
smeg×N . (16)

One should note that the rows of Beeg do indeed form a basis in the mathematical sense, while
this is not necessarily true for Bmeg. Bmeg describes the direct mapping of the FE right-hand
side vector to the secondary magnetic flux vector:

Bmegjblur (16)= SK−1jblur (11)= Su
(14)= 
 sec.

The lead field basis can be computed as follows: if we multiply the matrix equation[
Beeg

Bmeg

]
=

[
R
S

]
K−1

with K from the right-hand side and transpose both sides, we obtain

K
[
Btr

eeg Btr
meg

] = [Rtr Str].

The last step uses the symmetry of the geometry matrix (see equation (12)).

Algorithm 1 INVERSE PROBLEM WITH MODERATE SIZE OF THE LEAD FIELD BASIS

Precompute Beeg and Bmeg and store both matrices
repeat

INVERSE ALGORITHM COMPUTES NEW jblur

MULTIPLY jblur BY Beeg AND Bmeg: USE SPECIAL STRUCTURE OF jblur

until TERMINATION OF INVERSE ALGORITHM
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Algorithm 2 INVERSE PROBLEM WITH LARGE SIZE OF THE LEAD FIELD BASIS

PRECOMPUTE Jblur ∈ R
N×r

IN CSC-FORMAT

for i = 1, . . . , s do
DETERMINE THE iTH ROW OF THE LEAD FIELD BASIS

MULTIPLY THIS ROW BY Jblur, I.E., COMPUTE iTH ROW OF L
STORE iTH ROW IN L ∈ R

s×r

end for
USE L FOR INVERSE METHODS ON DISCRETE PARAMETER SPACE

6.1. Algorithms

Let us first assume that we are equipped with a computer memory which is large enough to
store s ∗ N doubles for the lead field bases Beeg and Bmeg. In this case, algorithm 1 can be
used. In a set-up phase, Beeg and Bmeg are computed once per head-model by means of solving
s large sparse FE-systems of equations using, e.g., the iterative AMG-CG solver. The lead
field bases can then be exploited for any new FE right-hand side within the inverse algorithm
for both classes of inverse methods, discrete and continuous. Remember that for the blurred
dipole model, jblur has only cnz non-zero entries, which can efficiently be used within the
matrix-vector multiplication.

The mathematical dipole would lead to dense right-hand side vectors (no non-zero entries).
In this case, we suggest special techniques described in section 7.

If the computer memory is too small to store s ∗ N doubles for Beeg and Bmeg and if
only inverse methods for discrete source parameter space in combination with the blurred
dipole model are of interest, algorithm 2 is the appropriate one. In a set-up phase, the block
with r right-hand sides jblur for all blurred dipoles of the influence space is precomputed and
stored using a compressed sparse column (CSC) format [46]. Let us denote this matrix with
Jblur ∈ R

N×r. Each row of the lead field basis can then be computed using AMG-CG and
directly multiplied to Jblur. The result is a row of the influence matrix L ∈ R

s×r from chapter 4.1.
L can then be exploited by means of all inverse methods working on that specific discrete
influence space.

6.2. Complexity of algorithms 1 and 2

Let us now have a look at the complexity of algorithm 1 that computes the lead field bases
Beeg and Bmeg.

As in section 5.2 we consider the tetrahedra model problem (figures 1 and 2) with
r = 30 357 right-hand sides and s = smeg = 150 sensors. In brackets we give the concrete
time for the computations on our machine (cf section 6).

After a set-up with

s ∗ i ∗ k ∗ N operations (3807 s),

which is a unique calculation for each individual head geometry, we only have to multiply the
new FE right-hand side vector by the lead field bases. For r full right-hand side vectors, this
amounts to

r ∗ (2 ∗ s ∗ N) operations (3871 s).

If, furthermore, the blurred dipole is used, this operation count is reduced to only

r ∗ (2 ∗ s ∗ cnz) operations (4.7 s)
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for each inverse method. Note that this number is independent of the mesh-resolution. The
overall complexity in this case is

s ∗ i ∗ k ∗ N + 2 ∗ r ∗ s ∗ cnz (3812 s),

i.e. it is mainly determined by the set-up phase. The complexity of algorithm 2 is the same
(if the blurred dipole is used). The overall complexity of our approach is thus by a factor r/s
(in our model problem: 200) smaller than the complexity for the state-of-the-art approach. If
various inverse methods are compared to each other, this factor will grow with the number r
of FE right-hand sides.

7. Mathematical dipole and subtraction approach

For the mathematical dipole [14, 18, 43], a subtraction approach is used for the solution of the
electric forward problem. The total potential u is split into two parts, the singularity potential
u∞ corresponding to the location of the dipole, y ∈ R

3, with the dipole moment M(y) ∈ R
3

[41],

u∞(x) := 1

4π

〈M(y), x − y〉
‖x − y‖3

, div grad u∞ = Jp := div M(y)δ(x − y) (17)

and the unknown correction potential ucorr:

u = u∞ + ucorr.

A FE ansatz for the correction potential leads to a linear system of equations

Kucorr = jcorr (18)

with the same geometry matrix K as in (12). The right-hand side jcorr ∈ R
N is a full vector and

ucorr ∈ R
N denotes the solution vector for the correction potential. A precise definition of the

right-hand side is

jcorr = (K� − K + Kn)u
∞. (19)

K� is the discrete Laplacian and Kn the discretization of the inhomogeneous Neumann
boundary conditions at the surface of the volume conductor induced by u∞ (see, e.g.,
[18, sections 4.4.1, 4.7.4]). The sparsity pattern of both matrices, K� and Kn, is contained in
the sparsity pattern of K. Therefore, cnz ∗ N is also the sparsity of K� + Kn.

The restriction matrix R from (13) maps the potential vector onto the potential of the
non-reference EEG electrodes

u eeg := R(ucorr + u∞)
(18)= RK−1jcorr + Ru∞ (19)= RK−1(K� + Kn)u

∞. (20)

Equation (14) then gets


 sec := S(ucorr + u∞)
(18)= SK−1jcorr + Su∞ (19)= SK−1(K� + Kn)u

∞. (21)

Algorithm 3 INVERSE PROBLEM WITH CONTINUOUS SOURCE PARAMETER SPACE

Precompute B∞
eeg and B∞

meg and store both matrices
repeat

INVERSE ALGORITHM COMPUTES NEW u∞

MULTIPLY u∞ BY B∞
eeg AND B∞

meg

until TERMINATION OF INVERSE ALGORITHM
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The matrices

B∞
eeg := RK−1(K� + Kn) ∈ R

(seeg−1)×N

and

B∞
meg := SK−1(K� + Kn) ∈ R

smeg×N

can be precomputed and used for any right-hand side u∞ coming either from a discrete or a
continuous source parameter space.

7.1. Algorithms and complexity for the mathematical dipole

In the following we give in brackets the concrete times for the computations on our machine
(cf section 5.2) for the tetrahedra model problem (figures 1 and 2).

For a continuous source parameter space algorithm 3 is applicable. Here, one has to
precompute B∞

eeg and B∞
meg with a complexity of

s ∗ i ∗ k ∗ N + s ∗ cnz ∗ N (3876 s)

and can then use these matrices to compute u eeg and 
 sec with a complexity of s ∗ N (0.1 s)
for each dipole (i.e. for each u∞). For a total of r = 30 357 dipoles this complexity is

r ∗ (2 ∗ s ∗ N) (3871 s).

The total complexity for both set-up and solution phase is

(i ∗ k + cnz + 2 ∗ r) ∗ s ∗ N operations (7747 s),

which is 100 times less than the complexity for the state-of-the-art approach.
For a discrete source parameter space the r possible dipole locations are known. In this

case we can use the same strategy as for the blurred dipole, namely to store the whole matrix
U∞ whose columns are the vectors u∞ for the respective dipole locations. However, the
matrix U∞ is not sparse. A new technique to store matrices of this type in a data-sparse form
are so-called hierarchical matrices, or short H-matrices [47–50]. This format exploits the fact
that the function u∞(x) can be interpolated efficiently. The dependence of u∞(x) on the dipole
location y is complicated, but we can split the function u∞ into

u∞(x) =
3∑

i=1

M(y)i

4π
· (xi − yi)

‖x − y‖3
,

such that only the term (xi − yi)/‖x − y‖3 has to be interpolated, i.e. we have to fulfil the
standard admissibility condition

min{diam(X), diam(Y )} � dist(X, Y )

Algorithm 4 INVERSE PROBLEM WITH CONTINUOUS SOURCE PARAMETER SPACE

PRECOMPUTE U∞ ∈ R
N×r

IN H-MATRIX FORMAT

for i = 1, . . . , s do
DETERMINE THE iTH ROW OF THE LEAD FIELD BASIS B∞

eeg, B∞
meg

MULTIPLY THIS ROW BY U∞, I.E., COMPUTE iTH ROW OF L
STORE iTH ROW IN L ∈ R

s×r

end for
USE L FOR INVERSE METHODS ON DISCRETE PARAMETER SPACE
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Figure 4. The transpose of the matrix U∞ in H-matrix format where each green block is stored in
a data-sparse low-rank format.

for regions X × Y 	 (x, y) where we want to replace the function u∞ by its interpolant
(cf [50]).

Standard geometrically balanced clustering [49] yields a partition of the matrix U∞ as
shown in figure 4. Each green block in figure 4 allows for a data-sparse low rank approximation
while the red (but small) ones are stored in standard dense matrix format. The whole matrix
U∞ can be assembled and stored with cas ∗ log(N) ∗ N operations (81.4 s)—much less than
the c ∗ r ∗ N operations (1026.8 s) needed without the data-sparse H-matrix format. Once the
matrix has been assembled and stored in this (packed) format, it allows for a fast matrix-vector
multiplication with cmv ∗ log(N) ∗ N operations (8.34 s) [49]. Algorithm 4 uses the H-matrix
format and exploits the fast matrix-vector multiplication. The total set-up complexity is

(i ∗ k + cnz + cmv ∗ log(N)) ∗ s ∗ N (5208.4 s)

for the influence matrix L. This is 149 times less than the complexity for the state-of-the-art
approach. The influence matrix L can, of course, be used for any inverse method working on
that specific discrete influence space.

8. Conclusions and perspective

In this paper we presented a new approach to strongly reduce the algorithmic complexity of
EEG/MEG inverse source reconstruction algorithms which are based on the finite element
(FE) volume conductor modelling of the human head. The FE computational complexity of
the state-of-the-art approach can be seen as the main disadvantage of FE compared to multi-
layer sphere [10] or boundary element (BE) [11–13] head modelling. Our approach turns out
to be very effective if the number of EEG/MEG sensors is much smaller than the number
of sources for which a forward computation has to be carried out. This is the case in most
applications, since the number of sensors is about 102, while the number of necessary forward
computations is often beyond 104.

Our approach opens new possibilities concerning the resolution of FE head modelling.
The number of large sparse linear systems that have to be solved per head geometry is now
limited to the number of EEG/MEG sensors in order to compute the EEG/MEG lead field
basis, a matrix with ‘number of EEG/MEG sensors’ rows and ‘number of FE nodes’ columns.
The parallel algebraic multigrid preconditioned conjugate gradient method is an efficient
solver for this set-up phase, as shown in [18, 20, 23, 26]. Each FE forward computation within
inverse methods on both continuous and discrete source parameter space is then reduced to
the multiplication of the FE right-hand side with the lead field basis. In combination with the
blurred dipole model, a FE forward solution is then limited to 2 ∗ s ∗ cnz operations with s the
number of EEG/MEG sensors and cnz the number of neighbours to a FE node.

Furthermore, for the blurred dipole model [4, 18], we presented an algorithm for the
row-wise computation of the influence matrix which only uses one row of the lead field basis
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at a time so that the full lead field basis does not have to be stored at all. This method is
suitable for all inverse methods on discrete source parameter space with high resolutions of
the FE approach and a large number of EEG/MEG sensors.

The treatment of the mathematical dipole in the subtraction method [14, 18, 43] with our
new approach is enhanced by using the data-sparse H-matrix format.

The potential resolution for FE head modelling is now less limited by the complexity of
the FE forward computations, but rather by the memory necessary to save the structures for
the AMG-CG approach and the lead field basis. For very high resolutions, a parallel FE solver
approach [18, 23] and the parallelization of the lead field basis multiplication seems to be
necessary in order to distribute the memory on the computational nodes.

The new approach encourages the use and further development of the SimBio4 mesh
generation tool VGRID [51]. The current version of VGRID generates high-resolution FE
meshes which are especially refined at tissue boundaries. In the future, a follow-up mesher
could be developed in order to refine the FE mesh in areas of diffuse anisotropy.

The methods presented in this paper even motivate the use of the current resolution of the
MR machines as the FE mesh resolution, i.e. FE meshing is no longer necessary at all.
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[22] Anwander A, Wolters C H, Dümpelmann M and Knösche T R 2002 Influence of realistic skull and white matter
anisotropy on the inverse problem in EEG/MEG-source localization Proc. 13th Int. Conf. on Biomagnetism
ed H Nowak, J Hauiesen, F Giessler and R Huonker (Berlin: VDE) pp 679–81 http://biomag2002.uni jena.de

[23] Wolters C H, Kuhn M, Anwander A and Reitzinger S 2002 A parallel algebraic multigrid solver for finite
element method based source localization in the human brain Comput. Vis. Sci. 5 165–77

[24] Reitzinger S 2001 Algebraic multigrid methods for large scale finite element equations PhD Thesis Schriften
der Johannes-Kepler-Universität Linz, Reihe C-Technik und Naturwissenschaften no 36

[25] Haase G, Kuhn M and Reitzinger S 2002 Parallel AMG on distributed memory computers SIAM J. Sci. Comput.
24 410–27

[26] Wolters C, Reitzinger S, Basermann A, Burkhardt S, Hartmann U, Kruggel F and Anwander A 2000 Improved
tissue modeling and fast solver methods for high resolution FE -modeling in EEG/MEG-source localization.
Proc. 12th Int. Conf. on Biomagnetism (Helsinki 13–17 Aug) ed J Nenonen, R J Ilmoniemi and T Katila
pp 655–8 See http://biomag2000.hut.fi/papers all.html

[27] Mohr M and Vamrunste B 2003 Comparing iterative solvers for linear systems associated with the finite
difference discretisation of the forward problem in electro-encephalographic source analysis Med. Biol. Eng.
Comput. 41 75–84
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[43] von Rango J, Schlitt H A, Halling H and Müller-Gärtner H-W 1997 Finite integration techniques for the MEG
forward problem Quantitative and Topological EEG and MEG Analysis ed H Witte, U Zwiener, B Schack
and A Doering (Jena: Druckhaus Mayer) pp 336–8

[44] Lorente de No R 1938 Cerebral cortex: architecture, intracortical connections, motor projections Physiology of
the Nervous System ed J F Fulton (Oxford: Oxford University Press) chapter 15

[45] Hackbusch W 1994 Iterative Solution of Large Sparse Systems (New York: Springer)
[46] Saad Y 1996 Iterative Methods for Sparse Linear Systems (New York: PWS Publishing)
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2.3 Algebraic Multigrid with Multiple Right-Hand Side
Treatment.

Algebraic Multigrid with Multiple Right-Hand Side Treatment for an Efficient
Computation of EEG and MEG Lead Field Bases.
Wolters, C.H., Anwander, A., Reitzinger, S. and Haase, G., In Halgren, E.,
Ahlfors, S., Hämäläinen, M. and Cohen, D. (eds.): BIOMAG 2004, Proc. of
the 14th Int. Conf. on Biomagnetism, Boston, USA, pp. 465–466 (2004).

Corresponding author: C.H. Wolters



64 MULTIPLE RIGHT-HAND SIDE AMG-CG



Figure 1 Time for the computation of the MEG lead field basis on a
Mac-OSX PowerBook G4 and on Red-Hat Linux PC’s with either Xeon
or Pentium 4 architecture using the conventional AMG-CG and the new
AMG-CG with simultaneous treatment of multiple right-hand sides.

Computation time for MEG lead field basis

5
2

9

5
2

1

3
3

6 4
6

0

4
4

6

4
2

9

4
1

5

4
2

2

4
1

8

4
1

0

4
1

4

4
0

8

4
0

9

3
9

2

3
8

4

3
8

1

3
7

4

3
5

9

3
5

9

3
4

2

3
2

7

3
1

8

3
0

0

2
9

0

7
1

7
1

5
3

0

1
4

5
5

8
4

4

1
0

0
6

9
4

0

9
2

1

8
5

4

8
6

2

8
4

7

8
1

8

8
2

9

8
3

8

8
2

1

8
0

7

7
6

9

7
8

4

7
7

6

7
2

2

7
5

3

7
4

8

7
3

2

7
2

7

7
1

5

2
1

0
8

3
0

1

2
9

9

1
5

4 2
2

9

2
3

4

2
2

5

2
2

3

2
2

8

2
3

0

2
1

9

2
2

4

2
2

3

2
2

3

2
2

3

2
1

7

2
1

7

2
3

6

2
2

4

2
1

8

2
1

4

2
0

6

2
0

1

1
9

8

1
9

0

3
0

8

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 17 19 21 25 30 37 49 74 147

Number of simultaneous right-hand sides

T
im

e
 (

in
 s

e
c.

)

MultiRHS-AMG-CG (Xeon) AMG-CG (Xeon)
MultiRHS-AMG-CG (G4) AMG-CG (G4)
MultiRHS-AMG-CG (Pentium 4) AMG-CG (Pentium 4)

Algebraic MultiGrid with Multiple Right-Hand Side Treatment for an Efficient
Computation of EEG and MEG Lead Field Bases

C.H.Wolters1,2,3,  A. Anwander3, S. Reitzinger4 and G. Haase5

(1) Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, USA
(2) Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany

(3) Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
(4) CST GmbH, Darmstadt, Germany

(5) Inst. for Mathematics and Computational Sciences, University of Graz, Austria.

ABSTRACT

Iterative solver techniques are used for the computation of EEG and MEG lead field bases for finite element method based volume conductor
mode ling. Within this paper, we will discuss a new efficient strategy, the algebraic multigrid preconditioned conjugate gradient method with
simultaneous treatment of multiple right-hand sides. We will show that this solver leads to a much higher cache hit rate, which speeds the
computation by more than a factor of 2. Together with the concept of the EEG and MEG lead field bases, the complexity of realistic high resolution
anisotropic finite element forward modeling within the EEG/MEG inverse problem is significantly reduced and can now be performed in
approximately the same time as boundary element head modeling.

KEY WORDS

EEG/MEG Source Reconstruction, Finite Element Method, Lead Field Bases, Algebraic MultiGrid, Preconditioned Conjugate Gradient Methods,
Treatment of Multiple Right-Hand Sides, Cache Algorithms

INTRODUCTION

When choosing the Finite Element (FE) method for volume conductor modeling within the EEG/MEG inverse problem, the construction of the
lead field bases requires “number of EEG/MEG sensors” many solutions of large sparse systems of linear equations [Wolters, 2004]. Therefore,
preconditioning techniques for the iterative solution process are important to speed the computation. It was previously shown that the Algebraic
MultiGrid preconditioned Conjugate Gradient (AMG-CG) method is a very efficient solver for inhomogeneous anisotropic high resolution FE
forward modeling [Wolters 2001, Wolters, 2002, Mohr, 2003]. Within this paper, we will discuss a new strategy for a further speedup, the
simultaneous treatment of multiple right-hand sides.

METHODS

 In a first step, compared to the AMG-CG presented, e.g., in [Wolters, 2001], general algorithmical improvements were implemented for the new
Multiple Right-Hand Side AMG-CG (MultiRHS-AMG-CG) [Haase, 2003].

The old memory management for the stiffness and interpolation matrices was replaced by the classical Compact Row Storage (CRS) format in
order to decrease the number of cache misses. Within the AMG algorithm, defect calculation follows forward Gauss-Seidel (GS) smoothing and both
operations require matrix-vector operations. For symmetric stiffness
matrices, parts of the matrix-vector operation from the last GS
smoothing can be efficiently stored and reused by the defect calculation,
a merging which leads to a reduction of the operation count. The AMG-
procedure on the next coarser level is called with a zero- initial
correction vector. This can be used, too, so that the first forward GS
smoothing sweep on the coarser levels  is reduced to half of the
arithmetic and memory operations. If a V-cycle is chosen, i.e., only one
pre-smoothing sweep is performed, the special structure of this
smoother on the coarser levels furthermore leads to a reduction of the
subsequent defect computation.

Since the RHSs in the lead field bases approach are computed
beforehand and the stiffness matrix remains the same, we can
simultaneously solve for a whole block of RHSs. The most
computationally expensive operations in the  AMG-CG method are the
matrix-vector operations within the CG and within the AMG
components smoothing, defect calculation, interpolation and
prolongation. If the vector for one RHS is exchanged against a whole
block of vectors for multiple RHSs and if this block is not stored as a
matrix, but as a long vector (first the first entries of the RHSs, then the
second entries etc., resulting in a long vector), then each matrix entry
only has to be accessed once and can be multiplied to all corresponding
values in the block-vector. This procedure results in much higher cache
hit rates, which speeds the computations. For the simultaneous
treatment of 3 RHS, the inner loops were manually unrolled, leading to
a further reduction of the solver time.



Figure 2 Time for the computation of the EEG lead field basis on a Mac-
OSX PowerBook G4 and on Red-Hat Linux PC’s with either Xeon or
Pentium 4 architecture using the conventional AMG-CG and the new AMG-
CG with simultaneous treatment of multiple right-hand sides.
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RESULTS

As a basis for our computations, we chose a realistic anisotropic
tetrahedral FE model with 147287 nodes and 892115 elements, a
71 electrode EEG and a 147 channel MEG configuration. We
compared the computation time for the construction of the EEG
and MEG lead field bases for the Jakobi-preconditioned CG (J-
CG), the symmetric Incomplete Cholesky preconditioned CG
without fill-in (symIC(0)-CG) and the AMG-CG (see [Wolters,
2001] for these approaches) with the new MultiRHS-AMG-CG
while varying the number of simultaneously treated RHSs.
Speedup tests were performed on three different platforms, a Mac-
OSX with PowerBook G4 proc (1Ghz, 512 KB cache), a Red-Hat
Linux PC with Xeon proc (2.4Ghz, 512 KB cache) and a Red-Hat
Linux PC with Pentium 4 proc (3.2 Ghz, 1024 KB cache).  The
computation time for the EEG/MEG lead field bases with J-CG
(symIC(0)-CG) on those three platforms were 4978/13361 sec.
(2620/7261 sec.), 1543/4061 sec. (729/2089 sec.) and 929/2512
sec. (498/1322 sec.). The results for AMG-CG and MultiRHS-
AMG-CG for MEG and EEG are shown in Figs. 1 and 2. The
computation time for a specific number of simultaneous RHSs is
indicated above the curves.

DISCUSSION

On all platforms, the treatment of multiple RHSs within the
new MultiRHS-AMG-CG reduced the computation time for the
EEG and MEG lead field bases by at least a factor of 2. With the manual unrollment of inner loops for the simultaneous treatment of 3 RHS, this
approach belongs to the fastest on all platforms so that we would recommend that choice for the RHS parameter. On platforms with a smaller cache
and a slower access to the main memory, the improvement of the data-structures by means of the CSR storage for stiffness and interpolation matrices
led to a further speedup factor of up to 1.38.

The combination of the lead field bases concept [Wolters, 2004] with the presented MultiRHS-AMG-CG solver for the setup phase reduces
significantly the complexity of anisotropic high resolution finite element head modeling. The computation for the presented head model with nearly a
million tetrahedral elements can be performed on a single processor platform in roughly the same time as boundary element head modeling. If the
resolution still has to be increased (e.g., to the resolution of the MRI), the use of the parallel version of our software NeuroFEM-Pebbles [Anwander,
2002] [Wolters, 2002] gets necessary in order to distribute the memory.
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ABSTRACT

The inverse problem in EEG and MEG aims at reconstructing the underlying current distribution in the human brain. The finite element method, used
for the forward problem, is able to realistically model tissue conductivity inhomogeneities and anisotropies. So far, the computational complexity is
quite large when using the necessary high resolution finite element models. It is already known that the so-called reciprocity can strongly reduce this
complexity with regard to the EEG modality. We will derive algorithms for the efficient computation of EEG and MEG lead field bases which exploit
the fact that the number of sensors is generally much smaller than the number of reasonable dipolar sources. Each finite element forward solution is
then reduced to a simple matrix-vector multiplication instead of an expensive iterative finite element solution process. Our approaches can be applied
to inverse reconstruction algorithms in both continuous and discrete source parameter space for EEG and MEG. In combination with modern solver
methods, the presented approach leads to a highly efficient solution of FE-based source reconstruction problems.
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INTRODUCTION

For the forward problem in EEG/MEG source reconstruction, the volume conductor head has to be modeled. It is known that the head tissue
compartments scalp, skull, cerebro-spinal fluid, brain gray matter and white matter have different conductivities and that the layers skull and white
matter are anisotropic conductors [Wolters, 2003]. Different numerical approaches for the forward problem have been used such as Multi-Layer
Sphere, Boundary Element (BE) and Finite Element (FE) head modeling, where only the FE method is able to treat both realistic geometries as well
as inhomogeneous and anisotropic material parameters. The influence of skull and white matter conductivity anisotropy on the EEG/MEG forward
and inverse problem was studied in realistic FE models in [Marin, 1998], [Haueisen, 2002], [Wolters, 2003]. In those studies it has been shown that
an exact modeling of tissue conductivity inhomogeneity and anisotropy is crucial for an accurate reconstruction of the sources.
An important question is how to handle the computational complexity of FE-modeling with regard to the inverse problem. It is the state-of-the-art
approach for FE-based forward modeling in EEG/MEG inverse methods to solve an FE equation system for each possible dipolar source [Buchner,
1997]. For the FE method, we recently developed fast solver approaches based on multigrid ideas, speeding the computations by factors of up to 100
compared to standard approaches [Wolters, 2002]. In that study we used parallelization to speed the computations and to distribute the memory
between the computational nodes. Still, the repeated solution of such a system with a constant geometry matrix for thousands of right-hand sides (the
sources) is the major time consuming part within the inverse localization process and limits the resolution of the models.
A further very efficient concept for the reduction of the computational complexity has been described for the EEG, the concept of reciprocity
[Weinstein, 2000], [Vanrumste, 2001]. The reciprocity theorem for the electric case states that the field of the so-called lead vectors is the same as the
current field raised by feeding a reciprocal current to the lead. The concept allows to switch the role of the sensors with the dipole locations. For FE
based EEG source reconstruction, it was shown in [Weinstein, 2000] how to use this principle for the efficient computation of a so-called node-
oriented lead field basis, a matrix with ``number sensors'' rows and ``number FE nodes'' columns. This matrix can then be exploited within the EEG
inverse problem. In [Vanrumste, 2001], reciprocity was used for the efficient solution of the EEG inverse problem when using the Finite Difference
method for the forward problem. The application of reciprocity to MEG is non-trivial and has been studied in [Nolte, 2003], where the magnetic lead
field theorem was proven. Nevertheless, as far as we know, it is not yet clear how to efficiently compute the lead field basis for the MEG in
combination with the FE method for the forward problem.
In this paper, we will simply apply the mathematical law of associativity with respect to the matrix multiplication. Then, for each head model, we
only have to solve ``number of EEG/MEG sensors'' times a large sparse FE system of equations in order to compute the lead field basis for both EEG
and MEG. This setup can be computed efficiently using the MultiRHS-AMG-CG solver [Wolters, 2004/2]. Each forward solution is then reduced to
the multiplication of the lead field basis to an FE right-hand side vector. Simulation studies with a high resolution anisotropic FE head model and a
blurred dipole model will then show that an influence matrix with a resolution of 2mm can be computed in only a few seconds on a simple single
processor PC.

METHODS

The electric forward problem:

From the quasistatic Maxwell equations, we can derive the equation
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The magnetic forward problem:
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The first part of this magnetic flux is called the primary magnetic flux and in the following denoted with 
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Ψp  and the second is the so-called

secondary magnetic flux
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Ψsec. 
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Ψp  is only dependent on the source model and can in general be computed by simply evaluating an

analytical formula [Pohlmeier,1996]. If we define
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and if the potential distribution 
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Φ is given, the final equation for 
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Ψsec emerges from the secondary (return) currents and can be given by
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Finite element discretization aspects for the EEG forward problem:

For the numerical solution, we choose a finite dimensional subspace with dimension 

€ 

N  and a standard nodal finite element basis 

€ 

ψ1,...,ψN .
The numerical solution process depends on the chosen model for the primary source. Here, we will refer to the literature for a deeper discussion and
restrict ourselves to the following remarks. The mathematical dipole model together with the subtraction approach leads to a right-hand side vector

€ 

jmath ∈ RNwith 

€ 

N non-zero entries [Wolters, 2003]. The blurred dipole model [Buchner,1997] [Wolters, 2003] follows the law of  St.Venant and is

made up from monopolar loads on all neighboring FE nodes so that the dipolar moment is fulfilled and the source load is as regular as possible. The
dipole moment is then only a means for visualization. In this case, the right-hand side vector 

€ 

j blur ∈ RN  has only 

€ 

cnz  nonzero entries with 

€ 

cnz  the

number of neighboring FE nodes. In the following derivation of the theory, we will only consider the case 

€ 

j = j blur . Nevertheless, as shown in

[Wolters, 2004/1], for 
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j = jmath , the theory is very similar. The application of variational and FE techniques yields a system of linear equations
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KΦ = j ,                                                                                 (5)

where the stiffness or geometry matrix has the entries

  

€ 

K ij = (∇ψ j (
r y ),σ( r y )∇ψ i(

r y ))
Ω
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and is symmetric positive definite. Let us further assume that the 
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(sEEG −1) non-reference EEG electrodes directly

correspond to FE nodes at the surface of the head model. It is then easy to determine a restriction matrix 

€ 

R∈ R(sEEG −1)×N , which has only one non-zero
 entry with the value 1 in each row and which maps the potential vector onto the non-reference EEG electrodes:
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RΦ =:ΦEEG                                                                          (6)

Finite element discretization aspects for the MEG forward problem:

For the magnetic forward problem, the flux transformers of the MEG device have to be modeled. Following [Pohlmeier, 1996], we model such a



coil by means of a thin, closed conductor loop, using isoparametric quadratic row elements. When approximating the potential 
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Φ by means of its
Galerkin projection, Equation (4) can be written in matrix form
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with 
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S∈ RsMEG ×N the so-called secondary flux matrix. 
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S  maps the potential onto the secondary flux vector
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Ψsec ∈ RsMEG . The secondary flux matrix has the entries
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where   
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C i(

r y )  denotes the function (3) for the ith MEG magnetometer
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Υi,∀1≤ i ≤ sMEG . For the computation of the

matrix entries of 
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S , a FE ansatz for the integrand and Gauss integration is used [Pohlmeier, 1996].

Computation of the lead field bases:
The inverse of the geometry/stiffness matrix, 

€ 

K−1, exists, but its computation is a difficult task, since the sparseness of 

€ 

Kwill be lost while
 inverting. But with regard to the EEG inverse problem, we are only interested in computing
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BEEG :=RK−1 ∈ R(sEEG −1)×N                                             (8)

which describes the direct mapping of a FE right-hand side vector to the non-reference
electrodes:
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BEEG j =RK−1 j =RΦ =ΦEEG                                       (9)

[Weinstein, 2000] introduced the notation EEG lead field basis for 

€ 

BEEG.  We will now see that we face a comparable situation with regard to the

MEG  inverse problem. In fact, let us define the MEG lead field basis:
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BMEG := SK−1 ∈ RsMEG ×N                                                 (10)
One should note that the rows of 
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BEEG do indeed form a basis in the mathematical sense, while
this is not necessarily true for 
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BMEG. 

€ 

BMEG  describes the direct mapping of the FE right-hand
side vector to the secondary magnetic flux vector:
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BMEG j = SK−1 j = SΦ = Ψsek                                        (11)

The lead field basis can be computed as follows: If we multiply the matrix equation
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with 
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K  from the right side, transpose both sides and use symmetry of  
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K , we obtain
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K BEEGtr BMEGtr[ ] = Rtr Str[ ]                                                                                          (13)

From the last equation, we can compute the lead field bases by solving 

€ 

s := (sEEG −1) + sMEG large sparse FE equation systems using iterative

solver methods as described in [Wolters, 2004/2]. For 

€ 

j = jmath , the theory is very similar [Wolters, 2004/1]. With regard to the forward computation

complexity, the main difference between both source models is that a vector with only nonzero entries has to be multiplied to the lead field bases in
contrast to only

€ 

cnz  nonzeros for 

€ 

j = j blur .

RESULTS

The new approach was tested by means of an influence matrix computation, which is the basis for all current density reconstruction methods.
Nevertheless, the presented approach can be used for all inverse algorithms in discrete and also continuous parameter space such as MUSIC, dipole
fitting etc.. For the following computational complexity considerations, we chose an anisotropic tetrahedral FE head model with 892,119 elements
and 147,287 nodes. The brain surface was represented by a triangular mesh with 2mm mesh resolution, resulting in an influence space with 19106
triangles and 9555 nodes. We chose a 71 electrode EEG configuration and a 147 channel whole head BTI MEG. The influence matrices were
computed without normal constraint but with a tangential constraint for the MEG, so that 9555*3=28665 forward computations were necessary for
the EEG influence matrix and 9555*2=19110 for the MEG. We performed the simulations on two platforms, a 3.2GHz Pentium 4 PC with 2GB main
and 1024 KB cache memory running Red-Hat Linux and a 1GHz G4 Apple Macintosh PowerBook with 1GB main and 512 KB cache memory
running OSX. We compared the new lead field bases approach, i.e., solving (13) in a setup phase and then, for each forward solution, Equation (9) or
(11), with the standard approach in FEM source reconstruction [Buchner, 1997], i.e., for each dipole in the influence space first solving Equation (5)
and then Equation (6) or (7). The iterative FE solver method is indicated in column 3 of Table 1, we refer to [Wolters, 2004/2] for more informations.
The setup time, column 4 in Table 1, only occurs once per head model. For both methods we measure the setup time for the preconditioner. For the
lead field bases approach, we furthermore have to add the time for solving (13). Simulations concerning the computational complexity for the
influence matrix were performed for both, the blurred [Buchner, 1997][Wolters, 2003] and the mathematical dipole [Wolters, 2003]. This is indicated
in column 5 of Table 1 by means of the number of non-zeros of the FE Right-Hand Side (RHS) being 

€ 

cnz for the blurred and 

€ 

N  for the mathematical

dipole. We also indicate the maximal memory necessary for the current implementation in our FE based source reconstruction software NeuroFEM
(http://www.simbio.de).



Table 1 Comparing the computational complexity between the lead field bases- and the standard- approach in an influence matrix computation

Setup time Influence matrix Max.memory (in MB)Platform Method Solver method
MEG EEG

RHS:#nonzeros
MEG EEG MEG EEG

2.6min 1.3min

€ 

cnz ≈ 20 18 sec 21 sec 654 405New Lead field
bases approach 3RHS-AMG-CG

5min 3.1min     

€ 

N =147287 3 h 2.2 h 654 405

Pentium 4
PC

Standard symIC(0)-CG 0.2sec 0.2sec

€ 

cnz ≈ 20 52 h 59 h 432 219

14min 6.5min

€ 

cnz ≈ 20 63 sec 56 sec 654 405New Lead field
bases approach   3RHS-AMG-CG

23min 11.3min     

€ 

N =147287 8.4 h 6 h  654 405Mac G4
Standard symIC(0)-CG 0.5sec 0.5sec

€ 

cnz ≈ 20 230 h 302 h 432 219

DISCUSSION

In this paper we presented a new approach to strongly reduce the algorithmic complexity of EEG/MEG inverse source reconstruction algorithms,
which are based on FE volume conductor modeling of the human head. The FE computational complexity of the standard approach can be seen as
the main disadvantage of FE compared to Multi-Layer Sphere or BE head modeling. Our approach turns out to be very effective if the number of
EEG/MEG sensors is much smaller than the number of sources for which a forward computation has to be carried out. This is the case in most
applications, since the number of sensors is about 102, while the number of necessary forward computations is often beyond 104. Our approach opens
new possibilities concerning the resolution of FE head modeling. The number of large sparse linear systems that have to be solved per head geometry
is now limited to the number of EEG/MEG sensors in order to compute the lead field basis, a matrix with ``number of sensors'' rows and ``number of
FE nodes'' columns. The algebraic multigrid preconditioned conjugate gradient method with simultaneous treatment of multiple right-hand sides is an
efficient solver for this setup phase, as shown in [Wolters, 2004/2]. Each FE forward computation within inverse methods on both continuous and
discrete source parameter space is then reduced to the multiplication of the FE right-hand side with the lead field basis. In combination with the
blurred dipole model, a FE forward solution is then limited to 

€ 

2* s*cnz  operations with 

€ 

s the number of sensors and 

€ 

cnz  the number of neighbours to
a FE node. For the mathematical dipole model we show in [Wolters, 2004/1] how to further speedup the influence matrix computations by using the
data-sparse Η-matrix format. In combination with [Wolters, 2002], the parallelization of our new lead field approach is straight forward, important
especially for higher resolutions where the memory has to be distributed.
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2.5 Validation of the projected subtraction and Venant
FE approaches for the EEG and MEG forward prob-
lem

Validating Finite Element Method Based EEG and MEG Forward Computations.
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Abstract

For the accurate reconstruction of current  sources in the brain from measured EEG and MEG data accurate 
forward computations of the electric potentials resp. the magnetic fields are necessary. In complex head volume 
conductors the simulation of the electric potentials and magnetic fields can be done using the Finite Element 
Method (FEM).  
The task of this work is to study how accurate the forward problem can be solved using FEM. This is done by 
comparing the numerical solution to an analytical reference solution, which exists for multilayer sphere models. 
The numerical solution is calculated using two di erent models for the mathematical dipole: Venant’s principleff  
and the subtraction approach. 
The results showed, that EEG and MEG can be simulated very accurately for sources at realistic excentricities and 
for both dipole models using FEM. For realistic volume conductors similar accuracies of the numerical method 
can be expected.

1 Introduction

For the accurate reconstruction of current  sources in 
the  brain  from  measured  EEG  and  MEG  data, 
accurate  forward  computations  of  the  electric 
potentials resp. the magnetic fields are necessary.  For 
complex  head  volume  conductors  this simulation  of 
the electric potentials and magnetic fields needs nume-
rical  methods.  Very  interesting  is  the 
Finite Element Method (FEM) as it  is able  to handle 
arbitrary  geometries  and  inhomogeneous  and 
anisotropic  conductivities.  At  the  IBB  the  software 
toolbox  IP-NeuroFEM  is  developed  in  which  this 
method is implemented [1]. The task of this work is to 
study  how accurately  the  forward  problem  can  be 
solved  with  FEM.  This  is  done  by  comparing  the 
numerical solution to an analytical reference solution, 
which exists for multilayer-sphere models.

2 Materials and Methods

2.1 The Sphere Model

The  EEG  and  MEG  forward  computations  were 
performed  for  a  3-layer sphere model.  The  spheres 
have  radii  of  92 mm,  86 mm  and  80 mm.  The 
conductivities  of  the  compartments  are  0.33 S/m, 
0.0042 S/m and 0.33 S/m resp.. 
The EEG was simulated at 134 electrodes, distributed 
on the surface of the model in a very regular way. The 
MEG was simulated for 2 sets of 258 magnetometers 
each. The positions of the centres were distributed in a 
very  regular  way  on  a  concentric  sphere.  The 

magnetometers  are radially  oriented  for  the  first  set 
and tangentially for the second set of sensors.
The potentials and fields were computed for dipoles at 
79 positions from the centre of the spheres in steps of 
1mm along the z-axis. By definition the highest dipole 
has an excentricity of 1.0. For the EEG the potentials 
were computed for radial and tangential,  for the MEG 
only for tangential dipoles.
With the software CURRY [2] tetrahedra meshes and 
with  VGRID [1]  regular  cube meshes,  both  with  an 
average element width of 2 mm and approx. 400 000 
nodes, were built. 

2.2 The Error Measures

For the validation of our numerical solution the FEM 
results were compared to the analytical solution for a 
multilayer sphere [3,4].  Therefore two different  error 
measures were employed.
The first measure is the  relative difference measure, 
RDM [5]. It describes the difference in the topography 
between the  analytical  and  numerical  solution.  The 
best value of the RDM is 0. 
The  second  measure  is  the  magnification error,  
MAG [5]. It indicates differences in the total strength 
of the potentials resp.  fields.   The best  value of the 
MAG is 1.

2.3 The Dipole Models

In our study we used two methods for modelling the 
mathematical  dipole:  Venant's  principle [6] and  the 
subtraction approach [7].



3 Results

3.1 EEG

For reasonable excentricities, for both dipole directions 
and for both dipole models the RDM is below 0.05. 
For highest excentricities the RDM for the subtraction 
approach gets  worse  than  the  error  for  Venant's 
approach.  This  is  suspected  to  be  due  to  a  not  yet 
optimal  implementation  of  the  method.  Better 
integration  already  showed  to  substantially  improve 
results. Similar findings with regard to the EEG have 
been achieved in [8].

3.2 MEG

Radial magnetometers
The error of the primary flux can always be neglected 
as  it  is  computed  analytically  and  therefore  very 
accurate.  Nearly  no  difference  between  Venant's 
principle and the subtraction approach can be observed 
for the total flux (Figure 1). 

Figure 1 RDM for the total magnetic flux and radial 
magnetometers.

To  lower  excentricities  the  RDM  rises,  because  the 
error  for  the  secondary  magnetic  flux  gets  more 
important for low excentricities where the strength of 
the total magnetic flux strongly decays. The MAG for 
realistic excentricities resides between 0.95 and 1.05.

Tangential magnetometers 
Here volume currents in a sphere have a significant 
contribution to the total magnetic flux. The RDM for 
the secondary magnetic flux is always below 0.03. 
In  the  error  curves  of  the  Venant  approach  large 
oscillations  are  noticeable,  because  the  accuracy  of 
Venant's  approach  depends  on  the  position  of  the 
current dipole relative to the next node of the mesh.
It  can  be  observed  that  the  subtraction  approach  is 
more accurate than the Venant approach.
For the total magnetic flux (Figure 2) the subtraction 
approach  gives  excellent  results.  Again,  for  lower 
excentricities,  the  errors  of  the  secondary  magnetic 
flux  get  more  important.  The  MAG  for  realistic 
excentricities resides between 0.90 and 1.05.

Figure  2 RDM  for  the  total  magnetic  flux  and 
tangential magnetometers.

4. Discussion

In this study it was shown that the forward problem for 
the EEG and the MEG can be accurately solved using 
the Finite Element Method. Furthermore the presented 
results indicate that very high accuracies for both radial 
and tangential  magnetometers are achieved by using 
the subtraction approach.
It  was  proven  in [7]  that  similar  accuracies  can  be 
expected for realistic models of the human head. In 
future studies we will focus our interest on using FEM 
for modeling realistic volume conductors with regard 
to the inverse EEG and MEG problem.
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2.6 Validation of the projected subtraction, Venant and
partial integration FE approaches for the EEG for-
ward problem

Numerical approaches for dipole modeling in finite element based source analy-
sis.
Wolters, C.H., Köstler, H., Möller, C., Härdtlein, J. and Anwander, A.. Interna-
tional Congress Series, ICS-07008, Vol.1300, pp.189-192 (June 2007).
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Abstract. In EEG/MEG source analysis, a mathematical dipole is widely used as the “atomic”
structure of the primary current distribution. When using realistic finite element models for the
forward problem, the current dipole introduces a singularity on the right-hand side of the governing
differential equation that has to be treated specifically. We evaluated and compared three different
numerical approaches, a subtraction method, a direct approach using partial integration and a direct
approach using the principle of Saint Venant. Evaluation and comparison were carried out in a four-
layer sphere model using quasi-analytical formulas. © 2007 Elsevier B.V. All rights reserved.
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1. Introduction

An important aspect in Finite Element (FE) method based volume conductor modelling
in EEG/MEG source analysis is the way of modelling the current dipole. We developed and
implemented three different numerical approaches,

a) a subtraction potential method [1,5,7,11]
b) a direct potential approach using Partial Integration [6,8] and
c) a direct potential approach using Saint Venant's principle [2,9,10].
⁎ Corresponding author. Malmedyweg 15, 48149 Münster, Germany. Tel.: +49 251 83 56904; fax: +49 251 83
56874.
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In this paper, we evaluate and compare the different techniques with regard to their
accuracy in a four-layer sphere model [3].

2. Theory

a) The subtraction potential approach divides the total potential into a singularity
potential (dipole in infinite region of homogeneous conductivity) and a correction potential.
When subtracting the differential equation for the singularity potential from the starting
potential equation, a singularity free Poisson-problem with inhomogeneous Neumann
boundary conditions for the correction potential results. Our 3D FE approach for
anisotropic head models is closely related to the 2D implementation in [1]. We additionally
performed a numerical analysis with a correction potential existence and uniqueness proof
and FE convergence properties [11].

b) Partial Integration can be used on the right-hand-side (RHS) of the starting Poisson-
like potential equation in the variational FE formulation. The RHS is then identical to an
evaluation of the scalar product of the dipole moment with the gradient of the basis-function
evaluated at the source position. For linear Ansatz-functions, the gradient is constant and
non-zero only over the source element, so that the resulting FE linear equation system has
only 8 non-zero RHS entries (identical to monopolar loads) when using hexahedra
elements. This approach was used, e.g., in [6,8].

c) Saint Venant's principle states that the specific (fine) details of load application do not
influence the results observed in some distance away from the locus of load application.
Following [2], a dipole can be modeled by placing monopolar sources on all neighboring
FE nodes to that FE node which is closest to the source. By means of solving a local
Tikhonov–Phillips regularization problem, the monopolar loads are computed so that,
multiplied with their “lever arms” (distance of the node to the source), the dipole moment is
optimally matched.

3. Method

The quasi-analytical series expansion formulas [3] were used as a basis for our accuracy
studies. A four-layer sphere model (radii 92, 86, 80, 78 mm with conductivities of 0.33,
0.0042, 1.0, 0.33 S/m, respectively) was discretized with a 2 mm regular hexahedra mesh
(426 K nodes, 406 K elements) using the software VGRID (http://www.simbio.de). For all
forward EEG simulations, the software NeuroFEM-COLSAMM (http://www.simbio.de, see
[4] for COLSAMM) was used with linear FE Ansatz-functions and an Algebraic MultiGrid
preconditioned Conjugate Gradient (AMG-CG) method for solving the resulting FE linear
equation systems up to a relative accuracy of 10−8 [9]. 134 electrodes were distributed in a
most regular way over the outer sphere surface. The topography error Relative Difference
Measure (RDM) and the MAGnification error (MAG) [5,7,11] between quasi-analytic and
numeric results at those measurement sensors were evaluated for dipoles with fixed x and z
and varying (in 1 mm steps) y-coordinate (depths) and either tangential or radial orientation.
The eccentricity was limited to a percentage of the inner layer depending on the number of
compartments, because it can be expected that the dipole is at least 2 mm below the surface in
the middle of the gray matter compartment. Dipole strengths of 1 nAm were used.

http://www.simbio.de
http://www.simbio.de
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4. Results

As Fig. 1 shows, one important advantage of the subtraction approach over the direct
methods was that the error curves (and thus the cost functions during inverse optimization)
were smooth, while the accuracy of both Venant's and Part.Int. direct potential methods were
oscillating. While Venant performed best for sources on FE nodes (i.e. x, y and z are even
numbers in Fig. 1), Part.Int. performed best if the source is positioned in the center of an
element (x, y and z odd numbers). On the other hand, the subtraction approach with linear
basis-functions was computationally more expensive and more sensitive to conductivity
jumps in source vicinity if the source was pointing towards the jump (Fig. 1, radial sources).
For the subtraction approach, highest relative AMG-CG solver accuracies were needed for the
most eccentric sources with 10−4 being sufficient for the whole eccentricity range [11].
Fig. 1. Accuracy in 2 mm regular hexahedra FE model of the four compartment sphere: RDM (top row) and MAG
(bottom row) for tangentially (left) and radially (right) oriented sources for the three FE forward modeling
techniques subtraction (cubes: black, gray), Venant (triangles: red, orange) and Partial Integration (spheres: dark
and light blue). Dipoles with fixed x and z and varying y-coordinate at realistic source eccentricities of 0 to 97% of
the inner compartment at either (128, y, 128) (along nodes and faces) or (127, y, 127) (through element
barycenters) were examined. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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5. Conclusions

Inverse source analysis: All presented numeric approaches could exploit the computation-
ally efficient EEG/MEG lead field bases concept which reduced the “number of FE equation
systems to solve” to the “number of sensors” [8,9]. Each FE based forward solution was then
especially cheap for the direct potential methods [9]. With our current implementation, we
recommend the choice of theVenant direct potential approach at least for those inversemethods
exploiting influence matrices (beamformer, current density approaches, scanning methods).
The direct potential approaches are less appropriate for inverse optimization methods in
continuous parameter space (e.g., dipole fits using simplex optimization), because of the
presented error curve oscillations, there might be a higher risk to get stuck in local minima.

Anisotropy: All three FE approaches can treat remote tissue anisotropy (skull, white
matter) [10], but a clear theory for local anisotropy (gray matter) only exists for the
subtraction approach [11].

Perspective: The subtraction method is theoretically best understood and bears the
highest future potential. An improved numerical quadrature should solve the accuracy
problems when the source approaches a conductivity jump.
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2.7 Geometry-adapted hexahedra improve accuracy of
FEM based EEG source analysis.

Geometry-adapted hexahedral meshes improve accuracy of finite element method
based EEG source analysis.
Wolters, C.H., Anwander, A., Berti, G. and Hartmann, U. IEEE Trans. Biomed.
Eng., Vol.54, No.8, pp.1446-1453, 2007.
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Geometry-Adapted Hexahedral Meshes Improve
Accuracy of Finite-Element-Method-Based EEG

Source Analysis
Carsten H. Wolters*, Alfred Anwander, Guntram Berti, and Ulrich Hartmann

Abstract—Mesh generation in finite-element- (FE) method-
based electroencephalography (EEG) source analysis generally
influences greatly the accuracy of the results. It is thus important
to determine a meshing strategy well adopted to achieve both
acceptable accuracy for potential distributions and reasonable
computation times and memory usage. In this paper, we propose
to achieve this goal by smoothing regular hexahedral finite ele-
ments at material interfaces using a node-shift approach. We first
present the underlying theory for two different techniques for
modeling a current dipole in FE volume conductors, a subtraction
and a direct potential method. We then evaluate regular and
smoothed elements in a four-layer sphere model for both potential
approaches and compare their accuracy. We finally compute
and visualize potential distributions for a tangentially and a
radially oriented source in the somatosensory cortex in regular
and geometry-adapted three-compartment hexahedra FE volume
conductor models of the human head using both the subtraction
and the direct potential method. On the average, node-shifting
reduces both topography and magnitude errors by more than
a factor of 2 for tangential and 1.5 for radial sources for both
potential approaches. Nevertheless, node-shifting has to be carried
out with caution for sources located within or close to irregular
hexahedra, because especially for the subtraction method extreme
deformations might lead to larger overall errors. With regard
to realistic volume conductor modeling, node-shifted hexahedra
should thus be used for the skin and skull compartments while we
would not recommend deforming elements at the grey and white
matter surfaces.

Index Terms—Dipole, direct potential approach, EEG, finite-el-
ement method, geometry-adapted hexahedra, realistic head mod-
eling, regular hexahedra, source reconstruction, subtraction po-
tential approach.

I. INTRODUCTION

THE localization of current sources in the human brain from
surface electroencephalography (EEG) measurements (the

inverse problem) requires a model for the forward problem, i.e.,
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the determination of surface potentials from current sources in
the volume. Because of its ability to treat volume conductors of
arbitrary complexity and model inhomogeneous and anisotropic
tissue conductivity, the finite-element method (FEM) has be-
come popular to solve the forward problem [1], [2], [4], [5],
[14], [19], [25]–[27]. An essential prerequisite for FE modeling
is the generation of a mesh which represents the geometric and
electric properties of the volume conductor. So far, surface-
based tetrahedral tesselations were mainly used [1], [2], [4], [5],
[14], [25], [27]. Only few studies examined regular hexahedral
elements exploiting the spatial discretization inherent in med-
ical tomographic data [19], [23], whose excellent performance
has been shown in a recent accuracy study [19], and found to
perform better than the surface-based tetrahedra [23]. Adap-
tive methods [2], [4] disallow use of lead field bases [7], [8],
[21], [24] (discussed later) and loose efficiency when solving
the inverse problem. The problematic stair-like approximation
of curved boundaries with regular hexahedra has been addressed
by [6] in a biomechanical context, where it was shown that a
node-shifting approach can significantly reduce errors in von
Mises stress at the surface, in spite of detrimental effects of de-
formed elements.

In this paper, we first present the underlying theory for two
different techniques for modeling a current dipole in FE volume
conductors, a subtraction and a direct potential method. We then
test the hypothesis that node-shift hexahedra surface smoothing
reduces EEG forward modeling errors. We evaluate the new
mesh-generation approach in a four-layer sphere model for both
the subtraction and the direct potential method, using statis-
tical metrics for a comparison of the numerical results with
an analytical solution at surface measurement points. We then
present electric potential visualization results for a tangentially
and a radially oriented source in the somatosensory cortex in
regular and geometry-adapted three-compartment hexahedra FE
volume conductor models of the human head using both the sub-
traction and the direct potential method. We finally discuss our
results and conclude in the last chapter.

II. METHODS

A. The FEM-Based EEG Forward Problem

In the quasistatic approximation of Maxwell’s equations, the
distribution of electric potentials in the head domain of
conductivity , resulting from a primary current is governed
by the Poisson equation with homogeneous Neumann boundary
conditions on the head surface [18]

(1)

0018-9294/$25.00 © 2007 IEEE
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with the unit surface normal, and a reference electrode with
given potential, i.e., .

The primary currents are generally modeled by a mathemat-
ical dipole at position with the moment [18],

(2)

1) The Subtraction Approach: For the subtraction method
[1], [2], [4], [14], [19], [23], the total potential is split into
two parts

(3)

where the singularity potential is defined as the solution for
a dipole in an unbounded homogeneous conductor with constant
conductivity (the conductivity at the source position). The
solution of Poisson’s equation for the singularity potential

(4)

can be formed analytically by use of (2)[18]

Subtracting (4) from (1) yields a Poisson equation for the cor-
rection potential

(5)

with inhomogeneous Neumann boundary conditions at the sur-
face

(6)

The advantage of (5) is that the right-hand side is free of
any source singularity, because in a subdomain around the
dipole, the conductivity is zero. For the numerical
approximation of the correction potential, we use the FE
method with isoparametric transformations of the deformed
cube elements to the reference cube element and piecewise
trilinear basis functions at nodes , i.e., and

for all . When projecting both the sin-
gularity and the correction potential into the FE space, i.e.,

with
and , and applying
variational and FE techniques to (5),(6), we finally arrive at a
linear system

(7)

with the stiffness matrix

(8)

the right-hand side vector

(9)

with matrices

and with being the coefficient
vector for . We then seek for the coefficient vector

and, using (3), the total potential
can be computed. In a small subdomain around the dipole
position, the linear approximation of the singularity potential

through is quite rough, but is zero so that,
under the condition that the source is not too close to a next
conductivity jump, (5) and (6) are appropriately modeled with
the presented linear FE approach.

2) Direct Potential Approach: Even if the mathematical
dipole (2), consisting of an infinitesimal separation between
the two poles, an infinite current sink and source and a finite
dipole moment, is widely used in source analysis, a smoother
model based on finite monopolar source and sink distributions
and separations might be even more realistic [5], [19], [21],
[26], [27]. However, from a more practical point of view, dipole
vectors contain more information (strength and orientation)
and ease the interpretation of inversely calculated source con-
figurations. Therefore, it has been proposed to approximate the
mathematical dipole with a smoother blurred dipole using a
collection of monopolar sources and sinks on all neighboring
FE mesh nodes in order to optimally match a given dipole
moment vector [5]. In the following, we present the theory for
the direct potential approach using the blurred dipole model.
We will closely follow the ideas of [5], where the blurred dipole
model was used in tetrahedra volume conductors, but our
matrix-based reformulation easifies understanding and imple-
mentation and allows a direct comparison with the subtraction
approach especially with regard to the computational effort
in both tetrahedra and regular and node-shifted hexahedra FE
volume conductors. Starting from the basic relation for a dipole
moment at position ( being an arbitrary
position in the grey matter compartment, i.e., not necessarily
an FE node), (see, e.g., [16, formula
(2.92)]), and assuming discrete sources on only neighboring
FE mesh nodes, it is with denoting
the vector from FE node to source position . When using
higher moments with and the Cartesian
direction , it is

(10)
(for a motivation of higher moments see [5]). The bar indicates
a scaling with a reference length , so that

(11)

is dimensionless and the physical dimension of the resultant
scaled order moment, , is that of a current (i.e., A,
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Ampère). has to be chosen so that is smaller 1. This
is expressed by the exclamation mark in (11). The equation is
well known from mechanical engineering, where small forces
in combination with long lever arms have the same effect on the
system as large forces in combination with short lever arms. If
we now define the matrix , the moment vector

, computed from the given dipole moment vector
, and the diagonal source weighting matrix by

(12)

with or , then we compute the monopole load vector
of the blurred dipole on the neighboring FE nodes from

the given dipole moment vector at position by means of
minimizing the following functional:

The first part of the functional ensures a minimal difference
between the moments of the blurred dipole and the target
ones , while the second part, a Tikhonov-Phillips regular-
izer with the dipole regularization parameter, smoothes the
monopole distribution in a weighted sense and enables a unique
minimum for . The solution of the minimization problem is
given by

(see, e.g., [13, Theorem 4.2.1]) so that the final solution for the
monopole source vector of the blurred dipole is given by

(13)

The highest order is generally chosen as or ,
where the latter effects a spatial concentration of loads in the
dipole axis. Furthermore, stresses the spatial concentra-
tion of loads around the dipole.

In the direct potential approach in combination with
the blurred dipole, the total potential

is projected into the FE space and, using varia-
tional and FE techniques for (1), a linear system

(14)

is derived with the same stiffness matrix as in (8). The right-
hand side vector has only nonzero entries at the
neighboring FE nodes to the considered dipole location. It is
determined by

(15)

for a source at location , where the function deter-
mines the global index to each of the local indices .

3) Efficient Solution Methods: We employ an algebraic
multigrid preconditioned conjugate gradient (AMG-CG)
method for solving the linear systems (7) and (14). We solve up
to a relative error of in the controllable -energy
norm (with being one V-cycle of the AMG) [22].

As shown above, the linear systems (7) and (14) have the
same stiffness matrix (8), but the right-hand side vector is dense
for the subtraction approach (9) and sparse with entries (the
number of neighboring FE nodes) for the blurred dipole ap-
proach (15). This has implications for the computational effort
when using the lead field basis approach [24] (additionally, see
[7], [8], [21]), which limits the total number of FE linear equa-
tion systems to be solved for any inverse method to the number
of sensors . After computing the vectors of the
lead field basis, each forward problem can be solved by a single
multiplication of the right-hand side with the basis [24], re-
sulting in a computational effort of operations,
where for the subtraction approach and for the
blurred dipole direct potential approach. Note that the lead field
basis can not be used when the mesh is adapted according to
varying source positions within the inverse problem. We there-
fore attempt to avoid local mesh refinement techniques as used
in [2] and [4].

B. FE Volume Conductor Models

In source reconstruction, head modeling is generally based on
segmented magnetic resonance (MR) data, where curved tissue
boundaries have a stair-step representation. We segmented a
three tissue realistically-shaped head model with compartments
skin, skull and brain and an isotropic voxel size of 1 from
a T1- and proton-density-weighted MR dataset of a healthy
32-year-old male subject. The bi-modal MR approach allowed
an improved modeling of the skull-shape as described in detail
in [23]. We chose conductivities of 0.33, 0.0042, and 0.33 S/m
for the three compartments [5].

For node-shift hexahedra evaluation purposes, we further-
more discretized a four-compartment sphere model in a 3-D
data volume with 1 voxel resolution. The layers represent
the compartments skin, skull, cerebrospinal fluid and brain with
outer surfaces of radii 92, 86, 80, and 78 mm, respectively. We
chose conductivities of 0.33 S/m, 0.0042, 1.0, and 0.33 S/m for
the four compartments [2], [19].

C. Generation of Hexahedral FE Meshes

Voxels from a segmented MR volume can be used directly
as hexahedral elements, possibly reducing resolution by prior
subsampling of the volume as we do below for our volume con-
ductor models. In order to increase conformance to the real ge-
ometry and to mitigate the stair-case effects of a voxel mesh, a
technique was proposed in [6] to shift nodes on material inter-
faces in order to obtain smoother and more accurate boundaries.
Nodes on a two-material interface are moved into the direction
of the centroid of the set of incident voxels with minority mate-
rial, i.e., the material occuring three times or less in the 8 sur-
rounding voxels. If the centroid of these minority voxels relative
to a node is , it is shifted by

(16)
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Fig. 1. Concept of the hexahedral node-shift approach for the smoothing of interface boundaries in a 2D scenario: On the left side of the figure, the procedure is
illustrated for only two boundary nodes from which one is moved outside and the other one is moved inside towards the centroids of their minority elements. The
final result of the node-shift, a smoothed boundary representation using deformed hexahedra, is shown on the right side.

with the user-defined node-shift factor (cf. Fig. 1).
The choice ensures that interior angles at element
vertices remain convex and the Jacobian determinant remains
positive [6].

D. Error Measures in Sphere Models

In [15], series expansion formulas were derived for a mathe-
matical dipole in a multilayer sphere model, denoted now as the
analytical solution. We compare analytic and numeric solutions
using two error criteria that are commonly evaluated in source
analysis [2], [14], [19], the relative difference measure (RDM)

and the magnification factor (MAG)

where denotes the Euclidian norm and
the analytic or numeric solution vectors at measure-

ment electrodes. The RDM is a measure for the topography error
and the MAG indicates changes in the potential amplitude.

We furthermore define the node-shift improvement factor for
the RDM (MAG) as the ratio of the RDM (MAG-1) in the reg-
ular versus the RDM (MAG-1) in a node-shifted

hexahedra model.

E. Parameter Choice for the Blurred Dipole in the Direct
Potential Approach

We choose the parameters of the blurred dipole as follows:
The maximal dipole order (10) and the scaling reference
length (11) are set to and , respec-
tively. Since the chosen mesh size (discussed later) is a large
factor smaller than the reference length, the second order term

is small and the model focuses on fulfilling the dipole
moments of the zeros and first order. The exponent of the source
weighting matrix in (12) is fixed to and the regularization
parameter in (13) is chosen as . The settings effect
a spatial concentration of the monopole loads in the dipole
axis around the dipole location and gave best results in former

Fig. 2. Subtraction potential approach: Comparison of the numerical accuracy
for regular (ns = 0) and node-shifted (ns = 0:49) 2- and 3-mm hexahedra
models for radially and tangentially oriented sources.

evaluations of the presented blurred dipole model in tetrahedra
[5], [23] and also regular hexahedra volume conductors [23].
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TABLE I
SUBTRACTION APPROACH: RDM AND MAG NODE-SHIFT IMPROVEMENT

FACTORS FOR 2-mm HEXAHEDRA MODELS

III. RESULTS

As a programming platform for the presented subtraction and
direct potential approach, we used our software environment
IP-NeuroFEM [20].

A. Evaluation of the Hexahedra Node-Shift in Sphere Models

Hexahedral models of the 4-layer sphere were subsampled to
2- (426 K nodes) and 3-mm (130 K nodes) voxels and node-shift
factors (16) of 0 (regular), 0.2, 0.4, and 0.49 were used for our
evaluation. To achieve independence of the specific choice of the
sensor configuration, we distribute electrodes in
a most-regular way over the outer sphere surface. Comparisons
between the numeric and the analytic solutions at the electrode
positions are carried out for dipoles located on one axis at depths
(eccentricities) of 0%–97% (in 1-mm steps) of the inner layer
(78-mm radius) using both radial and tangential orientations.
We limit the eccentricity to 97%, because it can be expected
that the dipole location is at least 2 mm below the surface of the
innermost sphere in the middle of the grey matter compartment.
We use dipole strengths of 1 nAm.

1) Subtraction Potential Approach: Fig. 2 plots RDM and
MAG for the regular and the node-shifted
2- and 3-mm hexahedra models for all realistic source eccentric-
ities. In the 2-mm model, we observe a maximal RDM of 0.105
and a maximal MAG of 9.2% over all depths and for both source
orientations. For the 3-mm model, RDM accuracies below 0.14
are only achieved for eccentricities up to 91% and therefore for
the vast majority of realistic source positions, but the results for
higher eccentricities are above this threshold and the MAG is
equipped with an error of up to 16.1%. In Table I, minimal, max-
imal and average RDM and MAG node-shift improvement fac-
tors are shown for the 2-mm model. For the 3-mm model, the
results are very similar (only shown for in Fig. 2).
The average improvement factors for both mesh resolutions in-
crease continuously with increasing node-shift values and, for
the maximal examined deformation, they are higher than 2.28
for tangential and 1.6 for radial sources. However, as it can be
observed in both Fig. 2 and Table I, the node-shift might cause

Fig. 3. Direct potential approach: Comparison of the numerical accuracy for
regular (ns = 0) and node-shifted (ns = 0:49) 2- and 3-mm hexahedra
models for radially and tangentially oriented sources.

a deterioration of the overall error for sources located within a
deformed element or in its direct neighbor element.

2) Direct Potential Approach: In Fig. 3, RDM and MAG are
plotted for regular and node-shifted 2-
and 3-mm hexahedra models for all realistic source eccentric-
ities. Again, the error curves are rising with increasing source
eccentricity. When compared to the numerical performance of
the subtraction approach, the direct approach is less sensitive
with smaller errors for sources close to conductivity discontinu-
ities. However, due to variations of the dipole approximation of
the blurred dipole model depending on the location within an el-
ement, error curve oscillations can be observed. The node-shift
improvement factors for the 2-mm model are shown in Table II.
All factors are above 1.0, so that a general improvement through
node-shifting can be concluded. We achieve very similar results
for the 3-mm model, the only significant difference to the 2-mm
results is that the MAG improvement factors for the two most
eccentric radial sources is slightly below one (see Fig. 3). The
average improvement factors for both mesh resolutions increase
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TABLE II
DIRECT APPROACH: RDM AND MAG NODE-SHIFT IMPROVEMENT FACTORS

FOR 2-mm HEXAHEDRA MODELS

continuously with increasing node-shift values and, for the max-
imal deformation, they are higher than 2.05 for tangential and
1.56 for radial sources.

B. Application of Node-Shift Hexahedra Meshing to Realistic
Volume Conductor Modeling

The three-compartment realistic volume conductor model
was meshed using 2-mm regular and node-shift
hexahedra. This resulted in hexahedra FE models with 386 K
nodes and 366 K elements. The dipole strengths are 100 nAm.

The potential distribution in the regular and node-shifted hex-
ahedra models were then computed and visualized using both
the subtraction (Fig. 4) and the direct potential approach using
the blurred dipole (Fig. 5) for a radially and a tangentially ori-
ented source in somatosensory cortex. As it can be observed in
the figures, with regard to the mesh properties, the three surfaces
skin, outer and inner skull are represented in a much smoother
way in the node-shifted mesh compared to the stair-step approx-
imation in the regular hexahedra model. While the surfaces of
outer and inner skull are directly visible in the node-shift hex-
ahedra model, they otherwise can only be estimated indirectly
from the bends in the isopotential lines at both skull surfaces.
The consequence with regard to the field patterns is, that the
smoothness property of the mesh is taken over to the isopoten-
tial-lines, which at both skull surfaces appear smoother in the
node-shifted meshes.

IV. DISCUSSION AND CONCLUSION

The focus of our study is the validation of a node-shift hexa-
hedral meshing approach for a subtraction and a direct potential
approach in FE-based EEG source analysis, a method which was
shown to perform well in a biomechanical FE application [6].
The node-shifted hexahedra better describe the smooth tissue
boundaries, but, following convergence proofs in FE numerical
analysis, they might also cause larger numerical errors.

We chose a four compartment sphere model with the classic
conductivity values of 0.33, 0.0042, 1.0,and 0.33 S/m (see, e.g.,

[2] and [19]), i.e., a ratio of 1:80 between the skull and the brain
compartment. Recent works suggest that the skull conductivity
should be only 15 [17] to 25 [10] times lower than the brain
conductivity. However, in [11], we presented a low resolution
conductivity estimation algorithm that we recently applied to
the estimation of the brain:skull conductivity, where we found
the classic ratio of 1:80 [12]. In any case, when applying the
nodeshift hexahedral meshing approach to a four layer sphere
model with a skull to brain ratio of 1:15, the results are very
similar to the results shown in this paper, the overall numerical
errors of both presented numerical approaches are only lower.

From the evaluation in this paper we can conclude that, with
average node-shift improvement factors around 2 for a 2-mm
hexahedra resolution, both topography and magnitude errors
at surface measurement locations are strongly reduced by the
node-shift approach, if the source is not located within a de-
formed element or its direct neighbor. For a 2-mm mesh resolu-
tion, the node-shift always improved the results for the direct po-
tential method, while for sources within the deformed element
or its direct neighbor, results of the subtraction approach were
slightly spoiled for radial sources. With regard to realistic head
modeling, we conclude that the boundaries of the skin, outer and
inner skull should be smoothed using the hexahedra node-shift,
while we would not recommend deforming elements at the grey
and white matter surfaces.

For the used zero-mean EEG data, the RDM can be related to
the correlation coefficient (CC) through
[19] and a CC above 0.99 (i.e., RDM below 0.14) was associated
with a localization error of no more than 1 mm [9], [19]. We can
therefore conclude that, for the presented sphere model and for
both the direct and the subtraction approach, regular and espe-
cially node-shifted 2-mm hexahedra models achieve satisfying
numerical accuracy. No mesh adaptation is needed in contrast
to tetrahedral local mesh-refinement strategies [2], [4], where
elements are refined depending on the varying source position
within the inverse problem. We can therefore exploit lead field
bases [24], the computationally very efficient solution strate-
gies for the EEG and magnetoencephalography (MEG) inverse
problem as described in Section II-A. With increasing eccen-
tricity, the errors begin to rise, a behavior, which has also been
observed in [1], [2], [4], [5], [14], and [19]. The decrease in nu-
merical accuracy with increasing eccentricity is stronger for the
presented subtraction approach compared to the presented direct
method. For the direct potential approach, due to the mesh-de-
pendent implementation of the blurred dipole, we observe oscil-
lations in the error curves. This can be explained by the choice
of the neighboring nodes to the source position in formula
(10). In our implementation, the FE nodes are chosen like
follows: First, the closest FE node to is determined. For
the modeling of the blurred dipole, we then compute monopole
sources on those FE nodes, which have a common edge with

. As Fig. 3 shows, the best approximation to the mathemat-
ical dipole can thus be achieved if the distance is zero
(the source is positioned at a FE-node), while the approximation
is worst if approaches the center of an element. With regard
to continuous dipole fits during an inverse EEG analysis, this
might be a disadvantage of the presented direct approach com-
pared to the presented subtraction method, where error curves
and thus inverse cost functions are smooth.
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Fig. 4. Subtraction potential approach in 3-compartment realistic volume conductor of the human head: Visualization of the total potential for a tangentially and
a radially oriented dipole in the somatosensory cortex in a regular (a) and a node-shifted (ns = 0:49) hexahedra FE model (b). The sagittal cutplane was chosen
in a distance of 9mm from the source position. 15 isopotential lines are shown from the minimal to the maximal potential value in the given plane (upper row)
and for an interval of �20 �V to 20 �V (lower row). Visualization was carried out using BioPSE [3]. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this paper).

Fig. 5. Direct potential approach using the blurred dipole in a 3-compartment realistic volume conductor of the human head: Visualization of the potential dis-
tribution for a tangentially and a radially oriented dipole in the somatosensory cortex in a regular (a) and a node-shifted (ns = 0:49) 2mm hexahedra FE model
(b). The sagittal cutplane was chosen in a distance of 9mm from the source position. 15 isopotential lines are shown from the minimal to the maximal potential
value in the given plane (upper row) and for an interval of � 20 to 20 �V (lower row). Visualization was carried out using BioPSE [3]. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this paper).
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A highly accurate full subtraction approach

for dipole modelling in EEG source analysis

using the finite element method
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Abstract

A mathematical dipole is widely used as a model for the primary current source in
electroencephalography (EEG) source analysis. In the governing Poisson-type dif-
ferential equation, the dipole leads to a singularity on the right-hand side, which has
to be treated specifically. In this paper, we will present a full subtraction approach
where the total potential is divided into a singularity and a correction potential.
The singularity potential is due to a dipole in an infinite region of homogeneous
conductivity. The correction potential is computed using the finite element (FE)
method. Special care is taken to appropriately evaluate the right-hand side integral
with the objective of achieving highest possible convergence order for linear basis
functions. Our new approach allows the construction of transfer matrices for fast
computation of the inverse problem for volume conductors with arbitrary local and
remote conductivity anisotropy. A constrained Delaunay tetrahedralisation (CDT)
approach is used for the generation of high-quality FE meshes. We validate the new
approach in a four-layer sphere model with anisotropic skull compartment. For ra-
dial and tangential sources with eccentricities up to 1mm below the cerebrospinal
fluid compartment, we achieve a maximal relative error of 0.71% in a tetrahedra
model with 360K nodes which is not locally refined around the source singularity.
The combination of the full subtraction approach with the high quality CDT meshes
leads to accuracies that, to the best of the authors knowledge, have not yet been
presented before.

Key words: source reconstruction, electroencephalography, finite element method,
dipole, full subtraction approach, constrained Delaunay tetrahedralisation,
validation in four-layer sphere models, projected subtraction approach, transfer
matrices
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1 Introduction

Inverse methods are used to reconstruct current sources in the human brain by
means of electroencephalography (EEG) or magnetoencephalography (MEG)
measurements of, e.g., event related fields or epileptic seizures [15,18,30]. A
critical component of the inverse neural source reconstruction is the solution
of the forward problem [32], i.e., the simulation of the fields at the head surface
for a known primary current source in the brain. Because of the availability of
quasi-analytical forward problem solution formulas, the head volume conduc-
tor is still often represented by a multi-layer sphere model [6]. However, this
model is just a rough approximation to the reality, so that numerical approxi-
mation methods are more and more frequently used such as the boundary ele-
ment method (BEM) [8], the finite volume method (FVM) [16], the finite dif-
ference method (FDM) [11] or the finite element method (FEM) [3,1,29,13,23,33].
We will focus on the FEM because of its enormous ability and accuracy in
modelling the forward problem in geometrically complicated inhomogeneous
and anisotropic volume conductors, as will be presented in this paper.

It is shown in [22,7,17] that the mathematical dipole is an adequate model to
represent the primary current which is caused by a synchronous activity of
tens of thousands of densely packed apical dendrites of large pyramidal cells
oriented in parallel in the human cortex. The dipole model is thus considered
to be the “atomic” structure of the primary current density distribution that
has to be reconstructed within the inverse problem. Hence, one of the key
questions for all 3D forward modelling techniques is the appropriate modelling
of the potential singularity introduced into the differential equation by means
of the mathematical dipole.

Direct potential approaches [38,5] approximate the dipole moment through op-
timally distributed monopolar sources and sinks on neighbouring FE nodes of
the source location. This approach leads to finite distances between the poles
that seem reasonable as it performs well in validation studies [5,35]. How-
ever, direct approaches are strongly mesh-dependent and bear the risk that
monopoles are introduced into compartments with different conductivities.
Another disadvantage of direct approaches is the absence of a well-understood
mathematical theory, especially the interplay with tissue anisotropy is not yet
sufficiently examined. In recent comparison studies of different direct meth-

∗ Corresponding author. Institut für Biomagnetismus und Biosignalanalyse,
Westfälische Wilhelms-Universität Münster, Malmedyweg 15, 48149 Münster, Ger-
many, Tel.: +49/(0)251-83-56904, Fax: +49/(0)251-83-56874, http://biomag.uni-
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Drechsler1, C. H. Wolters2,∗, T. Dierkes2, H. Si3, L. Grasedyck1).
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ods with the subtraction approach [1,23], it is concluded that the overall best
performance is achieved using the latter method.

A subtraction approach for the modelling of a mathematical dipole in FE-
based source analysis is widely suggested [3,1,29,13,23,33]. All proposed ap-
proaches have in common that the total potential is divided into an analyt-
ically known singularity potential and a singularity-free correction potential
which can then be approximated numerically using an FE approach. In [33],
we give a theoretical insight into the subtraction approach. A proof is given
for existence and uniqueness of the weak solution in the function space of
zero-mean potential functions and convergence properties of the FE-approach
to the correction potential are stated. In this article, a projected subtraction
method is proposed where the singularity potential is projected in the FE
space. This approach is shown to perform well in a three-compartment (skin,
skull, brain) sphere model with anisotropic skull compartment provided that
the so-called source eccentricity is limited to 95%. The eccentricity is generally
defined as the percent ratio of the distance between the source location and
the model midpoint divided by the radius of the inner sphere. When consider-
ing a three-shell model, 95% eccentricity seems reasonable because the dipoles
that are located in the cortex will have an eccentricity even lower than 92%
as reported in [13].

However, the three-compartment model of the head ignores the cerebrospinal
fluid (CSF) compartment between the cortex and the skull. The CSF has a
much higher conductivity than the brain compartment [2]. Additionally. it is
shown to have a significant influence on the forward problem [21,31]. In four-
compartment models, this layer is taken into account, but source eccentricity
then has to be determined with regard to the inner CSF surface, i.e., the most
eccentric sources are only 1 or 2mm apart from the next conductivity discon-
tinuity. Therefore, eccentricities of more than 98% have to be examined. It is
well-known (and in [33], a theoretical reasoning is given for this fact), that with
increasing eccentricity, the numerical accuracy in sphere model validations de-
creases [3,29,13,33]. This is not only the case for the subtraction approach, but
also for the direct approach in FE modelling [38,5] and in BE modelling (see,
e.g., [8]). In [3,29,13], coarse tetrahedral meshes are considered yielding unac-
ceptably large numerical errors already at eccentricities above 90%. In [3,29],
local mesh refinement around the source is used to achieve better results.
However, with regard to the inverse problem, the setup of source-location de-
pendent locally refined meshes is difficult to implement and time-consuming
to compute and thus might not be practicable for an inverse source analysis.

In this paper, we propose a so-called full subtraction approach which appropri-
ately evaluates the right-hand side integral for the correction potential with
the objective of achieving highest possible convergence order for linear basis
functions. Our new approach does not need local mesh refinement around the
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source. As we will show, it therefore allows the construction of transfer ma-
trices for fast computation of the inverse problem for volume conductors with
arbitrary local (at the source position, i.e., grey matter) and remote (with
a minimal distance to the source position, i.e., white matter) conductivity
anisotropy. The transfer matrices are introduced for the projected subtraction
method in [37,33], but those developments are still limited to the modelling
of only remote anisotropy. A constrained Delaunay tetrahedralisation (CDT)
approach is used for the generation of high-quality FE meshes, while former
studies are limited to ordinary Delaunay tetrahedralisation [33]. We validate
the new approach in a four-layer sphere model with anisotropic skull compart-
ment and sources up to 1mm below the CSF compartment. We compare the
accuracy of our new method with the projected subtraction approach from [33]
and the literature. It will be shown that the combination of the full subtraction
approach with the CDT-FE meshes leads to very high accuracies.

2 The Continuous Forward Problem

The mathematical model for the numerical simulation of electric and mag-
netic fields in the human head is based on the quasistatic approximation of
Maxwell’s equations. A linearisation of these equations leads to the following
forward problem in source analysis [20,22]:

Assumption 1 Let σ : R
3 → R

3×3 be a mapping such that σ(x) is a symmet-
ric positive definite 3 × 3 matrix (the electric conductivity depending on x),
and let Ω ⊂ R

3 be a bounded polygonal domain (the head). For each y ∈ Ω a
vector M(y) ∈ R

3 (the current dipolar moment) is given.

Notation 2 (1) We denote the divergence of a function f : Ω → R
3 by

divf(x) :=
3

∑

j=1

∂jf(x).

(2) The gradient of a function f : Ω → R is the vector

∇f(x) := (∂1f(x), ∂2f(x), ∂3f(x)).

(3) By n(x) we denote the outer unit normal of Ω at the point x ∈ ∂Ω.

Definition 3 (The continuous forward problem) The forward problem in
source analysis is to find for each primary current density function

f = f y, f y(x) = divM(y)δ(x − y), y ∈ Y ⊂ Ω, M(y) ∈ R
3, (1)

a solution for the electric potential u (in an appropriate space) such that
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div σ(x) ∇u(x) = f(x) for a.e. x ∈ Ω, (2)

〈σ(x)∇u(x), n(x)〉=0 for a.e. x ∈ ∂Ω,
∫

Ω

u(x)dx =0.

Here δ denotes the Dirac delta distribution and 〈·, ·〉 the inner product.

In order to understand the difficulties of a discretisation of the forward problem
we consider a simple example where the solution is known analytically.

Example 4 Let y ∈ Ω. For the case Ω = R
3 (unbounded!) and σ(x) ≡ σ(y)

for all x ∈ Ω, the solution u∞,y for the right-hand side f y of (2) is

u∞,y(x) :=
1

4π
√

det σ(y)

〈M(y), σ(y)−1(x − y)〉

〈σ(y)−1(x − y), x − y〉3/2
. (3)

At infinity (x → ∞) it fulfills the Neumann boundary conditions. The singu-
larity of u∞,y at x = y is of order 2, so that u∞,y does not belong to H1(Ω)
(refer, e.g., to [4] for a definition of the function spaces), not even L2(Ω). In
order to resolve the singularity in the discretisation, one would have to include
special singular basis functions or use a locally refined grid.

In the following, we will derive a continuous formulation where the singularity
in the right-hand side is removed so that standard discretisation techniques
are applicable.

3 Full Subtraction Approach and Finite Element Discretisation

In order to apply a finite element discretisation, we have to reformulate the
problem, because neither the right-hand side f nor the solution u allow for
a good approximation by standard finite elements. Moreover, the variational
formulation would require an integration by parts (Gauß integral theorem,
resp. Green’s identity), which might not be applicable for general functions
like u that are not in H1(Ω).

Definition 5 (Continuous subtraction forward problem) Let u∞,y de-
note the solution defined in (3). The subtraction forward problem is to find for
each

f = f y, f y(x) = divM(y)δ(x − y),

a solution ucorr,y (in an appropriate space) such that
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div σ(x) ∇(ucorr,y(x) + u∞,y(x)) = f(x) for a.e. x ∈ Ω, (4)

〈σ(x)∇(ucorr,y(x) + u∞,y(x)), n(x)〉=0 for a.e. x ∈ ∂Ω,
∫

Ω

(ucorr,y(x) + u∞,y(x))dx =0.

Equation (4) can be written in the form

div σ(x) ∇ucorr,y(x) = div (σ(y) − σ(x)) ∇u∞,y(x) for a.e. x ∈ Ω,(5)

〈σ(x)∇ucorr,y(x), n(x)〉=−〈σ(x)∇u∞,y(x), n(x)〉 for a.e. x ∈ ∂Ω,
∫

Ω

ucorr,y(x)dx =−
∫

Ω

u∞,y(x)dx.

In order to remove the singularities in the right-hand side of (5), we need the
assumption that the difference σ(y) − σ(x) vanishes in a ball around y.

Assumption 6 Let ε > 0 s.t. for every y ∈ Y , the tensor σ(x) is constant in
a small ball

Ωy
ε := {x ∈ Ω | ‖x − y‖2 < ε} ⊂ Ω

around y.

Lemma 7 Using the Assumption 6, the right-hand side

div(σ(y) − σ(x)) ∇u∞,y(x)

in (5) belongs to L2(Ω).

Proof: Let u∞,y denote a smooth extension of u∞,y for all x ∈ Ω \ Ωy
ε . Then,

(σ(y) − σ(x))∇u∞,y(x) = (σ(y) − σ(x))∇u∞,y(x) ∀x ∈ Ω \ Ωy
ε

holds. The function u∞,y is smooth in Ω \ Ωy
ε so that div(σ(y) − σ(x))∇u∞,y

is smooth in Ω \Ωy
ε . Hence u∞,y is smooth in Ω \Ωy

ε . With the assumption 6,
it is

(σ(y) − σ(x))∇u∞(x) = 0 ∀x ∈ Ωy
ε .

Therefore u∞,y is in L2(Ω).
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Assumption 8 Let V ⊂ H1(Ω) be an infinite space and let VN ⊂ V be an
N-dimensional subspace of V .

The role of VN is that of a finite element space, e.g. piecewise polynomials up
to a certain degree. The space V might, due to higher regularity assumptions,
be H1+ε(Ω) with ε ∈]0, 1[.

Now we can apply the Gauß integral theorem

∫

Ω

v(x)divσ(x)∇u(x)dx =−
∫

Ω

〈∇v(x), σ(x)∇u(x)〉dx

+
∫

∂Ω

v(x)〈n(x), σ(x)∇u(x)〉dx

and arrive at the variational formulation that is suitable for a finite element
discretisation.

Definition 9 (Analytical forward problem) For an arbitrary mapping α :
Ω → R

3×3 we define the bilinear form

aα : V × V → R, aα(u, v) :=
∫

Ω

〈α(x)∇u(x),∇v(x)〉dx.

The analytical forward problem is to find ucorr,y ∈ V s.t.

∀v ∈ V : aσ(ucorr,y, v)= aσ(y)−σ(u∞,y, v) −
∫

∂Ω

v(x)〈n(x), σ(y)∇u∞,y(x)〉dx,

∫

Ω

ucorr,y(x)dx =−
∫

Ω

u∞,y(x)dx.

In [33, section 3.5], it is shown that a unique solution of the analytical forward
problem exists and the solution ucorr,y belongs to H1(Ω).

Definition 10 (Finite element forward problem) The finite element for-
ward problem is to find uN ∈ VN s.t.

∀v ∈ VN :

aσ(uN , v)= aσ(y)−σ(u∞,y, v) −
∫

∂Ω

v(x)〈n(x), σ(y)∇u∞,y(x)〉dx,

∫

Ω

uN(x)dx =−
∫

Ω

u∞,y(x)dx.
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Let τ = {τ1, . . . , τT} be a triangulation of the polygonal domain Ω into tetra-
hedra τi. For the finite element space VN we use standard conforming linear
elements, i.e. VN = {v ∈ V | v|τi

affine ∀i = 1, . . . , T}. Let span {ϕi | i ∈ I}
denote the standard Lagrange basis of VN using local basis functions ϕi,
i ∈ I, #I = N . By ξi we denote the Lagrange point of the FE basis function
ϕi.

The linear system to be solved is

Ku = b, (6)

where the entries of the stiffness matrix K and right-hand side b are

Ki,j := aσ(ϕj, ϕi),

bi :=
∫

Ω

〈(σ(y) − σ(x))∇u∞,y(x),∇ϕi(x)〉dx (7)

−
∫

∂Ω

ϕi(x)〈n(x), σ(y)∇u∞,y(x)〉dx. (8)

The discrete solution is

uN(x) =
∑

i∈I

uiϕi(x).

The gradient of u∞,y is

∇u∞,y(x) =
1

4π
√

det σ(y)
·

σ(y)−1M(y)

〈σ(y)−1(x − y), x − y〉3/2

−
1

4π
√

det σ(y)
·
3〈M(y), σ(y)−1(x − y)〉σ(y)−1(x − y)

〈σ(y)−1(x − y), x − y〉5/2
.

Remark 11 (1) The term ∇ϕi is constant for linear elements. Thus, entries
of K can be computed easily.

(2) The entries of the right-hand side need to be accurate enough in order to
preserve the finite element convergence. Since we project the correction
potential into the space VN of piecewise linear elements, it is sufficient
to have a perturbation of size O(h2) which is achieved by a second order
accurate quadrature formula. In the numerics section we will verify that
this order is necessary and sufficient to produce a negligible quadrature
error.
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(3) We assemble the first term of bi element-wise where each element con-
tributes to O(1) entries. For x → y the integral even vanishes, cf. As-
sumption 6. The second term involves the normal vector and the basis
function itself. Thus, we need a quadrature formula that resolves ∇u∞,y

at the boundary (where it is very smooth) and that is accurate for lin-
ear functions. Again, a second order quadrature formula for the surface
triangles is necessary and sufficient.

In [33], a projected subtraction approach is presented where the function u∞,y

is projected in the finite element space VN by

u∞(x) ≈ u∞

N (x) =
N

∑

i=1

ϕi(x)u∞

i , u∞

i = u∞(ξi). (9)

Introducing the coefficient vector u∞ := (u∞
1 , . . . , u∞

N ), the equation system

Ku = −Kcorru∞ − Su∞,

is obtained where the matrices are defined by

Kcorr
i,j := −

∫

Ω

〈(σ(y) − σ(x))∇ϕi(x),∇ϕj(x)〉dx (10)

and

Si,j :=
∫

∂Ω

〈σ(y)∇ϕj(x), n(x)〉ϕi(x)dx. (11)

The drawback of the projected subtraction approach to compute the correction
potential is the additional approximation error by (9). We will see in the
numerical validation section that the presented full subtraction approach in
which u∞ is not approximated in the space VN , has a much higher degree of
accuracy.

4 Transfer matrix

The forward problem in EEG and MEG source analysis has to be solved for
many right-hand sides f = f y, y ∈ Y (most often several thousands). In this
case, the following assumption is necessary for an efficient computation of all
solutions.

Assumption 12 We demand that the FE mesh is the same for all right-hand
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sides f = f y, i.e., we want to avoid local mesh refinement with regard to a
specific source location.

However, the full solution vector is not required for all right-hand sides. In-
stead, only a linear transform of the function u,

Au ∈ R
m, m � N, A : V → R

m,

is of interest with m being the number of measurement sensors. In this case,
one can precompute the so-called transfer matrix

B := ÂK−1 ∈ R
m×N

where Â is the matrix representation of the linear mapping A restricted to
the finite dimensional space VN in the basis {ϕi | i ∈ I} [37] 1 . In case of
the EEG, Â is either a restriction or a surface interpolation of the potential
vector to those FE nodes which represent the EEG electrodes. In case of the
MEG, Â is the secondary flux integration matrix [37].

The full subtraction method EEG forward solution is thus obtained by

Au ≈ A(uN + u∞,y) = ÂK−1b + Âu∞,y = Bb + Âu∞,y,

a matrix-vector multiplication with the m × N transfer matrix B. The MEG
forward solution can exploit the precomputed MEG transfer matrix in a very
similar fashion for the secondary magnetic flux parts [37]. The setup of the
transfer matrix B requires m times the solution of the N×N system K. Using
an optimal method, e.g., multigrid, this can be done in O(m ·N) [10, Theorem
10.4.2]. The term Âu∞,y can be computed easily because the solution u∞,y is
given analytically and it is smooth at the boundary where the support of Â
typically lies.

The projected subtraction approach [33] leads to the transfer matrix

ÂK−1(−Kcorr − S).

This approach is only useful, if all right-hand sides f y have the same con-
ductivity at all possible cortical source positions. This means that for the
projected subtraction approach,

σ(y) = σc, σc ∈ R
3×3, σc is isotropic,

1 The transfer matrix is called lead field basis in [37]
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has to be assumed to allow for the use of the fast transfer matrix approach
because the entries of the matrices Kcorr and S in equations (10), (11) de-
pend on the conductivity at the dipole position. In contrast, the conductivity
for different source positions might vary for the presented full subtraction ap-
proach. This is a further advantage of the full subtraction approach, since the
cortex is sometimes referred to be a slightly anisotropic conductor (see the
discussion section).

5 Influence Matrix

Most inverse EEG and MEG source analysis algorithms are based on precom-
puted forward solutions for a set of anatomically and physiologically mean-
ingful sources, i.e., right-hand sides (f y)y∈Y . It is then advantageous to pre-
compute the so-called influence matrix

L ∈ R
m × #Y ,

whose entry Li,y is the forward computed field for source y at sensor i. The
influence matrix can be computed by

(1) multiplying each right-hand side by with the transfer matrix B in O(mN#Y )
and each analytic solution u∞,y by Â, or

(2) multiplying each row of the transfer matrix B (from the left) by the
matrix

R ∈ R
N×#Y , Ri,y := by

i

of right-hand sides (and adding the term Âu∞,y). The complexity for
the naive approach would again be O(mN#Y ). However, the matrix R
can be cast into the H-matrix format [37] so that each matrix-vector
multiplication is of complexity O(N log N). The multiplication Âu∞,y

can as well be performed after casting the right-hand sides u∞,y into the
H-matrix format. Hence, the total complexity reduces in this case to

O(mN log N).
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6 Validation and numerical experiments

6.1 Analytical solution in an anisotropic multilayer sphere model

De Munck and Peters [6] derive series expansion formulas for a mathemat-
ical dipole in a multilayer sphere model, denoted here as the ”analytical
solution”. A rough overview of the formulas will be given in this section.
The model consists of S shells with radii rS < rS−1 < . . . < r1 and con-
stant radial, σrad(r) = σrad

j ∈ R
+, and constant tangential conductivity,

σtang(r) = σtang
j ∈ R

+, within each layer rj+1 < r < rj. It is assumed that
the source at position x0 with radial coordinate r0 ∈ R is in a more interior
layer than the measurement electrode at position xe ∈ R

3 with radial coor-
dinate re = r1 ∈ R. The spherical harmonics expansion for the mathematical
dipole (1) is expressed in terms of the gradient of the monopole potential to the
source point. Using an asymptotic approximation and an addition-subtraction
method to speed up the series convergence yields

u
ana

(x0, xe) =
1

4π
〈M, S0

xe

re
+ (S1 − cos ω0eS0)

x0

r0
〉

with ω0e being the angular distance between source and electrode, and with

S0 =
F0

r0

Λ

(1 − 2Λ cosω0e + Λ2)3/2
(12)

+
1

r0

∞
∑

n=1

{(2n + 1)Rn(r0, re) − F0Λ
n}P ′

n(cos ω0e)

and

S1 = F1
Λ cos ω0e − Λ2

(1 − 2Λ cosω0e + Λ2)3/2
(13)

+
∞
∑

n=1

{(2n + 1)R′

n(r0, re) − F1nΛn}Pn(cos ω0e).

The coefficients Rn and their derivatives, R′
n, are computed analytically and

the derivative of the Legendre polynomials, Pn, are determined by means of
a recursion formula. We refer to [6] for the derivation of the above series of
differences 2 and for the definition of F0, F1 and Λ. Here, it is only important

2 The following is a result of a discussion with J.C. de Munck: While constants in
formulas (71) and (72) in the original paper [6] have to be flipped, our versions of
S0 and S1 in Equations (12) and (13) are correct.
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that the latter terms are independent of n and that they can be computed
from the given radii and conductivities of layers between source and electrode
and of the radial coordinate of the source. The computations of the series (12)
and (13) are stopped after the k-th term, if the following criterion is fulfilled

tk
t0

≤ υ, tk := (2k + 1)R′

k − F1kΛk. (14)

In the following simulations, a value of 10−6 is chosen for υ in (14). Using
the asymptotic expansion, no more than 30 terms are needed for the series
computation at each electrode.

6.2 Numerical quadrature and FE solver

Table 1
Quadrature formulas of Stroud [28] for the volume integral from Equation (7) and
the surface integral from Equation (8) .

Formula degree number integration points Reference

Volume integral from Equation (7)

Tn : 1 − 1 1 1 [28, Chapter 8.8, p.307]

Tn : 2 − 1 2 n + 1 [28, Chapter 8.8, p.307]

T3 : 7 − 1 7 64 [28, Chapter 8.8, p.315]

Surface integral from Equation (8)

Tn : 1 − 1 1 1 [28, Chapter 8.8, p.307]

Tn : 2 − 1 2 n + 1 [28, Chapter 8.8, p.307]

T2 : 7 − 1 7 16 [28, Chapter 8.8, p.314]

For the numerical integration of the right-hand side (7), (8), we use quadrature
formulas of Stroud [28]. As shown in Table 1, the overall numerical accuracy
of the full subtraction approach will be evaluated for quadrature orders of 1,
2 and 7. Our notation in Table 1 closely follows the one of the tables in [28].
Tn indicates an n-dimensional simplex [28, Chapter 7.8] (in our case: n = 3).

We employ an algebraic multigrid preconditioned conjugate gradient (AMG-
CG) method for solving the linear system (6). We solve up to a relative error
of 10−8 in the controllable KN−1K-energy norm (with N−1 being one V-cycle
of the AMG) [34,9].
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6.3 Error criteria

We compare numerical solutions with analytical solutions using three error
criteria that are commonly evaluated in source analysis [14,3,29,13,23,33]. The
relative (Euclidean) error (RE) is defined as

RE = ||unum − uana||2/||u
ana||2,

where uana, unum ∈ R
m denote the analytical and the numerical solution vector,

resp., at m measurement electrodes. In order to better distinguish between the
topography (driven primarily by changes in dipole location and orientation)
and the magnitude error (indicating changes in source strength), Meijs et
al. [14] introduced the relative difference measure (RDM)

RDM =

√

√

√

√

m
∑

i=1

(uana

i /||uana||2 − unum

i /||unum||2)
2

(for zero-mean data holds 0 ≤ RDM ≤ 2 [23]) and the magnification factor
(MAG)

MAG = ||unum||2/||u
ana||2

(minimal error: MAG = 1), respectively.

6.4 Validation platform

Table 2
Parameterisation of the anisotropic four layer sphere model.

Medium Scalp Skull CSF Brain

Outer shell radius 92mm 86mm 80mm 78mm

Tangential conductivity 0.33S/m 0.042S/m 1.79S/m 0.33S/m

Radial conductivity 0.33S/m 0.0042S/m 1.79S/m 0.33S/m

The validation of the presented full subtraction approach is carried out in a
four compartment sphere model with anisotropic skull compartment, whose
parameterisation is shown in Table 2. For the choice of these parameters, we
closely followed [11,13].

The numerical forward solution is validated by means of the corresponding
analytic solution for dipoles located on the y axis at depths of 0% to 98.7%
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(in 1mm steps) of the brain compartment (78mm radius) using both radial
and tangential dipole orientations. Eccentricity is defined here as the percent
ratio of the distance between the source location and the model midpoint
divided by the radius of the inner sphere (78mm radius). The most eccentric
source considered is thus only 1mm below the CSF compartment. Tangential
sources are oriented in the +z axis and radial dipoles in the +y axis. The
dipole amplitudes are chosen to be 1nAm.

To achieve error measures which are independent of the specific choice of the
sensor configuration, we distribute electrodes in a most-regular way over a
given sphere surface. In this way we generate a 748 electrode configuration on
the surface of the outer sphere.

6.5 Tetrahedral mesh generation.

The FE meshes of the four layer sphere model are generated by the software
TetGen [25] which uses a Constrained Delaunay Tetrahedralisation (CDT)
approach [27]. The meshing procedure starts with the preparation of a suitable
boundary discretisation of the model. To begin with, for each of the four layers
and for a given triangle edge length, nodes are distributed in a most-regular
way and connected through triangles. This yields a valid triangular surface
mesh for each of the four layers. Meshes of different layers are not intersecting
each other. The CDT approach is then used to construct a tetrahedralisation
conforming to the surface meshes. It first builds a Delaunay tetrahedralisation
of the vertices of the surface meshes. It then uses a local degeneracy removal
algorithm combining vertex perturbation and vertex insertion to construct a
new set of vertices which includes the input set of vertices. In the last step, a
fast facet recovery algorithm is used to construct the CDT [27].

This approach is combined with two further constraints to the size and shape
of the tetrahedra. The first constraint can be used to restrict the volume
of the generated tetrahedra in a certain compartment, the so-called volume
constraint. The second constraint is important for the generation of quality
tetrahedra. If R denotes the radius of the unique circumsphere of a tetra-
hedron and L its shortest edge length, the so-called radius-edge ratio of the
tetrahedron can be defined as

Q =
R

L
.

The radius-edge ratio can distinguish almost all badly-shaped tetrahedra ex-
cept one type of tetrahedra, so-called slivers. A sliver is a very flat tetrahedron
which has no small edges, but can have arbitrarily large dihedral angles (close
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Fig. 1. Cross-section of the tetrahedral mesh tet360K of the four compartment
sphere model. Visualisation is done using Tetview [26].

to π). For this reason, an additional mesh smoothing and optimization step is
used to remove the slivers and improve the overall mesh quality.

Table 3
The number of nodes and elements of the three tetrahedra models used for numerical
accuracy tests.

Model Nodes Elements

tet360K 360, 056 2, 165, 281

tet287K 287, 217 1, 712, 360

tet39K 38, 928 229, 311

In Table 3, the number of nodes and elements of the three tetrahedral meshes
are shown which will be used for numerical accuracy tests. The tetrahedral
mesh tet360K of the four compartment sphere model is shown in Figure 1. For
this model, we distribute 31,680 nodes on each of the four surfaces for the CDT
procedure. We allow for a maximal radius-edge ratio of Q = 1.2. The volumes
of the tetrahedra in the compartments skin, skull and CSF are furthermore
restricted correspondingly to the chosen surface triangle edge length. As it can
be observed in Figure 1, no volume constraint is used for the brain layer since
for this compartment, the entries of the volume integral (7) are zero ((σ(y)−
σ(x)) = 0 for all x in the brain compartment) so that a coarse resolution
will not spoil the overall numerical accuracy, but reduce the computational
amount of work.
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6.6 Validation results in anisotropic four layer sphere model

6.6.1 Evaluation with regard to right-hand side quadrature order
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Fig. 2. Relative error for tangentially (left) and radially (right) oriented dipoles with
quadrature orders of 1,2 and 7: Model tet39K (top row), tet287K (middle row) and
tet360K (bottom row). Note the different scaling for the RE.

In the first study, we compare the numerical accuracy of the presented full
subtraction approach for quadrature formulas with different integration or-
der for the right-hand side (7), (8). The goal of this study is to verify that
second order integration formulas are necessary and sufficient as stated in
Remark 11. Figure 2 shows the relative errors between the numerical and the
quasi-analytical solutions for tangential (left column) and radial sources (right
column) for the models tet39K (top row), tet287K (middle row) and tet360K

(bottom row) from Table 3. The different quadrature orders of 1, 2 and 7 are
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represented with different labels in the figure. Especially for eccentric sources,
the integration order 1 performs worse than order 2. This shows the necessity
of second order integration. Second order integration is also sufficient since the
difference between order 2 and 7 in Figure 2 is not visible (models tet287K

and tet360K) or very small (model tet39K) and, in any case, not worth the
much larger computational amount of work for the higher quadrature order.

6.6.2 Evaluation with regard to mesh resolution

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

RE

Tangential sources, quadrature order 2 

tet39k
tet287k
tet360k

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1
RE

Radial sources, quadrature order 2

tet39k
tet287k
tet360k

Fig. 3. Relative error for the FE meshes of Table 3 and quadrature order 2 for
tangentially (left) and radially oriented dipoles (right).
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Fig. 4. RDM (left) and MAG errors (right) for model tet360K for tangentially and
radially oriented dipoles.

In the second study, we evaluate the numerical errors with regard to the resolu-
tion of the FE discretisation. Following the results of Section 6.6.1, a quadra-
ture order of 2 is used for the integration of the right-hand side. Figure 3
shows the RE for the three models of Table 3 for tangentially (left) and ra-
dially oriented dipoles (right). A clear convergence can be observed, i.e., the
RE decreases over all eccentricities with increasing mesh resolution. The accu-
racy increase is especially distinct for eccentric sources. With the finest model
tet360K, we are able to decrease the maximal RE over all eccentricities and
source orientations to a value of 0.71% for the most eccentric radial source
1mm below the CSF compartment. Figure 4 shows the corresponding RDM
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and MAG errors for the finest model tet360K. The largest topography error
is an RDM of 0.34% and the largest magnitude error a MAG of 0.3%.

6.6.3 Comparison of projected and full subtraction approach
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Fig. 5. Comparison between the presented full subtraction approach and the pro-
jected subtraction approach from [33] with regard to the relative error for tangential
(left) and radial sources (right): Model tet39K (top row), tet287K (middle row) and
tet360K (bottom row).

In a last study, we compare the presented full subtraction approach with the
projected subtraction method from [33]. Figure 5 shows the RE for tangential
(left column) and radial sources (right column) for the models tet39K (top
row), tet287K (middle row) and tet360K (bottom row) from Table 3. It can
be summarized that the presented full subtraction approach is a major step
forward with regard to accuracy for all examined mesh resolutions, which
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is especially prominent for eccentric sources. For the finest model tet360K
(bottom row), the largest RE of 5% for the projected subtraction approach is
reduced by more than a factor of 7 to a maximal RE of 0.71% for the presented
full subtraction approach.

7 Discussion and conclusion

We present theory and numerical experiments of a full subtraction approach to
model a mathematical dipole in finite element (FE) method based electroen-
cephalography (EEG) source reconstruction. Since the magnetoencephalogra-
phy (MEG) forward problem is also based on the computed electric potential
(see, e.g., [37]), our method is directly applicable to MEG source analysis.
We embed the approach for the computation of the correction potential in
the general FE convergence theory and find that under the assumption of
higher regularity than H1, i.e., H1+ε(Ω) with ε ∈]0, 1[, it might be important
to integrate the right-hand side of the differential equation for the correction
potential with a quadrature order of 2 for achieving highest possible accuracy.

We validate our implementation of the method in a four-compartment sphere
model with anisotropic skull layer. In the numerical experiments, we find that
second order integration is necessary and sufficient, as the theory predicts.
The evaluation of the convergence order is a difficult task because the con-
vergence constant is strongly depending on the distance of the source to the
next conductivity discontinuity (a theoretical reasoning for this fact is given
in [33]). Furthermore, our quasi-analytical formulas are currently limited to
measurement points with larger radial location components than the source.
Consequently, error-norms of the entire numerical potential solution could
not yet be computed. However, with regard to the EEG inverse problem, an
evaluation of the numerical accuracy at the surface electrodes seems to be
sufficient. Our new approach is shown to converge, i.e., with increasing mesh
size, numerical errors decrease. We consider it to be very progressive that the
full subtraction method yields a maximal relative error (RE) of 0.71% over all
source eccentricities for sources up to 1mm below the CSF compartment for
the finest of the examined high-quality constrained Delaunay tetrahedralisa-
tion (CDT) FE meshes with 360K nodes which is not locally refined around the
source singularity: maximal examined eccentricity of 98.7%, maximal relative
difference measure (maxRDM): 0.34%, maximal magnification factor (max-
MAG): 0.3%. Schimpf et al. [23] investigate an FE subtraction approach in
a four layer sphere model with isotropic skull and sources up to 1mm below
the CSF compartment. In their article, a regular 1mm cube model is used
(thus a much higher FE resolution) and a maxRDM of 7% and a maxMAG
of 25% is achieved. In a locally refined (around the source singularity) tetra-
hedral mesh with 12,500 nodes of a four layer sphere model with anisotropic
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skull and first order FE basis functions, Bertrand et al. [3] report numerical
accuracies up to a maximal eccentricity of 97.6%. A maximal RDM of above
20% and a maximal MAG up to 70% are documented for the most eccentric
source. Van den Broek [29] also uses a locally refined (around the source sin-
gularity) tetrahedral mesh with 3,073 nodes of a three layer sphere model with
anisotropic skull. For the maximal examined eccentricity of 94.2%, an RDM
of up to 50% is given. It is mentioned in the conclusion that in some cases the
accuracy can not further be improved by adding points globally as the numer-
ical stability of the matrix equation that is to be solved is reduced. Marin et
al. [13] use second order FE basis functions, but their finest tetrahedral mesh of
87,907 nodes is restricted to eccentricities of 81% in order to reach a sufficient
accuracy for radial dipole forward solutions in a three compartment sphere
model with anisotropic skull. Awada et al. [1] implement a 2D subtraction
approach and compare its numerical accuracy with a direct potential method
in a 2D sphere model. A direct comparison with our results is therefore diffi-
cult, but the authors conclude that the subtraction method is generally more
accurate than the direct approach. In a direct comparison with the projected
subtraction approach from [33], we find that the new method is by an order
of magnitude more accurate for dipole sources close to the next conductivity
discontinuity. The fact that, in a realistic head model, most sources of interest
have eccentricities between 50% and 98% shows the importance of our results.

Besides its higher accuracy, the possibility of also modelling cortical anisotropy
in combination with the efficient transfer matrix approach might be a further
advantage of the full subtraction approach when compared to the projected
subtraction approach from [33], since the cortex is sometimes referred to be a
slightly anisotropic conductor [39,19]. There is a strong debate about cortical
anisotropy since DTI measurements rather show that the grey matter is an
isotropic compartment [24]. However, at least the infant grey matter might be
slightly anisotropic because of yet less developed synaptic connections to the
cortical pyramidal cells. Furthermore, it is shown that even slight degrees of
cortical anisotropy might already have a large influence on the forward EEG
and MEG modelling accuracy [12,36]. In subsequent studies, we will perform
profound comparisons of the full subtraction approach with direct potential
methods in locally and remotely anisotropic volume conductors.
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A. Rienäcker, The properties of source localization of epileptiform activity using
advanced headmodelling and source reconstruction, Brain Top. 10 (4) (1998)
283–290.

[31] C. Wolters, A. Anwander, D.Weinstein, M.Koch, X.Tricoche, R.S.MacLeod,
Influence of tissue conductivity anisotropy on EEG/MEG field and return
current computation in a realistic head model: A simulation and visualization
study using high-resolution finite element modeling., NeuroImage 30 (3) (2006)
813–826, http://dx.doi.org/10.1016/j.neuroimage.2005.10.014.

[32] C. Wolters, J. de Munck, Volume conduction, Encyclopedia of Computational
Neuroscience, Scholarpedia. http://www.scholarpedia.org, (2007) invited
review.
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2.9 Comparison of solver times and dipole modeling ac-
curacy for the FEM based EEG forward and inverse
problem

2.9.1 Accuracy and time comparison for different potential approaches
and iterative solvers for the FEM based EEG forward problem
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Abstract

Accuracy and run-time play an important role in medical diagnostics and research as well as
in the field of neuroscience. In Electroencephalography (EEG) source reconstruction, a current
distribution in the human brain is reconstructed noninvasively from measured potentials at the
head surface (the EEG inverse problem). Numerical modeling techniques are used to simulate
head surface potentials for dipolar current sources in the human cortex, the so-called EEG
forward problem.

In this paper, the efficiency of algebraic multigrid (AMG), incomplete Cholesky (IC) and
Jacobi preconditioners for the conjugate gradient (CG) method are compared for iteratively
solving the finite element (FE) method based EEG forward problem. The interplay of the three
solvers with a full subtraction approach and two direct potential approaches, the Venant and
the partial integration method for the treatment of the dipole singularity is examined. The
examination is performed in a four-compartment sphere model with anisotropic skull layer,
where quasi-analytical solutions allow for an exact quantification of computational speed versus
numerical error. Specifically-tuned constrained Delaunay tetrahedralization (CDT) FE meshes
lead to high accuracies for both the full subtraction and the direct potential approaches. Best
accuracies are achieved by the full subtraction approach if the homogeneity condition is fulfilled.
It is shown that the AMG-CG achieves an order of magnitude higher computational speed than
the CG with the standard preconditioners with an increasing gain factor when decreasing mesh
size. Our results should broaden the application of accurate and fast high-resolution FE volume
conductor modeling in source analysis routine.

Key words: electroencephalography, source reconstruction, finite element method, dipole singularity,
full subtraction potential approach, Venant potential approach, partial integration potential approach,
preconditioned conjugate gradient method, algebraic multigrid, incomplete Cholesky, Jacobi,
constrained Delaunay tetrahedralization, anisotropic four-layer sphere model.
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1. Introduction

Electroencephalography (EEG) based source reconstruction of cerebral activity (the
EEG inverse problem) is an important tool both in clinical practice and research [34],
and in cognitive neuroscience [2]. Methods for solving the inverse problem are based on
solutions to the corresponding forward problem, i.e., the simulation of EEG potentials
for a given primary source in the brain using a volume-conduction model of the human
head. While the theory of this forward problem is well established and many numerical
implementations exist, there remain unresolved questions regarding the accuracy and
efficiency of contemporary approaches. In this study, we compared a range of numerical
techniques and source representation approaches and have shown that careful choice of
both are critical in order to solve realistic electroencephalographic forward (and inverse)
problems.

The general approach for solving bioelectric field problems under realistic conditions is
well established. All quantitative solutions for the EEG forward problem are based on the
quasi-static Maxwell equations [25]. The primary sources are electrolytic currents within
the dendrites of the large pyramidal cells of activated neurons in the human cortex. Even
if there are also smoother models [32], most often the primary sources are formulated as a
mathematical point current dipole [25,6,18]. The finite element (FE) method is often used
for the solution of the forward problem, because it allows for a realistic representation
of the complicated head volume conductor with its tissue conductivity inhomogeneities
and anisotropies [40,3,1,33,4,15,20,36,26,38,7].

To implement the point current dipole as a current source in the brain, the FE method
requires careful consideration of the singularity of the potential at the source position.
One way to address the singularity is to use a “subtraction approach”, which divides
the total potential into an analytically known singularity potential and a singularity-
free correction potential, which can then be approximated numerically using an FE ap-
proach [3,1,33,15,26,38,7]. For the correction potential, the existence and uniqueness for a
weak solution in a zero-mean function space have been proven and FE convergence prop-
erties are known [38]. It has also been established that a full subtraction approach [7]
leads to an order of magnitude more accurate solution than a common alternative, the
projected subtraction approach [38], especially when considering sources that are close to
a conductivity inhomogeneity. Another family of source representation methods, known
as direct FE approaches to the total potential [40,1,4,36,26], are computationally less
expensive, but also mathematically less sound under the assumption that a point dipole
is the more realistic source model.

∗ Corresponding author. Institut für Biomagnetismus und Biosignalanalyse, Westfälische Wilhelms-
Universität Münster, Malmedyweg 15, 48149 Münster, Germany, Tel.: +49/(0)251-83-56904, Fax:
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thomas.dierkes@uni-muenster.de (T. Dierkes), c.roeer@uni-muenster.de (C. Röer),
macleod@sci.utah.edu (R.S. MacLeod).
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Another general prerequisite for FE modeling of bioelectric fields is the generation of
a mesh that represents the geometry and electric properties of the volume conductor.
An effective meshing strategy will balance acceptable forward problem accuracy against
reasonable computation times and memory usage. Very high accuracies can be achieved
by making use of a Constrained Delaunay Tetrahedralization (CDT) in combination
with a full subtraction approach [7]. Adaptive methods, using local refinement around
the source singularity [3,33], are another potential utility but they preclude the use of
fast transfer matrices [36,8,39,11] and lose efficiency in solving the inverse problem (see
discussion section).

Solving the forward problem is rarely the ultimate goal in calculating bioelectric fields
but rather a step towards solving the associated inverse problem. Thus the quest for
numerical accuracy and efficiency of the forward solution requires some anticipation of
the ultimate use in inverse solutions. The longtime state-of-the-art approach has been to
solve an FE equation system for each anatomically and physiologically meaningful dipo-
lar source (each source results in one FE right-hand side (RHS) vector) [3,1,33,4,15]. The
use of standard direct (banded LU factorization for a 2D source analysis scenario [1]) or
iterative (Conjugate Gradient (CG) without preconditioning [3] or Successive OverRelax-
ation (SOR) [26]) FE solver techniques limit the overall resolution of the geometric model
because of their computational cost. The preconditioned CG method was used with stan-
dard preconditioners like Jacobi (Jacobi-CG) [36] or incomplete Cholesky without fill-in,
IC(0)-CG [4].

One recent approach to achieve efficient computation of the FE-based forward problem
is to pre-compute transfer matrices that encapsulate the relationship between source
locations and sensor sites based only on the geometric and conductivity characteristics
of the volume conductor, i.e., they are independent of the source. Techniques exist to
construct transfer matrices for problem formulations based on EEG [36,11] or combined
EEG and MEG [8,39]. Using this principle, for each head model, one only has to solve one
large sparse FE system of equations for each of the possible sensor locations in order to
compute the full transfer matrix. Each forward solution is then reduced to multiplication
of the transfer matrix by an FE RHS vector containing the source load. Exploiting the
fact that the number of sensors (currently up to about 600) is much smaller than the
number of reasonable dipolar sources (tens of thousands), the transfer matrix approach
is substantially faster than the state-of-the-art forward approach (i.e., solving an FE
equation system for each source) and can be applied to inverse reconstruction algorithms
in both continuous and discrete source parameter space for EEG and MEG. Still, the
solution of hundreds of large linear FE equation systems for the construction of the
transfer matrices is a major time consuming part within FE-based source analysis.

The first goal of this study was therefore to compare the numerical accuracy of the full
subtraction approach [7] with the two direct approaches using partial integration [40,1,36]
and Venant [4] in specifically-tuned CDT meshes of an anisotropic four-compartment
sphere model for which quasi-analytical solutions exist [5]. We then examine the in-
terplay of the source model approaches with three FE solver methods: a Jacobi-CG,
an incomplete Cholesky CG (e.g., [27]), and an algebraic multigrid preconditioned CG
(AMG-CG), which has already shown to be especially suited for problems with discon-
tinuous and anisotropic coefficients [23,31,22,9,37].
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2. Theory

In the quasi-static approximation of the Maxwell equations, the distribution of electric
potentials Φ in the head domain Ω of conductivity σ, resulting from a primary current jp

is governed by the Poisson equation with homogeneous Neumann boundary conditions
on the head surface Γ = ∂Ω [21,25], which we can express as

∇ · (σ∇Φ) = ∇ · jp = Jp in Ω, 〈σ∇Φ,n〉 = 0 on Γ, (1)

with n the unit surface normal, and assuming a reference electrode with given potential,
i.e., Φ(xref) = 0. The primary currents are modeled by a mathematical dipole at position
x0 ∈ R

3 with moment M0 ∈ R
3 [25,6,18],

Jp = ∇ · jp (x) = ∇ · (M0δ(x− x0)) . (2)

2.1. Finite element modeling techniques for the potential singularity

One of the key questions for all three-dimensional EEG forward modeling techniques
is the appropriate treatment of the potential singularity introduced into the differential
equation by the formulation of the mathematical dipole (2). This study examined the
interplay of FE solver methods (see Section 2.2) with the solution accuracy in four-
layer sphere models applying three singularity treatment techniques: a full subtraction
approach, a partial integration direct method and a Venant direct method.

2.1.1. Full subtraction approach
The subtraction approach [3,1,38,7] splits the total potential Φ into two parts,

Φ = Φ0 + Φcorr, (3)

where the singularity potential, Φ0, is defined as the solution for a dipole in an unbounded
homogeneous conductor with constant conductivity σ0. σ0 ∈ R

3×3 is the conductivity
at the source position, which is assumed to be constant in a non-empty subdomain Ω0

around x0, in the following called the homogeneity condition. The solution of Poisson’s
equation under these conditions for the singularity potential

∇ · (σ0∇Φ0) = ∇ · jp (4)

can be formed analytically for the mathematical dipole (2) [7] as

Φ0(x) =
1

4π
√

det σ0

〈M0, (σ0)
−1(x− x0)〉

〈(σ0)−1(x− x0), (x− x0)〉3/2
. (5)

Subtracting (4) from (1) yields a Poisson equation for the correction potential

−∇ · (σ∇Φcorr) = −∇ · ((σ0 − σ)∇Φ0) in Ω, (6)

with inhomogeneous Neumann boundary conditions at the surface:

〈σ∇Φcorr,n〉 = −〈σ∇Φ0,n〉 on Γ. (7)

The advantage of (6) is that the right-hand side is free of any source singularity, because
of the homogeneity condition — the conductivity σ0 − σ is zero in Ω0. Existence and
uniqueness of the solution and FE convergence properties are shown for the correction
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potential in [38]. For the numerical approximation of the correction potential, we use
the FE method with piecewise linear basis functions ϕi. When projecting the correction

potential into the FE space, i.e., Φcorr(x) ≈ Φcorr,h(x) =
∑Nh

j=1 ϕj(x)u
[j]
corr,h, and applying

variational and FE techniques to (6) and (7), we finally arrive at a linear system [7]

Khucorr,h = j
corr,h

, (8)

with the stiffness matrix

K
[i,j]
h =

∫

Ω

〈σ∇ϕj ,∇ϕi〉dx, (9)

for Kh ∈ R
Nh×Nh , and the right-hand side vector j

corr,h
∈ R

Nh with entries

j[i]
corr,h

=

∫

Ω

〈(σ0 − σ)∇Φ0,∇ϕi(x)〉dx −
∫

∂Ω

ϕi(x)〈n(x), σ0∇Φ0(x)〉dx. (10)

We then seek for the coefficient vector ucorr,h = (u
[1]
corr,h, . . . , u

[Nh]
corr,h) ∈ R

Nh and, using
(3), compute the total potential. In [7], the theoretical reasoning and a validation in a
four-compartment sphere model with anisotropic skull is given for the fact that second
order integration is necessary and sufficient for the right-hand side integration in Equation
(10). Direct comparisons with the projected subtraction approach from [38] have shown
that the full subtraction approach is an order of magnitude more accurate for dipole
sources close to a conductivity discontinuity [7].

2.1.2. The partial integration direct approach
Multiplying both sides of Equation (1) by a linear FE basis function ϕi and integrat-

ing over the head domain leads to a partial integration direct approach for the total
potential [1,35,17] expressed as

∫

Ω

∇ · (σ∇Φ) ϕidx =

∫

Ω

∇ · jpϕidx.

Integration by parts, applied to both sides of the above equation, yields

−
∫

Ω

〈σ∇Φ,∇ϕi〉dx +

∫

Γ

〈σ∇Φ,n〉ϕidΓ = −
∫

Ω

〈jp,∇ϕi〉dx +

∫

Γ

〈jp,n〉ϕidΓ.

Using the homogeneous Neumann boundary condition from Equation (1) and the fact
that the current density vanishes on the head surface, we arrive at

∫

Ω

〈σ∇Φ,∇ϕi〉dx =

∫

Ω

〈jp,∇ϕi〉dx
(2)
= 〈M0,∇ϕi (x0)〉.

Setting Φ(x) ≈ Φh(x) =
∑Nh

j=1 ϕj(x)u
[j]
h , leads to the linear system

Khuh = j
PI,h

, (11)

with the same stiffness matrix as in (9) and the right-hand side vector j
PI,h
∈ R

Nh with

entries

j[i]
PI,h

=







〈M0,∇ϕi (x0)〉 if i ∈ NodesOfEle(x0),

0 otherwise.
(12)

The function NodesOfEle(x0) determines the set of nodes of the element which con-
tains the dipole at position x0. Note that while the right-hand side vector (10) is fully
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populated, j
PI,h

has only |NodesOfEle| non-zero entries. Here, | · | denotes the number

of elements in the set NodesOfEle. For the linear basis functions ϕi considered here,
the right-hand side (12) and thus the computed solution for the total potential in (11)
will be constant for all x0 within a finite element.

2.1.3. The Venant direct approach
To derive the Venant direct potential approach, we follow the ideas of [4] and start

from the basic relation for a dipole moment T0 ∈ R
3 at position x0 ∈ R

3, T0 =
∫

Ω
(x − x0)J

p(x)dx (see, e.g., [19, formula (2.92)]). Assuming discrete sources and sinks
on only the C neighboring FE mesh nodes to the FE node which is closest to x0, T0 =
∑C

c=1 ∆xc0j
[c]
0

with ∆xc0 denoting the vector from FE node c to source position x0.

When using higher moments T̄
r
0 ∈ R

n0+1 with n0 = 1, 2 and the Cartesian direction r
(r = x, y, z), this expression becomes

(

T̄
r
0

)[n]
=
(

T̄
r
0

)[n]
(j

0
) =

C
∑

c=1

(∆x̄r
c0)

n
j[c]
0

∀n ∈ 0, . . . , n0 (13)

(for a motivation of higher moments see [4]). The bar indicates a scaling with a reference
length aref, so that

∆x̄r
c0 = ∆xr

c0/aref

!
< 1 (14)

is dimensionless and the physical dimension of the resultant scaled nth order moment,
(

T̄
r
0

)[n]
, is that of a current (i.e., Amps). The reference length aref has to be chosen so that

∆x̄r
c0 is less than 1. The equation is well known from the Saint Venant law in mechanical

engineering — small forces in combination with long lever arms have the same effect on
the system as large forces in combination with short lever arms.

If we now define the matrix X̄r
0 ∈ R

(n0+1)×C , the moment vector M̄
r
0 ∈ R

n0+1, com-
puted from a given dipole moment vector M0, and the diagonal source weighting matrix
W̄ r

0 ∈ R
C×C by

(

X̄r
0

)[n,c]
= (∆x̄r

c0)
n

(

M̄
r
0

)[n]
= Mr

0

(

1

2aref

)n

(1− (−1)n)

W̄ r
0 = DIAG ((∆x̄r

10)
s
, . . . , (∆x̄r

C0)
s
) (15)

with s = 0 or s = 1, then we can compute the monopole load vector j
0
∈ R

C for the
Venant direct approach on the C neighboring FE nodes from a given dipole moment
vector M0 at position x0 by means of minimizing the following functional

Fλ(j
0
) = ‖M̄r

0 − T̄
r
0(j0

)‖22 + λ‖W̄ r
0 j

0
‖22 = ||M̄r

0 − X̄r
0j

0
||22 + λ‖W̄ r

0 j
0
‖22

!
= min.

The first part of the functional Fλ ensures a minimal difference between the moments of
the Venant approach T̄

r
0 and the target moments M̄

r
0, while the second part smoothes

the monopole distribution in a weighted sense and enables a unique minimum for Fλ.
The solution of the minimization problem is given by

(

(X̄r
0 )trX̄r

0 + λ(W̄ r
0 )trW̄ r

0

)

j
0

= (X̄r
0 )trM̄

r
0
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(see, e.g., [14, Theorem 4.2.1]), so that the final solution for the monopole source vector
j
0

of the Venant approach is given by

j
0

=

(

3
∑

r=1

{

(X̄r
0 )trX̄r

0 + λ(W̄ r
0 )trW̄ r

0

}

)−1 3
∑

r=1

{

(X̄r
0 )trM̄

r
0

}

. (16)

The order n0 is generally chosen as n0 = 1 or n0 = 2, where the latter imposes a
spatial concentration of loads in the dipole axis. Furthermore, s = 1 stresses the spatial

concentration of loads around the dipole. With Φ(x) ≈ Φh(x) =
∑Nh

j=1 ϕj(x)u
[j]
h , we can

derive the linear system
Khuh = j

Venant,h
(17)

with the same stiffness matrix as in (9). The right-hand side vector j
Venant,h

∈ R
N
h has

only C non-zero entries and is determined by

j[i]
Venant,h

=







j[c]
0

if ∃c ∈ {1, . . . , C} : i = glob(c),

0 otherwise
(18)

for a source at location x0. The function glob determines the global index i to each of
the local indices c.

2.2. FE solver methods

The solution of hundreds of large scale systems of equations (8), (11) or (17) with the
same symmetric positive definite (SPD) stiffness matrix (9) is the major time consuming
task of the inverse source localization process. The spectral condition of the SPD matrix
Kh is equal to

κ2(Kh) =
λmax

λmin

with λmax the largest and λmin the smallest eigenvalues, respectively, of Kh [10, §2.10].
The condition number behaves asymptotically as O(h−2) and condition numbers of more
than 107 have been computed for FE problems in EEG source analysis [37]. Large con-
dition numbers are the reason for slow convergence of common iterative solvers [10,24]
and any effective solution approach has to minimize the effects of this poor conditioning.

The Preconditioned Conjugate Gradient (PCG) iterative solver shown in Algorithm
1 (see, e.g.,[27,10,24]) can provide efficient procedures for such problems. Note that, in
theory, the convergence speed of the PCG is independent of the right-hand side j

h
of

the linear equation system [10, §3.4]. The goal of a preconditioner, Ch ∈ R
Nh×Nh , is the

reduction of κ2(C
−1
h Kh) for the preconditioned equation system C−1

h Khuh = C−1
h j

h
.

Further requirements are that it is cheap with regard to arithmetic and memory costs to
solve linear systems Chwh = rh with wh the residual for the preconditioned system.
Theorem 2.1 (Error estimate for PCG method) Let Kh and Ch be positive defi-
nite. If u∗

h denotes the exact solution of the equation system, then the k’s iterate of the
PCG method uk

h fulfills the following energy norm estimate

‖uk
h − u∗

h‖Kh
≤ ck 2

1 + c2k
‖u0

h − u∗
h‖Kh

, c :=

√

κ2(C
−1
h Kh)− 1

√

κ2(C
−1
h Kh) + 1

.
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Algorithm 1 PCG : (Kh, uh, j
h
, Ch,accuracy)→ (uh)

rh = r0

h
= j

h
−Khuh

Solve Chwh = rh

sh = wh

γ0 = γ = γold =< wh, rh >

while

(

γ/γ0 =

(

||r
h
||

C
−1

h

||r0

h
||

C
−1

h

)2

=

(

||Khe
h
||

C
−1

h

||Khe0

h
||

C
−1

h

)2

=

(

||ei

h
||

KhC
−1

h
Kh

||e0

h
||

KhC
−1

h
Kh

)2

> accuracy2

)

do

vh = Khsh

α = γ/ < sh, vh >

uh = uh + αsh

rh = rh − αvh

Solve Chwh = rh

γ =< wh, rh >

β = γ/γold , γold = γ

sh = wh + βsh

end while

Proof: Hackbusch [10, Theorem 9.4.14].

As indicated in Algorithm 1, the PCG method is stopped after the kth iteration if the
relative error, i.e., ek

h = uk
h − u∗

h in the controllable KhC−1
h Kh-energy norm is below a

given accuracy. In the following, the three different preconditioners for the CG method
are presented and their relative performances evaluated in Section 4.

2.2.1. Jacobi preconditioning or scaling
It can be shown, that the smallest (largest) eigenvalue of a symmetric matrix is at

most (at least) as large as the smallest (largest) diagonal element, so that the condition
number is at least as large as the quotient of maximal and minimal diagonal element [27,
p.258]. Diagonal entries in Kh of FE nodes from inside the skull are much smaller than
from outside (because of a jump in conductivity at each internal and external boundary).
The simplest preconditioner is thus the scaling or Jacobi-preconditioning ([24, pp.265f],
[27, pp.257f]), where

Ch := D2
h, Dh := DIAG(

√

K
[11]
h , . . . ,

√

K
[NhNh]
h ).

When splitting the Jacobi-preconditioner between left and right (row and column scal-
ing), one has to solve K̃hvh = D−1

h j
h

with K̃h = D−1
h KhD−tr

h and uh = D−tr
h vh. Row

and column scaling preserves symmetry, so that the scaled matrix K̃h is again SPD
with unit diagonal entries. The scaling may therefore lead to a first substantial condition
improvement.
Theorem 2.2 Let Kh be SPD and Ch := D2

h the Jacobi-preconditioner. Assume that
each row of Kh does not contain more than d nonzero entries. Then, for all diagonal
matrices D̃−1

h , it is

8



κ2(C
−1
h Kh) ≤ d κ2(D̃

−1
h Kh),

i.e., the chosen diagonal preconditioner is close to the optimal one.
Proof: Hackbusch [10, Theorem 8.3.3].

2.2.2. Incomplete Cholesky preconditioning
The SPD stiffness matrix Kh can be decomposed into a left triangular matrix Lh and

its transpose using the Cholesky-decomposition, Kh = LhLtr
h [27, pp.209f]. Nevertheless,

because of a large fill-in, Ch := LhLtr
h would not be appropriate as a preconditioner.

The Incomplete Cholesky (IC) preconditioner without fill-in, IC0, is defined as Ch :=
L0L

tr
0 where L0 is the Cholesky-decomposition of the scaled stiffness matrix K̃h which is

restricted to the same non-zero-pattern as the lower triangular part of K̃h. For incomplete
factorizations, the preconditioning operation Chwh = rh in Algorithm 1 is solved by a
forward-back sweep. The existence of IC0 is not necessarily guaranteed for general SPD
matrices. Therefore, a reduction of non-diagonal stiffness matrix entries has to be carried
out in certain applications before IC0 computation is possible [27, p.266]. If the scaled
stiffness matrix is decomposed by means of K̃h = Eh + Idh +Etr

h , with Eh ∈ R
Nh×Nh its

strict lower triangular part, the reduction can be formulated as

K̆h = Idh +
1

1 + ς
(Eh + Etr

h ). (19)

For sufficiently large ς ∈ R
+
0 , the existence of IC0 is guaranteed, but with increasing ς ,

the preconditioning effect decreases. Note that for certain special cases, a condition im-
provement to O(h−1) can be proven as, e.g., when using a modified ILUω-preconditioning
with ω = −1 (in the symmetric case, the ILU0 is equal to the IC0) for diagonally dominant
symmetric matrices arising from a 5-point discretization of a two-dimensional Poisson
equation (Hackbusch [10, Theorem 8.5.15 and Remarks 8.5.16,17]).

2.2.3. Algebraic multigrid preconditioning
The above preconditioning methods have the disadvantage that the convergence rate,

i.e., the factor by which the error is reduced in each iteration, is still dependent on
the mesh size h. With decreasing mesh size and thus increasing order of the equation
system, the convergence rate tends to 1 from below, so that the number of iterations
needed to achieve a given accuracy increases. For the Geometric Multi-Grid (GMG), an
h-independent convergence rate ρ < 1 and an h-independent condition number has been
proven in [10, Lemma 10.7.1,Theorem 10.7.15] as

κ2(C
−1
h Kh) ≤ 1

1− ρm
, (20)

with Ch the preconditioner resulting from m steps of the GMG method. As shown
in [12,10,31], a robust method which provides a small convergence rate for a wide class
of real-life problems is given by exploiting the MG-method as a preconditioner for the
CG method. With MG(m)-CG, we denote the MG-preconditioned CG method with m
the number of MG iterations for the CG preconditioning step. The GMG(m)-CG can
improve the convergence rate to ρ/4, if ρ is assumed to be small, as shown in [10, §10.8.3].

In contrast to GMG, in which a grid hierarchy is required explicitly, Algebraic MG
(AMG) is able to construct a matrix hierarchy and corresponding transfer operators based

9



only on the entries in Kh (see, e.g., [23,31,22,9]). It is well known that the classical AMG
method is robust for M-matrices and, with regard to our application, that small positive
off-diagonal entries are admissible [23,31,22]. The method is especially well suited for our
problem with discontinuous and anisotropic coefficients, in which an optimal tuning of
the GMG is difficult ([23, §4.1,4.6.4],[31, §4.1]). Stand-alone AMG is hardly ever optimal
as there may be some very specific error components which are reduced with significantly
less efficiency, causing a few eigenvalues of the AMG iteration matrix to be much closer to
1 than the remaining ones [31, §3.3]. In such a case, acceleration by means of using AMG
as a basis for the CG method eliminates these particular frequencies very efficiently.

As in GMG, the basic idea in AMG is to reduce high and low frequency components of
the error by the efficient interplay of smoothing and coarse grid correction, respectively.
In analogy to GMG, the denotation coarse grids will be used, although these are purely
virtual and do not have to be constructed explicitly as FE meshes. The diagonal entry
of the ith row of Kh is considered as being related to a grid point in ωh (the index set
of nodes), and an off-diagonal entry is related to an edge in an FE grid. A description of
AMG is now given for a symmetric two grid method, where h is related to the fine grid
and H to the coarse grid. Each AMG algorithm consists of the following components:

(a) Coarsening: define the splitting ωh = ωC ∪ ωF of ωh into sets of coarse and fine
grid nodes ωC and ωF , respectively.

(b) Transfer operators: prolongation Ph,H : R
NH 7→ R

Nh and its adjoint as the restric-
tion

RH,h := P tr
h,H . (21)

(c) Definition of the coarse matrix by Galerkin’s method, i.e.,

KH := RH,hKhPh,H . (22)

Because of (b), KH ∈ R
NH×NH is again SPD.

(d) Appropriate smoother for the considered problem class: In order to achieve a sym-
metric method, e.g., a forward Gauss-Seidel method for pre-smoothing and the ad-
joint, a backward Gauss-Seidel method for post-smoothing ([10, §4.8.3,§10.7.1,2],[23,
§4.4]).

[(a)—] Coarsening: The coarsening process has the task of reducing the number of
nodes such that NH = |ωC | < Nh = |ωh|. The grid points ωh can be split into two
disjoint subsets ωC (coarse grid nodes) and ωF (fine grid nodes), i.e., ωh = ωC ∪ ωF

and ωC ∩ ωF = ∅ such that there are (almost) no direct connections between any two
coarse grid nodes and such that the resulting number of coarse grid nodes is as large as
possible [31, p.12]. Instead of considering all connections between nodes as being of the
same rank, the following sets are introduced

N i
h =

{

j | |K [ij]
h | ≥ ζ|K [i,i]

h |, i 6= j
}

, (23)

Si
h =

{

j ∈ N i
h | |K [ij]

h | > coarse(i, j, Kh)
}

,

Si,T
h =

{

j ∈ N i
h | i ∈ Sj

h)
}

, (24)

where N i
h is the index set of neighbors (a pre-selection is carried out by the threshold-

parameter ζ ∈ R
+
0 ), Si

h denotes the index set of nodes with a strong connection from

10



node i and Si,T
h is related to the index set of nodes with a strong connection to node i.

In addition, coarse(i, j, Kh) is an appropriate cut-off (coarsening) function, e.g.,

coarse(i, j, Kh) := α ·max
j,j 6=i
{|K [ij]

h |} , (25)

with α ∈ [0, 1] (see, e.g., [23, §4.6.1]).

Algorithm 2 COARSE : ({Si,T

h
}, ωh)→ (ωC , ωF )

ωC ← ∅, ωF ← ∅

while ωC ∪ ωF 6= ωh do

i← Pick(ωh \ (ωC ∪ ωF ))

if |Si,T

h
|+ |Si,T

h
∩ ωF | = 0 then

ωF ← ωh \ ωC

else

ωC ← ωC ∪ {i}

ωF ← ωF ∪ (Si,T

h
\ ωC)

end if

end while

With those definitions a splitting into coarse and fine grid nodes can be achieved. For
our application, a modified splitting algorithm is used [23, §4.6] as shown in Algorithm
2. Therein, the function

i← Pick(ωh \ (ωC ∪ ωF ))

returns a node i for which the number |Si,T
h |+ |S

i,T
h ∩ ωF | is maximal. Note that tissue

conductivity inhomogeneity and anisotropy are taken into account within the coarsening
algorithm.
(b) Prolongation: To achieve prolongation, the operator Ph,H : VH 7→ Vh has to be
defined correctly. The form that turned out to be the most efficient for the presented
application was proposed in [13] and is given by

P
[ij]
h,H =











1 i = j ∈ ωC ,

1/|Si,T
h ∩ ωC | i ∈ ωF , j ∈ Si,T

h ∩ ωC ,

0 else .

(26)

After the proper definition of the prolongation and coarse grid operators, it is possible
to create in a recursive way a matrix hierarchy and an associated multigrid cycle, shown in
Algorithm 3. Therein, the variable CoarseGrid denotes the level at which a direct solver
is applied. For an m-V (νF , νB)-cycle AMG preconditioned CG method, the operation
Solve Chwh = rh in Algorithm 1 is realized by m calls of MG(Kh, wh, rh, νF , νB).

3. Methods

3.1. Validation platform

The numerical examinations of the theory presented above were carried out in a four-
layer sphere model with anisotropic skull compartment whose parameterization is shown
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Algorithm 3 V-cycle MG : (Kh, uh, j
h
, νF , νB)→ (uh)

if CoarseGrid then

uh ← DirectSolve(Khuh = j
h
)

else

uh ← νF times smooth Forward(Kh, uh, j
h
)

dh = Khuh − j
h

dH = P tr
h,H

dh

wH = 0

wH = MG(KH , wH , dH)

wh = Ph,HwH

uh = uh −wh

uh ← νB times smooth Backward(Kh, uh, j
h
)

end if

Table 1
Parameterization of the anisotropic four-layer sphere model.

Medium Scalp Skull CSF Brain

Outer shell radius 92mm 86mm 80mm 78mm

Tangential conductivity 0.33S/m 0.042S/m 1.79S/m 0.33S/m

Radial conductivity 0.33S/m 0.0042S/m 1.79S/m 0.33S/m

in Table 1. For the choice of these parameters, we closely followed [11,15]. Forward
solutions were computed for dipoles of 1 nAm amplitude located on the y axis at depths
of 0% to 98.7% (in 1 mm steps) of the brain compartment (78 mm radius) using both
radial (directed away from the center of the model) and tangential (directed parallel to
the scalp surface) dipole orientations. Eccentricity is defined here as the percent ratio of
the distance between the source location and the model midpoint divided by the radius
of the inner sphere (78 mm). The most eccentric source position considered was thus only
1 mm below the CSF compartment. To achieve error measures which were independent of
the specific choice of the sensor configuration, we distributed 748 electrodes in a regular
fashion over the outer sphere surface. All simulations ran on a Linux-PC with an Intel
Pentium 4 processor (3.2GHz) using the SimBio software environment [30].

3.2. Analytical solution in an anisotropic multilayer sphere model

De Munck and Peters [5] derived series expansion formulas for a mathematical dipole
in a multi-layer sphere model, denoted here as the analytical solution. The model consists
of S shells with radii rS < rS−1 < . . . < r1 and constant radial, σrad(r) = σrad

j ∈ R
+, and

constant tangential conductivity, σtang(r) = σtang
j ∈ R

+, within each layer rj+1 < r < rj .
It is assumed that the source at position x0 with radial coordinate r0 ∈ R is in a more
interior layer than the measurement electrode at position xe ∈ R

3 with radial coordinate
re = r1 ∈ R. The spherical harmonics expansion for the mathematical dipole (2) is
expressed in terms of the gradient of the monopole potential to the source point. Using
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an asymptotic approximation and an addition-subtraction method to speed up the series
convergence yields

φana(x0, xe) =
1

4π
〈M, S0

xe

re
+ (S1 − cosω0eS0)

x0

r0
〉

with ω0e the angular distance between source and electrode, and with

S0 =
F0

r0

Λ

(1− 2Λ cosω0e + Λ2)
3/2

+
1

r0

∞
∑

n=1

{(2n + 1)Rn(r0, re)− F0Λ
n}P ′

n(cosω0e)

(27)
and

S1 = F1
Λ cosω0e − Λ2

(1− 2Λ cosω0e + Λ2)
3/2

+

∞
∑

n=1

{(2n + 1)R′
n(r0, re)− F1nΛn}Pn(cos ω0e). (28)

The coefficients Rn and their derivatives, R′
n, are computed analytically and the deriva-

tive of the Legendre polynomials, Pn, are determined by means of a recursion formula.
We refer to [5] for the derivation of the above series of differences and for the definition
of F0, F1 and Λ. Here, it is only important that the latter terms are independent of n
and that they can be computed from the given radii and conductivities of layers between
source and electrode and of the radial coordinate of the source. The computations of the
series (27) and (28) are stopped after the k-th term if the following criterion is fulfilled

tk/t0 ≤ υ, tk := (2k + 1)R′
k − F1kΛk. (29)

In the following simulations, a value of 10−6 was chosen for υ in (29). Using the asymp-
totic expansion, no more than 30 terms were needed for the series computation at each
electrode.

3.3. Tetrahedral mesh generation.

The FE meshes of the four-layer sphere model were generated by the software Tet-
Gen [28] which used a Constrained Delaunay Tetrahedralization (CDT) approach [29].
This meshing procedure starts with the preparation of a suitable boundary discretiza-
tion of the model in which for each of the layers and for a given triangle edge length,
nodes are distributed in a regular fashion and connected through triangles. This yields
a valid triangular surface mesh for each of the layers. Meshes of different layers are not
intersecting each other. The CDT approach is then used to construct a tetrahedralization
conforming to the surface meshes. It first builds a Delaunay tetrahedralization starting
with the vertices of the surface meshes. The CDT then uses a local degeneracy removal
algorithm combining vertex perturbation and vertex insertion to construct a new set
of vertices which includes the input set of surface vertices. In a last step, a fast facet
recovery algorithm is used to construct the CDT [29].

This approach is combined with two further constraints to the size and shape of the
tetrahedra. The first constraint is important for the generation of quality tetrahedra. If
R denotes the radius of the unique circumsphere of a tetrahedron and L its shortest edge
length, the so-called radius-edge ratio of the tetrahedron can be defined as

radius− edge− ratio = R/L. (30)
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Table 2
The six tetrahedra models used for the solver time comparison and accuracy tests. The table shows

the number of nodes and elements of each mesh and factor indicates the ratio of the number of
nodes of the most highly resolved to both other models within each group. Additionally, the chosen
radius-edge-ratio (see Equation (30)), the average edge length of the four triangular surface meshes, the
corresponding volume constraint (see Equation (31)) and the compartments where the volume constraint
was not applied are indicated.

Group 1 Group 2

Model tet503K tet125K tet33K tet508K tet128K tet32K

nodes 503,180 124,624 32,509 508,435 127,847 31,627

elements 3,068,958 733,022 187,307 3,175,737 781,361 190,060

factor 1 4.04 15.48 1 3.98 16.08

radius-edge-ratio 1.0 1.0 1.1 1.0 1.0 1.1

edge (in mm) 1.75 2.7 5.2 2.42 3.9 6.87

volume (in mm3) 0.63 2.32 16.57 1.67 6.99 38.21

no volume constraint in brain brain brain / / /

The radius-edge ratio can distinguish almost all badly-shaped tetrahedra except one type
of tetrahedra, so-called slivers. A sliver is a very flat tetrahedron which has no small edges,
but can have arbitrarily large dihedral angles (close to π). For this reason, an additional
mesh smoothing and optimization step is required to remove the slivers and improve the
overall mesh quality.

A second constraint can be used to restrict the volume of the generated tetrahedra in
a certain compartment. We follow the formula for regular tetrahedra:

volume =
√

2/12 · edge3 (31)

Table 2 shows the number of nodes and elements of the six tetrahedra models used
for the solver run-time comparison and accuracy tests. factor indicates the ratio of
the number of nodes of the most highly resolved to both other models within each
group. Additionally, the table contains the chosen radius-edge-ratio (see Equation
(30)), the average edge length of the four triangular surface meshes, the corresponding
volume constraints (see Equation (31)) for the tetrahedra and the compartments where
the volume constraint is not applied. The most highly resolved meshes tet503K and
tet508K of both groups had approximately the same resolution, while the others were
chosen to have a factor of 4 coarser resolution with regard to the number of nodes. The
meshes of group 1 concentrated the nodes in the outer three compartments because no
volume constraint was applied for the inner brain compartment, while the nodes in the
meshes of group 2 were distributed in a regular way throughout all four compartments.
The meshes of group 1 were thus preferentially beneficial to the full subtraction approach,
since the entries of the volume integral in Equation (10) are zero ((σ(x)−σ0) = 0 for all x
in the brain compartment) so that a coarse resolution can be expected to have no impact
on the overall numerical accuracy, but will reduce the computational cost. In contrast,
the meshes of group 2 were beneficial to both direct potential approaches. Figure 1 shows
samples from the six tetrahedra models that were generated using the parametrizations
from Table 2.
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Group 1

tet503K tet125K tet33K

Group 2

tet508K tet128K tet32K

Fig. 1. Cross-sections of the six tetrahedral meshes of the four compartment sphere model. The corre-
sponding parametrizations of the models are shown in Table 2. Visualization was done using the software
TetView [28].

3.4. Error criteria

We compared numerical solutions with analytical solutions using three common error
criteria [16,3,33,15,26]. The relative (Euclidean) error (RE) is defined as

RE :=
||φ

num
− φ

ana
||2

||φ
ana
||2

,

where φ
ana

, φ
num
∈ R

m denote the analytical and the numerical solution vectors, respec-
tively, at the m = 748 measurement electrodes. We furthermore defined

RE(%) := 100 · RE, maxRE(%) := max
j

(RE(%)j) (32)

where j is the source eccentricity. In order to better distinguish between the topography
(driven primarily by changes in dipole location and orientation) and the magnitude error
(indicating changes in source strength), Meijs et al. [16] introduced the relative difference
measure (RDM) and the magnification factor (MAG), respectively. For the RDM, we can
show that
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RDM := || 1

||φ
ana
||2

φ
ana
− 1

||φ
num
||2

φ
num
||2 =

√

2
(

1− cos∠(φ
ana

, φ
num

)
)

. (33)

It therefore holds that 0 ≤ RDM ≤ 2, so that we can furthermore define

RDM(%) := 100 · RDM/2, maxRDM(%) := max
j

(RDM(%)j) . (34)

The MAG is defined as
MAG := ||φ

num
||2/||φ

ana
||2

so that error minimum is at MAG = 1 and we therefore defined

MAG(%) = |1−MAG| · 100, maxMAG(%) := max
j

(MAG(%)j) . (35)

With maxRE(%)k we denote the maximal relative error in percent over all source
eccentricities for an accuracy level of accuracy = 10−k. The so-called plateau-entry for
an iterative solver is then defined as the first k at which the condition

∣

∣maxRE(%)k −maxRE(%)k+1
∣

∣ /maxRE(%)k+1 < 0.05 (36)

is true.

3.5. FEM and solver parameter settings

The parameters of the Venant approach were chosen as proposed in [4]: The maximal
dipole order n0 (13) and the scaling reference length aref (14) were set to n0 = 2 and
aref = 20.0 mm, respectively. Since the chosen mesh size was a large factor smaller than
the reference length, the second order term (∆x̄r

cl)
2 was small and the model focused

on fulfilling the dipole moments of the zeros and first order. The exponent of the source
weighting matrix in (15) was fixed to s = 1 and the regularization parameter in (16) was
chosen as λ = 10−6. These settings effect a spatial concentration of the monopole loads
in the dipole axis around the dipole location.

The initial solution guess for all solvers was a zero potential vector. For the IC0,
ς = 0 was chosen for (19). For the AMG-CG, the 1-V (1, 1)-cycle AMG-preconditioner
was used with α = 0.01 for (25). The factorization in Algorithm 3 was carried out
whenever the size of the coarsest grid (coarsegrid) in the preconditioner-setup was
below 1000 and the coarse system was solved using a Cholesky-factorization. The setup
times for the preconditioners were neglected in all calculations of computational cost
because this step must be performed only once per head model. The evaluation with
regard to relative solver accuracy in Algorithm 1 was limited to the discrete set of accuracy
levels accuracy = 10−k with k ∈ {0, . . . , 9}.

4. Results

4.1. Numerical error versus potential approach

In a first study, we compared the numerical accuracy of the full subtraction approach
(Section 2.1.1) with the two direct methods: Venant (Section 2.1.3) and partial integration
(Section 2.1.2). Figure 2 shows the RE(%) for the different source eccentricities for the
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Fig. 2. RE(%) versus source eccentricity for the two most highly resolved models tet503K of group 1
(left) and tet508K of group 2 (right) using the full subtraction (top row), the Venant (middle row) and
the partial integration (bottom row) potential approaches. The necessary accuracy in Algorithm 1 for
the plateau-entry (36) of the AMG-CG is indicated for both source orientation scenarios.

two finest models tet503K of group 1 (left) and tet508K of group 2 (right) (see Figure 1
and Table 2) with regard to the full subtraction (top row), the Venant (middle row)
and the partial integration approach (bottom row). The results were computed with
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Table 3
Values of maxRE(%), maxRDM(%) and maxMAG(%) accuracies for the full subtraction (Sub), the

Venant (Ven) and the partial integration (PI) approach for all six tetrahedra models (see Figure 1 and
Table 2) and both source orientation scenarios at the AMG-CG plateau-entry (36).

Group 1

tangential source

model tet503K tet125K tet33K

potential approach Sub Ven PI Sub Ven PI Sub Ven PI

maxRE(%) 0.403 2.719 7.195 4.192 2.722 6.603 12.543 10.246 10.367

maxRDM(%) 0.202 1.311 3.450 1.322 1.296 3.304 6.020 4.920 4.674

maxMAG(%) 0.149 1.840 1.810 3.217 1.395 2.142 2.863 3.307 4.066

radial source

model tet503K tet125K tet33K

potential approach Sub Ven PI Sub Ven PI Sub Ven PI

maxRE(%) 1.791 5.077 6.200 2.522 16.867 5.517 33.860 22.810 19.898

maxRDM(%) 0.820 1.408 2.846 1.066 1.662 2.727 17.184 6.730 9.958

maxMAG(%) 0.708 5.035 3.426 1.372 16.804 1.827 6.338 19.344 7.729

Group 2

tangential source

model tet508K tet128K tet32K

potential approach Sub Ven PI Sub Ven PI Sub Ven PI

maxRE(%) 2.760 1.414 2.235 6.206 3.457 3.654 17.000 17.977 11.113

maxRDM(%) 0.874 0.599 0.965 2.202 1.665 1.814 6.721 8.715 5.031

maxMAG(%) 2.121 0.753 1.110 4.277 1.011 1.243 9.542 4.474 4.296

radial source

model tet508K tet128K tet32K

potential approach Sub Ven PI Sub Ven PI Sub Ven PI

maxRE(%) 1.890 6.738 2.157 7.660 19.413 5.054 21.111 20.232 21.000

maxRDM(%) 0.804 1.131 1.051 1.212 1.893 2.141 10.616 9.120 9.188

maxMAG(%) 1.183 6.608 1.101 7.404 19.329 2.836 8.831 10.577 8.617

the AMG-CG and the necessary accuracy in Algorithm 1 for the plateau-entry (36)
is indicated for both source orientation scenarios. In Table 3, the maximal errors over
all source eccentricities at the AMG-CG plateau-entry (36) are shown for all tetrahedra
models, both source orientation scenarios and the three dipole modeling approaches.

Figure 2 clearly presents the advantages of the full subtraction approach whose error
curves are smooth, while Venant and partial integration show an oscillating behavior.
With RDM and MAG errors below 1% over all source eccentricities and for both orien-
tation scenarios (see Table 3), the full subtraction approach performs best for all source
eccentricities for model tet503K (its mesh resolution was sufficiently high and the FE
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nodes were concentrated in the compartments CSF, skull and skin), where both direct ap-
proaches showed oscillations with a relatively high magnitude. As the results for model
tet508K show, the oscillation magnitudes for the direct approaches could be strongly
reduced by means of distributing the FE nodes in a regular way over all four compart-
ments, hence decreasing the mesh size in the brain compartment. Nevertheless, even for
model tet508K, the full subtraction approach was the most accurate method for nearly
all source eccentricities. It was only outperformed by partial integration for the source
which was only 1 mm below the CSF compartment. As both Figure 2 and Table 3 show,
the partial integration approach performed well if the mesh was sufficiently fine in the
brain compartment. The oscillation magnitudes of the Venant approach were generally
even slightly smaller than for the partial integration approach, with only one exception
(the result for the radial source 1 mm below the CSF compartment, shown in the middle
row of Figure 2). The main reason for the outlier was that for the source 1 mm below
the CSF, monopoles were positioned in the CSF compartment, which had a strong effect
on the MAG for the radially oriented source.

4.2. Numerical error versus PCG accuracy

Figure 3 shows the numerical error maxRE(%) versus the PCG solver accuracy from
Algorithm 1 for the discrete set of accuracy levels from 100 to 10−9. Results for the high-
resolution model tet503K of group 1 are shown in the left and from the high-resolution
model tet508K of group 2 in the right column for the AMG-CG (top row), the IC(0)-CG
(middle row) and the Jacobi-CG (bottom row).

Table 4
Maximally needed k ∈ {0, . . . , 9} for a PCG accuracy = 10−k for the plateau-entry (36) over all three
potential approaches.

Group 1

tangential source radial source

solver AMG-CG IC(0)-CG Jacobi-CG AMG-CG IC(0)-CG Jacobi-CG

tet503K 5 6 7 6 5 6

tet125K 5 5 6 5 5 6

tete33K 4 5 6 3 3 5

Group 2

tangential source radial source

solver AMG-CG IC(0)-CG Jacobi-CG AMG-CG IC(0)-CG Jacobi-CG

tet508K 6 6 7 6 7 8

tet128K 4 5 6 4 4 6

tete32K 3 5 6 3 4 5

The PCG accuracy measures the error in the solution vector of the FE linear equation
system (8) (correction potential), (11) and (17) (total potential). For the full subtraction
approach, maxRE(%) was thus not equal to 100 for accuracy = 100 because φ

num
is

equal to the analytically computed singularity potential Φ0 from Equation (5). Because
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Fig. 3. maxRE(%) versus PCG solver accuracy (see Algorithm 1 and Section 3.5) for models tet503K of
group 1 (left column) and tet508K of group 2 (right column) for the AMG-CG (top row), the IC(0)-CG
(middle row) and the Jacobi-CG (bottom row). Source orientations and potential approaches can be
distinguished by their specific labels. The plot is in log-log scale.

the PCG accuracy is measured in the KhC−1
h Kh-energy norm, the plateau-entry (36)

differs for different preconditioners Ch. As shown in Figure 3 for the high-resolution
models and as collected in Table 4 for all six tetrahedra models, the maximally needed k
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(for a PCG accuracy of accuracy = 10−k) decreased when the preconditioning quality
increased (except for the radial source orientation in model tet503K, see Fig. 3). Fur-
thermore, as Table 4 shows, a higher PCG accuracy was needed for the plateau-entry
when the mesh resolution increased.

4.3. Numerical error versus solver time

In a last study, we compared solver wall-clock time versus numerical accuracy for the
three different CG preconditioners AMG, IC(0) and Jacobi. The time for the setup of the
preconditioner was not included, because this step was carried out only once per head
model.

In Figure 4, the solver time is shown versus the maxRE(%) for different levels of
PCG accuracy for models tet503K and tet33K of group 1. The largest examined PCG
accuracy level 10−k is indicated in the figure. Please note that this level does not
necessarily correspond to the plateau-entry level. In most cases results are presented up
to one level higher.

Table 5
Average solver time (sec.) and iteration count (iter) over all source eccentricities, source orientations

and potential approaches for plateau-entry (36). For all tetrahedra models of groups 1 and 2, results are
presented for the three different CG preconditioners AMG, IC(0) and Jacobi. The gain factor indicates
the performance gain of the AMG-CG relative to the Jakobi-CG.

group 1 group 2

tet503K tet125K tet33K tet508K tet128K tet32K

solver time iter time iter time iter time iter time iter time iter

AMG-CG 12.25 11.20 1.87 9.04 0.18 5.89 9.18 10.40 1.36 7.27 0.15 5.81

IC(0)-CG 112.03 233.43 8.40 128.39 0.45 72.63 72.41 215.05 5.20 98.96 0.31 52.84

Jacobi-CG 167.82 679.43 16.98 414.00 0.76 229.52 99.60 578.04 9.62 331.15 0.47 161.68

gain factor 13.70 60.66 9.08 45.8 4.22 38.97 10.85 55.58 7.07 45.55 3.13 27.83

For all tetrahedra models of groups 1 and 2, average solver times and iteration counts
over all source eccentricities, source orientations and potential approaches for a plateau-
entry (36) are collected in Table 5. Both Figure 4 and Table 5 clearly show the superiority
of the AMG preconditioner. In all cases, even for the low-resolution grids tet33K and
tet32K, the AMG-CG was the fastest solver, followed by the IC(0)-CG and the Jacobi-
CG. The main result of Table 5 is the so-called gain factor, which is defined here as
the result (solver time or iteration count) for the Jacobi-CG divided by the result for
the AMG-CG. The gain factors clearly showed that the higher the mesh-resolution, i.e.,
the higher the condition number of the corresponding FE stiffness matrix, the larger the
difference in performance between AMG-CG, IC(0)-CG, and Jacobi-CG. An increasing
mesh-resolution led to a strong increase in the number of iterations of IC(0)-CG (factor of
3.2 between tet503K and tet33K and 4.1 between tet508K and tet32K) and Jacobi-CG
(factor of 3.0 between tet503K and tet33K and 3.6 between tet508K and tet32K), while
the number of AMG-CG iterations was only slightly increasing (factor of 1.9 between
tet503K and tet33K and 1.8 between tet508K and tet32K). This clearly shows the
stronger h-dependence of the IC(0) and Jacobi preconditioners.
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Fig. 4. Solver time versus maxRE(%) for models tet503K and tet33K of group 1 for tangentially and
radially oriented sources for the potential approaches full subtraction (left), Venant (middle), and par-
tial integration (right). Results are presented for the three different CG preconditioners AMG, IC(0)
and Jacobi. Each marker represents a PCG accuracy = 10−k level and the largest examined level is
indicated. The x-axis is in log scale.

5. Discussion

The goals of this technical study of finite element (FE) based solution techniques for
the electroencephalographic forward problem were twofold. The first aim was to compare
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three efficient iterative FE solver techniques under realistic conditions that still allowed
quasi-analytical solutions. The second aim was to evaluate three different numerical for-
mulations of the current dipole, which is the bioelectric source most commonly used to
represent neural electrical activity. A major motivation of such studies is the special need
to achieve high accuracy and efficiency with FE based approaches for this problem. The
many advantages of this approach are often hindered by the unacceptable computation
costs of implementing it so that improved efficiency will provide substantial progress to
the field.

When using the KhC−1
h Kh-energy norm stopping criterion for the PCG algorithm

applied on meshes with up to 500K nodes, a relative solver accuracy of 10−6 for AMG-CG,
10−7 for IC(0)-CG and 10−8 for Jacobi-CG was necessary and sufficient to fall below the
discretization error. The AMG-CG achieved an order of magnitude higher computational
speed than the CG with the standard preconditioners with an increasing gain factor with
decreasing mesh size. However, the AMG-CG was not optimal in our application with a
slight h-dependence shown by a slightly increasing iteration count with increasing mesh
resolution. Such a result had to be expected because the source analysis stiffness matrix
was not an M-matrix and the prolongation operator of the presented AMG-CG was tuned
for speed and not for an optimal behavior with regard to the iteration count. A discrete
harmonic extension as proposed in [23] improved the interpolation properties, but the
application of this prolongation operator is more expensive, which decreased the overall
run-time performance in our application.

We generated two groups of Constrained Delaunay tetrahedralization (CDT) FE meshes,
tuned for the specific needs of the different potential approaches. In group 1, for the full
subtraction approach [7], FE nodes were concentrated in the CSF, skull and skin, while
the brain compartment was meshed as coarsely as possible. Group 2 was tuned for the
needs of both direct potential approaches [40,4,1,36], which profit more from a regular
distribution of FE nodes over all four compartments and especially a higher resolution
at the source positions.

With regard to the numerical error, in the tuned FE meshes with about 500K nodes we
achieved high accuracies—in the range of a few percent maximal relative error (maxRE)—
over all source eccentricities for both the full subtraction and the two direct potential
approaches. With a maximal relative difference measure (maxRDM) and a maximal mag-
nification factor (maxMAG) of less than 1% over all source eccentricities for sources up
to 1 mm below the CSF compartment (model tet503K, maximal examined eccentricity
of 98.7%), the full subtraction approach performed consistently better than both direct
approaches. Our results clearly illustrate the advantages of the full subtraction approach
as long as the homogeneity condition is fulfilled, i.e., as long as the distance of the source
to the next conductivity inhomogeneity is large enough or the resolution of the FE mesh
at the nearest conductivity inhomogeneity to the source is fine enough. A theoretical
reasoning for this finding is given in [38]. While error curves oscillated for both direct
approaches, they were smooth for the full subtraction approach.

Schimpf et al. [26] investigated different FE potential approaches in a four-layer sphere
model with isotropic skull and sources up to 1 mm below the CSF compartment. In their
report, a regular 1 mm cube model was used (thus a much higher FE resolution) and a
maxRDM of 7% and a maxMAG of 25% was achieved with a subtraction approach, which
performed best in their comparison. Awada et al. [1] implemented a two-dimensional
subtraction approach and compared its numerical accuracy with a partial integration
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method in a two-dimensional multi-layer sphere model. A direct comparison with our
results is therefore difficult, but the authors concluded that the subtraction method was
more accurate than the direct approach. In a locally refined (around the source singu-
larity) tetrahedral mesh with 12,500 nodes of a four-layer sphere model with anisotropic
skull and first order FE basis functions in a subtraction approach, Bertrand et al. [3] re-
ported a maxRDM of above 20% and a maxMAG up to 70% for a maximal eccentricity
of 97.6%. Van den Broek [33] used a subtraction approach in a locally refined (around
the source singularity) tetrahedral mesh with 3,073 nodes of a three-layer sphere model
with anisotropic skull. For the maximal examined eccentricity of 94.2%, they reported a
maxRDM of up to 50%.

However, the right-hand side (RHS) vector is expensive to compute and is densely
populated (i.e., Nh non-zeros) for the full subtraction approach (10) and sparse with just
some few (|NodesOfEle| for partial integration (12), and C for Venant (18)) non-zero
vector entries for the direct approaches, which has implications for the computational
effort when using the fast FE transfer matrix approach for EEG and MEG [39] (addi-
tionally, see [36,8,11]), which limits the total number of FE linear equation systems to
be solved for any inverse method to the number of sensors m. After solving m FE linear
equation systems to compute the transfer matrix, each forward problem can be solved
by a single multiplication of the RHS vector with the transfer matrix [39], resulting in
a computational effort of 2 ∗ m ∗ P operations with P = Nh for the full subtraction,
P = |NodesOfEle| for partial integration and P = C for the Venant approach. Note
that the transfer matrix approach can not be used if the mesh is adapted according to
varying source positions within the inverse problem. We therefore attempted to avoid
local mesh refinement techniques as used in [3,33].

6. Conclusion

The AMG-CG turned out to achieve an order of magnitude higher computational
speed than Jacobi-CG or incomplete Cholesky-CG for the FEM based EEG forward
and inverse problem. Our results corroborate the theoretical results that the higher the
FE resolution, the greater the advantage of using MG preconditioning. The AMG-CG
together with the fast transfer matrix approach now enable resolutions which seemed
to be impracticable before. In the comparison of dipole modeling approaches, highest
accuracies were achieved with the full subtraction approach in CDT meshes where nodes
were concentrated in the compartments CSF, skull and skin.
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Figure 2.1: Dipole fit errors of the FE full subtraction and Venant approaches
in model tet360K from Fig.1 in Chapter 2.8 when using the quasi-analytical
solutions in the four-layer sphere model with anisotropic skull as reference EEG
data at 748 regularly distributed electrodes.

2.9.2 EEG single dipole fit reconstruction error of the full subtrac-
tion and the Venant potential approaches

Goal of this study

The results of this section were not yet published elsewhere. The section is dedi-
cated to the examination of the EEG inverse single dipole fit reconstruction errors
resulting from the presented forward modeling errors (RE, RDM and MAG) for
the full subtraction and the Venant FE approach in specifically-tuned CDT FE
meshes. The single dipole fit error is an additional measure, which might be
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more concrete and descriptive with regard to the medically interesting accuracy
of the inverse problem.

EEG single dipole fit reconstruction errors

In Chapter 2.8, the forward modeling errors RE, RDM and MAG were studied for
the full subtraction approach in the CDT FE model tet360K . This model was
specifically tuned for the needs of the full subtraction approach, i.e., the nodes
were concentrated in skin, skull and CSF compartment while the brain layer was
meshed as coarse as possible under the constraint of retaining mesh quality.

The single dipole fit reconstruction errors for this model are presented in Fig-
ure 2.1. For each dipole with a specific distance from the inner sphere surface
as indicated on the x-axes, a quasi-analytical solution (Section 6.1, Chapter 2.8)
was computed at the 748 EEG electrode locations (Section 6.4, Chapter 2.8) in
the anisotropic four-layer sphere model (Table 2, Chapter 2.8). This reference
potential distribution was used as the input data to an inverse single dipole fit ap-
proach based on the FE model using a Nelder-Mead simplex optimization. For all
dipole eccentricities, the seed-point was positioned to the midpoint of the sphere
model. The simplex was parameterized so that the error of the optimization pro-
cess was minimized at the expense of a more computationally intensive run-time.

With a maximal inverse source localization error of 0.3mm, orientation errors
below 0.03 degree and magnitude errors below 0.21% for a source positioned just
1mm below the CSF compartment, the full subtraction approach performed much
better than the Venant approach (max. errors: 7mm, 0.5 degree, 1%). The Venant
approach suffered from the coarse elements in the depth of the volume conductor,
where the largest errors occurred.

Figure 2.2 shows the same examination in a CDT FE model with 161K reg-
ularly distributed nodes and 988K elements. With a maximal inverse source re-
construction error of 1.7mm (localization), 0.32 degree (orientation) and 0.5%
(magnitude 1), the Venant approach slightly outperforms the full subtraction ap-
proach (max. errors: 2.4mm, 0.25 degree, 0.6%), if localization is considered to
be more important than orientation and strength.

It can be summarized that in properly chosen meshes and with high mesh res-
olution, the numerical errors of both full subtraction and Venant FE approach can
be expected to be less important than errors resulting from, e.g., data noise or in-
accurate conductivity values. The Venant method needs an especially high mesh
resolution in the source area to avoid that monopoles are placed in other tissue
compartments, while other compartments can be meshes with a lower resolution.

1except the large error of about 7% where Venant monopole sources are placed in the CSF com-
partment for the most eccentric source, which especially affects the error for the radially oriented
dipole
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Figure 2.2: CDT FE mesh of the anisotropic four-layer sphere model when us-
ing a regular distribution of 161K nodes over all four compartments (top,left).
Dipole fit localization (top, right), orientation (bottom, left) and magnitude (bot-
tom, right) errors of the FE full subtraction and Venant approaches when using
the quasi-analytical solutions as EEG data at 748 regularly distributed electrodes.

For the subtraction approach, it was found that all layers except the source com-
partment have to be meshed with a sufficiently high mesh resolution to obtain
acceptable numerical errors.

2.9.3 Treatment of error curve oscillations of the direct FE approaches
The forward modeling error curves of the direct FE approaches were shown to
oscillate on a low error level. This does not have to be a disadvantage because,
as shown in Figure 2.3 for tetrahedral meshes, the minimum error is achieved
for sources on FE nodes, so that a lead field interpolation technique (Yvert et al.
[2001]) can be used to avoid oscillations and further decrease the numerical er-
ror. First promising results for a second-order Bézier interpolation (Bernstein
polynomials) of precomputed Venant FE lead field have already been achieved.



150 EEG DIPOLE FIT ERROR FOR FULL SUBTRACTION AND VENANT

Figure 2.3: Result from the diploma thesis of Lanfer [2007]: RDM between the
FEM EEG solutions and the analytical solution for dipoles on a plane grid. The
gray spheres indicate the positions of the nodes of one tetrahedron of the FE
mesh. For dipoles at the nodes, the RDM is at a minimum. Visualization was
carried out using BioPSE [2002].
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2.10 Comparison of FE and BE modeling in EEG source
analysis with regard to accuracy and computational
speed

Comparison of finite element and boundary element modeling in EEG source
analysis with regard to accuracy and computational speed
Lanfer, B., Wolters, C.H., Anwander, A., Dümpelmann, M., and Knösche, T.R..
submitted to Phys.Med.Biol., (2007).
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Abstract. The inverse problem in electroencephalography (EEG) aims at recon-

structing the underlying current distribution in the human brain from potential differ-

ences that are measured non-invasively at the head surface. The simulation of the EEG

for a given dipolar source in the brain using a volume-conduction model of the head is

called the forward problem. Recent studies have shown that, for the forward problem,

realistic volume conductor modeling using the boundary element method (BEM) or the

finite element method (FEM) is essential for an accurate EEG source analysis. While

the BEM is restricted to isotropic tissue conductivities, the FEM is able to realistically

model tissue conductivity inhomogeneities and anisotropies. So far, the computational

complexity of the FEM was considered to be too great for practical application when

using the necessary high resolution FE models.

This paper shows that, when combined with the concept of EEG transfer matrices,

a Venant FE direct potential approach can outperform a collocation BE forward ap-

proach using the isolated skull approach and analytically integrated linear basis el-

ements with regard to both accuracy and computational speed. We compare both

forward approaches in an isotropic three-layer sphere model using relative difference

measure (RDM) and magnification factor (MAG) for a comparison of the numerical

results with quasi-analytical series expansion formulas. For a 2 mm geometry-adapted

hexahedra FE model, the maximal RDM (MAG) of the FEM approach of 1% (5%) is

about two (four) times lower than the maximal RDM (MAG) of the BEM approach

and, with 0.7ms, the FE forward computation is more than four times faster than

the BE forward computation. It is then shown that, in a high-resolution constrained

Delaunay tetrahedralization FE model of an anisotropic four layer sphere volume con-

ductor, with only 2.4ms computation time per FE forward computation, a maximal

RDM of about 1% and a maximal MAG below 5% is achieved for source eccentricities

up to 97.4%.

Keywords

EEG source analysis, realistic head model, finite element method, boundary element

method, dipole model, transfer matrix, validation in multi-layer sphere model,

conductivity anisotropy, computational speed.
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1. Introduction

Electroencephalography (EEG) source reconstruction seeks to determine the active brain

areas from the measured electric potentials at the head surface. These potentials are

generated by movements of ions mainly within the apical dendrites of pyramidal cells in

the cortex sheet of the human brain [27], the primary currents. The primary currents

are commonly modeled by a mathematical point current dipole [30].

EEG source analysis is strongly affected by the accuracy in modeling the volume

conductor properties of the human head with regard to both geometry and conductivity

of the various head tissues [3, 13, 29, 38]. While tissue geometry can most often be

segmented from magnetic resonance (MRI) or computed tomography (CT) images, the

determination of the conductivity properties of the head tissues is more difficult. First

attempts to measure the conductivities of biological tissues were made in vitro, often

using samples taken from animals [29]. The conductivity of human cerebrospinal fluid

was measured in [5] and that of the human skull in [1]. The skull consists of a soft bone

layer (spongiosa) enclosed by two hard bone layers (compacta). Since the spongiosa has

a much higher measured conductivity than the compacta [1], the skull is quite often

described by an anisotropic conductivity [6, 8, 38]. Recently, methods were proposed

to determine in vivo conductivities of head tissues by using an electrical impedance

tomography based approach [14] or by estimating them from measured EEG [22] or

EEG together with simultaneous intracranial data [20]. With regard to the intracranial

tissues such as brain grey and white matter, an indirect determination of the anisotropic

conductivity through diffusion tensor MRI (DT-MRI) was examined in [34].

Different approaches have been proposed for the EEG forward problem. A quasi-

analytical solution in a volume conductor model consisting of an arbitrary number of

concentric anisotropic layers of different conductivities was presented in [26]. Besides

the fact that such models are still frequently used in source analysis routine, they also

serve as validation tools for more realistic numeric modeling. In order to better take

into account the realistic shape of the scalp and skull surfaces, boundary element (BE)

head models have been developed, being adequate for piecewise homogeneous isotropic

compartments [4]. Numerical accuracy of the BE approach could be improved, e.g.,

through the isolated skull approach (ISA) [23, 18, 44] and the use of linear basis functions

with analytically integrated elements (vertex approach) [25, 44], in the following called

the ISA vertex collocation BE approach. 3D discretization methods such as the finite

difference (FD) method [17] and the finite element (FE) method [6, 9, 8, 31, 13, 29, 38]

are able to treat inhomogeneous and anisotropic material parameters. While the

FD method is restricted to regular grids, the FE method is generally considered to

be more flexible with regard to an accurate modeling of the geometry as will be

shown in this article using geometry-adapted hexahedra [40] and constrained Delaunay

tetrahedralization (CDT) [11] FE meshes. A key component in FE-based source analysis

is the modeling of the potential singularity introduced into the equation by the point

current dipole. Different FE approaches for modeling the potential singularity are
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known from the literature: a subtraction approach [6, 8, 2, 39, 11], a Partial Integration

direct method [2], and a Venant direct method [9]. Both the Partial Integration and

the Venant direct FE methods approximate the dipole through monopolar sources and

sinks on neighboring FE nodes with the constraint to optimally match the given dipole

moment vector. In this study we used the Venant approach based on comparison of

the accuracy of the above approaches in multilayer sphere models, which suggested

that for sufficiently regular meshes, the direct methods yield suitable accuracy over all

realistic source locations [41]. The direct approaches have the additional advantage of

high computational efficiency when used in combination with the FE transfer matrix

approach, which limits the total number of FE linear equation systems to be solved for

any inverse method to the number of sensors [37].

Sensitivity studies have been carried out in realistic FE models examining the

influence of skull anisotropy [8, 38] and realistic white matter anisotropy [38, 15] on

EEG source analysis, supporting the hypothesis that modeling skull and white matter

anisotropy is crucial for accurate EEG source reconstruction. It is furthermore widely

accepted that local conductivity changes in the vicinity of the primary source as caused

by brain lesions [8], or skull-holes from trepanation [8] have a non-negligible effect on

EEG source analysis.

In the past, the heavy computational load of the FE method was seen as a drawback,

especially when many evaluations of the forward problem are needed, e.g., in source

localization schemes [28]. It was speculated that BEM models are less computationally

intensive compared to FEM models, while providing improved computational accuracy

relative to simple analytical models [28]. Additionally, the difficult construction of the

volume discretization was seen to be a major disadvantage of the FEM compared to

the BEM which only requires the use of surface triangulation meshes [19]. Due to

the excessive computational burden created by previous FEM techniques, evaluation

studies often only used sub-optimal numbers of nodes [6, 9, 8, 43]. For example,

in [43], a tetrahedra Venant FE model with only 10,731 nodes was used and it was

mentioned in the discussion that, for a general clinical use of FE source analysis, a finer

FE discretization and parallel computing is needed. In [9], the setup of a lead field

matrix with 8,742 unknown dipole components in a tetrahedra Venant FE approach

with 18,322 nodes took roughly a week of computation time.

In this paper, a direct comparison between the ISA vertex collocation BE approach

and the Venant FE approach will be carried out in an isotropic three layer sphere

volume conductor model. The computational costs of FE mesh generation will be

examined for geometry-adapted hexahedra and constrained Delaunay tetrahedralization

(CDT) FE meshes. A fast transfer matrix approach will be derived and its efficiency

will be shown for both BE and FE forward modeling. Finally, the accuracy and

computational complexity of the Venant FE approach will be examined in an anisotropic

four compartment sphere model taking the conductivity of the cerebrospinal fluid (CSF)

and the skull conductivity anisotropy into account. Our study will show that the Venant

FE approach is highly accurate and very flexible with regard to the modeling of realistic
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tissue conductivity properties and that it outperforms the ISA vertex collocation BE

approach in the isotropic three layer sphere model with regard to both accuracy and

computational complexity.

2. Theory

2.1. The basic differential and boundary integral equations

The mathematical dipole is commonly used to model the primary current density

distribution (impressed current) [30, 27],

jp (x) = Mpδ(x − xp) , (1)

with xp ∈ R
3 and Mp ∈ R

3 denoting the position and the moment of the point dipole,

respectively.

When expressing the electric field as the negative gradient of the scalar potential

the condition of the continuity of charge can be written as

∇ · (σ∇Φ) = ∇ · jp = Jp in Ω, 〈σ∇Φ,n〉 = 0 on Γ1 (2)

with Γ1 = ∂Ω being the surface of the head domain Ω. This is the quasi-static

approximation of Maxwell’s equations describing the generation of the electric potential

Φ in the volume conductor with conductivity distribution σ due to the current source

density distribution Jp. Between regions of different conductivity, the potential Φ and

the current density 〈σ∇Φ,n〉 are continuous over the boundaries. To unambiguously

determine the electric potential, finally, the potential at a reference electrode has to be

fixed: Φ(xref) = 0.

With regard to the boundary element approach, it is assumed that Ω consists of

three nested regions: skin with Γ1 the outer and Γ2 the inner surface, skull with Γ2

the outer and Γ3 the inner surface and brain with the surface Γ3. It is furthermore

assumed that the surfaces are non-intersecting and that the conductivities are constant

and isotropic within each compartment (σ+
i , σ−

i ∈ R denote the conductivities outside

and inside the surface Γi, respectively). The sources jp are furthermore restricted to be

within the brain compartment. If we define the singularity function

s(x,y) =
1

4π

1

|x − y|
and the so-called double layer dipole kernel [16]

d(x,y) := 2
∂

∂n(y)
s(x,y) =

1

2π

< n(y),x − y >

|x − y|3 ,

the following Fredholm integral equation of the second kind can be derived using a

double layer potential approach [30, 16, 19]: ∀x ∈ Γi, ∀y ∈ Γj, i, j = 1, 2, 3:

Φ(x) =
2σ−

3

σ+
i + σ−

i

Φp(x) −
3
∑

j=1

σ+
j − σ−

j

σ+
i + σ−

i

∫

Γj

d(x,y)Φ(y)dΓj (3)
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with

Φp(x) =
1

4πσ−

3

< Mp,x − xp >

|x − xp|3
(4)

2.2. Solution techniques for the EEG forward problem

2.2.1. Quasi-analytical solution in multilayer sphere models In [26], series expansion

formulas were derived for a mathematical dipole in a multilayer sphere model, denoted

now as “the quasi-analytical solution”. A rough overview of the formulas is given in this

section. The model consists of shells 1 up to S with radii rS < rS−1 < . . . < r1

and constant radial, σrad(r) = σrad
j ∈ R

+, and constant tangential conductivity,

σtang(r) = σtang
j ∈ R

+, within each layer rj+1 < r < rj. It is assumed, that the

source at position xp with radial coordinate rp ∈ R is in a more interior layer than

the measurement electrode at position xe ∈ R
3 with radial coordinate re ∈ R. The

spherical harmonics expansion for the mathematical dipole (1) is expressed in terms

of the gradient of the monopole potential with respect to the source point, using an

asymptotic approximation and an addition-subtraction method to speed up the series

convergence [26]. This results in

Φ(xp,xe) =
1

4π
〈Mp,xe

S0

re

+ xp(
S1

rp

− cos ωpe

S0

rp

)〉 (5)

with ωpe being the angular distance between source and electrode and with

S0 =
F0

rp

Λ

(1 − 2Λ cosωpe + Λ2)
3/2

+
1

rp

∞
∑

n=1

{(2n + 1)Rn(rp, re) − F0Λ
n}P ′

n(cosωpe)(6)

and

S1 = F1

Λ cosωpe − Λ2

(1 − 2Λ cosωpe + Λ2)
3/2

+

∞
∑

n=1

{(2n + 1)R′

n(rp, re) − F1nΛn}Pn(cosωpe). (7)

The coefficients Rn and their derivatives R′

n can be computed analytically and the

derivative of the Legendre polynomial can be determined by means of a recursion

formula. Refer to [26] for the derivation of the above series of differences and for the

definition of F0, F1 and Λ ‡. Here, it is only important that these terms can be computed

from the given radii and conductivities of layers between source and electrode and of

the radial coordinate of the source and that they are independent of n.

For the quasi-analytical potential vector
(

Φana
eeg

)

p
∈ R

seeg with seeg the number of

electrodes with locations xi
e,

(

Φana
eeg

)[i]

p

(5)
:= Φ(xp,x

i
e), ∀ i = 1, . . . , seeg, (8)

the computation of the series (6) and (7) are stopped after the k’s term, if the following

criterion is fulfilled
tk
t0

≤ υ, tk := (2k + 1)R′

k − F1kΛk. (9)

‡ The following is a result of a discussion with J.C. de Munck: While constants in formulas (71) and

(72) in the original paper [26] have to be flipped, our versions of S0 and S1 in Equations (6) and (7)

are correct.
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2.2.2. The FEM direct potential approach The theory for the Venant direct potential

approach is presented now, closely following the ideas of [9]. Starting from the basic

relation for a dipole moment Tp ∈ R
3 at position xp ∈ R

3, Tp =
∫

Ω
(x − xp)Jp(x)dx,

and assuming discrete sources and sinks on only the C neighboring FE mesh nodes to

the FE node which is closest to xp, it is Tp =
∑C

c=1 ∆xcpj
[c]
p

with ∆xcp denoting the

vector from FE node c to source position xp. When using higher moments T̄
r

p ∈ R
n0+1

with n0 = 1, 2 and the Cartesian direction r (r = x, y, z), it is

(

T̄
r

p

)[n]
=
(

T̄
r

p

)[n]
(j

p
) =

C
∑

c=1

(

∆x̄r
cp

)n
j [c]

p
∀n ∈ 0, . . . , n0 (10)

(for a motivation of higher moments see [9]). The bar indicates a scaling with a reference

length aref , so that

∆x̄r
cp = ∆xr

cp/aref

!
< 1 (11)

is dimensionless and the physical dimension of the resultant scaled nth order moment,
(

T̄
r

p

)[n]
, is that of a current (i.e., A, Ampère). aref has to be chosen so that ∆x̄r

cp

is smaller 1. The equation is well known from the Saint Venant law in mechanical

engineering, where small forces in combination with long lever arms have the same

effect on the system as large forces in combination with short lever arms. If we now

define the matrix X̄r
p ∈ R

(n0+1)×C , the moment vector M̄
r

p ∈ R
n0+1, computed from the

given dipole moment vector Mp, and the diagonal source weighting matrix W̄ r
p ∈ R

C×C

by
(

X̄r
p

)[n,c]
=
(

∆x̄r
cp

)n

(

M̄
r

p

)[n]
= M r

p

(

1

2aref

)n

(1 − (−1)n)

W̄ r
p = DIAG

((

∆x̄r
1p

)s
, . . . ,

(

∆x̄r
Cp

)s)

(12)

with s = 0 or s = 1, then we compute the monopole load vector j
p
∈ R

C for the Venant

direct approach on the C neighboring FE nodes from the given dipole moment vector

Mp at position xp by means of minimizing the following functional

Fλ(jp
) = ‖M̄ r

p − T̄
r

p(jp
)‖2

2 + λ‖W̄ r
p j

p
‖2

2 = ||M̄ r

p − X̄r
pjp

||22 + λ‖W̄ r
p j

p
‖2

2
!
= min.

The first part of the functional Fλ ensures a minimal difference between the moments

of the Venant approach T̄
r

p and the target ones M̄
r

p, while the second part smoothes the

monopole distribution in a weighted sense and enables a unique minimum for Fλ. The

solution of the minimization problem is given by
(

(X̄r
p)

trX̄r
p + λ(W̄ r

p )trW̄ r
p

)

j
p

= (X̄r
p)

trM̄
r

p,

so that finally the solution for the monopole source vector j
p

of the Venant approach is

given by

j
p

=

(

3
∑

r=1

{

(X̄r
p)

trX̄r
p + λ(W̄ r

p )trW̄ r
p

}

)−1 3
∑

r=1

{

(X̄r
p)

trM̄
r

p

}

. (13)
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The highest order is generally chosen as n0 = 1 or n0 = 2, where the latter effects a

spatial concentration of loads in the dipole axis. Furthermore, s = 1 stresses the spatial

concentration of loads around the dipole.

In the Venant direct potential approach, we use the FE method with piecewise

linear basis functions ϕi at nodes ξi, i.e., ϕi(ξi) = 1 and ϕi(ξj) = 0 ∀j 6= i. The

total potential Φ(x) ≈ Φh(x) =
∑NFE

j=1 ϕj(x)
(

ΦFE
)[j]

with NFE the number of FE

nodes is then projected into the FE space and, using variational and FE techniques

for equation (2), a linear system

KΦFE = JFE (14)

is derived with the sparse symmetric positive definite stiffness matrix K ∈ R
NFE×NFE

K [i,j] =

∫

Ω

〈σ∇ϕi,∇ϕj〉. (15)

We then seek for the coefficient vector ΦFE ∈ R
NFE

. The right-hand side vector

JFE ∈ R
NFE

has only C non-zero entries at the neighboring FE nodes to the considered

dipole location. It is determined by

(

JFE
)[i]

=

{

j [c]
p

if ∃c ∈ {1, . . . , C} : i = glob(c)

0 otherwise,
(16)

for a source at location xp, where the function glob determines the global index i to

each of the local indices c.

2.2.3. The BEM direct potential approach For numerically solving the integral

equation (3), we use a collocation approach [18, 23, 25, 44, 12]. The three boundaries

(1 ≤ i ≤ 3) are discretized into triangles with N(i) nodes xi
m (1 ≤ m ≤ N(i)).

Piecewise linear Lagrange-functions hj
n (hj

n(xi
m) = δijδmn) are chosen as the basis for the

approximation of the potential [25]. When compared to the constant potential approach

with the triangle centers of mass as collocation points [18, 23], the linear approach was

shown to overall yield better numerical results [36] . Substitution into (3) yields a linear

equation system

ΦBE
i = JBE

i +
3
∑

j=1

AijΦ
BE
j (17)

with matrices Aij ∈ R
N(i)×N(j) and vectors ΦBE

i , JBE
i ∈ R

N(i) defined as

A
[m,n]
ij :=

σ+
j − σ−

j

σ+
i + σ−

i

D
[m,n]
ij with D

[m,n]
ij :=

∫

Γj

d(xi
m,y)hj

n(y)dΓj (18)

(

JBE
i

)[m]
:=

2σ−

3

σ+
i + σ−

i

Φp(x
i
m) (19)

where the entries D
[m,n]
ij are computed analytically [25, 36]. Note that the denotation

JBE
i was chosen with regard to Section 2.2.4, even if its unit is the one of a potential and
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not the one of a current source density. In [18, 23], the so-called isolated skull approach

(ISA) was introduced to account for the numerical difficulties in the computation of

the potentials on the outer surfaces Γ1 and Γ2 caused by the presence of the poorly

conducting skull. Later studies [44, 24] pinpoint the importance of the ISA in reducing

the numerical error. The ISA decomposes the potential

ΦBE
i = wi + wp

i (20)

with wp
i ∈ R

N(i), wp
1 = wp

2 = 0 and wp
3 being the solution vector for the integral equation

for the isolated brain compartment, i.e., the solution for (3) with σ+
3 = σ±

2 = σ±

1 = 0:

wp
3 =

1

σ−

3

H−1Φp
3 with H := I − D33 ∈ R

N(3)×N(3) (21)

The numerical solution for the corresponding multi-layer integral equation for the

unknown w [18, Equations (20, 21)] can then numerically more accurately be solved [18,

44]. In this way, the following formula was derived for a numerically stable computation

of the potential vector for the linear collocation approach on all three surfaces [44]:

ΦBE = GJBE (22)

with the fully populated matrix G ∈ R
NBE×NBE

(NBE :=
∑3

i=1 N(i)) defined as

G :=
σ+

3

σ−

3

(I − A)−1







I 0 0

0 I 0

0 0 (I − 2H−1)






+

σ+
3 + σ−

3

σ−

3







0 0 0

0 0 0

0 0 H−1







As shown in [25, 36], the matrices H and I −A have an eigenvalue 0 to the eigenvector

1, because the potential is only defined up to an additive constant. The inversion by

means of direct solution techniques can thus only be performed after a proper deflation

(e.g., instead of H, we consider H + 1
N

1 · 1tr) [18, 25, 36].

2.2.4. Fast transfer matrix approach Let us assume that the EEG electrodes directly

correspond to FE or BE nodes at the surface of the head model (otherwise, interpolation

is needed). It is then easy to determine a restriction matrix R ∈ R
(seeg−1)×N , which has

only one non-zero entry with the value 1 in each row and which maps the potential

vector onto the (seeg − 1) non-reference EEG electrodes:

R Φ =: Φ
eeg

. (23)

We then define the following BE transfer matrix for the EEG:

TBE := RBE G ∈ R
(seeg−1)×NBE

. (24)

Matrix T BE only has to be computed once per head model and directly maps the BE

right-hand-side vector onto the unknown electrode potentials:

TBEJBE (24)
= RBE GJBE (22)

= RBEΦBE (23)
= ΦBE

eeg
. (25)

For the FE approach, the situation is similar. With the following definition of the FE

transfer matrix for the EEG,

T FE := RFE K−1 ∈ R
(seeg−1)×NFE

, (26)
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a direct mapping of an FE right-hand side vector onto the unknown electrode potentials

is given:

T FE JFE (26)
= RFE K−1JFE (14)

= RFEΦFE (23)
= ΦFE

eeg
. (27)

Note that while JBE is fully populated so that the operation T BEJBE amounts in

2 · (seeg − 1) · NBE operations, JFE has only C non-zero entries so that T FEJFE only

amounts in 2 · (seeg − 1) · C operations. The fast transfer matrix approach can not

be used when the mesh is adapted according to varying source positions within the

inverse problem. We therefore attempt to avoid local mesh refinement techniques as

used in [6, 8].

The inverse FE stiffness matrix K−1 from (15) exists, but its computation is

a difficult task, since the sparseness of K will be lost while inverting. By means

of multiplying equation (26) with the symmetric matrix K from the right side and

transposing both sides, we obtain

K
(

T FE
)tr

=
(

RFE
)tr

. (28)

The FE transfer matrix can thus be computed by means of iteratively solving (seeg − 1)

large sparse FE linear equation systems. Note that a fast FE transfer matrix for

the Magnetoencephalography (MEG) forward problem can be derived on a similar

way [37, 13]. For the computation of (26) by means of (28), we employ an algebraic

multigrid preconditioned conjugate gradient (AMG-CG) method. We solve up to a

relative error of 10−6 in the controllable KC−1K-energy norm (with C−1 being one

V-cycle of the AMG) [37].

3. Methods

3.1. Validation platform

Medium Scalp Skull Brain

Outer shell radius 92mm 86mm 80mm

Conductivity 0.33S/m 0.0042S/m 0.33S/m

Table 1. Parameterization of the isotropic three layer sphere model for BEM and

FEM accuracy and speed comparison.

The comparison of the BE- and FE-based EEG forward computations with regard to

speed and accuracy are carried out in an isotropic three compartment sphere model,

whose parameterization is shown in Table 1.

We furthermore study accuracy and speed of the proposed FE approach in a four

compartment sphere model which additionally includes a CSF compartment [29, 38]

and accounts for conductivity anisotropy of the skull [6, 8, 38]. The parameterization

of this volume conductor model is shown in Table 2. BE and FE forward solutions

are computed for dipoles located on the z axis in 1 mm steps up to a radius of 76 mm,
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Medium Scalp Skull CSF Brain

Outer shell radius 92mm 86mm 80mm 78mm

Tangential conductivity 0.33S/m 0.042S/m 1.79S/m 0.33S/m

Radial conductivity 0.33S/m 0.0042S/m 1.79S/m 0.33S/m

Table 2. Parameterization of the anisotropic four layer sphere model for a further

evaluation of the FEM accuracy and speed.

which corresponds to an eccentricity of 97.4% using both radial and tangential dipole

orientations and amplitudes of 1 nAm. Eccentricity is defined here as the percent ratio of

the distance between the source location and the model midpoint divided by the radius

of the inner sphere in the four layer model(78 mm radius). The most eccentric source

considered is thus only 2 mm below the CSF compartment in the four layer sphere model

and 4 mm below the skull compartment in the three layer sphere model. To achieve error

measures which are independent of the specific choice of the sensor configuration, we

distribute 134 electrodes in a most-regular way over the outer sphere surface. The

evaluations with regard to wall clock time, memory and accuracy are run on a 64bit

Linux-PC with an Intel Xeon 5130 processor (2GHz) with 8GB of main memory using

the SimBio software environment [32], which contains both the presented BE [44] and

a variety of FE forward approaches [37, 40].

3.2. Forward problem parameter settings

A value of 10−6 is chosen for υ in the stopping criterion (9) for the quasi-analytical series

expansion formulas.

The parameters of the Venant FE approach are chosen as follows: The maximal

dipole order n0 in (10) and the scaling reference length aref in (11) are set to n0 = 2

and aref = 20.0 mm, respectively. Since the chosen mesh size is much smaller than

the reference length, the second order term
(

∆x̄r
cp

)2
is small and the model focuses on

fulfilling the dipole moments of the zeros and first order. The exponent of the source

weighting matrix in (12) is fixed to s = 1 and the regularization parameter in (13) is

chosen as λ = 10−6. The settings effect a spatial concentration of the monopole loads

in the dipole axis around the dipole location [9].

3.3. Mesh generation

In source reconstruction, head modeling is generally based on segmented magnetic

resonance (MR) data, where curved tissue boundaries have a stair-step representation.

Both BE and FE meshes are therefore created starting from synthetic MR images of

the spherical volume conductors with 1 mm3 voxel resolution. Tetrahedra and regular

and geometry-adapted hexahedra FE meshing is examined. Two resolutions (one coarse

and one fine) are considered for each meshing strategy.
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3.3.1. BE mesh generation The BEM requires a surface mesh for each of the

compartment boundaries. We use triangle meshes which are constructed as follows.

Refer to [35] for a detailed description. In a first step, a boundary is segmented from the

synthetic MR image of the sphere and vertices are regularly distributed on it. For a given

triangle edge width of the resultant surface mesh, the distance between two neighboring

vertices is modified. In a second step, using again parameter width, auxiliary surfaces

are generated by means of erosions of the initial boundary, followed by a vertex thinning

of all auxiliary surfaces. As a result, vertices are spread across the whole volume inside

the initial boundary. A Delaunay tetrahedralization is then constructed from all vertices.

The surface triangles from the tetrahedralization finally form the triangle mesh of the

compartment boundary. In this way the two BE meshes with varying element width

model

width

# nodes # elements
scalp

outer inner

skull skull

fine3700 3layer iso 10.0 mm 9.5 mm 8.0 mm 3727 7462

coarse2000 3layer iso 14.5 mm 13.5 mm 10.5 mm 2015 4018

Table 3. Fine and coarse BE meshes used for the studies in the isotropic three layer

sphere model.

were constructed, which are shown in Table 3. For BE mesh generation, the software

CURRY is used [10].

3.3.2. FE mesh generation

Regular hexahedra The generation of regular hexahedra meshes takes advantage of the

cubic voxel structure which is inherent to MR images. Regular hexahedra meshes with

edge length width are constructed by combining width3 voxels of the MRI to form one

element. Each hexahedron is labeled according to the majority of its inner voxel labels.

Tables 4 and 7 present the regular hexahedra models generated for the isotropic three

model width # nodes # elements

cube426k 3layer iso 2.0 mm 425631 418816

cube56k 3layer iso 4.0 mm 56043 50918

Table 4. Fine and coarse regular hexahedra FE meshes used for the studies in the

isotropic three layer sphere model.

layer sphere model and for the anisotropic four layer sphere model, respectively. For

regular hexahedra FE mesh generation, the software VGRID from the SimBio-project

is used [32].
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Geometry-adapted hexahedra In order to increase conformance to the real geometry

and to mitigate the stair-case effects of a regular hexahedra mesh, a technique can be

applied to shift nodes on material interfaces in order to obtain smoother and more

accurate boundaries. Nodes on a two-material interface are moved into the direction of

the centroid of the set of incident hexahedra with minority material, i.e., the material

occurring three times or less in the 8 surrounding hexahedra. If the centroid of these

minority voxels relative to a node is (x, y, z), it is shifted by

(∆x, ∆y, ∆z) = (0.49 · x, 0.49 · y, 0.49 · z).

For the Venant FE approach in EEG source analysis, the nodeshift was shown to reduce

both topography and magnitude errors by more than a factor of 2 for tangential and

1.5 for radial sources [40]. Tables 5 and 7 show the parameterization of the geometry-

model width # nodes # elements nodeshift

cubens426k 3layer iso 2.0 mm 425631 418816 yes

cubens56k 3layer iso 4.0 mm 56043 50918 yes

Table 5. Fine and coarse geometry-adapted hexahedra FE meshes used for the studies

in the isotropic three layer sphere model.

adapted hexahedra meshes. In addition, a cross-section of the nodeshift hexahedra

mesh of the four compartment sphere model is presented in Figure 1(a). Geometry-

adapted hexahedra FE meshes are generated using the software VGRID from the

SimBio-project [32].

Tetrahedra mesh generation Tetrahedra FE meshes of the three and four layer sphere

models are generated by means of the software TetGen [33] which uses a Constrained

Delaunay Tetrahedralization (CDT) approach [33]. The starting point are triangle

surface meshes of the compartment boundaries, which are obtained as described in

Section (3.3.1). The CDT approach is then used to construct a tetrahedralization

conforming to the surface meshes. It first builds a Delaunay tetrahedralization of

the vertices of the surface meshes. It then uses a local degeneracy removal algorithm

combining vertex perturbation and vertex insertion to construct a new set of vertices

which includes the input set of vertices. In the last step, a fast facet recovery algorithm is

used to construct the CDT [33]. This approach is combined with two further constraints

to the size and shape of the tetrahedra. The first constraint is important for the

generation of quality tetrahedra. If rad denotes the radius of the unique circumsphere

of a tetrahedron and minwidth its shortest edge length, the quality of the tetrahedron

can be defined as

quality = rad/minwidth. (29)

The quality can distinguish almost all badly-shaped tetrahedra except one type of

tetrahedra, so-called slivers. A sliver is a very flat tetrahedron which has no small
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(a) cubens426k 4layer aniso (b) tet716k 4layer aniso

Figure 1. Detail of the cross-section of (a) the geometry-adapted hexahedra model

and (b) the high-resolution CDT tetrahedra FE mesh of the four compartment sphere

model. Visualization was carried out using BioPSE [7].

edges, but can have arbitrarily large dihedral angles (close to π). For this reason, an

additional mesh smoothing and optimization step is used to remove the slivers and

improve the overall mesh quality. The second constraint can be used to restrict the

volume of the generated tetrahedra in a certain compartment. We follow the formula

for regular tetrahedra:

volume =
√

2/12 · width3 (30)

model width # nodes # elements quality volume

tet660k 3layer iso 2.2 mm 660321 4158422 1.4 1.3

tet103k 3layer iso 4.0 mm 103182 636951 1.4 7.5

Table 6. Fine and coarse CDT tetrahedra meshes used for the studies in the isotropic

three layer sphere model. The used quality (29) and volume (30) constraints are also

indicated.

Table 6 presents the parameterization of the generated CDT tetrahedra meshes for the

isotropic three compartment sphere studies.

model element type # nodes # elements

cube426k 4layer aniso hexahedra 425631 418816

cubens426k 4layer aniso
geometry-adapted

425631 418816
hexahedra

tet716k 4layer aniso tetrahedra 715721 4504002

Table 7. The high-resolution FE meshes used for the studies in the anisotropic four

layer sphere model.
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Finally, a CDT mesh is created for the anisotropic four layer sphere model. A

cross-section of this model is presented in Figure 1(b) and Table 7 shows its main

parameterization. The mesh is generated with a quality constraint of 1.4. A volume

constraint of 0.5 is used for the skull compartment since the modeling of its anisotropy

requires specifically small elements. Additionally, we define a cortex compartment of

4mm thickness (radius between 74mm and 78mm) and use a volume constraint of 0.3 in

order to enforce small elements close to the first conductivity inhomogeneity at the inner

CSF border. Volume constraints of 1.0, 3.0 and 3.0 were used for the compartments

skin, CSF and white matter (radius <74mm), respectively.

3.4. Error criteria

For the comparison of the numerical BE (25) and FE (27) solution vectors at the

electrodes, Φnum
eeg

, to the quasi-analytical (8) one, Φana
eeg

, we used two error criteria that are

commonly used in source analysis [23, 6, 8, 31], the relative difference measure (RDM)

and the magnification factor (MAG). The RDM is defined as

RDM =

∥

∥

∥

∥

∥

1
∥

∥Φana
eeg

∥

∥

2

Φana
eeg

− 1
∥

∥Φnum
eeg

∥

∥

2

Φnum
eeg

∥

∥

∥

∥

∥

2

(31)

with ‖·‖2 denoting the L2 norm. The RDM indicates errors in the topography of the

numerically computed potentials. It is 0 ≤ RDM ≤ 2, so that we can furthermore define

RDM(%) := 100 · RDM/2. (32)

The second similarity measure, the MAG, is defined as

MAG =
∥

∥Φnum
eeg

∥

∥

2
/
∥

∥Φana
eeg

∥

∥

2
. (33)

It indicates changes in the source amplitude. The minimum is at MAG = 1 and we

therefore define

MAG(%) = 100 · |1 − MAG|. (34)

4. Results

4.1. Validity of the BE and FE comparison

The first study shall show that the comparison of BE models with mesh resolutions of

some thousand nodes with FE models with mesh resolutions of some hundred thousand

nodes is valid. Therefore, the wall clock time is measured for the BE and FE models with

highest mesh resolution. With regard to the inverse problem in EEG source analysis,

it should be distinguished between the setup-computation (the transfer matrices T BE

from (24) and T FE from (26)) that only has to be carried out once per head model

and computations that have to be carried out thousands of times within the inverse

problem (right-hand side computations in (16) and (19) and multiplications to the

transfer matrices in (25) and (27)). Furthermore, the total time needed for simulating
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the electric potential for 30, 000 dipole sources, which approximately corresponds to the

time for computing a lead field with 10, 000 influence nodes and no constraint on the

dipole orientations, is measured.

model setup rhs mult lead field

fine3700 3layer iso 70 min 59.6 s 0.4 ms 2.7 ms 72 min 33 s

cubens426k 3layer iso 29 min 14.3 s 0.6 ms 0.1 ms 29 min 35 s

tet716k 4layer aniso 56 min 31.6 s 2.2 ms 0.2 ms 57 min 43 s

Table 8. Wall clock time for the most accurate BE and FE meshes: Setup measures

the time for computing the transfer matrices T BE from (24) and TFE from (26), rhs for

the right-hand side computation (16) and (19) and mult for the multiplication of the

transfer matrix to the rhs in (25) and (27). lead field indicates the cumulated time for

the computation of a lead field matrix with 30,000 embedded forward computations.

Table 8 summarizes our time measurements. It is shown that for both BE and FE

modeling, the setup, which only has to be carried out once per headmodel, is the most

time-consuming operation. The transfer matrix approach then allows very fast forward

computations on a millisecond scale for both BE and FE volume conductor modeling.

The main result is thus that FE modeling is not excessively more expensive than BE

modeling, in contrast, in our current implementation, it is even faster. When comparing

the time required for the computation of the exemplary lead field matrix in the three

compartment sphere model using the BEM model fine3700 3layer iso and the FEM

model cubens426k 3layer iso, the BEM- takes more than twice the time of the FEM-

computation. The FEM forward computations (operations rhs and mult in Table 8) are

faster than the BEM forward computations, because most entries in the FEM-rhs in (16)

are zero, while the BEM-rhs (19) is fully-populated.

Depending on whether tetrahedra or hexahedra elements are chosen, the mesh

generation process might be more complex for the FEM, because a 3D discretization

of the volume conductor is needed. Because of its simplicity, with 6.2 s, the generation

of the geometry-adapted hexahedra model cubens426k 3layer iso is extremely fast,

while, with a wall clock time of 7 min 9 s, the generation of the CDT tetrahedra

FE-model tet716k 4layer aniso is more time-consuming. With regard to memory

consumption, the FEM computation is more expensive than the BEM computation.

In our current implementation, about 3.5 GB of main memory is needed for model

tet716k 4layer aniso, if, among others, the large FE transfer matrix T FE of 732 MB,

all FE grid hierarchies for the AMG-CG solver and the tensor-valued conductivities are

kept in the main memory in parallel. However, the memory amount is strongly reduced

when computing T FE row-wise (i.e., sensor-wise), as shown in [37].

4.2. Accuracy comparison in the isotropic three layer sphere model

In a second examination, the accuracy of BEM and FEM is studied in the three

compartment sphere model from Table 1.
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Figure 2. Isotropic three layer sphere model: Topography (RDM) and magnitude

(MAG) errors for the BE approach using the coarse and the fine triangle mesh from

Table 3.

The parameterization for the coarse and the fine triangle meshes used for the BEM

simulations can be seen in Table 3, while Figure 2 shows their RDM and MAG errors.

Figures 3, 4 and 5 show the topography and magnitude errors for the direct Venant

FE forward approach using the coarse and the fine regular and geometry-adapted

hexahedra and CDT tetrahedra meshes listed in Tables 4, 5 and 6, respectively.

The first observation is that both BE and FE (for all element types) forward

approaches are converging, i.e., with decreasing mesh size, the numerical errors are

decreasing. Furthermore, for both BE and FE approaches, numerical errors are

increasing with increasing eccentricity, especially for radial dipole orientations. While

smooth error curves can be observed for the BE approach, the Venant FE approach

shows slight error curve oscillations, i.e., a slight mesh-dependence of the dipole model.

In order to allow a direct comparison, the BEM and FEM errors for the high mesh

resolutions are presented in Figure 6. It can be observed, that the BEM is slightly more

accurate than the best Venant FE solution for low eccentricities up to 0.7. For dipoles at

eccentricities larger 0.7, the FEM solutions in geometry-adapted hexahedra and CDT

tetrahedra meshes are more accurate than the BEM solution. Highest errors for the

most eccentric sources are for the BE approach in the range of 2% RDM (32) and up to

28% MAG (34), while they are only 1% RDM and 5% MAG for the geometry-adapted

hexahedra FE model. With regard to the dependence of the FE solution accuracy on

the element type, the geometry-adapted hexahedra perform best in this study while

regular hexahedra are worst.
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Figure 3. Isotropic three layer sphere model: Topography (RDM) and magnitude

(MAG) errors for the FEM solution using the coarse and the fine regular hexahedra

meshes from Table 4.

Figure 4. Isotropic three layer sphere model: Topography (RDM) and magnitude

(MAG) errors for the FEM solution using the coarse and the fine geometry-adapted

hexahedra meshes from Table 5.
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Figure 5. Isotropic three layer sphere model: Topography (RDM) and magnitude

(MAG) errors for the FEM solution using the coarse and the fine CDT tetrahedra

meshes from Table 6.

Figure 6. Isotropic three layer sphere model: Topography (RDM) and magnitude

(MAG) errors for the high resolution BE and FE forward computations.
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4.3. FEM accuracy in the anisotropic four layer sphere model

The goal of the last study is to show the flexibility of the Venant FE approach, i.e., that

very high accuracies with short computation times (see the computation times for model

tet716k 4layer aniso in Table 8) are also achieved in volume conductors with more

complex and even anisotropic conductivity profiles. Therefore, the numerical accuracy

of the Venant FE approach is examined in the four layer spherical volume conductor

with anisotropic skull from Table 2. Note again that the distance of the most eccentric

dipole to the closest conductivity inhomogeneity (i.e., to the CSF) is now only 2 mm

unlike in Section 4.2, where it was 4 mm (to the skull).

Figure 7. Anisotropic four layer sphere model, radial dipole orientations: RDM and

MAG errors for the Venant FE approach using the meshes from Table 7. effect shows

the RDM and MAG error of the isotropic three layer sphere model, i.e., when neglecting

the skull anisotropy and the high conductivity of the CSF compartment.

The RDM and MAG errors for the FE meshes from Table 7 for radial and tangential

dipoles are shown in Figures 7 and 8, respectively. In addition, the error between the

quasi-analytical solution in the isotropic three layer sphere model from Table 1 and

the quasi-analytical solution for the anisotropic four layer sphere model from Table 2

is presented. This curve demonstrates the effect of neglecting the CSF layer and the

anisotropic conductivity of the skull in the solution of the forward problem.

Figures 7 and 8 clearly show that the numerical error of especially model

tet716k 4layer aniso is significantly smaller than the errors caused by assuming a

simplified isotropic three compartment volume conductor. Furthermore, with a maximal

RDM of 1% and a maximal MAG below 5% for sources with maximal eccentricities of
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Figure 8. Anisotropic four layer sphere model, tangential dipole orientations: RDM

and MAG errors for the Venant FE approach using the meshes from Table 7. effect

shows the RDM and MAG error of the isotropic three layer sphere model, i.e., when

neglecting the skull anisotropy and the high conductivity of the CSF compartment.

up to 97.4%, comparable errors to those in the more simple isotropic three layer sphere

model study in Section 4.2 are achieved with the highly-tuned CDT tetrahedra model.

The errors of the geometry-adapted hexahedra (maximal RDM of about 3% and a

maximal MAG of about 18%) and especially the regular hexahedra model (maximal

RDM of about 4.5% and a maximal MAG of about 27%) are higher than in Section 4.2.

This shows that high mesh resolutions are especially needed in the anisotropic skull

compartment.

5. Discussion and conclusion

In EEG source analysis literature, the difficulty of FE mesh generation [19] and the

computational complexity of FE forward modeling [9, 43, 28] was generally considered

to be a drawback for routine practical application, even if the flexibility with regard

to the modeling of tissue conductivity inhomogeneity and anisotropy was widely

honored [6, 9, 8, 43, 31, 13, 29, 38, 28]. In [9], the computation of a lead field matrix

with 8,742 unknown dipole components in a tetrahedra Venant FE approach with 18,322

nodes took roughly a week of computation time. In [43], a tetrahedra Venant FE model

with only 10,731 nodes was used and it was discussed that, for a general clinical use

of FE source analysis in presurgical epilepsy diagnosis, a finer FE discretization and

parallel computing is needed. In [28] it was speculated that BEM models are less
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computationally intensive and more accurate in three layer sphere studies than FEM

models.

In light of these considerations and speculations, the main results of our study

are that Venant FE volume conductor modeling with resolutions of even hundreds of

thousands FE nodes in combination with the transfer matrix approach in an anisotropic

four layer sphere model is very accurate (maximal RDM of 1% and a maximal MAG

below 5% for sources with maximal eccentricities of up to 97.4%, i.e., up to 2 mm under

the CSF compartment) and at the same time very fast (2.4 milliseconds for a forward

computation in an FE model with 716K nodes on a single processor of a standard 64bit

Linux machine). Furthermore, with FE mesh generation wall clock times of 6.2 seconds

for a geometry-adapted hexahedra model with 425K nodes and about 7 minutes for the

generation of a highly-tuned constrained Delaunay tetrahedralization FE-model with

716K nodes, even the 3D FE meshing does no longer pose a large problem with modern

tools such as TetGen [33], used for our study.

In the isotropic three layer sphere model, we compared the Venant FE approach [9]

with the ISA vertex collocation BE approach, i.e., a collocation BE approach [4] using

the isolated skull approach [23, 18, 44] and linear basis functions with analytically

integrated elements [25, 44]. Both numerical approaches were combined with transfer

matrices [37] for a fast BE and FE forward modeling. For a 2mm geometry-adapted

hexahedra FE model, the maximal RDM (MAG) of the FEM approach of 1% (5%) was

about two (four) times lower than the maximal RDM (MAG) of the BEM approach.

At the same time, with 0.7 ms, the FE forward computation is more than four times

faster than the BE forward computation. The error curves of the Venant FE approach

were shown to slightly oscillate. This does not have to be a disadvantage because, as

shown for tetrahedra meshes in [21], the minimum error is achieved for sources on FE

nodes, so that a lead field interpolation technique [42] can be used to avoid oscillations

and further decrease the numerical error.

As recent investigations show, the BE method can still be improved through

the use of a Galerkin approach [24], a symmetric BE approach [19], or virtual mesh

refinement [12]. However, as shown in [11] using a full subtraction approach (maximal

RDM of 0.34% and a maximal MAG of 0.3% for sources with maximal eccentricities of

up to 98.7%, i.e., up to 1mm under the CSF compartment), this is also true for the FE

method.
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Abstract

Bioelectric source localization in the human brain from scalp Electroencephalo-
graphy signals is sensitive to geometry and conductivity properties of the differ-
ent head tissues. We propose a Low Resolution Conductivity Estimation (LRCE)
method using simulated annealing optimization on high-resolution finite element
models that individually optimizes a realistically-shaped volume conductor with
regard to the tissue conductivities. As input data, the method needs T1- and PD-
weighted magnetic resonance images and scalp potential data. Our simulation stud-
ies showed that for realistic signal-to-noise somatosensory evoked potentials, the
LRCE method was able to simultaneously reconstruct both the brain and the skull
conductivity together with the underlying dipole source in somatosensory cortex
and provided an improved source analysis result. Furthermore, using scalp poten-
tials with a high signal-to-noise ratio, the LRCE method was even able to simultane-
ously reconstruct the brain and the skull conductivity together with the underlying
bi-hemispheric dipole sources. The new method was then applied to measured tac-
tile somatosensory evoked potentials. The LRCE estimated the brain conductivity
to be 0.48S/m, which is higher than the commonly used value of 0.33S/m. The
skull conductivity was fitted to the value of 0.004S/m, which is in the range of the
commonly used value. With these results, we have shown the viability of an ap-
proach that computes its own conductivity values and thus reduces the dependence
on assiging values from the literature and likely produces a more robust estimate of
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source location. Using the LRCE method, the individually optimized (with regard
to both geometry and conductivity) volume conductor model can in a second step
be used for the analysis of clinical or cognitive data acquired from the same subject.

Key words:
EEG, source localization, realistic head modeling, in vivo conductivity estimation,
brain and skull conductivity, simulated annealing, finite element method,
somatosensory evoked potentials, T1- and PD-weighted MRI.

1 Introduction

The electroencephalographic inverse problem aims at reconstructing the un-
derlying current distribution in the human brain using potential differences
measured non-invasively from the head surface. A critical component of source
reconstruction is the head volume conductor model used to reach an accu-
rate solution of the associated forward problem, i.e., the simulation of the
electroencephalogram (EEG) for a known current source in the brain. The
volume conductor model contains both the geometry and the electrical con-
duction properties of the head tissues and the accuracy of both parameters has
direct (but not fully predictable) impact on the accuracy of the source local-
ization (Buchner et al., 1997; Gençer and Acar, 2004; Ramon et al., 2004). The
practical challenges of creating patient specific models currently prohibit this
degree of customization for each routine case of clinical source localization,
thus it is essential to identify the parameters that have the largest impact on
solution accuracy and to attempt to customize them to the particular case.

Magnetic Resonance (MR) or Computer Tomography (CT) imaging provides
the geometry information for the brain, the cerebrospinal fluid (CSF), the
skull, and the scalp (Pham and Prince, 1999; Huiskamp et al., 1999; Wolters,
2003; Ramon et al., 2004). MRI has the advantage of being a completely safe
and noninvasive method for imaging the head, while CT provides better def-
inition of hard tissues such as bone. However, CT is not justified for routine
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physiological studies in healthy human subjects. In this study we used a com-
bination of T1-weighted MRI, which is well suited for the identification of
soft tissues (scalp, brain) and proton-density (PD) weighted MRI, enabling
the segmentation of the inner skull surface. This approach leads to an im-
proved modeling of the skull thickness over standard (T1) weighted MRI, an
important parameter for a successful application of the proposed low resolu-
tion conductivity estimation (LRCE) method. The volume conductor model
used in this study consisted of four individually and accurately shaped com-
partments, the scalp, skull, CSF, and brain.

Determining the second component of the head model, the conductivities of
the tissues, does not have the support of a technology as capable as MRI
or CT. The electric conductivities of the head tissues vary across individuals
and within the same individual due to variations in age, disease state and
environmental factors. First attempts to measure the conductivities of bio-
logical tissues were in vitro, often using samples taken from animals (Geddes
and Baker, 1967). The conductivity of human CSF has been measured by
Baumann et al. (Baumann et al., 1997) and Latikka et al. (Latikka et al.,
2001) investigated the conductivity of living intracranial tissues from nine pa-
tients under surgery. As the skull has considerably higher resistivity than the
other head tissues—and thus could be expected to play a bigger role in the
electric currents in the head—much attention focused on determining its con-
ductivity. Rush and Driscoll measured impedances for a half-skull immersed in
fluid(Rush and Driscoll, 1968, 1969) and since then the brain:skull conductiv-
ity ratio of 80 has been commonly used in bioelectric source analysis (Homma
et al., 1995). A similar ratio of 72 averaged over six subjects was reported
recently using two different in vivo approaches(Gonçalves et al., 2003b), one
method using the principles of electrical impedance tomography (EIT) and
the other method based on an estimation through a combined analysis of the
evoked somatosensory potentials/fields (SEP/SEF). However, those results re-
main controversial because other studies have reported the following ratios:
15 (based on in vitro and in vivo measurements)(Oostendorp et al., 2000), 23
(averaged value over nine subjects estimated from combined SEP/SEF data)
(Baysal and Haueisen, 2004), 25 (estimated from intra- and extra-cranial po-
tential measurements) (Lai et al., 2005), and 42 (averaged over six subjects
using EIT measurements) (Gonçalves et al., 2003a). At this point, there is
little hope of a resolution of these large discrepancies, some of which may
originate in interpatient differences or natural variations over time, so that we
propose an approach that seeks to resolve variation for each individual case
by making conductivity an additional parameter to be solved.

The growing body of evidence suggesting that the quality and fidelity of
the volume conductor model of the head plays a key role in solution accu-
racy(Cuffin, 1996; Huiskamp et al., 1999; Ramon et al., 2004) also drives the
choice of numerical methods. There is a wide range of approaches including
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multi-layer sphere models(de Munck and Peters, 1993), the boundary element
method (BEM) (Sarvas, 1987; Fuchs et al., 1998; Huiskamp et al., 1999), the
finite difference method (Hallez et al., 2005) and the finite element method
(FEM) (Bertrand et al., 1991; Yan et al., 1991; Marin et al., 1998; Weinstein
et al., 2000; Ramon et al., 2004; Wolters, 2003). The FEM offers the most flexi-
biliy in assigning both accurate geometry and detailed conductivity attributes
to the model at the cost of both creating and computing on the resulting
geometric model. The use of recently developed transfer matrix (or lead field
bases) approaches (Weinstein et al., 2000; Gençer and Acar, 2004; Wolters
et al., 2004) and advances in efficient FEM solver techniques for source analy-
sis (Wolters et al., 2002) drastically reduce the complexity of the computations
so that the main disadvantage of FEM modeling no longer exists.

In this paper, we propose a Low Resolution Conductivity Estimation (LRCE)
method using simulated annealing optimization in a realistically-shaped four
compartment (scalp, skull, CSF and brain) finite element volume conductor
model that individually optimizes the brain and the skull conductivity pa-
rameters. Like other source localization approaches, the LRCE method uses a
geometric model, in this case based on T1-/PD-MRI, and scalp potentials as
input. The method then determines the best combination of sources within the
somatosensory cortex together with the two individually optimized brain and
skull conductivity values over a discrete parameter space, i.e., for each source
and for each tissue conductivity the user has to define a reasonable set of a
priori values. We evaluate the accuracy of the LRCE method in simulation
studies before applying it to tactile somatosensory evoked potentials with the
focus on establishing the best values for the individual brain and skull con-
ductivity. Besides using our new method for an improved source analysis of
somatosensory evoked potentials, the major future perspective for the LRCE
is to provide an individually optimized volume conductor model that can then
be used in a second step for the analysis of clinical or cognitive EEG data.

2 Theory

2.1 Finite element method based forward problem

In the considered low frequency band (frequencies below 1000 Hz), the ca-
pacitive component of tissue impedance, the inductive effect and the electro-
magnetic propagation effect can be neglected so that the relationship between
bioelectric fields and the underlying current sources in the brain can be repre-
sented by the quasi-static Maxwell equation

∇ · (σ∇φ) = ∇ · jp in Ω (1)
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with homogeneous Neumann boundary conditions at the head surface

σ
∂φ

∂n
= 0 on Γ = ∂Ω (2)

and a reference electrode with given potential, i.e., φ(xref ) = 0, where σ
is the conductivity distribution, φ is the scalar electric potential, jp is the
primary (impressed) current, Ω the head domain, Γ its surface and n the
surface normal at Γ (Plonsey and Heppner, 1967; Sarvas, 1987). The primary
current is generally modeled by a mathematical dipole at position x0 with the
moment M0, jp = M0δ(x− x0). For a given primary current and conductivity
distribution, the potential can be uniquely determined for what is known as
the bioelectric forward problem.

For the numerical approximation of equations (1) and (2) in combination
with the reference electrode, we use the finite element (FE) method. Three
different FE approaches for modeling the source singularity are known from
the literature: a subtraction approach(Bertrand et al., 1991; Wolters et al.,
2007b), a Partial Integration direct method (Weinstein et al., 2000), and a
Venant direct method (Buchner et al., 1997). In this study we used the Venant
approach based on comparison of the performance of all three in multilayer
sphere models, which suggested that for sufficiently regular meshes, it yields
suitable accuracy over all realistic source locations (Wolters et al., 2007a,b).
This approach has the additional advantage of high computational efficiency
when used in combination with the lead field basis approach (Wolters et al.,
2004). We used standard piecewise linear basis functions ϕi(x) = 1 for x = ξi,
where ξi is the i-th FE node, and ϕj(x) = 0 for all j 6= i. The potential is
projected into the FE space, i.e., φ(x) ≈ φh(x) =

∑N
j=1 ϕj(x)uj, where N is the

number of FE nodes. Standard variational and FE techniques for equations
(1) and (2) yield the linear system

K · u = JV en

Kij =
∫
Ω

< ∇ϕi, σ∇ϕj > dΩ, 1 ≤ i, j ≤ N, (3)

where K is the stiffness matrix (N * N), u the coefficient vector for φh (N *
1), JV en the Venant approach right-hand-side vector (N * 1) (Buchner et al.,
1997; Wolters et al., 2007a), and < ·, · > the scalar product.

A key feature of this study was to pursue solutions that achieve high compu-
tational efficiency. With S the number of scalp electrodes, R the number of
possible source locations, and C the number of neighbors of the closest FE
node to the dipole source, JV en is particularly sparse because it has only C
non-zero entries. Thus the resulting combination of the lead field basis ap-
proach with the Venant method leads to implementations that are especially
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efficient, an essential feature for our study as will become clear in Section 2.3.
We distinguish clearly here between the lead field basis (a matrix of dimension
S×N) and the influence matrix (a matrix of dimension S×R·3) (Wolters et al.,
2004). To solve numercially the resulting linear FE equations, we employed
an algebraic multigrid preconditioned conjugate gradient (AMG-CG) method
(Wolters et al., 2002), solved to a relative error of 10−9 in the controllable
KN−1K-energy norm (with N−1 one V-cycle of the AMG).

2.2 The inverse problem: Dipole fit in a discrete influence space

The non-uniqueness of the EEG inverse problem requires a combination of a
viable forward problem, anatomical information, and a priori constraints on
some aspect(s) of the solution. Here, we followed a dipole fit procedure that
restricted the number of active sources to an application dependent number, k,
of some few dipoles (Scherg and von Cramon, 1985; Mertens and Lütkenhöner,
2000). In addition, we defined a set of R discrete permissable source locations,
or an influence space that was constrained to nodes of the geometric model
that lay within the cortical gray matter. Given this influence space, the S
scalp electrode locations, and a fixed volume conductor, we used the fast
FE forward computation methods from Section 2.1 to compute an influence
matrix, L, which mapped sources directly to electrode potentials:

L · J = Φsim, (4)

where J is a current source vector of dimension 3R× 1 defined at the discrete
source space and Φsim is the simulated potential vector of dimensiona S × 1.
L has dimension S × 3R because we do not use the normal constraint, i.e.,
sources on the discrete influence space can have orientations in any direction.

Since the potential depends linearly on the source moment (dipole direction
and strength) and nonlinearly on the source location, we use a two phase
approach for source localization (Buchner et al., 1997; Wolters et al., 1999).
We start with k initial source locations and apply a linear least squares fit to
the EEG data that determines uniquely the source orientation and strength,
Js (3k∗1). The numerical solver employed a TSVD (Truncated Singular Value
Decomposition) with a threshold of 10−6 for the minimization (Wolters et al.,
1999), based on a cost function, gf , that is the L2 norm of the difference
between the simulated potential, Φsim, and the measured EEG potential, ΦEEG

(S ∗ 1):

gf = min ‖ΦEEG − Φsim‖2 = min
Js

‖ΦEEG − Ls · Js‖2 (5)
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In this equation, Ls (S ∗ 3k) indicates the reduced influence matrix for the
current choice of source locations s = (s1, · · · , sk) with si the i-th source
location (1 ≤ i ≤ k).

2.2.1 Globally minimizing the cost function

Since the volume conduction properties are incorporated in the influence ma-
trix Ls, the free nonlinear optimization parameters in this case are only the
source locations. Optimization methods such as the Nelder-Mead simplex ap-
proach (Nelder and Mead, 1965), the Levenberg-Marquardt algorithm (Mar-
quardt, 1963), and Simulated Annealing (SA) from combinatorial optimization
(Kirkpatrick et al., 1983) are all able to update the source locations based on
the previous source location and misfit value. The optimization procedure
continues until the cost function meets a predefined tolerance criterion or
a maximum allowable number of iterations. The challenge of local optimizers
such as the Nelder-Mead simplex and the Levenberg-Marquardt algorithm lies
in determining the initial estimation of multiple parameters in the presence of
multiple local minima; a global optimizer such as SA is generally more effective
in localizing multiple parameters because it eliminates the need for high qual-
ity initial estimates (Haneishi et al., 1994; Gerson et al., 1994; Uutela et al.,
1998; Wolters et al., 1999). We used an SA method that follows the Metropo-
lis algorithm for the stochastic optimization process (Metropolis et al., 1953).
The energy (the cost function in our case) for the assigned parameters in each
iteration was compared with a previous energy and when the energy state
was smaller than the previous ∆E < 0, the parameters were always accepted.
When the energy was larger than the previous ∆E > 0, the acceptance of the
parameters depended on the probability based on the Metropolis criterion (6)
(Kirkpatrick et al., 1983). This stochastic acceptance test prevents the search
from getting trapped in local minima.

The following equation describes the process:

P (∆E, T ) = exp−(∆E/T )

T = fT · Tprevious, (6)

where T is a so-called temperature factor that regulates the acceptance proba-
bility. Throughout the optimization process, T decreases according to a cooling
rate fT . When the cooling is slow enough, SA has been shown to converge to
the global minimum of a given cost function in a large search space (Geman
and Geman, 1984). Initially the temperature is set to a high value, resulting
in the acceptance of most new parameters and as the temperature decreases,
it is less likely for new parameters to be accepted. This enables the search
to focus on the vicinity of the minima at the later stages of the optimization
process.
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2.3 Low resolution conductivity estimation

The proposed LRCE method adds electrical tissue conductivities as additional
optimization parameters to the cost function to the already parameterized
source locations. Here the set of optimization parameters including the con-
ductivities was

X = {s, σ} = {s1, s2, · · · , sk, σ1, σ2, · · · , σl}, (7)

where σi is the conductivity parameter for the i-th tissue compartment (1 ≤
i ≤ l, l is the number of tissue compartments). Each source location si was
allowed to vary within the defined discrete influence space as described in
Section 2.2. The conductivity σi of tissue compartment i was allowed to have
its value from a predefined discrete set of possible conductivity values

σi ∈ {σ1ji
, 1 ≤ ji ≤ hi}. (8)

Here, hi is the number of possible conductivity values for tissue compartment
i. Theoretically we could choose hi to be a large number (high resolution) for
each tissue, but this would strongly increase computational costs and might
be rather unrealistic given the limited SNR in measured EEG data. Therefore,
we confined each tissue to a rather small set of conductivity values.

Given the influence source space and the electrode locations, we precomputed
a set of influence matrices and collected them in a global influence matrix, Λ,
which corresponded to all possible combinations (with repetition taking into
account the ordering) of conductivity values for all tissue compartments of
interest. This resulted in the number

∏l
i=1 hi of influence matrices in Λ.

Λ = {L (σ1j1 , . . . , σ1jl
) : 1 ≤ ji ≤ hi, 1 ≤ i ≤ l}, (9)

with L (σ1j1 , · · · , σljl
) being the (S∗3R) influence matrix for the specific choice

of conductivities. Here, we describe an extension to the EEG lead field basis
approach, described in Section 2.1, aimed at enhancing the computation of Λ.
During each iteration of the SA method, the set of optimization parameters
includes not just a new estimate of the bioelectric source, but a new configu-
ration of both sources and conductivities in which we allow changing the value
of only one parameter chosen randomly per iteration. By limiting the choice of
conductivities to a discrete set of values, we maintain computational efficiency
by applying the associated precomputed influence matrix Λ. The total number
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of possible configurations for sources and conductivities is

k∏
i=1

(R− i + 1) ·
l∏

i=1

hi. (10)

The SA optimizer searches for an optimal configuration of dipole source lo-
cations s and tissue conductivities σ that ensure the best fit to the measured
data:

gf = min
s,σ

‖ΦEEG − Φsim(s, σ)‖2 = min
s,σ

‖ΦEEG − Ls(σ) · Js‖2 (11)

The following summarizes the general procedure of the low resolution conduc-
tivity estimation.

• Define the discrete influence space with R nodes.
• Fix the number k of sources to be fitted.
• Define a discrete set of conductivity values for each tissue, i.e., fix all σiji

, 1 ≤
i ≤ l

• Precompute the global influence matrix Λ corresponding to each of the
possible conductivity combinations.

• Repeat:
· Allow SA optimizer to choose a configuration of source locations s =

(s1, · · · , sk) and conductivities σ = (σ1, · · · , σl)
· Get lead field matrix Ls(σ) for the chosen source and conductivity config-

uration.
· Compute a cost function, gf = min‖ΦEEG − Ls(σ)Js‖2 with respect to

source moments Js.
• Until cost function meets a tolerance criterium or the number of iterations

exceeds a limit.
• Accept the configuration of source locations and conductivities as an optimal

configuration.

3 Methods and materials

Mesh generation

To carry out the LRCE analysis requires the construction of detailed realistic
head models, in this case from MRI image data. Here we outline the steps
for costructing such a model. Our approach emphasizes accurate modeling
of the skull thickness, as the influence of this parameter is closely related to
the influence of skull conductivity and therefore important for a successful
application of the presented LRCE algorithm.
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MRI data acquisition

To achieve the required accuracy of the head models, we made use of a combi-
nation of two different MRI modalities applied to a single subject. T1-weighted
MRI is well suited for the segmentation of tissue boundaries like gray mat-
ter, outer skull and skin. In contrast, the identification of the inner skull
surface is more successful from a Proton density MRI (PD-MRI) sequence
because the difference in the quantity of water protons between intracranial
and bone tissues is large. MR imaging of a healthy 32 year-old, male subject
was performed on a 3 Tesla whole-body scanner (Medspec 30/100, Bruker, Et-
tlingen/Germany). For the T1-MRI, an inversion recovery MDEFT sequence
(Lee et al., 1995) was employed (flip angle of 25◦, TR=11.7 ms, TE=6 ms,
TMD=1.3 s). For the 3D PD-MRI, acquired one week later, we used a 3D
FLASH protocol (Haase et al., 1986) with TE=6 ms, a flip angle of 25◦, and
TR=11.7 ms. The scan resolution was 1 x 1 x 1.5 mm3 in both acquisitions,
which were linearly interpolated to an isotropic 1 mm3 voxel size.

Registration and Segmentation

To construct a realistic volume conductor model requires segmentation of the
different tissues within the head with special attention to the poorly conduct-
ing human skull and the highly conductive CSF (Cuffin, 1996; Huiskamp et al.,
1999; Ramon et al., 2004). In order to correct for different subject positions
and geometrical distortions, we first aligned T1- and PD-MRI images with
a voxel-similarity based affine registration without pre-segmentation using a
cost-function based on mutual information (Wolters, 2003). The T1 images
provided the information on soft tissues while the registered PD image en-
abled the segmentation of the inner skull surface and thus a correct modeling
of skull and CSF compartmental thickness. Our nearly automatic segmenta-
tion process consisted of a 3D implementation of an Adaptive Fuzzy C-Means
classification method that compensates for image intensity inhomogeneities
(based on the original work in two dimensions of Pham and Prince (Pham
and Prince, 1999)), followed by a deformable model algorithm to smooth the
inner and outer skull surfaces (Wolters, 2003). We segmented four head com-
partments out of the bimodal dataset; skin, skull, CSF, and brain. In source
reconstruction, it is generally accepted that the weak volume currents outside
the skull and far away from the EEG sensors have a negligible influence on
the measured fields (Buchner et al., 1997; Fuchs et al., 1998). We therefore did
not make any effort to segment the face and used instead a cutting procedure
typical in realistic source analysis (Buchner et al., 1997; Fuchs et al., 1998).
Figure 1 shows the results of this approach for the segmentation of the inner
skull surface compared with results from an estimation procedure that used
exclusively the T1-MRI. The estimation procedure started from a segmented
brain surface and estimateed the inner skull by means of closing and inflat-
ing the brain surface. Figure 2 shows a magnification of an area in which the
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Axial Coronal Sagittal

Fig. 1. Segmentation of the inner skull surface: Comparison of the results using
the bimodal T1- and PD-MRI data set (in yellow) with the inner skull estimation
approach using exclusively the T1-MRI (in red) on underlying T1-MRI (top row)
and PD-MRI (bottom row).

bimodal MRI approach significantly improved the modeling of skull and CSF
compartmental thickness.

Volume conductor FE mesh generation

A prerequisite for FE modeling is the generation of a mesh that represents the
geometric and electric properties of the head volume conductor. To generate
the mesh, we used the CURRY software (CURRY, 2000) to create a surface-
based tetrahedral tessellation of the four segmented compartments (skin, skull,
CSF, brain). The procedure exploited the Delaunay-criterion, enabling the
generation of compact and regular tetrahedra (Buchner et al., 1997; Wolters,
2003) and resulted in a finite element model with 245,257 nodes and 1,503,357
tetrahedra elements. The FE mesh is shown in Figure 3.

Influence space mesh generation

An influence source space that represented the brain gray matter in which
dipolar source activities occur was extracted from a surface 2 mm beneath the
outer cortical boundary. The influence space was tessellated with a 2 mm mesh
resulting in 21,383 influence nodes and 42,916 triangular elements (shown in
Figure 3 together with the FE model). Since any influence mesh is only a rough
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Fig. 2. Segmentation of the inner skull surface: Result of the estimation procedure
(upper row) on T1-MRI (left) and PD-MRI (right) and result of the bimodal T1-
and PD-MRI approach (lower row). The parietal area of the neurocranial roof was
magnified where the CSF layer is thicker than being estimated by means of the
T1-MRI based estimation procedure.

approximation of the real folded surface and does not appropriately model the
cortical convolutions and deep sulci, no normal-constraint was used, i.e., the
dipole sources were not restricted to be oriented perpendicular to the source
space. Instead, dipole sources in the three Cartesian directions were allowed.

Setup of the LRCE simulation studies

Simulation studies were carried out to validate the new LRCE approach.
For the reference volume conductor, isotropic conductivity values of 0.33 (see
(Haueisen, 1996) and references therein), 0.0132 (Lai et al., 2005), 1.79 (Bau-
mann et al., 1997), and 0.33 S/m (see (Haueisen, 1996) and references therein)
were assigned to the scalp, skull, CSF, and brain compartment, respectively.
This led to a brain:skull ratio of 25 for the reference volume conductor. For
the modeling of the EEG, 71 electrodes were placed on the reference volume
conductor surface according to the international 10/20 EEG system.
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Fig. 3. Four compartment (scalp, skull, CSF and brain) realistic finite element head
model together with the cortical influence source space, visualized by SCIRun. The
somatosensory dipole source positions are indicated by black dots.

Two reference dipole sources were positioned on influence nodes in area 3b
of the primary somatosensory cortex (SI) in both hemispheres, as shown in
Figure 3. Two source orientation scenarios were considered, in which both
sources were either oriented quasi-tangentially or quasi-radially with regard to
the inner skull surface. In both scenarios, the two sources were simultaneously
activated using current densities of 100 nAm. Another experiment consisted
of just a single source in the left SI with quasi-tangential or quasi-radial di-
rection and a source strength of 100 nAm. Forward potential computations
were carried out for the different scenarios using the direct FE approach as
described in Section 2.1. Noncorrelated Gaussian noise was then added such
that the signal-to-noise-ratio (SNR) were 40, 25, 20, and 15 dB, where SNR in

dB is calculated as 20∗log10(
∑S

i=1
|Ri|∑S

i=1
|Ri−Ni|

· 1
S
), with Ni being the noisy signal, Ri

the noise-free reference signal at electrode i, and S the number of electrodes.

Figure 4 shows the potential maps for the two-sources experiment for both
orientation scenarios, the quasi-tangential (top row) and the quasi-radial ori-
entations (bottom row) for different SNR values.

SEP measurement

We measured somatosensory evoked potential (SEP) data in order to apply
our LRCE approach to real empirical EEG data. Tactile somatosensory stim-
uli were presented to the right index finger of the right-handed subject from
Section 3 using a balloon diaphragm driven by bursts of compressed air. We
compensated for the delay between the electrical trigger and the arrival of
the pressure pulse at the balloon diaphragm as well as the delay caused by
the inertia of the pneumatic stimulation device (half-way displacement of the
membrane), together 52 ms in our measurements. Following standard practice
(Mertens and Lütkenhöner, 2000), the stimuli were presented at 1 Hz (±10%
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40dB 25dB 20dB

Fig. 4. Simulated noisy (40, 25, and 20dB from left to right) reference data for
the two-sources and two orientation scenarios in the reference volume conductor
model (σbrain:σskull = 25). The top row shows the maps of the simultaneously
active quasi-tangentially oriented somatosensory sources and the bottom row the
quasi-radially oriented source. The potential maps are linearly interpolated over the
electrodes (white spheres). White lines indicate isopotentials (in µV ).

variation to avoid habituation effects). A 63 channel (10% system) CTF EEG
system (VSM Medtech Ltd.) recorded the raw time signals for the SEP study.
Two EOG (Electro-oculo-graphy) electrodes were furthermore used for hori-
zontal and vertical eye movement control. The collection protocol consisted of
three runs of 10 minutes each EEG data with a sampling rate of 1200 sam-
ples/sec using a real time low pass filter of 0-300 Hz. The BESA software
(BESA, 2007) was then used for a rejection of noise-contaminated epochs
(e.g., epochs containing eye movements detected by means of the EOG chan-
nels) and for averaging the non-contaminated epochs within each run. In order
to optimize the SNR, the SEP data were furthermore averaged over the three
averaged runs. The baseline-corrected (from -35 ms to 0 ms pre-stimulus) av-
eraged EEG dataset was filtered using a 4th order butterfly digital filter with
a bandwidth of 0.1 to 45 Hz. When using the prestimulus interval between
-20 ms and 0 ms for the determination of the noise level and the peak of the
first tactile component at 35.3ms as the signal, we achieved a SNR of 24dB.
Finally, by means of a channel-selection procedure (43 out of the 63 EEG
electrodes), we were able to even increase the SNR to 26.4 dB. A butterfly-
and a position-plot of the SEP data is shown in Fig. 5.
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Fig. 5. First tactile SEP component at the 43 selected electrodes. Selection was
performed in order to optimize the SNR. (a) Butterfly and (b) position plot.

4 Results

4.1 LRCE simulation studies

4.1.1 Simultaneous reconstruction of brain and skull conductivity and a pair
of somatosensory sources

We performed the LRCE procedure as desribed in Section 3 with an inverse
two-dipole fit on the discrete influence space, while additionally allowing skull
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Table 1
Results of the LRCE algorithm when applied to the simultaneous reconstruction

of the brain and the skull conductivity together with a pair of active sources in the
somatosensory cortex.

Reference SEP Localization error(mm) Estimated conductvity Residual

(tangential) right dipole left dipole σbrain(S/m) σbrain : σskull expl. var.(%)

Noise free 0 0 0.33 25 100

40dB 2.246 2.246 0.33 25 99.76

25dB 3.175 10.721 0.12 10 99.06

20dB 13.436 10.388 0.48 15 97.44

Reference SEP Localization error(mm) Estimated conductvity Residual

(radial) right dipole left dipole σbrain(S/m) σbrain/σskull expl. var.(%)

Noise free 0 0 0.33 25 100

40dB 3.013 3.013 0.33 25 99.44

25dB 6.430 7.379 0.48 25 96.57

20dB 5.218 12.462 0.48 25 92.76

and brain conductivity to vary as free discrete optimization parameters. The
permitted brain conductivities (σbrain) were 0.12, 0.33 (Haueisen, 1996), and
0.48 S/m with scalp and brain conductivities set to be equal. For each brain
conductivity, the skull conductivity (σskull) was allowed to vary so as to achieve
brain:skull ratios of 80, 40, 25, 15, 10, 8, and 5. The CSF conductivity remained
fixed at 1.79 S/m. This resulted in a total of 21 conductivity configurations.

X = {sleftsomato , srightsomato , σskull, σbrain}
σbrain ∈ {0.12, 0.33, 0.48 S/m}
σskull ∈ {σbrain/r, where r = 80, 40, 25, 15, 10, 8, 5}
σscalp = σbrain, σCSF = 1.79 S/m

Following Equation (10), the total number of possible source and conductivity
configurations in this simulation was thus approximately 9.3 billion. For the
SA optimization, we used a very slow cooling schedule with the cooling rate
(fT ) of 0.99 in order to make sure that the search reached the global minimum
of the cost function. The current acceptance probability was determined by
setting a current temperature Tk at 99% of the previous temperature Tk, i.e.,
Tk+1 = 0.99∗Tk. The maximum number of SA iterations was set to 50 million.

16



Table 1 contains the LRCE results for the simulated reference SEP data.
In this table, the localization error is defined as the Euclidian distance be-
tween the somatosensory reference source locations and the inversely fitted
ones resulting from the LRCE. The residual variance v was calculated as the
percentile misfit between the noisy reference potential and the fitted potential
that was computed from the fitted source parameters and conductivities. The
explained variance shown in the table is 100%− v. As Table 1 shows, besides
appropriately localizing both sources, the LRCE was able to accurately select
the reference conductivity values of the brain and the skull compartment in
the cases of noise free and low-noise (40 dB SNR) SEP data. However, for the
noisy data with a SNR of 25 or lower, neither the somatosensory sources nor
the brain and the skull conductivity values could be selected correctly.

4.1.2 Simultaneous reconstruction of brain and skull conductivity and a single
source in the left somatosensory cortex

In the second simulation, we first generated noise-free and noisy reference data
for a single dipole source in the left somatosensory cortex and then performed
a single dipole fit with skull and brain conductivity as two additional free
optimization parameters in the LRCE. We used the same scalp, skull, CSF,
and brain conductivity values as in the previous simulation:

X = {sleftsomato , σskull, σbrain}
σbrain ∈ {0.12, 0.33, 0.48 S/m}
σskull ∈ {σbrain/r, where r = 80, 40, 25, 15, 10, 8, 5}
σscalp = σbrain, σCSF = 1.79 S/m

The number of possible source and conductivity configurations was 449K,
which was also used as the maximum number of SA iterations and the cooling
rate (fT ) was set to 0.99.

As shown in Table 2, the conductivity was accurately estimated for reference
data with 40dB and 25dB SNR and the localization errors were acceptable.
For 20dB, the localization was still acceptable, but the brain conductivity was
no longer correctly reconstructed, while the skull to brain conductivity ratio
was still correct. Still higher noise levels led to inacceptable results.

4.1.3 Simultaneous reconstruction of the brain:skull conductivity ratio and a
pair of somatosensory sources

Using the reference volume conductor model and the reference SEP data from
Section 3, we carried out a third simulation, in which only skull conductivity
was allowed to vary with a fixed conductivity values for brain (0.33 S/m),
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Table 2
Results of the LRCE algorithm when applied to the simultaneous reconstruction

of the brain and the skull conductivity together with single source in the left so-
matosensory cortex.

Reference SEP Localization error Estimated conductvity Residual

(tangential) (mm) σbrain(S/m) σbrain : σskull expl. var.(%)

Noise free 0 0.33 25 100

40dB 0 0.33 25 99.85

25dB 2.245 0.33 25 96.73

20dB 4.141 0.48 25 95.76

15dB 9.420 0.12 25 83.39

Reference SEP Localization error Estimated conductvity Residual

(radial) (mm) σbrain(S/m) σbrain/σskull expl. var.(%)

Noise free 0 0.33 25 100

40dB 0 0.33 25 99.94

25dB 2.246 0.33 25 98.40

20dB 4.140 0.12 25 90.04

15dB 10.769 0.48 10 78.95

scalp (0.33 S/m), and CSF (1.79 S/m). The brain:skull conductivity ratio
was chosen as follows.

X = {sleftsomato , srightsomato , σskull}
σbrain = σscalp = 0.33 S/m, σCSF = 1.79 S/m

σskull ∈ {σbrain/r, where r = 80, 40, 25, 15, 10, 8, 5}

The total number of possible source and conductivity configurations for this
scenario was 3.1 billions and again we used a cooling rate of (fT ) = 0.99 and
a maximum number of SA iterations of 10 million.

As shown in Table 3, for both source orientation scenarios, the LRCE esti-
mated the skull conductivity correctly up to a 20 dB level, while acceptable
source localization errors were only achieved up to 25 dB. The LRCE recon-
struction failed to give acceptable results for both the source positions and
the brain:skull conductivity ratio only at noise ratios at or above 15 dB.
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Table 3
Results of the LRCE algorithm when applied to the simultaneous reconstruction of
the brain:skull conductivity ratio and of a pair of active sources in the somatosensory
cortex.

Reference SEP Localization error(mm) Estimated Residual

(tangential) right dipole left dipole σbrain/σskull expl. var.(%)

Noise free 0 0 25 100

40dB 2.246 2.246 25 99.76

25dB 2.008 3.329 25 99.04

20dB 6.025 5.941 25 97.43

15dB 17.596 41.099 15 64.31

Reference SEP Localization error(mm) Estimated Residual

(radial) right dipole left dipole σbrain/σskull expl. var.(%)

Noise free 0 0 25 100

40dB 3.013 3.013 25 99.44

25dB 7.379 7.511 25 96.55

20dB 5.218 10.676 25 92.72

15dB 24.639 13.209 5 89.14

4.1.4 Simulation with a fixed condcutivty and a pair of somatosensory sources

In a last simulation, volume conductors with fixed skull conductivity values
from the set of σskull were used. For these fixed volume conductors, only the
two somatosensory sources were reconstructed on the discrete influence space
using the simulated annealing optimizer with reference EEG data at a SNR
of 25dB.

The results in Table 4 show the effects of an erroneous choice of the brain:skull
conductivity ratio (80, 40, 15, 10, 8, 5) on the localization accuracy in com-
parison to the localization errors caused just by the the addition of noise when
using the correct brain:skull ratio of 1:25. Incorrect skull conductivity within
the source localization caused large localization errors. As expected, the cor-
rect skull conductivity (σbrain/σskull = 25) gave the smallest localization errors
and the highest explained variance for both source orientation scenarios.
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Table 4
Localization error(mm) for a fixed brain:skull conductivity ratio using the simulated
reference SEP data with a SNR ratio of 25dB. Residual variance in %.

σbrain Tangential source Radial source

to σskull right left expl. var. right left expl. var.

80 12.702 10.816 98.562 13.131 15.230 95.924

40 3.757 11.228 98.960 7.514 8.281 96.445

25 2.008 3.329 99.042 7.379 7.511 96.548

15 3.175 10.725 99.038 6.736 10.041 96.452

10 2.246 10.722 98.993 7.101 10.862 96.297

8 7.101 10.722 98.692 10.093 10.769 96.093

5 3.330 20.531 98.892 9.992 18.131 96.281

4.2 Application of LRCE to the SEP data

In a last examination, the new LRCE algorithm was applied to the post stim-
ulus P35 component of the averaged SEP data at the peak latency of 35.3ms
as indicated in Figures 5. The detailed four compartment (scalp, skull, CSF,
and brain) finite element model with improved segmentation of the skull ge-
ometry described in Section 3 was used as the volume conductor. Because of
the limiting SNR of 26.4 dB for the SEP data and based on our simulation
results from Section 4.1, we focused on the simultaneous reconstruction of
the contralateral somatosensory P35 source in combination with the estima-
tion of both the brain and the skull conductivities. Accordingly, we assigned
fixed isotropic conductivities to scalp (0.33 S/m) and fixed CSF conductivity
(1.79 S/m). Again, the source space from Section 3 was used as the influence
space for simulated annealing optimization together with brain:skull conduc-
tivity ratios of 140, 120, 100, 80, 72, 60, 42, 25, 23, 15, 10, 8 and 5 ((Hoekema
et al., 2003), who claimed ratios of 10 up to only 4).

X = {ssomato, σbrain, σskull}
σscalp = 0.33 S/m, σCSF = 1.79 S/m

σbrain ∈ {0.12, 0.33, 0.48, 0.57 S/m}
σskull = {σbrain/r, where r = 140, 120, 100, 80, 72, 60, 42, 25, 23, 15, 10, 8, 5}

The total number of possible source and conductivity configurations, as well as
the maximum of SA iterations was 1,026K and we again chose an SA cooling
rate of (fT ) = 0.99.
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Fig. 6. Source reconstruction result for the first tactile SEP component at the peak
latency of 35.3ms.

Applying the LRCE approach resulted in the contralateral somatosensory
source shown in Fig. 6, in the brain conductivity of 0.48S/m, and in a brain:skull
conductivity ratio of 120, i.e., a skull conductivity of 0.004 S/m, with an ex-
plained variance of 98.98%. While the value of skull conductivity is close to
what is generally used in source analysis (0.0042 S/m, see (Buchner et al.,
1997; Fuchs et al., 1998; de Munck and Peters, 1993)), the estimated brain
conductivity and thus also the brain:skull ratio is higher than the traditional
values proposed (Haueisen, 1996; Homma et al., 1995).

5 Discussion and conclusion

We developed a Low Resolution Conductivity Estimation(LRCE) procedure
to individually optimize a volume conductor model from a human head with
regard to both geometry and tissue conductivities. We exploited a combined
T1-/PD-MRI dataset for the construction of a four-tissue volume conductor
FE model with a special focus on an improved modeling of the skull shape and
thickness. Obtaining accurate skull geometry is important because changes in
skull conductivity are known to be closely related to changes in its compart-
mental thickness. The correction for geometry errors in modeling the skull
compartment were furthermore shown to be essential for the measurement of
skull conductivity (Gonçalves et al., 2003a). While other authors have used
parameter estimation in continuous parameter space with local optimization
algorithms (Gutiérrez et al., 2004; Fuchs et al., 1998), we propose the com-
bination of a discrete low resolution parameter estimation with a global op-
timization method applied to realistic geometry to better take into account
the limited SNR of real EEG measurement data. Because the cost function
is shallow (Gonçalves et al., 2003b), the proposed computationally expensive
procedure using realistic FE volume conductor modeling and global Simulated
Annealing (SA) optimization is important.
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In a first study, we evaluated the LRCE algorithm in EEG simulations for its
ability to determine both the brain and the skull tissue conductivities together
with the reconstruction of one and two somatosensory reference sources. At
relatively low noise levels (up to 25 dB SNR in the single source scenario and
up to 40 dB SNR in the two source scenario), the LRCE resulted in acceptable
localization errors for the reference sources and correctly estimated reference
tissue conductivities, while results became unstable when further increasing
the noise. We also set up a simulation for the reconstruction of the skull to
brain conductivity ratio in which results were satisfying (correct skull:brain
conductivity ratio, source localization errors smaller than 3.4 mm) up to noise
levels of 25 dB for the mainly tangentially oriented somatosensory reference
sources. We found in our simulations that the most accurate source recon-
structions were always associated with the correctly estimated conductivities
(or conductivity ratio) and, moreover, that assuming an incorrect conductivity
ratio had a profoundly negative effect on the source reconstruction accuracy.

In a last examination, we applied the LRCE to measured tactile Somatosensory
Evoked Potentials (SEP) with the focus on estimating both the brain and the
skull conductivity. With an SNR of 26.4 dB, the data were in the noise range
of the second simulation study, which was based on a single equivalent current
dipole model. As shown in numerous studies (Mertens and Lütkenhöner, 2000;
Hari and Forss, 1999), this source model is adequate because the early SEP
component arises from area 3b of the primary somatosensory cortex (SI) con-
tralateral to the side of stimulation. Our explained variance to the measured
data of about 99% for this source model further supports our choice. The re-
sults from the LRCE analysis were a brain conductivity of 0.48 S/m and a
skull conductivity of 0.004 S/m. While this skull conductivity corresponds to
the traditional value in the literature (de Munck and Peters, 1993; Buchner
et al., 1997; Fuchs et al., 1998), we found the brain to have a lower resistance
than generally assumed (Haueisen, 1996). Many recent papers have focused
on the brain:skull conductivity ratio and a large variability of results have
been reported for this value including 80 (Homma et al., 1995), 72 (Gonçalves
et al., 2003b), 42 (Gonçalves et al., 2003a), 25 (Lai et al., 2005), 23 (Baysal and
Haueisen, 2004), 15 (Oostendorp et al., 2000) and 8 (Hoekema et al., 2003).
Because of the higher conductivity of the brain, with an estimated ratio of
120, our LRCE result is larger than the largest previously reported value of
80(Homma et al., 1995).

The current results clearly illustrate the feasibility of building an optimized
volume conductor model with regard to both geometry and conductivity. As we
have formulated it, such a study requires accurate head geometry, in this case
from both T1- and PD-weighted MRI. The highly conducting CSF (Baumann
et al., 1997) should not be neglected in the headmodel as shown in (Ramon
et al., 2004; Wolters et al., 2006) and our procedure takes this compartment
into account. By obtaining somatosensory evoked potential data, which allows
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independent localization of the underlying bioelectric source, it is then pos-
sible to estimate the optimal conductivities for the individual subject using
the proposed LRCE approach in highly realistic finite element models, pro-
vided that the data has a sufficient signal-to-noise ratio. A related finding
from this study is, there is a trade off between the number of independent
parameters that can be determined and the complexity of the assumed source
model. The specific trade off point is also strongly influenced by the quality of
the measured electric potentials. Thus the number of parameters that can be
dependably estimated is a function of both the signal quality and the number
and quality of a priori knowledge about, for example, the source location or
orientation through a combination with fMRI or anatomical and/or functional
arguments (e.g., a strong restriction of the source location to anatomically and
physiologically reasonable areas close to the somatosensory SI area). In this
context, others have suggested that by including MEG data in the scheme
(Huang et al., 2007), it will be possible to improve stability considerably. Plis
et al. have also recently shown the necessity for stabilization when using only
EEG data (Plis et al., 2007). We note that our approach differs from both these
others with regard to both head modeling and conductivity optimization.

The success of the conductivity optimization approach and the more general
advantages of customized geometric models suggest a procedure for clinical
applications. First of all, one could use SEP data with high SNR together
with T1- and PD-MR images from the patient to construct a model that
would be optimized for both geometric accuracy and individual conductivity
values. With this volume conductor model in place, recorded potentials from
more complex and clinically interesting sources could drive the inverse solution
and source localization.

A better approximation to the real volume conductor using the proposed
LRCE method is an important step towards simultaneous EEG/MEG source
analysis (Fuchs et al., 1998). Combining EEG and MEG modalities com-
pensates each others disadvantages, i.e., poor sensitivity of MEG to radial
sources and the much stronger conductivity dependency of EEG. Using com-
bined somatosensory evoked potentials and fields (SEP/SEF) in combina-
tion with T1- and PD-MRI should further stabilize the application of the
presented LRCE method for the estimation of tissue conductivities. For the
quasi-tangentially oriented P35 somatosensory source, MEG-SEF data can be
exploited to strongly restrict the source location and especially its depth as
shown, e.g., in (Fuchs et al., 1998; Huang et al., 2007), so that the resolution
of the proposed LRCE method with regard to the conductivities of the differ-
ent compartments could be increased. With such data in hand, the presented
LRCE method using FE volume conductor modeling might also contribute
to the estimation of anisotropy ratios in the skull and brain compartments
(Marin et al., 1998; Haueisen et al., 2002; Wolters et al., 2006).
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ABSTRACT 

We will present a new and fast regularization procedure for reconstructing current densities based on EEG and / or MEG measurements. It is our 
goal to achieve an additional stabilization of the solution which is superior to known  procedures: our approach does not only consider spatial 
smoothness but also temporal smoothness of activation curves as a-priori information. 

KEY WORDS 

Current density reconstructions; linear regularization; Spatio temporal regularization; model adapted filtering; dynamic inverse problems. 

INTRODUCTION  

Current source density reconstruction algorithms are based on the linear relationship between a time series of measurement vectors and a 

time series of solution vectors  regarding 

tm

tj T  time steps, representing the strengths of a collection of predefined current dipoles, usually sampling 

the entire possible solution space. This relationship is mediated by a lead field matrix . It is well known that the inverse problem of EEG and MEG 
suffers from general non-uniqueness, i.e. there is always an entire class of possible solutions. This is due to the fact that the vectors  have a  higher 

dimension than the measurement vectors  . If the solution space is not restricted beforehand by e.g. assuming a single focal generator, additional 

assumptions have to be used to get an unique solution of the problem, in most cases one defines a generalized inverse which avoids this 
shortcoming.  However, the resulting linear estimators suffer from a bad condition, i.e. small perturbation in the measurement, e.g. by noise, lead to 
unusable solutions. This leads to the necessity of regularization. For example, the well-known Tikhonov-Philips based regularization procedure 
solves 

L
tj

tm
+L

∑ ∑ →+− min22
ttttt jRmjL λ  

Here R  is a regularization matrix, e.g. IR =  or ∆=R .  The parameterλ is called regularization parameter. The second sum models a-
priori information as spatial smoothness and stabilizes the solution in the presence of noise. In this formulation no temporal couplings occur. 

As activation curves of  neural activity are smooth, we introduce temporal smoothness as further a-priori information about the  current densities 
we are searching for. We thus extend the method above  as follows: 

∑ ∑ ∑ →−++− + min2
1

22
tttttttt jjjRmjL µλ  

The last term measures temporal smoothness, minimizing the last sum favors current densities with smooth activation curves. This extension can 
be applied to other problems as dynamic computerized tomography and dynamic impedance tomography, see [Schmitt, 2002]. 

METHODS 

Trying to solve the second minimization task with the same methods used for solving known Tikhonov-Philips based minimization problems one 
encounters efficiency problems which lead to unacceptable solution times ranging from some days to weeks. But using the difference matrix 

jijijiD ,,1, )( ++−= δδ  of size , that is  has the value TT ×− )1( D 1−  where ij = and 1+ in the case 1+= ij ,  our problem is 

equivalent to solving the so-called Sylvester equation [Schmitt, 2002] 

MDDXXRRLL TTT =++ µλ )(  

which can be solved much faster. Solution times range from seconds to a few minutes on a standard desktop computer, depending on the size of 
the problem. Here the temporal measurements form the matrix M by column wise arranging. In the same way the solutions form the columns of 

X . For some special regularization operators, e.g. IR =
L

, we can achieve further speedup solving a Sylvester equation involving [Schmitt, 

2002], which is in general much smaller than : if is 

TLL
LLT Nn 3× , where n is the number of measurement channels and is the number of 

influence nodes, then is n and is . 

N
TLL n× L (LT )3()3N × N

 



 

RESULTS 

For studying the general behavior of STR, we used a simple setup, see Fig. 1: The influence space is a 10x10 grid in two dimensions. Nine 
sensors are placed in a planar array above the grid with center (5.5, 5.5, 2). The center of the influence space is (5.5, 5.5, 0). We assume  constant 
conductivity in the whole space, so the leadfield matrix can be computed analytically. Two equally oriented dipoles with moment (0,0,1) at x=3, 8 
both at y=5  are placed on the 10x10 grid.. Gaussian dipole-strength time series are assigned to each dipole, they are drawn in Fig. 2. We generated 
synthetic data and added 30% uniform noise. All methods use IR = as regularization matrix. We calculated temporal uncoupled Tikhonov-Phillips 
solutions and STR solutions. The first used temporal smoothed data (Savitzky-Golay filter of order three and length five). Based on these results, 
Figure 1 shows current density reconstructions, in Figure 2 reconstructed activation curves  are drawn. The improved stability in presence of noise is 
apparent. 

                                        
Figure 1:  Left: setup of the simulation .  Middle: current densities calculated from temporal uncoupled Tikhonov-Phillips solution. Right: 

current densities calculated from STR reconstruction. 

                                   
Figure 2: Left: activation curves of the two dipoles used for generating synthetic data.  Middle: activation curves based on temporal uncoupled 

Tikhonov-Phillips solutions. Right: activation curves calculated from STR reconstruction. 
 

DISCUSSION 

One important question is if we can achieve the same results by smoothing the data before using uncoupled linear  methods. Regarding 

regularization procedures T  of an ill posed operator , one can define the filter XANY ⊆→ ⊥)(:λ YXA →: γγ ATF =:
+A

 which acts on 

data. We can reconstruct the regularization T  from  by applying the Moore-Penrose inverse  to the filter:  

. That is, one can switch from filters to regularizations and vice versa. These filters are not arbitrary, they 

are adopted to the underlying problem. For a deeper discussion see [Louis, 1999]. 

γ γF

γγ TT
AN

=⊥)(γγ PATAFA == ++

We computed the filter which belongs to the STR procedure, explored the structure of this matrix  and observed that a decomposition 

 is not possible in general, except for unrealistic cases as T=1 and N=1. Here ⊗  denotes the Kronecker 

product.  As a result, STR reconstructions cannot be obtained by applying known spatial regularizers to temporally smoothed data. STR interweaves 
spatial and temporal a-priori information to  a new regularization method. 

STRF

temporalF ))(( NspatialTSTR IFIF ⊗⊗=
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The problem                 is ill-posed, that is: it has no unique solution and noise in
the measurements leads to unusable results if this linear system is inverted.

Mathematical formulation:  Leadfieldmatrix      maps currents      to
measurements        for each timestep   .

STR: A new Spatio-Temporal Approach for Accurate and Efficient Current Density Reconstruction

For evaluation and studying STR we used a simple model
consisting of an 11x11 grid of influence nodes, 4 x 4 grid of
EEG sensors. We assumed constant conductivity in an un-
bounded volume conductor, so that the forward model can
be computed analytically. We placed one dipole perpendi-
cular to the influence space and attached a gaussian acti-
vation curve. See figures below.

We compared TP applied to
temporally smoothed data
versus STR applied to un-
smoothed data. See figures to
the right.

TP

∑ ∑ →+− min
22

ttttt jRmjL λ

Current density reconstructions try to reconstruct distributed sources based on
EEG/MEG measurements.

L tj
tm

tt mjL =
t

Remedy: Regularization procedures, e.g. Tikhonov-Phillips (TP) method:

  Present situation    Improvement by STR

Leads to unique, stable and spatial smooth currents, but solution is in general
not smooth in time, which contradicts neurological assumptions.

Incorporate temporal smoothness of currents in existing linear regularization methods by favoring
temporally smooth solutions. Tikhonov-Phillips method is extended to

∑ ∑ ∑ →−++− + min
2

21

2

2

2

2 tttttttt jjjRmjL µλ

The last term is a measure for temporal smoothness. Naive solution by so called normal equation
leads to unacceptable solution time.   STR transforms the normal equation  to so-called Sylvester
equations and considers the special structure of involved matrices.

speedup up to 106 compared to solving normal equations, slower than TP by a factor ~9 for
large problems. Further speed-up for certain regularization operators.

   Statistical evaluation

Discussion

  Analysis of STR Algorithm

A filter can be constructed for each regularization
procedure in such a way that the regularization is
equivalent to applying this filter followed by un-
regularized inversion.

Question: Can one decompose the filter in-
duced by STR to linear temporal filtering
followed by spatial filtering ?

Answer: NO.

Conclusion: STR can not be replaced by
linear filtering of the data, followed by pure
spatial regularization.

  Example Reconstructions

As we could show, STR is a new algorithm, which can be
implemented efficiently and scales well with the temporally
uncoupled TP method.
Statistical tests in a simple volume conductor show superior
reconstruction results compared to temporally uncoupled
TP.
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The same technique is used to handle temporal inverse prob-
lems like dynamical CT and dynamical impedance tomography.

We used an anisotropic high resolution tetrahedral Finite Element model with 147287 nodes and 892115 elements, and a 67
channel EEG configuration. As influence space we chose a smoothed brain surface: triangular mesh, 2 mm resolution. FEM calcu-
lations were done with the software package IP-NeuroFEM-Pebbles (www.neurofem.com), which yields outstanding computing times
using the method described in [1].
We simulated EEG data for 2 radial dipoles in
temporal areas of both hemispheres having
overlapping Gaussian activation curves. We
added averaged realistic noise (0.1 – 30 Hz)
from an auditory experiment, assuming 500
epochs and a max. signal amplitude of 15 µV.

STR

We made 500 runs at each
noise level. Measurement of
spatial localization error
(upper row)  and temporal
deviation (lower row). We
calculated mean errors and
their variance.

Timestep 14 Timestep 20 Timestep 26

[1] Wolters C H, Grasedyck L, Hackbusch W: Efficient Computiation
of Lead Field Bases and Influence Matrix for the FEM-based EEG
and MEG Inverse Problem, Inverse Problems 20 (2004), p 1099-
1116
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2.13 Influence of remote tissue conductivity anisotropy
on EEG/MEG field and return current computa-
tions
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To achieve a deeper understanding of the brain, scientists, and

clinicians use electroencephalography (EEG) and magnetoencephalog-

raphy (MEG) inverse methods to reconstruct sources in the cortical

sheet of the human brain. The influence of structural and electrical

anisotropy in both the skull and the white matter on the EEG and

MEG source reconstruction is not well understood.

In this paper, we report on a study of the sensitivity to tissue

anisotropy of the EEG/MEG forward problem for deep and superficial

neocortical sources with differing orientation components in an

anatomically accurate model of the human head.

The goal of the study was to gain insight into the effect of

anisotropy of skull and white matter conductivity through the

visualization of field distributions, isopotential surfaces, and return

current flow and through statistical error measures. One implicit

premise of the study is that factors that affect the accuracy of the

forward solution will have at least as strong an influence over solutions

to the associated inverse problem.

Major findings of the study include (1) anisotropic white matter

conductivity causes return currents to flow in directions parallel to the

white matter fiber tracts; (2) skull anisotropy has a smearing effect on

the forward potential computation; and (3) the deeper a source lies and

the more it is surrounded by anisotropic tissue, the larger the influence

of this anisotropy on the resulting electric and magnetic fields.

Therefore, for the EEG, the presence of tissue anisotropy both for

the skull and white matter compartment substantially compromises the

forward potential computation and as a consequence, the inverse

source reconstruction. In contrast, for the MEG, only the anisotropy of

the white matter compartment has a significant effect. Finally, return

currents with high amplitudes were found in the highly conducting
1053-8119/$ - see front matter D 2005 Elsevier Inc. All rights reserved.
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cerebrospinal fluid compartment, underscoring the need for accurate

modeling of this space.
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Visualization
Introduction

The inverse problem in EEG and MEG aims at reconstructing

the underlying current distribution in the human brain using

potential differences and/or magnetic fluxes measured non-

invasively directly from the head surface or from a close distance.

The goal of this study was to examine the sensitivity of the

associated EEG/MEG forward problem especially to conductive

anisotropy within the brain. We computed forward solutions for

both isotropic and anisotropic versions of realistic head models

using the finite element approach and evaluated the results

throughout the head using sophisticated visualization techniques

as well as statistical metrics.

A major premise of this study is that there are regions of the

head that do not conduct electrical current isotropically, i.e.,

equally in all directions, but rather they conduct preferentially in

directions related to the underlying tissue structure (Geddes and

Baker, 1967; Haueisen, 1996). The human skull consists of a soft

bone layer (spongiosa) enclosed by two hard bone layers

(compacta). Since the spongiosa has a much higher conductivity

than the compacta (Akhtari et al., 2002), the skull can be

described by an effective anisotropic conductivity with a ratio of

up to 1:10 radially to tangentially to the skull surface (Rush and

http://www.sciencedirect.com
mailto:carsten.wolters@uni-muenster.de
http://dx.doi.org/10.1016/10.1016/10.1016/j.neuroimage.2005.10.014
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Driscoll, 1968). It is also known that brain white matter has an

anisotropic conductivity with a ratio of about 1:10 (normal:

parallel to fibers) (Nicholson, 1965), but no direct techniques

exist for its robust and non-invasive measurement. Recently,

however, formalisms have been described for relating the

effective electrical conductivity tensor of brain tissue to the

effective water diffusion tensor as measured by diffusion tensor

magnetic resonance imaging (DT-MRI) (Basser et al., 1994b;

Tuch et al., 2001). The underlying assumption is that the same

structural features that result in anisotropic mobility of water

molecules (detected by DT-MRI) also result in anisotropic

conductivity. The quantitative expression for this assumption is

that the eigenvectors of the conductivity tensor are the same as

those from the water diffusion tensor (Basser et al., 1994b). Even

more specifically, Tuch et al. have applied a differential effective

medium approach to porous brain tissue and derived a linear

relationship between the eigenvalues of the DT and the

conductivity tensors (Tuch et al., 2001).

A critical component of source reconstruction is the numerical

approximation method used to reach an accurate solution of the

associated forward problem, i.e., the simulation of fields for

known dipolar sources in the brain. Although there are several

different approaches in common use for this type of problem the

finite element (FE) method is able to treat both realistic

geometries and inhomogeneous and anisotropic material param-

eters (Haueisen, 1996; Buchner et al., 1997; van den Broek et al.,

1998; Marin et al., 1998; Schimpf et al., 2002) and so is the

approach we employed. Previous work has not sufficiently

investigated the impact of tissue anisotropy on EEG and MEG.

One impediment to using the FE method – and to this type of

modeling in general – has been the high computational cost of

carrying out the simulations. The use of recently developed

advances in the FE method in EEG/MEG inverse problems

(Weinstein et al., 2000; Wolters et al., 2002; Gencer and Acar,

2004; Wolters et al., 2004b) dramatically reduces the complexity

of the computations, so that the main disadvantage of FE

modeling no longer exists. In realistic FE models, sensitivity

studies have been carried out for the influence of skull anisotropy

on EEG and MEG (van den Broek et al., 1998; Marin et al.,

1998; Wolters, 2003), while, to our knowledge, only a few

studies have investigated the influence of realistic white matter

anisotropy (Haueisen et al., 2002; Wolters, 2003). Those studies

support the hypothesis that modeling anisotropy is crucial for

accurate source reconstruction. The major limit of these studies

that we have addressed is that their result evaluation was

restricted to scalp potentials/fields. In this study, we have

computed, compared and visualized potentials and especially

the return current flow throughout the volume of the head. Those

additional information allows a much more detailed examination

of the effects of anisotropy than is possible from the evaluation of

scalp values alone.

Using our realistic, anisotropic head model and a variety of

sources, we were able to compare throughout the head volume

the effects of anisotropic conductivity on bioelectric fields. Our

results support those from previous studies suggesting that

inclusion of anisotropy can be essential to accurate modeling of

electric and magnetic fields and, by extension, to accurate source

localization. In addition, our results show the nature of the

current flow in regions of anisotropy and provide fundamental

indications of the interplay between tissue characteristics and

bioelectric fields.
Methods

To carry out the analysis of sensitivity of brain source

simulation requires the construction of detailed realistic head

models, in this case, from MRI image data. Here, we outline the

steps we used to construct such a model and then apply advanced

numerical techniques to the solution of forward problems.

MRI data acquisition

T1-weighted MRI is well suited for the segmentation of tissue

boundaries like white and gray matter, outer skull, and skin. In

contrast, the identification of the inner skull surface is more

successful from proton density (PD) weighted MRI sequence

because the difference in the quantity of water protons between

intracranial and bone tissues is large. We regarded the skull and

white matter layers as anisotropic compartments, the description of

which we obtained from T1-/PD-MRI and whole-head DT-MRI

with the associated segmentation process.

Measurement of T1- and PD-MRI

MR imaging of a healthy 32-year-old male subject was

performed on a 3-T whole-body scanner (Medspec 30/100,

Bruker, Ettlingen/Germany). For the T1-MRI, an inversion

recovery MDEFT sequence (Lee et al., 1995) was employed (flip

angle of 25-, TR = 11.7 ms, TE = 6 ms, TMD = 1.3 s). For the 3 D

PD-MRI, acquired 1 week later, we used a 3 D FLASH protocol

(Haase et al., 1986) with TE = 6 ms, a flip angle of 25-, and TR =

11.7 ms. The scan resolution was 1 � 1 � 1.5 mm3 in both

acquisitions, which were linearly interpolated to an isotropic 1

mm3 voxel size.

Whole-head DT-MRI measurements

Whole-head DT-MRI was performed using a 4-slice displaced

Ultra-Fast Low Angle RARE (U-FLARE) protocol with centric

phase encoding (Norris and Börnert, 1993). Diffusion weighting

was implemented as a Stejskal–Tanner type spin-echo preparation

(Koch, 2000). Although Echo Planar Imaging (EPI) is widely

applied for DT-MRI purposes, U-FLARE avoids spatial deforma-

tion of the DT-MRI and the resulting misregistration between it and

the anatomic 3 D data. The effective echo time was TE = 120 ms

and TR = 11 s. The diffusion weighting gradient pulses had a

duration of d = 22 ms, and their onset was separated by D = 40 ms.

Four different b matrices with evenly spaced trace b between 50

and 800 s/mm2 were applied through variation of the gradient

strength (Koch, 2000). The slices were axially oriented and 5 mm

thick with in-plane resolution of 2 � 2 mm2. In order to increase

the signal-to-noise ratio, 5 to 16 images (depending on b) with

identical diffusion weighting were averaged. Due to the long

measurement time (50 min for 4 slices) data acquisition was split

into 8 sessions. Diffusion tensor calculation (Basser et al., 1994a)

was based on a multivariate regression algorithm in IDL

(Interactive Data Language, Research Scientific, Bolder, Colo-

rado/USA). T1-weighted images were acquired in the same session

as anatomical reference for the offline registration process.

Registration and segmentation

To construct a realistic volume conductor model requires

segmentation of the different tissues within the head with special

attention to the poorly conducting human skull and the highly
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conductive CSF (Hämäläinen and Sarvas, 1987; Cuffin, 1996;

Roth et al., 1993; Huiskamp et al., 1999; Ramon et al., 2004).

T1-/PD-MRI

In order to correct for different subject positions and

geometrical distortions, we first aligned T1- and PD-MRI with a

voxel similarity based affine registration without presegmentation

using a cost function based on mutual information (Wolters, 2003).

The T1 images provided the information on soft tissues while the

registered PD image enabled the segmentation of the inner skull

surface.

Our nearly automatic segmentation process consisted of a 3D

implementation of an Adaptive Fuzzy C-Means classification

method that compensates for image intensity inhomogeneities

(based on the original work in two dimensions of Pham and Prince

(1999)), followed by a deformable model algorithm to smooth the

inner and outer skull surfaces (Wolters, 2003). We segmented five

head compartments out of the bimodal dataset: skin, skull, CSF,

gray, and white matter. In source reconstruction, it is generally

accepted that the weak volume currents either outside the skull or

far away from EEG and MEG sensors have a negligible influence

on the measured fields (Bruno et al., 2004). We therefore did not

make any effort to segment the face and used instead a cutting

procedure like that reported in standard boundary element head

modeling (e.g., Wagner, 1998).

Fig. 1 shows an axial, a coronal, and a sagittal cut through a

five tissue segmentation result, in which one can observe the

segmentation produced by our method.

DT-MRI

The coregistered T1 images of the same slices allowed the

registration of the DT-MRI data onto the 3D T1 data set. The

registered DT data were then resampled to 1 mm3. In order to

handle the orientation information in the registered DT images

appropriately, the matrix of each diffusion tensor, Deff, was rotated

with the rotation matrix R of the respective registration process via

the similarity transform D = RDeffRT. Since water diffusion

coefficients in CSF are much larger than in the brain, a large

contrast was achieved at the brain surface, which provided a

quality check of the registration.

Fig. 2 shows a map of the Fractional Anisotropy (FA, for the

definition see Basser and Pierpaoli, 1996) of the registered DT

data, masked with the white matter mask from the segmentation

procedure. The first row shows the FA values overlaid on the T1-

MRI. With FA = 0.74, the highest value was found in the splenium

of the corpus callosum. In the second row, the color coded
Fig. 1. Five tissue head model: the result of the segmentation in axial (left), corona

white matter, dark blue—gray matter, light blue—CSF, green—skull, brown—sk
directions (Pajevic and Pierpaoli, 1999) of the first tensor

eigenvector weighted with the FA are presented and overlaid on

the T1-MRI. Note the strong anisotropy of the corpus callosum and

the pyramidal tracts. Furthermore, as Fig. 2 shows, the registered

DT-MRI slices were not exactly parallel because the images were

acquired in multiple sessions. Any missing values were filled with

isotropic tensors with a trace value characteristic of white matter.

Volume conductor FE mesh generation

A prerequisite for FE modeling is the generation of a mesh that

represents the geometric and electric properties of the head volume

conductor. To generate the mesh, we used the software CURRY

(2000) to create a surface-based tetrahedral tessellation of the five

segmented compartments. The procedure exploits the Delaunay

criterion, enabling the generation of compact and regular tetrahe-

dra, and is described in detail elsewhere (Wagner, 1998; Wolters,

2003). The process resulted in a finite element model with 147,287

nodes and 892,115 tetrahedra elements as shown in Fig. 3.

Finite element conductivity

The finite elements were then labeled according to their

compartment membership and assigned the following conductiv-

ities for the isotropic reference model (Geddes and Baker, 1967;

Rush and Driscoll, 1968; Haueisen, 1996; Baumann et al., 1997):

skin = 0.33 S/m, skull = 0.0042 S/m (skull to skin conductivity

ratio of approximately 1:80), CSF = 1.79 S/m, gray matter = 0.33

S/m, and white matter = 0.14 S/m.

Modeling the skull conductivity anisotropy

The human skull shows a conductivity with high resistance in

the radial direction (as a first approximation, a series connection of

a high, a low, and a high resistor for inner compacta, spongiosa,

and outer compacta) and much lower resistance in the tangential

directions (parallel connection of the same three resistors) (Rush

and Driscoll, 1968).

Determination of the tensor eigenvectors. Marin et al. have

pointed out the importance of well-defined skull conductivity

tensor eigenvectors by reporting errors in the simulated EEG for

the case of an erroneous modeling (Marin et al., 1998). We

determined the radial direction from a strongly smoothed triangular

mesh, which was shrunken from the outer skull onto the outer

spongiosa surface using a discrete deformable surface model

(Wolters, 2003).
l (middle), and sagittal (right) view. The color labels correspond to yellow—

in.



Fig. 2. Visualization of the fractional anisotropy (FA) of the DT-MRI measurements in the white matter compartment. The first row shows the FA values in

red–yellow–white color scale overlaid on the T1-MRI. The second row shows the orientation of the principal tensor eigenvector in color coding according to

the red–green–blue sphere (shown in the left figure) with red indicating mediolateral, green anteroposterior and blue superoinferior direction. The brightness

of the color is scaled to the FA (max. 0.75). The white matter fiber orientation map is overlaid on the T1-MRI.
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Fig. 4 shows the result on the underlyingT1 image. For each skull

finite element, we then defined the radial orientation component

from the outward normal direction of the computed surface.

Determination of the tensor eigenvalues. Realistic modeling of

the conductivity tensor eigenvalues in the skull is a difficult task,

not only because the absolute and relative thicknesses of spongiosa

and compacta layers vary and their boundaries are difficult to

segment, but especially because of inhomogeneous skull resistivity

and an inter- and intrasubject variability which can be related to

age, diseases, environmental factors, and personal constitution

(Rush and Driscoll, 1968; Law, 1993; Haueisen, 1996; Pohlmeier

et al., 1997; Ollikainen et al., 1999; Akhtari et al., 2002). We
Fig. 3. Sagittal cut through the five tissue tetrahedra model (color labeling

like in Fig. 1). For visualization, the software tool SimBio (2000–2003)-

VM (VM: visualization module) was used.
therefore started from the commonly used isotropic conductivity

value of rskull = 0.0042 S/m (Huiskamp et al., 1999; Cuffin, 1996;

Buchner et al., 1997; Wagner, 1998) and simulated the anisotropic

case in the following way: for a given anisotropy ratio, rrad:rtang,

we calculated radial and tangential eigenvalues by obeying one of

the following two constraints:

(1) Wang et al. (2001) constraint, which states that the product

of radial and tangential conductivity has to stay constant and

has to be equal to the square of the isotropic conductivity:

rradrtang ¼! r2
skull; ð1Þ

(2) and a volume constraint (Wolters, 2003), which retains the

geometric mean of the eigenvalues and thus the volume of

the conductivity tensor, i.e.,

4

3
prrad rtangð Þ2 ¼! 4

3
pr3

skull ð2Þ

According to Rush and Driscoll (1968); deMunck (1988); Peters

and de Munck (1991); van den Broek et al. (1998); and Marin et al.

(1998), the skull has an anisotropy ratio of 1:10. Given the paucity of

measurements of skull anisotropy, we decided to include a wide

range of values, spanning the onlymeasured value of 1:10 (Rush and

Driscoll, 1968) by an order of magnitude in both directions. Our

primary goal was then to evaluate the overall effect of anisotropy on

the electric and magnetic fields. Table 1 shows the 5 chosen

anisotropy ratios and the calculated eigenvalues under the respective

constraint.

Fig. 5 shows the modeled conductivity tensors of the skull.

Modeling the white matter conductivity anisotropy

Determination of the tensor eigenvectors. Following the propo-

sition of Basser et al. (1994b), we assumed that the conductivity



Fig. 4. Visualization of the computed surface for the determination of radial skull anisotropy directions onto the underlying T1-MRI.
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tensors share the eigenvectors with the measured diffusion tensors.

Shimony et al. measured diffusion anisotropy in 12 regions of

interest in human white and gray matter and showed that in

commissural, projection, and also association white matter, the

shape of the diffusion ellipsoids is strongly prolate (‘‘cigar-

shaped’’), while gray matter was measured to be close to isotropic

(Shimony et al., 1999). Therefore, we assumed prolate rotationally

symmetric tensor ellipsoids for the white matter compartment and

modeled the conductivity tensor r for a white matter finite element

as

r ¼ S diag rlong;rtrans;rtrans
� �

ST ; ð3Þ

where S is the orthogonal matrix of unit length eigenvectors of the

measured diffusion tensor at the barycenter of the white matter

finite element and rlong and rtrans are the eigenvalues parallel

(longitudinal) and perpendicular (trans-verse) to the fiber direc-

tions, respectively, with rlong � rtrans.

Determination of the tensor eigenvalues. As for the skull

compartment, we started from the commonly used isotropic

conductivity value of rwm = 0.14 S/m for the white matter

compartment (Geddes and Baker, 1967; Haueisen, 1996) and used

Wang’s constraint (see Eq. (1)) and the volume constraint (see Eq.

(2)) to setup the eigenvalues for the anisotropic case. According to

Nicholson (1965); Tuch et al. (2001); Shimony et al. (1999), the

white matter has an anisotropy ratio of 1:10. Given the paucity of

direct measurements of white matter conductivity anisotropy

(Nicholson, 1965), as for the skull, we decided to include the

same wide range of anisotropy ratios also for the white matter

compartment (Table 1). Fig. 5 presents the normalized and colored

(by trace) tensor ellipsoids for 1:2 (volume constraint) skull and

white matter anisotropy in the barycenters of the finite elements.

Note the left–right and top–bottom anisotropy of the corpus

callosum and the pyramidal tract, respectively.
Table 1

Simulated values for the skull conductivity tensor eigenvalues: the ratio was give

Ratio Skull tensor eigenvalues

Volume constraint Wang’s constraint

rrad rtang rrad r tang

1:1 (iso) 0.0042 0.0042 0.0042 0.004

1:2 0.0026 0.0053 0.003 0.005

1:5 0.00143 0.0072 0.00188 0.009

1:10 0.000905 0.00905 0.00133 0.013

1:100 0.000195 0.0195 0.00042 0.042
Finite element forward modeling

To represent the relationship between brain sources and

bioelectric fields, we made use of the standard approaches to

simulation based on the quasistatic Maxwell equations. These lead

to an expression of Poisson’s equation (Sarvas, 1987)

lI rlUð Þ ¼ �lI j p in X; ð4Þ

in which j p is the primary or impressed current, U is the scalar

potential and is the head domain. Homogeneous Neumann

conditions apply on the head surface C = flX,

rlU Inð ÞjC ¼ 0; ð5Þ

where n is the unit surface normal. Additionally, a reference

electrode (FPz) is used with given zero potential. For the

forward problem, the primary current and the conductivity of the

volume conductor are known, and the equation is solved for the

potential distribution by means of an FE Ansatz. We used a

standard variational procedure in order to transform the

differential Eq. (4) into an algebraic system of linear equations

(Buchner et al., 1997; Wolters, 2003). For the modeling of the

primary current, we used a ‘‘blurred dipole’’, which has been

previously described and intensively validated (Buchner et al.,

1997; Wolters, 2003). We solved the resulting high-resolution

linear equation system, which has a large but sparse symmetric

system matrix by means of an iterative Algebraic MultiGrid

(AMG) preconditioned conjugate gradient method, which was

parallelized for distributed memory computers (Wolters et al.,

2002, 2004a). The outstanding performance of the AMG

preconditioner in comparison with other methods has been

demonstrated previously (Wolters et al., 2000, 2002; Mohr and

Vamrunste, 2003). The AMG approach is especially suitable for

anisotropic problems, and in Wolters et al. (2002), we showed

its stability within this context.
n and the eigenvalues were computed under the respective constraint

White matter tensor eigenvalues

Volume constraint Wang’s constraint

rtrans rlong rtrans rlong

2 0.14 0.14 0.14 0.14

8 0.111 0.222 0.099 0.19798

38 0.0818 0.41 0.0626 0.31309

26 0.065 0.65 0.04427 0.4427

0.03016 3.016 0.014 1.4



1 4-D NeuroImaging, San Diego, USA.

Fig. 5. Conductivity tensor ellipsoids in the barycenters of the tetrahedra

elements: Normalized and colored (by trace) for 1:2 (vol.const.) skull and

white matter anisotropy. The highest trace values can be found in the CSF

compartment (red) and the lowest in the skull compartment (dark blue).

Note the mainly top–bottom fiber directions of the pyramidal tracts and the

mainly left – right orientation over the corpus callosum. Tensor validation

and visualization was carried out using the software BioPSE (2002).
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To describe the associated magnetic field from brain sources,

one can define

C yð Þ ¼=
Y

1

kx� yk
dx; ð6Þ

where Y is the outer contour of a MEG coil. One can then compute

the magnetic flux W at a MEG sensor as (Wolters et al., 2004b):

W ¼ Wp þWs; with

Wp ¼
l
4p

Z
X

j p yð ÞC yð Þdy; and ð7Þ

Ws ¼ �
l
4p

Z
X

r yð ÞlU yð Þ I C yð Þdy ð8Þ

In these equations, Wp is the so-called primary magnetic flux

and Ws the secondary magnetic flux, emerging from the primary or

the secondary (return) currents, respectively.

To perform these computations, we used the software package

NeuroFEM (NeuroFEM, 2000–2005) for EEG and MEG forward

modeling. We transformed both the potential distribution within

the volume conductor and, independently, the computed distribu-

tions at the EEG and MEG sensors to common average reference

before error analysis and visualization.

Simulated sources

We carried out forward simulation studies for two classes of

dipoles, superficial and deep sources. For the class of superficial
neocortical sources, we chose two dipoles in the right somatosen-

sory cortex, one of them approximately tangentially oriented (in

the posterior–anterior direction) and the other approximately

radially oriented (in the inferior–superior direction). Because it

is known that both EEG and MEG are especially sensitive to

conductivity changes in the vicinity of the dipole (Haueisen et al.,

2000; Gencer and Acar, 2004), we checked the environment of the

superficial somatosensory sources and found that only 15% of the

surrounding finite elements were labeled as white matter and 0% as

skull. The representative of the second class, deep sources, was

chosen in the left thalamus, where the source orientation is

approximately radial. The thalamus belongs to human gray matter

(Shimony et al., 1999), so that the vicinity of the dipole was

isotropic. The source strength of each dipole was 100 nAm.

Simulation setup to assess the influence of anisotropy

In order to model the EEG, 71 electrodes were placed on the

head surface according to the international 10/20 EEG system. For

the MEG, we used a BTI1 148 channel whole-head system. Each

magnetometer flux transformer was modeled by means of a thin,

closed conductor loop with a diameter of 11.5 mm, using

8 isoparametric quadratic finite row elements.

We based our evaluation of the effect of anisotropy on

forward field modeling on well-known statistical difference

metrics and especially on sophisticated, three-dimensional visu-

alization techniques.

Statistical difference metrics

Meijs et al. (1989) introduced the two difference metrics that

we used to compare forward solutions under different conductivity

assumptions. The first is the Relative Difference Measure (RDM),

defined as

RDM ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~
m

i¼ 1

u
;

i½ �
isoffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~
m

i¼ 1

u
;

i½ �
iso

� �2r �
u
;

i½ �
aniffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~
m

i¼ 1

u
;

i½ �
ani

� �2r
1
CCA

0
BB@

vuuuuut ; ð9Þ

where m denotes the number of sensors and uiso
[i] and uani

[i] the ith

component of the simulated field vector (u is either the potential /
or the magnetic flux W) in the isotropic and the anisotropic case,

respectively. The RDM is a measure for the topography error

(minimal error: RDM = 0). The second error measure, the

MAGnification factor (MAG), is defined as

MAG ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~
m

i¼ 1

u
;

i½ �
ani

� �2r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~
m

i¼ 1

u
;

i½ �
iso

� �2r ð10Þ

and gives an indication of errors in the magnitude (minimal error:

MAG = 1).

Visualization of return currents

In our experience, the visualization of return currents rE is

both intuitive and highly informative when trying to understand

the effect of anisotropy. Using a Line Integral Convolution (LIC)

technique (Cabral and Leedom, 1993), we computed the return
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current directly over the surface of the head and on coronal

slices through the head. This technique permits a continuous

depiction of the directional information of the current flow and is

combined with a color mapping of the current magnitude that
Fig. 6. Tangentially (top row) and radially (middle row) oriented somatosensory s

error (left) and magnitude error (right) for different anisotropy ratios: for the EEG

white matter are presented for the tensor volume retaining (Vol) and Wang’s co

constraints are presented because skull anisotropy was found to have no influenc
gives insight into the qualitative and quantitative aspects of the

current flow.

We also used a technique called stream surfaces (Garth et al.,

2004) to assess the influence of tissue conductivity anisotropy.
ource and deep thalamic source (bottom row): EEG and MEG topography

, errors due to anisotropy effects of skull, white matter and both skull and

nstraint (Wang). For MEG, only white matter anisotropy effects for both

e.
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Stream surfaces are defined as surfaces generated by an arbitrary

starting curve that is then advected along the vector field. They

often constitute a significant improvement over individual

streamlines because they provide a better understanding of depth

and spatial relationships in the exploration of three-dimensional

flows.
Results

The goal of this study was to evaluate the influence of

anisotropic conductivity on the simulation of electric and magnetic

fields from dipolar sources in the brain. We present here results

from the 3 dipole source types described above and, for each case,

compare the results with isotropic and anisotropic assumptions for

each of the white matter and the skull. We used a source magnitude

of 100 nAm and, except for the statistical metrics in Fig. 6, we

compared the isotropic case with the 1:10 (volume constraint)

anisotropic case, which is considered closest to realistic white

matter (Nicholson, 1965) and skull anisotropy (Rush and Driscoll,

1968).

Tangentially oriented superficial source

Fig. 6 (top row) shows the resulting topography (left) and

magnification (right) errors for various anisotropy ratios, when

either obeying the volume or Wang’s constraint. In Fig. 7, the

EEG and MEG field distribution, linearly interpolated between

the sensors (top row), and isopotential surfaces within the volume

conductor (bottom row) are shown for the isotropic case (left), for

anisotropy of skull (middle) and white matter compartment

(right). In Fig. 8, we used the stream surface technique to

visualize the effect of skull anisotropy with regard to the return

current flow.

Figs. 7 and especially 8 clearly show that skull anisotropy

smears out and weakens the EEG, resulting in a pattern that looks

more like one of a deeper and weaker dipole. In contrast to the

isotropic model, the isopotential surfaces for �5 AVand 5 AV were

no longer able to break through the skull compartment (Fig. 7). Fig.

8 furthermore shows the effect of the Neumann boundary conditions

(Eq. (5)) on the return currents, namely that the normal component

of the current is zero at the head surface which is expressed by the
Fig. 7. Linearly interpolated EEG isopotential lines (in a blue–white– red scale) an

for �5 AV (blue), 0 AV (white), and 5 AV (red) (bottom row) for a mainly tangen

anisotropic skull using the volume constraint (middle) and 1:10 anisotropic white
wide opening of the stream surfaces at the head boundary. Skull

anisotropy led to a topography error (RDM) of about 10% and a

magnification factor of about 0.5 (Fig. 6, top row, circles). The

volume constraint (in black) produced larger errors in comparison to

the Wang constraint (in red). Skull anisotropy was found to have no

influence (RDM < 1%, MAG � 1) on the MEG topography and

magnitude for both constraints (not shown in Fig. 6).

Including white matter anisotropy (isotropic skull layer)

resulted in low RDM (5%) and magnitude (MAG of about 0.95)

errors.

Including anisotropy of both skull and the white matter layer

led to a topography error of about 13% for EEG for both

constraints (Fig. 6, top row, triangles) which was only marginally

higher than the values for skull anisotropy alone.

Radially oriented superficial source

For the case of a radially oriented dipole, Fig. 6 (middle row)

shows the RDM(left) and MAG (right) errors and Fig. 9 the EEG

and MEG fields (top row) and isopotential surfaces (bottom row)

for the isotropic model (left) and the models with an anisotropic

skull compartment (middle) and an anisotropic white matter layer

(right).

Including anisotropy of the skull (Fig. 6, middle row, circles),

we found an RDM for the EEG of about 11% and a MAG of close

to 0.5. Again, the volume constraint (in black) produced slightly

bigger errors than Wang’s constraint (in red). As Fig. 9 shows,

skull anisotropy again smeared out and weakened the EEG, the

pattern looking like one of a deeper and weaker dipole. In contrast

to the isotropic model, the isopotential surfaces for �1 AV and 7

AV were no longer able to break through the skull compartment.

As with the tangential superficial source, we found no influence of

skull anisotropy on the MEG field distribution.

Including white matter anisotropy had a slightly weaker

influence on the topography of the EEG (less than 5% for both

constraints) compared to the tangential dipole case but a larger

effect (MAG = 0.85) on the magnitude error (Fig. 6, middle row,

squares). For the MEG, we note that both RDM and MAG errors

are nearly twice as large when compared with the tangential case

(Fig. 6, middle row, in blue).

If both compartments were simultaneously anisotropic (Fig. 6,

middle row, triangles), the errors for the EEG were very similar to
d MEG isofield lines (in a rainbow scale) (top row) and isopotential surfaces

tially oriented source in somatosensory cortex: isotropic model (Left), 1:10

matter using the volume constraint (right).



Fig. 8. Visualization of return current surfaces for the mainly tangentially oriented source in somatosensory cortex for the isotropic model (left) and the model

with 1:10 anisotropic skull compartment (right): in order to define a starting line for the flow integration, we divided the interval from highest to lowest surface

potential for both isotropic and anisotropic model into 19 intervals (18 isopotential lines). The flow computation then started at the maximal and minimal

isopotential lines for both models and integrated along the return current flow into the volume until close to the singularity of the primary current. We used the

color of the surface isopotential value for the color coding of the corresponding flow surface.
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the errors of pure skull anisotropy, while the errors for the MEG

were approximately identical to the errors of white matter

anisotropy (not shown).

Influence on a deep thalamic source

Fig. 6 (bottom row) shows the resulting RDM and MAG errors

and Fig. 10 the EEG and MEG fields (top row) and isopotential

surfaces (bottom row) for the isotropic model (left) and the models

with an anisotropic skull compartment (middle) and an anisotropic

white matter layer (right) for the deep thalamic source.

Results in both figures show that for the deep source, with an

RDM of more than 10% for the EEG and more than 15% for the

MEG, white matter anisotropy (Fig. 6, bottom row, squares) was

the leading cause of topography error. Furthermore, this error was

strongly increasing for the 1:100 anisotropy ratio. With a MAG

error of about 0.7, white matter anisotropy strongly weakened the

EEG and MEG.

While the topography error was negligible, skull anisotropy

(Fig. 6, bottom row, circles) strongly weakened the magnitude of

the simulated fields, so that the isopotential surfaces for �3 AV
and 3 AV in Fig. 10 (middle) no longer reached the model

surface.
Fig. 9. Linearly interpolated EEG isopotential lines (in a blue–white– red scale) an

for �1 AVand 7 AV (bottom row) for a mainly radially oriented source in somatose

constraint (middle) and 1:10 anisotropic white matter using the volume constrain
Fig. 11 shows results from the line integral convolution

technique to visualize the return current flow on the surface of

the FE model. We found two return current areas of minimal

amplitude (in blue), one on the top and one on the bottom of the

model (not shown). The amplitude of the return currents was well

correlated to the thickness of the skull (compare the color scaling

of the return currents with the segmented model in Fig. 1). While

high return currents were flowing in the thin lateral areas, they

were significantly attenuated in the thicker occipital areas and in

the areas of the frontal sinuses. The white matter anisotropy mainly

weakened the surface return currents.

In Fig. 12, we visualized the projection of the return current

vector field onto a coronal slice (in black) for the deep thalamic

source for the isotropic case and the case of the anisotropic white

matter compartment. The amplitude of the return current was color

coded on two linear scales, one from 0.3 to 0.003 A/m2 in the

neighborhood of the source and the second from 0.003 to 0 A/m2

for remote locations. In the isotropic case, the return currents

flowed on nearly circular loops in the classic dipolar pattern. In the

anisotropic case, we observe that the main direction component

(main eigenvector) of the conductivity tensors, i.e., the main fiber

direction, and the computed return current in the white matter

compartment are highly parallel.
d MEG isofield lines (in a rainbow scale) (top row) and isopotential surfaces

nsory cortex: isotropic model (Left), 1:10 anisotropic skull using the volume

t (right).



Fig. 10. Linearly interpolated EEG isopotential lines (in a blue–white– red scale) and MEG isofield lines (in a rainbow scale) (top row) and isopotential

surfaces for �3 AV, 0 AV, and 3 AV (bottom row) for a deep thalamic source: isotropic model (Left), 1:10 anisotropic skull using the volume constraint (middle)

and 1:10 anisotropic white matter using the volume constraint (right).
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The results in Fig. 13 support this observation by showing

the cosine (color coded from 0 to 1) of the angle between the

main eigenvector of the white matter conductivity tensor in the

anisotropic model (its projection onto the coronal plane is

shown in black) and the return current vector (not shown here)
Fig. 11. Surface return current for the left thalamic source in the isotropic

model and in the model with 1:10 anisotropic white matter compartment

(volume constraint) visualized with the LIC technique. The magnitude of

the return current is color coded. The direction is indicated by the texture.
for a slice in the isotropic model and the model with anisotropic

white matter compartment. While in the isotropic case, values

close to 1 appeared just by chance, in the anisotropic case, there

was close concordance between current direction and local fiber

orientation, as the areas of red and yellow coloring in Fig. 13

show. The white matter anisotropy thus strongly influenced

the flow of the return currents and therefore the EEG and

MEG.

In Fig. 14, we applied the LIC visualization technique to the

return currents on a coronal slice of the model color coded with

the return current amplitude for the isotropic (top row) and

anisotropic (bottom row) white matter compartments to further

quantify the effect of volume conduction for the deep source.

Our first observation was that the currents close to the source

and, because of its high conductivity, in the CSF compartment,

have relatively high amplitudes. With regard to the white matter

compartment, the figure further underscores our hypotheses of

increased return current flow along the fiber bundles in the

anisotropic model (bottom row) when compared to the isotropic

case (top row). This figure also shows the effect of the poorly

conducting skull compartment; current flowed along the inner

skull boundary, entered the skull, and penetrated it in a clearly

radial direction while its amplitude was strongly weakened; it

entered the skin compartment and fulfilled the Neumann

condition at the head surface, i.e., the condition that the normal

component of the current is zero, by either flowing tangentially

to the surface or having a zero amplitude on top and on the

bottom of the model (compare to the areas with zero amplitude

in Fig. 11).
Discussion and conclusion

In this paper, we built a realistic finite element head volume

conductor model taking into account skull and white matter

anisotropy. We exploited a combined T1-/PD-MRI dataset for the

construction of a five-tissue model with an anisotropic skull

compartment and a whole-head DT-MRI dataset to determine

white matter anisotropy. Our goal was to study the influence of

anisotropic tissue conductivity on forward EEG and MEG

computations. We used sophisticated high-resolution visualization

techniques and statistical error quantifications to provide insights

into the effect of anisotropy.



Fig. 12. Visualization of the return currents (thalamic source) within the

white matter mask on a coronal slice passing through the thalamus overlaid

on the T1-MRI for the isotropic model and the corresponding model with

anisotropic white matter compartment (volume constraint): the projections of

the current directions on the image plane are shown as black lines and the

magnitude is color coded (two linear scales, one from 0.3 to 0.003A/m2 in the

neighborhood of the source and the second from 0.003 to 0 A/m2 for remote

locations.

Fig. 13. As a measure of the parallelity/similarity, the cosine of the angle

between the main eigenvector of the conductivity tensor in anisotropic white

matter (its projection onto the coronal plane is shown in black) and the return

current vector (not shown here) is color coded within the white matter mask

and overlaid on the T1-MRI for the isotropic model (top) and the

corresponding model with anisotropic white matter compartment (volume

constraint, bottom row).
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For a superficial tangentially oriented source in the somatosen-

sory cortex, our results concerning the influence of skull anisotropy

on the EEG potential distribution are in agreement with the

observations of others (Marin et al., 1998; van den Broek et al.,

1998). We visualized the effect of skull anisotropy on the return

currents and showed that skull anisotropy smears out and weakens

the EEG, resulting in a pattern that looks more like that of a deeper

and weaker dipole.

The MEG results, in contrast, suggest that skull anisotropy has

no influence (RDM < 1%, MAG � 1) on MEG topography and

magnitude. This is in agreement with the results of van den Broek

et al. (1998) in a realistic FE head model and with the generally

accepted idea that volume currents in the skull layer provide

negligible contributions to the magnetic field (Hämäläinen and

Sarvas, 1987). The effect of white matter anisotropy was, by

contrast, negligible with an RDM of only about 5% and a MAG

close to 1.0 for a realistic anisotropy ratio of 1:10, observations

which agree well with those of Haueisen et al. (2002). Note here,

that only 15% of the finite elements in the vicinity of the

somatosensory source were labeled as white matter and, following

the results of Haueisen et al. (2000) and Gencer and Acar (2004),
we would expect a much larger influence for sources (even for

eccentric ones) which are closer to or which are even embedded in

an anisotropic medium.

For a superficial and radially oriented source, the EEG results

for skull anisotropy agree well with the observations of others

(Marin et al., 1998; van den Broek et al., 1998). With an RDM of

about 11% and a MAG of about 0.5, the influence on the potential

topography was similar to that for the tangential dipole. The

influence of skull anisotropy on the MEG was again minimal, in

agreement with the reports of other groups (Hämäläinen and

Sarvas, 1987; van den Broek et al., 1998). In our study, realistic

white matter anisotropy only had a weak effect on the topography

of the EEG (RDM < 5%), most likely because only few finite

elements in the neighborhood of the source were assigned to the

white matter compartment (Haueisen et al., 2000; Gencer and Acar,

2004). For the MEG, when compared to the error for the

tangentially oriented source, RDM and MAG errors were twice

as large, a result which again agrees with other reports (Haueisen et

al., 2002) (our MEG results have to be compared to the flux

density component By in Table 2 of Haueisen et al., 2002). The

large MEG topography error can be explained by the fact that

white matter anisotropy influences the secondary (return) currents.



Fig. 14. Return currents for the left thalamic source on a coronal cut through

the isotropic model (top row) and the model with 1:10 anisotropic white

matter compartment (volume constraint, bottom row): the return current

directions are indicated by the texture and the magnitude is color coded (the

upper scale was limited to 0.02 A/m2, see Fig. 12 for the correct magnitude

in the source area).
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The ratio of the secondary to the primary magnetic flux increases

with increasing ratio of the radial to the tangential dipole

orientation components (Haueisen, 1996).

The last simulated source was a deeper and therefore mainly

radially oriented source in the left thalamus. In contrast to the

superficial sources, there was a strong remote tissue anisotropy in

the region between the source and the measurement sensors. From

the line integral convolution visualization of the return currents, we

found multiple areas where the main fiber direction and the return

current vector in the model with anisotropic white matter

compartment are highly parallel with highest degrees of parallelity

within the bigger white matter fiber bundles, e.g., the left and right

pyramidal tracts. In the isotropic case, the return currents are

smoothly dipolar in shape, but in the anisotropic case, the fiber

geometry influences the flow to be largely parallel to the white

matter fiber tracts. Thus, for deeper sources, the leading cause for

topography error was no longer the anisotropy of the skull but that

of the white matter compartment. With an RDM of more than 15%

for the MEG and more than 10% for the EEG and a MAG of about

0.7, the effect of white matter anisotropy should not be neglected.

We have presented here the effect of remote anisotropy, i.e., in

which the thalamus was modeled as an isotropic structure. Our
reasoning was that the thalami are part of the human gray matter

compartment (Shimony et al., 1999). Nevertheless, most histolog-

ical methods identify 14 functionally specific anisotropic thalamic

clusters referred to as nuclei (Buren and Borke, 1972). Recently, it

was shown that DT-MRI can non-invasively resolve the fiber

orientation of those nuclei, using an automatic segmentation

method (Wiegell et al., 2003). Therefore, in an even more realistic

volume conductor model, the thalamus by itself would have to be

considered as anisotropic gray matter tissue. Furthermore, the

whole cortex is known to have an anisotropy ratio of about 1:2

(Nicholson and Freeman, 1975). If we then take into account that

local conductivity changes in the vicinity of the sources have a

large effect on EEG and MEG (Haueisen et al., 2000; Gencer and

Acar, 2004), then the errors might be substantially larger than those

presented in this study.

Our visualization results also showed the importance of the

CSF compartment in determining bioelectric fields. Because of its

high conductivity, the return current in this layer was much more

distinct than in the rest of the head model so that it can be seen as a

compartment with a strong ‘‘current distribution’’ effect. Because

the conductivity of the human CSF is known quite accurately

(Baumann et al., 1997), this result further underscores the

importance of realistic high-resolution finite element head model-

ing when compared to boundary or spherical head modeling.

We conclude that with the new visualization techniques for

return current flow in high-resolution FE models, presented in our

paper, insight is gained into the effect of tissue anisotropy, which is

now more easily accessible. One implicit premise of our study was

that if anisotropy affects the accuracy of the forward solution, it

will have at least as strong an influence over solutions to the

associated inverse problem, which will be examined in a

consequent paper (Anwander et al., 2002, in preparation). We

summarize that the modeling of skull anisotropy is important for

EEG and can be neglected for MEG studies. Our results suggest

that the exact representation of the CSF compartment and the

modeling of gray and white matter anisotropy is important for both

EEG and MEG based reconstruction of the neural sources.

Concerning white matter anisotropy, this is especially true with

regard to the reconstruction of the orientation and strength

components of the sources in the associated EEG and MEG

inverse problem. The more the source is surrounded by anisotropy,

the larger the influence. Recent developments for the finite element

method in EEG/MEG source reconstruction (Weinstein et al.,

2000; Wolters et al., 2002, 2004b; Gencer and Acar, 2004)

dramatically reduce the complexity of the computations, so that the

main disadvantage of FE modeling no longer exists and such

modeling even with very high resolutions is now practical.
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und biomagnetischen Messungen auf der aus MR-Bildern segmentierten

Hirnrinde. PhD thesis, Shaker-Verlag Aachen, ISBN 3-8265-4293-2.

Wang, Y., Haynor, D., Kim, Y., 2001. An investigation of the importance of

myocardial anisotropy in finite-element modeling of the heart:

methodology and application to the estimation of defibrillation efficacy.

IEEE Trans. Biomed. Eng. 48 (12).

Weinstein, D., Zhukov, L., Johnson, C., 2000. Lead-field bases for

electroencephalography source imaging. Ann. Biomed. Eng. 28 (9),

1059–1066.

Wiegell, M., Tuch, D., Larsson, H., Wedeen, V., 2003. Automatic

segmentation of thalamic nuclei from diffusion tensor magnetic

resonance imaging. NeuroImage 19, 391–401.
Wolters, C., 2003. Influence of Tissue Conductivity Inhomogeneity and

Anisotropy on EEG/MEG based Source Localization in the Human

Brain. No. 39 in MPI Series in Cognitive Neuroscience. MPI of

Cognitive Neuroscience Leipzig, iSBN 3-936816-11-5 (also: Leipzig,

Univ., Diss., http://dol.uni-leipzig.de).

Wolters, C., Reitzinger, S., Basermann, A., Burkhardt, S., Hartmann, U.,

Kruggel, F., Anwander, A., 2000. Improved tissue modeling and fast

solver methods for high resolution FE-modeling in EEG/MEG-source

localization. In: Nenonen, J., Ilmoniemi, R., Katila, T. (Eds.),

BIOMAG2000, Proc. of the 12th Int. Conf. on Biomagnetism. Helsinki

Univ. of Tech., Finland, Aug. 13–17. pp. 655–658R http://biomag2000.

hut.fi.

Wolters, C., Kuhn, M., Anwander, A., Reitzinger, S., 2002. A parallel

algebraic multigrid solver for finite element method based source

localization in the human brain. Comput. Vis. Sci. 5 (3), 165–177.

Wolters, C.H., Anwander, A., Reitzinger, S., Haase, G., 2004. Algebraic

multigrid with multiple right-hand-side treatment for an efficient

computation of EEG and MEG lead field bases. In: Halgren, E.,
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Abstract—Inverse methods are used to reconstruct current
sources in the human brain by means of Electroencephalogra-
phy (EEG) and Magnetoencephalography (MEG) measure-
ments of event related fields or epileptic seizures. There exists a
persistent uncertainty regarding the influence of anisotropy of
the white matter compartment on neural source reconstruc-
tion.  In this paper, we study the sensitivity to anisotropy of the
EEG/MEG forward problem for a thalamic source in a high
resolution finite element volume conductor. The influence of
anisotropy on computed fields will be presented by both high
resolution visualization of fields and return current flow and
topography and magnitude error measures. We pay particular
attention to the influence of local conductivity changes in the
neighborhood of the source. The combination of simulation and
visualization provides deep insight into the effect of white
matter conductivity anisotropy.

We found that for both EEG and MEG formulations,
the local presence of electrical anisotropy in the tissue surroun-
ding the source substantially compromised the forward field
computation, and correspondingly, the inverse source recons-
truction.  The degree of error resulting from the uncompen-
sated presence of tissue anisotropy depended strongly on the
proximity of the anisotropy to the source; remote anisotropy
had a much weaker influence than anisotropic tissue that
included the source.

Keywords— anisotropy, EEG/MEG source reconstruction,
finite element method, local conductivity changes, return cur-
rents, thalamus, visualization

I.  INTRODUCTION

A critical component of the inverse neural source
reconstruction is the numerical approximation method used
to reach an accurate solution of the associated forward
problem, i.e., the simulation of fields for known dipolar
sources in the brain. The forward problem requires a
geometric model of the volume conductor (the head and
brain), often in the form of spherical shell, Boundary
Element (BE) [1] or Finite Element (FE) models. Only the
FE method is able to treat both realistic geometries and
inhomogeneous and anisotropic material parameters
[2,3,4,5].

Past studies have shown that the inclusion of anisotropy
is important for an accurate reconstruction of neural sources
[2,5,6,7]. Furthermore, recent developments for the FE
method in EEG/MEG inverse problems [8,9] dramatically

reduce the complexity of the computations, so that the main
disadvantage of FE modeling no longer exists. In spherical
models of the head, the influence of compartmental
conductivity anisotropy (radial versus tangential) on forward
and inverse problems in EEG and MEG were studied by
[6,7]. However, the white matter compartment is poorly
represented by such a model. There have been relatively few
studies of the influence of white matter anisotropy on
forward EEG and MEG simulation [2,5]. In [10], a strong
influence of local conductivity changes around the source to
EEG and MEG was reported.

In this paper, we study the effect of white matter
anisotropy for the forward EEG and MEG computation for a
thalamic source. We especially examine the effects of
anisotropy near the source. For deep sources that are
surrounded by large anisotropic white matter fiber bundles,
such as the pyramidal tract and the corpus callosum, we
provide insight into the sensitivity towards anisotropy by
means of visualization and interpretation of computed fields
and return current flow and the examination of the Relative
Difference Measure (RDM) and MAGnification factor
(MAG) error measures [1].

II.  METHODS

The first step in constructing a realistic volume conductor
model is to segment the different tissues within the head.
Modeling of the low conducting human skull is of special
importance for EEG/MEG source reconstruction.  As such,
we used a pair of T1-weighted and PD-weighted Magnetic
Resonance Images (MRI). We aligned both image datasets
w i t h  a  voxel -s imi la r i ty  based  af f ine

Fig. 1. Segmented five tissue head model: skin (blue), skull (light blue),
CSF (green), gray matter (yellow) and white matter (red).
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Fig. 2. Coronal slice of the models aniso_thalaniso (left) and aniso_thaliso (right) with left thalamic dipole source. The conductivity tensors of finite
elements in the white matter are displayed on the underlying T1-MRI using 1:2 anisotropy.

registration without pre-segmentation using a cost-
function based on mutual information [5]. Our nearly
automatic segmentation process consisted of a 3D
implementation of an Adaptive Fuzzy C-Means
classification method which compensates for image
intensity inhomogeneities, followed by a deformable
model algorithm to smooth the inner and outer skull
surfaces [5].  We segmented five head compartments;
skin, skull, cerebrospinal fluid (CSF), gray and white
matter. Because the fractional anisotropy within the
thalamus is a factor three times higher than the fractional
anisotropy of neocortical gray matter, we assigned both
thalami to the white matter compartment for the following
simulation study. The segmented five tissue headmodel is
shown in Fig.1.

In the second step, we generated a FE model using a
surface-based tetrahedral tessellation of the segmented
compartments, resulting in 147,287 nodes and 892,115
elements. The following  isotropic conductivities were
assigned to skin (0.33 S/m), skull (0.0042 S/m), CSF
(1.79 S/m), brain gray (0.33 S/m) and white matter (0.14
S/m). Anisotropic conductivity ratios of approximately
1:9 (normal to parallel to fibers) have been measured for
brain white matter [11].  Following the proposition of
[12], we assumed that the conductivity tensors share the
eigenvectors with the water diffusion tensors, measured
by means of Diffusion Tensor MRI (DT-MRI).  Using
multiple sessions, we measured whole-head DT-MRI.
The MRI slices were axially oriented and 5mm thick with
an inplane resolution of 2mm x 2mm. We computed the
eigenvalues for the white mater conductivity tensors using
two constraints, a volume constraint that retains the
geometric mean, i.e., the volume, of the eigenvalues [5],
and Wang’s constraint [13], where the product of the

longitudinal and one transversal eigenvalue is kept
constant and equal to the square of the isotropic value.
The resulting tensor-valued conductivity slices were not
exactly parallel and we filled the gaps with the isotropic
white matter conductivity.

For the EEG forward computation, we placed 71
electrodes interactively on the head surface according to
the international 10/20 system.  For the MEG, we
modeled each magnetometer flux transformer of the BTI
(4-D NeuroImaging, San Diego, USA) 148 channel
whole-head system with eight isoparametric quadratic
finite row elements.

Using the dipole model of [14], we performed EEG and
MEG forward computations for a left thalamic source in
the isotropic five-compartment FE model and in the
corresponding models with white matter anisotropy
(Fig.2). In order to study the influence of local
conductivity changes, we considered two different
anisotropic models. For the first model aniso_thalaniso,
we treated the finite elements in the neighborhood of the
thalamic source as anisotropic elements (Fig.2, left),
while in the second model aniso_thaliso, we extracted
1113 neighboring finite elements and modeled them as
isotropic (Fig.2, right).

To quantify the error between isotropic and
anisotropic field values at the sensors, we used the RDM
and MAG error measures [1]. The RDM is a measure for
the topography error (Minimal error: RDM=0), while the
MAG indicates magnitude differences (Minimal error:
MAG=1).

In order to better assess the influence of anisotropy, the
return current on the model surface is visualized by means
of a Line Integral Convolution (LIC) technique[15]
computed directly over the head geometry. This method
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Fig.3: Isofield EEG and MEG distribution (top row) and surface return current (bottom row) for the left thalamic source in the isotropic model (left) and in
model aniso_thalaniso with 1:10 white matter anisotropy (right).

permits a continuous depiction of the directional
information and is combined with a color mapping of the
current magnitude that gives insight into the quantitative
aspects of the electrical flow.

III. RESULTS

The Figs.3 and 4 clearly show the importance of local
conductivity changes around the source for both EEG and
MEG. In model aniso_thalaniso (Fig.3, right column, and
Fig.4, in red), with topography differences to the
corresponding isotropic model of about 80% for EEG and
about 50% for MEG, the 1:10 white matter anisotropy
substantially compromises the forward field computation.
Furthermore, in addition to this topography error, the
anisotropy significantly weakens the fields, which is
expressed by a MAG of less than 0.5 for the EEG and
even less than 0.3 for the MEG and the strongly reduced
amplitude of the surface return currents.  We find two
return current areas of minimal amplitude (in blue), one
on the top and one on the bottom of the model (not
shown). As it can be observed, the 1:10 white matter
anisotropy in model aniso_thalaniso strongly shifts the
minimal amplitude return current points in comparison to
the isotropic case. In both cases, the amplitude of the
return currents is well correlated to the thickness of the
skull (compare the color scaling of the return currents
with the segmented model in Fig.1). While high return

currents are flowing in the thin lateral areas, they are
significantly attenuated in the thicker occipital areas and
in the areas of the frontal sinuses. The white matter
anisotropy diffuses the surface return currents.

In contrast to those results, the effect of the white
matter anisotropy in combination with the local isotropy
in model aniso_thaliso is much weaker, for a ratio of 1:10
the RDM is below 10% and the MAG close to the
optimum.

IV. DISCUSSION

It was found that conductivity (anisotropy) changes
around the source have a strong influence on the EEG and
MEG forward problem, while anisotropy in a certain
distance from the source has only a smaller effect. This is
in agreement with a study of local (isotropic) conductivity
changes in [10]. The sources are embedded in brain gray
matter structure, which has a measured anisotropy ratio of
about 1:2 (tangentially:perpendicular to the cortical
surface) [10] or higher for gray matter structures such as
the thalami, as the fractional anisotropy ratio of the DTI
data shows. Furthermore, most sources are very close to
the white matter compartment. It can therefore be
expected that the modeling of the gray and white matter
anisotropy is important for an accurate reconstruction of
the sources, as also reported by [2,5]. As a final note, the
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Fig.4: EEG and MEG topography (left, log. Y-axes) and magnitude error (right) for the volume and Wang's constraint for various white matter anisotropy
ratios and both models aniso_thalaniso (red) and aniso_thaliso (black).

source model via an accurate implementation method for
the dipole will be of significant importance [5,16].

V.  CONCLUSION

The modeling of gray and white matter anisotropy is
important for an accurate EEG/MEG based reconstruction
of the neural sources, especially with regard to the
orientation and strength components. The more the source
is surrounded by anisotropy, the larger is the influence.
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2.16 Analysis of tactile somatosensory evoked EEG and
MEG data
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versity of Münster, 09/2007.
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2.16.1 Goal of the study
Since it is necessary to model the MEG noise cancellation schemes for a proper
MEG forward modeling, this chapter will first present the MEG machine at the
Institute for Biomagnetism and Biosignalanalysis of the University of Münster.
In the second part, simultaneously measured tactile somatosensory evoked poten-
tials (SEP) and fields (SEF) will be analyzed. It will be shown that, with a proper
realistic head model and a larger number of trials for the EEG than for the MEG,
both EEG and MEG correctly localize in the primary somatosensory cortex.

2.16.2 FE forward modeling for the Omega 2005 MEG
FE modeling of the MEG sensors

The IBB at the University of Münster is equipped with the Magnetoencephalog-
raphy (MEG) machine Omega 2005 from the manufacturer VSM Medtech Ltd.,
which is located in a magnetically shielded chamber. The 275 measurement sen-
sors of this machine are axial gradiometers with a baseline of 50mm. The coils
of the gradiometers have a radius of 9mm. For the noise rejection technique de-
scribed in the next section, the magnetic flux is furthermore measured at 29 ref-
erence sensors which are situated in the dewar above the measurement sensors.
The reference sensors are magnetometers and axial and planar gradiometers. The
radii of the coils differ between 7.76 and 17.27mm. The baseline of the reference
gradiometers is always 78.74mm.

Figure 2.4 shows the Finite Element (FE) nodes which are used to model the
measurement and reference sensors of this machine. As described in Chapter 2.2
(Section 3.2), for the computation of primary and secondary magnetic flux, the
sensor coils are then modeled by means of isoparametric quadratic row elements.

MEG noise rejection using synthetic gradiometers

Environmental magnetic noise, such as the noise of the electrical power system,
is generally much larger than the small magnetic fields of the brain. Therefore, a
first (passive) noise reduction consists of a magnetically shielded room in which
the MEG machine is put up. However, there are still magnetic fields penetrating
the shielding and, in addition, there are magnetic fields generated by the hu-
man body. The strength of the magnetic field of the human heart, e.g., is more
than hundred times larger than the typical magnetic field caused by brain activ-
ity. Therefore, a further (active) noise reduction consists of measuring the spatial
gradient of the flux using gradiometers instead of magnetometers. As shown in
Figure 2.4, the 275 measurement sensors of the Omega 2005 are hardware gra-
diometers of first order. This concept of noise rejection can be extended within
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Figure 2.4: Finite element nodes to model the CTF MEG sensor configuration,
including measurement and reference sensors. Visualization was carried out us-
ing BioPSE [2002].

the Omega 2005 system to synthetic gradiometers of higher order (Vrba [2000];
Vrba and Robinson [2001]). To reduce the noise with higher order, synthetic gra-
diometers, the field is not only measured at the hardware gradiometers, but also
at a number of reference sensors (see Fig. 2.4). Synthetic gradiometers can then
be composed of one hardware gradiometer and a number of reference sensors, by
subtracting a linear combination of the signals measured by the reference sensors
from the signal measured by the hardware gradiometer.

Ψ*, meas
i = Ψmeas

i −∑
j

Ci j ·Ψref
j (2.1)

Here Ψ*, meas and Ψmeas are the signals of the hardware gradiometers with and
without applied noise rejection, respectively, and Ψref are the signals measured at
the reference sensors. C is the coefficient matrix. With the definitions

E = (I |C) and Ψmeas, ref =

(

Ψmeas

Ψref

)

(2.2)
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Figure 2.5: Measurement and vector reference magnetometer. Figure from Vrba
and Robinson [2001].

equation (2.1) can be rewritten as in equation (2.3).

Ψ*, meas = E ·Ψmeas, ref (2.3)

The coefficients C for the linear combination of the reference signals are de-
termined in such a way, that the synthetic gradiometer mimics a hardware gra-
diometer of the same order. How this is done shall be shown for a first order
synthetic gradiometer following (Vrba [2000]; Vrba and Robinson [2001]). The
signal for a first order synthetic gradiometer can be composed of the signal of
one primary measurement magnetometer and one reference vector magnetome-
ter. The vector magnetometer consists of three magnetometers, whose orienta-
tions are orthogonal to each other.

When applying a magnetic field B the signal of the measurement magnetome-
ter is

Ψmeas = αp B ·pmeas ,

where αp is the gain of the primary magnetometer and pmeas is its orientation.
The signal of the reference vector magnetometer can be written as a vector Ψref

with components
Ψref

k = αref Bk .

Here αref is the gain of the vector magnetometers and

Bk = pref, k ·B

is the component of the magnetic flux density parallel to the orientation of the
k-th magnetometer of the reference vector magnetometer. Now the magnetic flux
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density B is approximated by the first terms of a Taylor series around the center
of the measurement sensor, x0.

B(x) = B0 +G0 (x−x0)+O
(

x2) (2.4)

G0 = ∇B(x)|x=x0
denotes the first gradient of the magnetic flux density. With

the first two terms of the Taylor expansion and using equation (2.1), the signal of
the synthetic first order gradiometer can be written as in equation (2.5).

Ψ*, meas = αp pmeas ·B0 +∑
k

C1k αref pref, k (B0 +G0 ·d) (2.5)

The vector pointing from the center of the measurement magnetometer to the
centerer of the reference vector magnetometer is called the baseline d.

The coefficients C1k are chosen in such a way that the synthetic gradiometer
mimics a real gradiometer. By definition, an n-th order gradiometer cancels out
the contributions from gradients of the magnetic flux densities that are of order
(n− 1) or below. So in the case of a homogeneous field the signal of the first
order synthetic gradiometer has to be zero.

αppmeas ·B0 = −∑
k

C1kαrefpref, k ·B0 (2.6)

This equation can be solved for the coefficients C1k using the fact, that the ori-
entations of the reference magnetometers are orthogonal to each other. Equation
(2.7) shows the solution for the coefficients of a first order synthetic gradiometer.

C1k = −
αp
αref

(

pref, k ·pmeas) (2.7)

From this equation it can be seen that the coefficients for first order synthetic
gradiometers are the orientations of the reference magnetometers projected onto
the orientations of the measurement magnetometer and normalized to the latter’s
gain. The coefficients for higher order synthetic gradiometers can be derived in a
similar way.

Although the synthetic gradiometers mainly cancel out lower gradients of the
magnetic flux density, which are caused by distant, strong sources, i.e., environ-
mental magnetic noise, it can also influence a signal produced by brain activity.
So when an inverse method is to be applied to data, to which the discussed noise
rejection was applied, the noise rejection technique also has to be modeled for
the forward problem. This means, that one has to simulate the magnetic flux not
only at the measurement sensors, but also at the reference sensors and then cal-
culate the signal of the higher order synthetic gradiometers as in Equation (2.1).
The noise rejection with synthetic higher order gradiometers for the FEM for-
ward problem therefore had to be implemented into the software SimBio [2000]
before being able to analyze the measured MEG data of the SEF experiment in
Section 2.16.3.
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2.16.3 Source analysis of SEP/SEF data
FE volume conductor model

Figure 2.6: Saggital, coronal and axial cross-section of the geometry-adapted
hexahedral FE mesh. The conductivity labeling is color-coded. Visualization
was carried out using BioPSE [2002].

The basis of the volume conductor modeling, the multimodal T1- and PD-MRI
and the registration and segmentation of those datasets is described in detail in
Chapter 2.11 (Section 3). A four compartment (skin with conductivity 0.33S/m,
skull with 0.0042S/m in radial and 0.042S/m in tangential direction, CSF with
1.79S/m and brain with 0.33S/m) 2mm geometry-adapted hexahedral FE mesh
was then generated from the segmented dataset. The FE volume conductor model
is shown in Figure 2.6.

The Somatosensory Experiment

For the setup of the tactile somatosensory evoked potentials (SEP) and somatosen-
sory evoked fields (SEF) experiment, it is also referred to the Chapter 2.11 (Sec-
tion 3). While three runs were averaged in order to get a signal-to-noise (SNR)
ratio of 24dB for the EEG, the same SNR could already be achieved for the 275
channel MEG by means of just averaging the epochs of a single run. The aver-
aged and filtered SEP and SEF data are shown in Figure 2.7. The MEG data was
in third-order synthetic gradiometer format. The EEG and MEG at 34.5ms, when
the signal is at a maximum, can be seen in Figure 2.8.

As shown in (Mertens and Lütkenhöner [2000]; Hari and Forss [1999]), a
single equivalent current dipole model was adequate for source analysis because
the early tactile SEP and SEF component arises from area 3b of the primary
somatosensory cortex (SI) contralateral to the side of stimulation. Therefore sin-
gle equivalent current dipole fits (Scherg and von Cramon [1985]; Mosher et al.
[1992]; Knösche [1997]) were performed separately for EEG and MEG at the
signal peak using four different seed-points. The fast transfer matrix approach
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Figure 2.7: The averaged and filtered EEG and MEG signals from the somatosen-
sory experiment.

Figure 2.8: MEG sensor configuration displayed together with the magnetic flux
at 34.5ms. Visualization was carried out using BioPSE [2002].

of Chapter 2.2 and the AMG-CG solver of Chapter 2.9 were used for fast EEG
and MEG dipole fits. The best fit results are illustrated in Figure 2.9. It can be
observed that the resulting dipoles for both EEG and MEG were, as expected, in
the left primary somatosensory cortex. With about 98%, the explained variance
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Figure 2.9: Comparison of the EEG (red) and MEG (blue) single dipole fit results
in the left primary somatosensory cortex. Visualization was carried out using
BioPSE [2002].

to both measured datasets was very high and with a difference in location of only
3.9mm, EEG and MEG reconstructed at nearly the same position. However, the
result is not yet completely satisfying. A closer look at Figure 2.9 reveals, that
the difference between the localization results mainly is a difference in source
depth. This might be due to an overestimation of the skull anisotropy (see Chap-
ter 2.13). A recent study reported that the skull’s three-layeredness (outer com-
pacta, spongiosa, inner compacta) should be modeled as a three-layeredness and
not indirectly by means of the anisotropy (Sadleir and Argibay [2007]), which
also might be a reason for the small difference. A future goal is to use the SEF
reconstruction result, which is much less dependent on the individual tissue con-
ductivities such as skull and skin in order to further stabilize the SEP LRCE
procedure as proposed in Chapter 2.11. The simultaneously measured SEF might
thus help to better estimate the individual tissue conductivities.
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2.17 Source analysis of epileptiform activity for presur-
gical epilepsy diagnosis

2.17.1 EEG source analysis of epileptiform activity with a high res-
olution FE head model

EEG source analysis of epileptiform activity with a high resolution finite element
head model
Rullmann, M., Anwander, A., Warfield, S.K., Duffy, F.H. and Wolters C.H.. sub-
mitted to NeuroImage, (2008).

Corresponding author: C.H. Wolters
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EEG source analysis of epileptiform activity using

a high resolution finite element head model.

M. Rullmann∗†, A. Anwander‡, M. Dannhaur§, S.K. Warfield¶

F.H. Duffy‖and C.H. Wolters∗∗††

January 17, 2008

Abstract

Purpose: To evaluate whether non-invasive surface EEG (sEEG)
source analysis based on 1mm anisotropic finite element (FE) head mod-
eling can provide additional guidance for presurgical epilepsy diagnosis,
different FE-based inverse approaches were applied in a case study to av-
eraged ictal spikes of a medically-intractable epilepsy patient. To the best
of the authors knowledge, this level of accuracy in head volume conduc-
tor modeling has not yet been applied to source analysis in presurgical
epilepsy diagnosis before. The reconstruction results were successfully
validated with the outcome of intra-cranial EEG (iEEG) recordings.
Methods A 1mm hexahedra FE volume conductor model of the patient’s
head with special focus on modeling anisotropic brain conductivity was
constructed using non-linearly registered T1-, T2- and Diffusion-Tensor-
(DT) Magnetic Resonance Imaging (MRI) data. Different source anal-
ysis methods, goal function scan (GFS), Minimum Norm Least Squares
(MNLS), spatio-temporal current dipole modeling and standardized low
resolution electromagnetic tomography (sLORETA) were applied to the
peak of the averaged sEEG spike data. The electrodes of the iEEG mea-
surements were extracted from a registered computed tomography (CT)
image.
Results GFS, MNLS and sLORETA clearly showed a single center of
activity. Moving and rotating single dipole fits resulted in an explained
variance of more than 97%. The dipole fits localized at the border of the
lesion and at the border of the iEEG electrodes which mainly received
spike activity. Source orientation was towards the epileptogenic tissue.
GFS and sLORETA localized at the same position. Their result had an
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†Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103

Leipzig, Germany
‡Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103

Leipzig, Germany
§Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103

Leipzig, Germany
¶Computational Radiology Laboratory, Department of Radiology, Children’s Hospital,

Harvard Medical School, Boston, USA
‖Department of Neurology, Children’s Hospital, Harvard Medical School, Boston, USA

∗∗Corresponding author. Westfälische Wilhelms-Universität Münster, Institut für Biomag-
netismus und Biosignalanalyse, Malmedyweg 15, 48149 Münster, Germany

††Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, USA.

1



average distance of only 2.5mm to the dipole fit locations. The average
distance of those methods to the MNLS peak was 6.2mm.
Conclusion Non-invasive sEEG source analysis based on 1mm anisotropic
FE head modeling might contribute to clinical presurgical evaluation in
epilepsy patients.
Keywords Presurgical epilepsy diagnosis, surface- and intra-cranial EEG,
source analysis, diffusion-tensor magnetic resonance imaging, tissue con-
ductivity anisotropy, cerebrospinal fluid, finite element method, goal func-
tion scan, minimum norm least squares, spatio-temporal dipole modeling,
standardized low resolution electromagnetic tomography.

1 Introduction

Surgical resection of epileptogenic cortical tissue in pharmaco-resistant epilepsy
patients was shown to safely and effectively control seizures, recover function,
improve quality of life and even save lives, but epilepsy surgery is still underused
in developed countries and non-existent in most developing countries [46]. The
precise localization of the epileptogenic foci, preferably with non-invasive meth-
ods, is the major goal of the presurgical evaluation [30]. In addition to evaluation
by video and electroencephalography (EEG) long-term monitoring, magnetic
resonance imaging (MRI), single photon emission computed tomography and
neuropsychological examination, EEG and magnetoencephalography (MEG)
source analysis has risen to a promising tool [31, 13, 42, 21, 14, 43, 17, 38, 33].
Source analysis results correlated well with results from intracranial record-
ings [31, 21, 17] and epileptogenic subcompartments could well be distinguished
using source reconstruction techniques [31, 2, 8, 19]. In a large study, source
analysis revealed additional localizational information in 35% of the 455 patients
and in 10%, it could even considerably contribute to the decision about type,
size and eventually necessary prior invasive examinations [38].

The accuracy of source analysis methods depends in part on the volume
conductor model used to represent the head. In clinical practice, for EEG,
the spherical head model with three homogeneous and isotropically conducting
(a single conductivity value) spherical shells representing brain, skull and scalp,
and in MEG, the single isotropic compartment sphere model, are still often used.
Recent investigations showed that source localization accuracy can be improved
through the use of realistically shaped three compartment (brain, skull, scalp,
extracted from MRI data) boundary element (BE) head models [31, 13, 14, 43].

However, the cerebrospinal fluid compartment is known to have a much
higher conductivity than brain gray and white matter [3] and conductivity
anisotropy (different conductivity values in different space directions) with a
ratio of about 1 to 9 (normal to parallel to fibers) has been measured for brain
white matter [24]. The robust and non-invasive direct in-vivo measurement of
brain conductivity anisotropy is not possible. However, in [1], the assumption
was introduced that the conductivity tensor shares the eigenvectors with the
water diffusion tensor (DT), which can be measured non-invasively by means of
DT-MRI. This assumption was recently used in a formalism which describes a
linear relationship between the effective electrical conductivity tensor and the
effective water diffusion tensor in brain tissues [40, 41]. The mutual restriction
of both the ionic and the water mobility by the geometry of the brain medium
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builds the basis for the described relationship. The assumption is not, of course,
that a fundamental relation exists between the free mobility of ionic and water
particles. The claim is rather that the restricted mobilities are related through
the geometry.

The finite element method (FEM) is able to treat both realistic geometry
and inhomogeneous and anisotropic material parameters [5, 4, 12, 28, 49, 53].
Sensitivity studies have been carried out in realistic FE models, supporting the
hypothesis that modeling brain conductivity anisotropy has to be taken into
account for accurate source reconstruction [12, 49, 10]. It is furthermore known
that the high conductivity of the CSF [28, 49] and local conductivity changes
in the vicinity of the primary source as caused by brain lesions or cavities from
surgery [4] or the difference between gray and white matter conductivity [28]
have a non-negligible effect on EEG and MEG source analysis. Even if realis-
tic FE models have already successfully been applied to the field of presurgical
epilepsy diagnostic, their real potential was not yet exploited since three com-
partment (brain, skull, scalp) isotropic FE approaches were used [42]. In the
past, the difficult construction of the volume discretization [18] and the heavy
computational load of the FE method was seen as a drawback, especially when
many evaluations of the forward problem are needed, e.g., in source localization
schemes [5, 4, 42, 27]. As shown in this paper, the generation of regular hexahe-
dra FE meshes takes advantage of the cubic voxel structure which is inherent to
MR images so that the meshing step just consists of converting the segmented
T1-weighted MRI into a hexahedra mesh with the same resolution, which can
be performed in seconds. Due to the excessive computational burden created
by previous FEM techniques, evaluation studies often only used sub-optimal
numbers of nodes [5, 4, 42]. For example, in [42], an FE model with only 10,731
nodes (5mm edge length) was used for the localization of epileptiform activity
and it was concluded that, for a general clinical use of FE source analysis, a
finer FE discretization and parallel computing is needed. In [5], the setup of a
lead field matrix with 8,742 unknown dipole components in a four compartment
FE approach with 18,322 nodes took roughly a week of computation time.

In this paper, a 1mm anisotropic hexahedra volume conductor model with
about 3.1 Million unknowns will be generated from T1-, T2- and DT-MRI data
of a patient who underwent surgery and relapsed. The high-resolution FE model
distinguishes the compartments brain white and gray matter, CSF (among oth-
ers CSF-filled cavity of the first surgery and ventricles), skull and skin. It will be
used in goal function scan [22, 16], minimum norm least squares [11, 16], spatio-
temporal current dipole [35, 22, 16] and standardized low resolution electromag-
netic tomography (sLORETA) [26, 7] EEG inverse source analysis scenarios to
localize ictal epileptiform surface EEG (sEEG) activity on a high-resolution
2mm 3D influence source space. As we will show, instead of solving ”number
of sources many FE equation systems” (in the presented study: 517,098), a fast
transfer matrix approach allows us to reduce this huge number to a ”number of
sensors many FE equation systems” (in the presented study: 24). The compu-
tational amount of work is thus reduced by more than a factor of 20,000. Any
FE-forward computation can then be performed in only 37ms. The presurgical
sEEG source analysis results are successfully validated by means of postsurgical
intracranial EEG (iEEG) measurements. ”Postsurgical” is defined throughout
this paper as the instant in time after craniotomy and placement of iEEG grids.
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2 Methods

2.1 Subject

The patient in this case study is an 11-year-old boy suffering from medically
intractable localization-related epilepsy. He had his first seizure in the age of
three years and underwent a brain tumor (Dysembryoplastic NeuroEpithelial
Tumor, DNET) and epileptic focus resection. After recurrence of seizures 8
years later, the same type of tumor was diagnosed just anterior to the motor
area at the cavity from the resection of the first surgery. He was then treated
again and went under surgery for tumor resection. The data in this study was
acquired during the diagnosis phase for the second tumor resection.

2.2 MRI and CT data acquisition

Presurgical MR imaging of the patient’s head was performed on a 3T SIEMENS
TrioTim at the Massachusetts General Hospital. The T1-weighted MRI had
an in-plane resolution of 1 × 1mm with a slice thickness of 1mm, 256 slices,
a field of view of 256mm and an echo time of 3.37ms. The presurgical DTI
scan had 30 directions and 5 B0 sets, 220mm field of view with 1.7 × 1.7mm
in-plane resolution and 5mm slice thickness with 20% gap, 23 slices, B-value
of 1000, 106ms echo time and 5000ms repetition time. The T2-weighted MRI
scan, measured together with the DTI for later DTI to T1-MRI registration
purposes, had an in-plane resolution of 0.4 × 0.4mm with a slice thickness of
5mm, 23 slices and a field of view of 173× 230mm.

A postsurgical CT of the patient, showing the implanted intracranial elec-
trodes, was recorded using a GE Medical System LightSpeed Pro 16. The
dataset had an in-plane resolution of 0.5 × 0.5mm with a slice thickness of
0.6mm, 559 slices and a field of view of 250mm.

2.3 FE volume conductor modeling

2.3.1 T1-MRI segmentation

The patient’s T1-MRI dataset was aligned to the AC-PC coordinate system. In a
first step, a segmentation into three layers (skin, skull and brain) using a surface
model approach [36] implemented in FSL (http://www.fmrib.ox.ac.uk/fsl). The
result was manually corrected with Anatomist (http://brainvisa.info). In a
second step, the segmented brain compartment was specified into CSF, gray
and white matter by an interactive thresholding using the Anatomist software
and again manually corrected. Finally, the lesion was manually segmented. The
result of the segmentation process is shown in Figure 1.

2.3.2 DTI registration and preprocessing

A proper registration of the DTI data onto the structural T1-MRI is an impor-
tant step in the setup of an anisotropic FE volume conductor model. Distor-
tions in the DTI due to susceptibility artifacts generally have to be corrected
in a non-linear fashion [39]. Non-linear registration methods often rely on an
initial affine (linear) registration to find a good starting position. We applied
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Figure 1: Coronal and axial view of the T1-MRI (left) and the corresponding
segmentation (right) with six tissue types: red indicates the lesion, dark gray
the gray matter, light gray the white matter, green the CSF, orange the skull
and blue indicates the skin.

Figure 2: Sagittal slice of the original DTI image (left), axial slice of the color
coded fractional anisotropy (FA) image after registration to the T1 anatomy
(middle left) and the registered color FA image overlaid on the T1-MRI in
sagittal (middle right) and axial (right) view. The color indicates the fiber
orientation: red is left-right, green is anterior-posterior and blue is superior-
inferior.

a voxel-similarity based affine registration method without presegmentation us-
ing a global optimization of the mutual information cost function between the
different modalities [15] implemented in FSL.

In a first step, the patient’s DTI scans were therefore linearly registered with
the high resolution axial T2-weighted slices. Subsequently, an affine registration
of the T2-MRI onto the 3D T1-weighted volume was performed. Both trans-
formation matrices were combined and the resulting affine transformation was
used to register the DTI to the T1 anatomy. The images were then interpolated
to 1 mm voxel resolution. Finally, in order to handle the orientation information
in the registered DT images appropriately, the diffusion gradient direction for
each scan was rotated with the transformation matrix to account for the new
slice orientation of the diffusion scan.

In a second step, the averaged B0 images of the (linearly registered) DTI scan
were non-linearly wrapped to the (linearly registered) T2 anatomy following [39].
The computed correction field was applied to the (linearly registered) diffusion
weighted scans. The diffusion tensor was then estimated for each voxel with a
minimum least square fit. Figure 2 shows a sagittal slice of the original DTI
(left), an axial slice of the color coded fractional anisotropy (FA) image after
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head compartment comp conductivity σiso
comp (S/m)

les (lesion) 0.33
wm (white matter) 0.142
gm (gray matter) 0.33
csf (cerebrospinal fluid) 1.538
skull 0.0042
skin 0.43

Table 1: Bulk isotropic conductivity σiso
comp for head compartment comp.

registration to the T1 anatomy (middle left) and an overlay of the color FA
image on the T1 image in a sagittal (middle right) and axial (right) view.

To correct for non-positive definite tensors, the eigenvalues were checked and
thresholded for every voxel. If the second eigenvalue was smaller than 1 · 10−4

or the third eigenvalue was smaller than 1 · 10−5, the tensor was removed from
the dataset. This was the case for some voxels in the inferior frontal lobe due to
distortion artifacts. Negative tensor eigenvalues occur due to other measurement
errors, e.g. intraventricular CSF pulsation artifacts. The final DTI was masked
with the gray and white matter masks for the usage in the head model.

2.3.3 FE mesh generation

The generation of regular hexahedra meshes takes advantage of the cubic voxel
structure which is inherent to MR images. A 1 mm hexahedra FE headmodel
with 3,098,341 nodes was thus simply generated by means of a conversion step
from the segmented T1-MRI with 1 mm voxel resolution from Section 2.3.1.

2.3.4 FE conductivity labeling

Table 1 shows the conductivity values σiso
comp for the head compartments comp

that are used for a first isotropic labeling of the finite elements [29]. It was not
distinguished between hard and soft bone, but the common isotropic value for
the conductivity of the compartment skull [14, 6, 5, 42] was used.

For the anisotropic tissue compartments brain white and gray matter, the
conductivity tensors were computed from the measured diffusion tensors using
the effective medium approach [40, 41], which linearly relates the conductivity
tensor σ to the measured diffusion tensor D,

σ = sD with s :=
σe

de
,

where σe and de are the effective extracellular conductivity and diffusivity, re-
spectively.

We did not use the empirical scaling s = 0.736S·sec
mm3 as in [40, 12], but

matched s so that the arithmetic mean over all Ncomp conductivity tensor
volumes in the brain tissue compartment comp (either wm or gm) optimally
matches the volume of the corresponding tensor with the isotropic conductivity
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s (S · sec/mm3) Mean conductivity (S/m) for
gm wm

0.210 0.211158 0.182963
0.736 0.740057 0.641243

Table 2: The linear scalings s between the diffusion tensor and the conductivity
tensor computed for our dataset using Formula (2) (upper row) and from [40, 12]
(lower row) with the resulting mean conductivity s · dcomp for gray and white
matter.

σiso
comp from Table 1, i.e.,

4π

3
(
σiso

comp

)3 !=

Ncomp∑
i=1

4π
3

3∏
j=1

σj
i

Ncomp
=

4π

3
·

Ncomp∑
i=1

3∏
j=1

sdj
i

Ncomp
=

4π

3
(s · dcomp)

3 (1)

with σj
i and dj

i being the jth eigenvalue of the ith conductivity and diffusion
tensor of the brain tissue compartment comp, respectively, and

dcomp :=
3

√√√√√√
Ncomp∑

i=1

3∏
j=1

dj
i

Ncomp
.

For the brain white and gray matter compartments, s can be determined through
the least squares fit

s =
dwmσiso

wm + dgmσiso
gm

d2
wm + d2

gm

. (2)

For our data, we found the scaling s = 0.21S·sec
mm3 . Table 2 indicates the mean

conductivities, i.e., s ·dcomp, for white and gray matter resulting from the linear
scaling s computed for our dataset using Formula (2) and the one from [40, 12].
The latter would result in much higher mean conductivities for brain gray and
white matter than compiled in Table 1. For white and gray matter voxels with
no measured diffusion tensor, isotropic conductivities were used.

2.4 sEEG and iEEG measurements

The presurgical scalp EEG (sEEG) dataset, recorded at 24 electrodes with a
sampling frequency of 256Hz, contained one seizure, which could be identified
by the Long Term Monitoring (LTM) personnel. The single clinical seizure
happened while the patient sat in a chair. The first definite clinical sign was
head deviation to the right, a right sided jerking followed by a generalized tonic
clonic seizure. The EEG data was filtered with a 60Hz notch and a 1 to 10Hz
band-stop filter using the BESA software package (MEGIS Software GmbH,
Germany). As shown in Figure 3, the F3 delta was followed by more midline
FZ-CZ delta. Nine F3 delta bursts were marked by a clinical expert (FHD)
and averaged to increase the signal to noise for the further source analysis. For
the localization, only a short time window of 7.8ms was used, which included
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Figure 3: F3 delta spikes in average reference format of the presurgical sEEG.

the two samples at the highest signal peak. No individual sEEG electrode
locations were available, so that a standard positioning was applied. SCIRun
(http://software.sci.utah.edu/scirun.html) was used to fit the 10-10 standard
system electrode positions to the head model. The result is shown in Figure 4
(left). Visualization was carried out using SCIRun. From these positions, the
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Figure 4: Left: The 10-10 standard system sEEG electrodes (blue spheres)
mapped to the head model of the patient. Right: The outermost layer of the
head model (red) and a segmented part of the registered CT dataset (green) are
shown together with the extracted and mapped iEEG electrode positions.

24 sEEG measurement electrodes were identified according to their labels.
Postsurgically, intracranial long-term video iEEG recordings with 128 elec-

trodes in six grids and a sampling frequency of 256Hz were performed and two
datasets were recorded. While the first dataset served for identifying iEEG un-
derlying functional areas, our analysis here uses only the second intracranial
dataset for the validation of the presurgical source analysis results. The spikes
and seizures of the dataset were identified and the 128 intracranial electrode
positions were roughly noted during surgery as shown in Figure 5 and scanned
in the CT dataset, which was recorded just after the electrode implantation. A
registration of the CT to the head model using SCIRun allowed the identifica-
tion of the iEEG electrode positions with respect to the headmodel, as shown
in Figure 4 (right).

2.5 Bioelectric forward problem

2.5.1 FEM based forward problem

In the considered low frequency band, the relationship between bioelectric sur-
face potentials and the underlying current sources in the brain can be repre-
sented by a quasi-static Maxwell equation with homogeneous Neumann bound-
ary conditions at the head surface [34]. The primary current sources are gen-
erally modeled by mathematical dipoles [34, 23]. For a given mathematical
dipole and head tissue conductivity distribution, the potential can be uniquely
determined [50] for what is known as the bioelectric forward problem. For the
numerical approximation of the bioelectric forward problem, we used the FE
method. Three different FE approaches for modeling the mathematical dipole
are known from the literature: a subtraction approach [4, 50], a Partial Inte-
gration direct method [45], and a Venant direct method [5]. In this study we
used the Venant FE approach with piecewise linear basis functions based on
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Figure 5: The positions and labels of the iEEG electrodes in the patient’s
record. Different stripes are shown, where AF means anterior frontal, PF pos-
terior frontal, IC intra cavity, IP inferior parietal, SP superior parietal and IH
interhemisphere.

comparison of the performance of all three in multilayer sphere models, which
suggested that for sufficiently regular meshes, it yields suitable accuracy over
all realistic source locations [51]. Standard variational and FE techniques for
the EEG forward problem yield a linear equation system

KΦ = JV en (3)

where K ∈ RN×N is a sparse symmetric positive definite stiffness matrix, Φ ∈
RN the coefficient vector for the electric potential and JV en ∈ RN the Venant
approach right-hand side vector with N the number of FE nodes [5].

2.5.2 Fast transfer matrix approach

Let us assume that the EEG electrodes directly correspond to FE nodes at the
surface of the head model (otherwise, interpolation is needed). It is then easy
to determine a restriction matrix R ∈ R(seeg−1)×N , which has only one non-zero
entry with the value 1 in each row and which maps the potential vector onto
the (seeg − 1) non-reference EEG electrodes:

R Φ =: Φeeg. (4)

When defining the following FE transfer matrix for the EEG,

T := R K−1 ∈ R(seeg−1)×N , (5)

a direct mapping of an FE right-hand side vector onto the unknown electrode
potentials is given:

T JV en (5)
= R K−1JV en (3)

= RΦ
(4)
= Φeeg. (6)

Note that JV en has only C non-zero entries at the neighboring FE nodes to the
considered dipole location [5], so that TJV en only amounts in 2 · (seeg − 1) · C
operations.
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The inverse FE stiffness matrix K−1 in (5) exists, but its computation is a
difficult task, since the sparseness of K will be lost while inverting. By means
of multiplying equation (5) with the symmetric matrix K from the right side
and transposing both sides, we obtain

KT tr = Rtr. (7)

The FE transfer matrix can thus be computed by means of iteratively solving
(seeg − 1) large sparse FE linear equation systems. Note that a fast FE transfer
matrix for the magnetoencephalography (MEG) forward problem can be derived
on a similar way [48]. For the computation of (5) by means of (7), we employ
an algebraic multigrid preconditioned conjugate gradient (AMG-CG) method.
We solve up to a relative error of 10−6 in the controllable KC−1K-energy norm
(with C−1 being one V-cycle of the AMG) [48].

2.6 The bioelectric inverse problem

2.6.1 Discrete source space

A 3D influence source space that represents the brain compartment in which
dipolar source activities might occur was extracted from the segmented T1-MRI
for the discrete parameter space source analysis algorithms (GFS, MNLS and
sLORETA, see Section 2.6.2). For the brain compartment, a 3mm eroded mask
consisting of the gray and white matter compartments was chosen under the
assumption that dipole locations (mainly apical dendrites of layer V pyramidal
cells [23]) are well below the cortical surface. The source space mesh had 172,366
nodes and 157,320 regular hexahedra elements with 2 mm resolution. Dipole
sources in the three Cartesian directions were allowed on each mesh node. The
source space is shown indirectly in the upper two rows of Figure 6 as it underlies
the discrete parameter space source reconstruction algorithms. It is clearly
visible that both the ventricle and the lesion areas were excluded from the
source space because no activity is expected from those areas.

2.6.2 Inverse methods

The non-uniqueness of the inverse problem implies that assumptions on the
source model, as well as anatomical and physiological a-priori knowledge about
the source region should be taken into account to obtain a unique solution.
Therefore, different inverse approaches for continuous and discrete source pa-
rameter space have been proposed [11, 35, 22, 9, 16].

The first class of approaches that were used here are the classical spatio-
temporal dipole modeling approaches, where the number of possible dipoles
is restricted to only some few [35, 22, 16]. The spatio-temporal focal source
models differ in the manner in which they describe the time dependence of
the data. Generally, they are grouped into three classes, the unconstrained
dipole model (moving dipole), a dipole with temporally fixed location (rotating
dipole) and a dipole with fixed location and fixed orientation (fixed dipole) [22].
Optimization of the resulting cost function [22] is performed with a Nelder-Mead
simplex optimizer which is started from appropriate seed-points and finds the
next local minimum of the cost function [16]. The goodness of fit (GOF) of the
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spatio-temporal dipole model to the data can then be used as an index of the
models quality.

The second class of inverse methods are the scanning methods. From this
class, the so-called least-squares scanning or goal function scan (GFS) [22, 16]
was used here. The GFS scans systematically position by position of the entire
discrete source space defined in Section 2.6.1. At each position, a least squares
fit is performed to the chosen data samples, i.e., an optimal rotating dipole is
computed for the considered location. As a result, the GOF at each position is
displayed as a color map on cross-sections of the source space mesh. The GFS
is not subject to pitfalls of non-linear search algorithms, such as being trapped
in local minima or slow convergence. Additionally, if the underlying sources
have distinct EEG topographies and comparable strength, areas of similar GOF
can serve as confidence regions [16] and GFS results can be used as seed-points
for spatio-temporal dipole models. Since a single dipole at each source space
mesh node is fitted to the data, this method will naturally work, if there is a
single focal source. However, the GFS might fail, e.g., when there are multiple
sources which are close to each other, sources that produce overlapping EEG
topographies or EEG’s of greatly differing intensities [22].

The last class of inverse approaches that was considered for this study are
the current density reconstruction methods. From this class, the minimum norm
least squares (MNLS or Tikhonov-regularization) [11, 16] and the standardized
low resolution electromagnetic tomography (sLORETA) [26, 7] were used for
our study. The MNLS and sLORETA methods act on a distributed source
model, where the restriction to a limited number of focal sources is abolished,
i.e., sources are allowed to be simultaneously active on all discrete source space
mesh nodes. The non-uniqueness of the resulting problem is compensated by the
assumption that the energy of the solution should be minimal. The necessary
regularization parameter was chosen as the ratio of the variance of the noise
and the variance of the current elements, where the latter was approximated
as shown in [16, pp.58-59]. It is well-known that a regularization without any
depth-weighting gives preference to superficial sources [9]. Therefore, for the
MNLS, a source weighting matrix with L2-norms of the corresponding lead field
columns as diagonal entries was chosen [9]. As reported in [26], despite of
all weighting efforts, linear solutions such as MNLS produced at best images
with systematic non-zero localization errors and in a large series of single test
source simulations at arbitrary positions and depths in the volume conductor, a
standardization of the MNLS as performed in sLORETA was shown to produce
zero-localization error.

2.7 Software and computational platform

The SimBio software environment (http://www.simbio.de) was used on a 64bit
Linux-PC with an Intel Xeon 5130 processor (2GHz) with 8GB of main memory
for all presented FE-based inverse source reconstructions. The SimBio code
contains a variety of EEG and MEG inverse source reconstruction algorithms
which can be combined with multi-layer sphere, boundary element or finite
element forward approaches [16, 52, 48, 50, 51].
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Inverse Location Location differences GOF

method (in mm) GFS MNLS RotDip MovDip sLORETA

(in mm)

GFS (45;97;57) - 6.6 2.6 2.5;2.3 0 97.02

MNLS (47;103;55) 6.6 - 5.9 6.2;5.8 6.6 -
(47;103;55) -

RotDip (43.6;98.2;55.2) 2.6 5.9 - 0.9;1.9 2.6 97.1

MovDip (43.1;98.2;55.9) 2.5 6.2 0.9 - 2.5 97.2
(45.3;97.5;54.8) 2.3 5.8 1.9 - 2.2 97.1

sLORETA (45;97;57) 0 6.6 2.6 2.5;2.2 - -
(45;97;57) - -

Table 3: Localization results of goal function scan (GFS), minimum norm least
squares (MNLS), rotating (RotDip) and moving dipole fit (MovDip) and stan-
dardized low resolution electromagnetic tomography (sLORETA) and the local-
ization differences between those approaches are presented. GOF denotes the
goodness-of-fit.

3 Results

3.1 Memory and computation time

When measuring the wall-clock time, it should be distinguished between the
setup-computation that only has to be carried out once per head model and
computations that have to be carried out hundreds or hundreds of thousands of
times depending on the inverse procedure. During the setup, the computation
of the transfer matrix T in (5) by means of the AMG-CG solver took about
56min, i.e., about 140s per sensor. The resulting transfer matrix has a size of
about 0.6GB (i.e., for 128 electrodes about 3.2GB). Each forward computation
in (6), i.e., the right-hand side computation, JV en, and the multiplication to
the transfer matrix, T JV en then only took 37ms. The rotating dipole fit, e.g.,
can then be performed in only 10s of computation time.

3.2 Source analysis results

Five different methods from the presented three classes of inverse approaches
in Section 2.6.2 were applied to the two time samples at the peak of the F3
delta spike, namely the GFS, the MNLS, the moving dipole fit followed by
the rotating dipole fit and finally sLORETA. The source analysis results are
presented in Table 3 and Figure 6. In order to get a first overview of the
underlying source structure, the GFS was applied, resulting in a single activity
peak with a GOF value of 97.02% in the left hemisphere at the posterior lateral
border of the lesion, as shown in the upper row of Figure 6. In a second step,
the depth-weighted MNLS was used to corroborate the GFS result. The result
is shown in the second row of Figure 6, consisting again of a single activity peak
at the posterior lateral border of the lesion. Moving and rotating single dipole
fits were then started with the GFS localization result as seedpoint. With a
GOF of about 97.1%, the best fit for both moving and rotating dipole model
to the data was achieved slightly (about 2.5mm) outside the predefined source

13



Figure 6: The results of the GFS (top row), MNLS (second row), the rotating
dipole fit (third row) and sLORETA (bottom row).

space mesh at the posterior lateral border of the lesion at the gyral crown as
shown in the third row of Figure 6. The reconstructed dipoles pointed mainly in
posterior direction and had amplitudes of about 200nAm. Finally, the bottom
row of Figure 6 shows the sLORETA result. The sLORETA localization result
was identical to the one of the GFS.

When summarizing the source analysis results, GFS, MNLS, sLORETA and
the spatio-temporal dipole models in the 1mm anisotropic FE model clearly
pointed to a focal epileptic area located in the left hemisphere at the posterior
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lateral border of the lesion. While the MNLS localized about 6mm more poste-
rior, the location differences between GFS, sLORETA and the spatio-temporal
dipole models only differed by maximally 2.6mm.

3.3 Validation using the iEEG result

Figure 7: Presurgical sEEG rotating dipole fit result validated by means of
the postsurgical iEEG outcome: The blue spheres represent the postsurgical
intracranial grid and stripe electrodes, the four orange spheres are the inferior
parietal (IP) grid electrodes, which primarily received ictal spikes. The lesion
is marked in red.

The location of the presurgical rotating dipole fit from Section 3.2 is shown
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together with the postsurgical iEEG electrodes and stripes in Figure 7. Accord-
ing to the clinical information, the 4 iEEG electrodes which primarily received
ictal spikes, are shown in orange. A possible source for the ictal activity might
be either located right beneath these electrodes with a mainly radial orientation
or it might be located at the posterior lateral border of the electrodes with an
increased tangential orientation component so that it only projects one of its
poles to the iEEG electrodes. The latter scenario better fits to the presurgical
rotating dipole fit result. In summary, the non-invasively localized dipole is
located very close to the intracranial electrodes which primarily received ictal
spikes, which validates the source analysis result.

4 Discussion

To the best of the authors knowledge, this is the first study using high-resolution
(1mm) anisotropic finite element (FE) volume conductor modeling for a non-
invasive surface electroencephalography (sEEG) based source analysis in presur-
gical epilepsy diagnosis. Five different inverse source analysis algorithms, a goal
function scan (GFS) [22, 16], a minimum norm least squares (MNLS) [11, 16],
a moving and a rotating dipole fit [35, 22, 16] and a standardized low resolu-
tion electromagnetic tomography (sLORETA) [26, 7] approach were based on a
hexahedra FE model with about 3.1 Million unknowns to analyse the peak of 9
averaged delta spikes of a residivous patient suffering from medically-intractable
epilepsy. With only small differences in location, i.e., a maximal difference of
2.6mm between GFS, sLORETA, moving and rotating dipole fit and 6.6mm
between the MNLS and the other approaches, the FE-based sEEG inverse al-
gorithms localized a single center of activity at the posterior lateral border of
the lesion. While the MNLS localized about 6mm posterior to the other inverse
methods, the GFS and the sLORETA localization results were identical. This
might corroborate the result of [26], i.e., that, despite of all weighting efforts,
former linear solutions such as MNLS produced images with non-zero localiza-
tion errors, while, in a large series of single test source simulations at arbitrary
positions and depths in the volume conductor, sLORETA was shown to produce
zero-localization error [26]. Source orientation was mainly in posterior direction,
i.e., away from the lesion towards the epileptogenic tissue. This source orienta-
tion result is in agreement with a recent study which showed that in central and
interhemispheric spikes, the epileptogenic side cortex was gross surface negative
through the sulcal wall to the adjacent gyrus [33].

The presurgical sEEG source analysis result was validated with post-surgical
intra-cranial EEG (iEEG) measurements and it was found that the recon-
structed rotating dipole was close to the iEEG electrodes which primarily re-
ceived ictal spikes. The small differences might be due to the deformations of
soft brain tissue occurring after craniotomy through the so-called brain shift [37]
or through the implantation of the iEEG grids and stripes, the use of standard
in contrast to the individual sEEG electrode locations, sEEG and iEEG data
noise, segmentation inaccuracies and the general modeling errors of the bioelec-
tric forward and inverse problem.

An essential requirement is a correctly triggered dataset. In this study,
qualified persons supervised the long term monitoring, marked seizures at the
moment they appeared and a clinical expert identified and averaged the corre-
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sponding spikes. Several algorithms also exist for automatic offline spike detec-
tion [47] but the accuracy is assumed to be inferior. The challenge of offline
spike detection is known: even two experts often do not mark the same events
as spikes. Spike morphology and background varies widely between patients,
hence the differences between candidate spike events and actual spike events
might be very large.

Sensitivity studies showed that brain conductivity anisotropy should be
taken into account for accurate source reconstruction [12, 49, 10]. In [10] it
was found that especially dipole orientation and strength are significantly in-
fluenced by brain anisotropy. As reported in [25, 33], dipole orientations might
even be more important than absolute dipole localizations in attributing epilep-
tic activity to subcompartments of the respective brain area. In [49] it was
shown that the more the source is surrounded by anisotropic tissue, the more
it is important to model the anisotropy. It is furthermore known that the high
conductivity of the CSF [28, 49] and local conductivity changes in the vicinity of
the primary source [4] have a non-negligible effect on source analysis. In light of
those considerations, the modeling of head tissue conductivity inhomogeneities
and anisotropies might be crucial in certain cases of presurgical epilepsy source
analysis.

A former argument against FE head volume conductor modeling in source
analysis was the complexity of the 3D mesh generation [18] and the heavy com-
putational load and thus long waiting time [5, 4, 42, 27]. Because of computa-
tional complexity, FE models were restricted to low numbers of nodes such as,
e.g., 10,731 (5mm edge length) in a study for the localization of epileptiform
activity [42] and 18,322 for the setup of a lead field matrix with 8,742 unknown
dipole components which still took roughly a week of computation time [5].
Rough restrictions to the number of FE nodes cause unacceptable numerical
errors especially for eccentric sources [4, 5, 50, 51] and limit the possibilities
of inhomogeneity and anisotropy modeling. The presented EEG FE transfer
matrix approach (a similar approach is also possible for the MEG [48]) in com-
bination with the algebraic multigrid preconditioned conjugate gradient (AMG-
CG) solver method [48] allowed us to use 1mm edge length leading to about
3.1 Million FE nodes, a resolution, which seemed impossible before [5, 4, 42].
After transfer matrix setup computations in a preprocessing step, which only
has to be carried out once per headmodel and which took less than an hour
on a standard one-processor Linux machine, an FE forward computation in
the 1mm anisotropic hexahedra FE model could be performed in just 37 Mil-
liseconds, which allowed us to setup a lead field matrix with 517,098 unknown
dipole components for the discrete inverse methods. The generation of the 1mm
hexahedra FE mesh is performed in some seconds, the 3D meshing problem is
reduced to just a conversion of the segmentation result into the corresponding
hexahedra mesh. In [27] it was speculated that for three isotropic compart-
ment (skin, skull, brain) head volume conductor models, the BEM approach is
less computationally intensive compared to the FE approach, while providing
improved computational accuracy relative to simple analytical models. How-
ever, in a recent three isotropic compartment study [20], the FE outperformed
a BE approach (collocation method using the isolated skull and the vertex ap-
proach) with regard to both accuracy for eccentric sources and computational
complexity.

The following limitations of the presented work are important. The data of
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a single case with obviously unilateral and unifocal expression of the epilepti-
form activity is not representative for all cases of localization-related epilepsy.
Further studies including more unselected patients with multifocal epilepsy pat-
terns have to be performed and results of non-invasive source analysis have to
be validated with invasive recordings. Electrode positions should be recorded
with a digitizer or a photogrammetry device and a larger number of electrodes
should be used [44]. Our results are based on isotropic skull conductivity. A
recent study reported that the skull’s three-layeredness (outer compacta, spon-
giosa, inner compacta) should be modeled [32], which can easily be done in
the presented 1mm hexahedra FE approach as long as a segmentation of the
spongiosa is available. To map the diffusion tensors to conductivity tensors, a
linear relationship with a scaling of 0.736 was established [40, 41]. In our study,
this value would have led to a much higher mean conductivity of brain tissues
than generally assumed [29], so that a scaling of 0.210 was determined using a
volume constraint approach. Further studies have to be performed to validate
the scaling parameter, examine its inter- and intra-individual variance and to
overall further validate the proposed conductivity tensor imaging method.

In conclusion, the presented study indicates the feasibility of non-invasively
localizing an epileptogenic focus by means of sEEG based inverse source analysis
approaches using 1mm anisotropic FE volume conductor modeling. Our result
may give new impulse to EEG based source analysis in epilepsy patients and
might contribute to clinical presurgical evaluation.
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2.17.2 Multiscale modeling of neuronal activity from simultaneous
intra-cranial and surface EEG data in presurgical epilepsy
diagnosis
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C. Röer, Source analysis of simultaneous sEEG and iEEG measurements in presur-
gical epilepsy diagnosis. Diploma thesis in Physics, Institute for Biomagnetism
and Biosignalanalysis (IBB), University of Münster, 2008.
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C.H. Wolters, IBB, University of Münster
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Project aims

Because of the physics of volume conduction, brain electrical fields on the scalp
are broad and only synchronous activity across relatively large cortical areas can
account for them. Local field potential (LFP) recordings from the cortical surface,
meanwhile, may be dominated by local field activity very near to the electrodes.
Thus, the relationship of scalp and cortical surface fields is spatially a multiscale
problem. Besides the recent studies of Lai et al. [2005] and Zhang et al. [2006],
so far as the author knows, no previous study has reported on relationships be-
tween concurrently collected high-density scalp EEG (sEEG) and intracranial
EEG (iEEG) data in humans. In large part, such data have not been recorded
because productive methods for their analysis have not been available. Relatively
little is known about the quantitative spatiotemporal relationship between field
potentials recorded non-invasively from the scalp and LFP data recorded inva-
sively from the cortical surface and/or depth electrodes. This project wants to
assess this relationship based on data collected from a clinically important sub-
ject population, epilepsy patients whose seizures are not controlled by medica-
tions and are candidates for neurosurgery. The data will allow us to estimate and
model volume conduction based relationships between noninvasive and invasive
human electrical brain data. The use of methods will be explored for localizing
seizure foci and modeling the activity of networks responsible for spontaneous
seizures in neocortical and mesial temporal lobe epilepsies. The novelty of iEEG
and sEEG recording appears to be based in part on a doubt frequently raised by
neurologists, i.e., that volume conduction patterns are strongly altered by skull
incisions involved in implanting the electrodes and especially the strongly re-
sisting Silastic material of the iEEG grid, thus standard methods of reading and
analyzing the scalp EEG data should be highly inaccurate or inapplicable.

Independent component analysis based source reconstruction using an FE
head model

Equivalent dipole modeling of cortical EEG sources is often justified as repre-
senting the net far-field scalp projection of a likely EEG source configuration,
a compact oriented cortex patch (Scherg and von Cramon [1985]). Independent
component analysis (ICA) has not only proven to be an effective method for re-
moving eye and muscle activity artifacts from sEEG and thus increasing the effec-
tive signal-to-noise ratio of subsequent analysis (Jung et al. [2000]), but can also
identify and separate functionally independent components, which for normal
sEEG prove to be most often associated with scalp maps matching the projection
of a single equivalent current dipole (or two time-correlated sources located near
symmetrically across the brain midline, possibly supported by dense connections
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via the corpus callosum) (Kobayashi et al. [2001]; Makeig et al. [2002]). This
result thus strongly suggests that ICA isolates partially coherent LFP activities
occurring within compact cortical regions of unknown size and curvature. Under
the assumption that ICA is able to disentangle the sources, it is then desirable
to estimate the location and extent of the involved cortical region. While, in
general, sEEG source localization is an under-determined inverse problem, the
localization of a single current dipole using data from a reasonable number of
measurement electrodes is overdetermined. In this case, the linear inverse prob-
lem is much simpler, given an adequate volume conductor model of the patients
head. The head model especially has to reflect the surgical skull defects and the
impact of the Silastic pads in which the iEEG electrodes are embedded.

Former studies showed that the influence of a post-surgical skull incision on
the forward problem cannot be neglected (van den Broek [1997]). Additionally,
the electrical conductivity of the CSF is well known (Baumann et al. [1997]),
though standard spherical or BE head models do not take this layer into account.
Post-surgical incisions and fissures in skull and brain compartments are mainly
filled with CSF, so an exact representation of these conductance anomalies is of
high importance to accurate source estimation during implantation.

In the following computations, for the representation of a dipolar current
source in an FE volume conductor model, linear basis functions and a Venant
potential approach were chosen.

Data recording and volume conductor modeling

An array of 29 channel sEEG and 78 channel iEEG were measured simultane-
ously during implantation from a patient of the Mayo Clinic (Rochester, Minn.)
with medically intractable epilepsy. Four approximately 15-minute recordings
from the subject were subjected to ICA decomposition. Each decomposition re-
turned 107 maximally independent components across the data, which were con-
tinuously recorded while the subject was drowsing. A pre-surgical T1-MRI was
recorded with a resolution of 256 slices in axial, 256 in sagittal and 120 in coronal
direction and a voxel-size of 0.86 x 1.6 x 0.86mm. Furthermore, post-surgically,
a CT was taken with a resolution of 68 slices in axial, 512 in sagittal and 635 in
coronal and a voxel-size of 0.49 x 0.49 x 2.65mm.

A voxel-based affine registration using mutual information from the ITK-
toolbox was used to register the pre-surgical T1-MRI onto the post-surgical CT.
An acceptable registration accuracy was observed. The registered dataset was
then segmented into 4 tissue classes (skin, skull, CSF and brain) using an adap-
tive fuzzy C-means algorithm (Wolters [2003]) as well as manual segmentation
approaches. Skin, skull, the CSF in the surgery opening and iEEG electrode lo-
cations were extracted from the CT while the remaining part of the CSF compart-
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Figure 2.10: Cross-section of the segmented head model of the epilepsy patient,
locations of iEEG and sEEG electrodes and test dipoles for the validation stud-
ies (left). 2mm geometry-adapted hexahedral model (right). Visualization was
carried out using BioPSE [2002].

ment and the brain were segmented out of the T1-MRI.
A 2mm geometry-adapted hexahedral FE-mesh with 431K nodes and 410K

elements was generated from the segmented dataset. A cross-section of the seg-
mented head model of the epilepsy patient and the locations of iEEG and sEEG
electrodes (left), as well as the geometry-adapted hexahedral model are shown in
Figure 2.10.

Influence of the skull incision from trepanation

In order to study the influence of a skull incision from trepanation on the forward
problem, a second four-tissue-model was created where the trepanation hole was
manually closed. Both segmented datasets were tesselated into tetrahedral FE
models of about 140K nodes and 850K elements using an ordinary Delaunay
tetrahedralization (ODT) approach. Figure 2.11 (top row) shows sagittal slices of
the conductivity tensor ellipsoids in the barycenters of the tetrahedral elements
when modeling the tissues as isotropic (therefore, all tensors are spherical). The
tensors were normalized and colored by trace. The highest trace values could
be found in the CSF compartment (red) and the lowest in the skull compartment
(dark blue). In order to show the impact of the skull hole on the forward problem,
electric potential computations were performed in both FE models for dipole
sources with strengths of 100 nAm as shown by the yellow cones in Figure 2.11
(top row). The resulting distributions of the electric potentials at the surfaces of
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Figure 2.11: Influence of skull incision from trepanation on the sEEG forward
problem: Dipole source used for field simulation (yellow) and sagittal slice of the
conductivity tensor ellipsoids of the tetrahedral model from the epilepsy patient
with skull incision (top, left) and with a manually closed skull incision (top, right)
and the corresponding surface isopotential distributions (bottom row) (scale in
µV ). Tensor validation and visualization was carried out using BioPSE [2002].

both head models are shown in Figure 2.11 (bottom row). As it is well visible,
neglecting the modeling of the skull opening results in a much blurred potential
distribution, corroborating the importance of patient-specific volume conductor
modeling.

Dipole fit validation

The inverse single dipole fit method in the 2mm geometry-adapted hexahedral
model with skull hole was first validated by performing single dipole fits for
simulated sEEG and iEEG data at known reference sources. The 10 reference
source positions are shown in Figure 2.10 (left). This reference potential distri-
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bution was then used as the input data to an inverse single dipole fit approach as
described in Section 1.4.2 based on the same FE model using a Nelder-Mead sim-
plex optimization. For all dipole eccentricities, the seed-point was positioned in
the approximate midpoint of the volume conductor model. Using the fast transfer
matrix approach (Chapter 2.2), the inverse optimization results were achieved
in acceptable computation times. For example, the computation of the com-
bined sEEG/iEEG transfer matrix, which has to be carried out just once per head
model, required about 10 minutes of computation time on a standard Linux PC
(3.2GHz, Pentium 4). Each forward computation within the inverse optimization
process was then reduced to only some few milliseconds for the multiplication of
the sEEG/iEEG transfer matrix to an FE right-hand side. The reconstruction er-
rors were measured for dipole fits by means of combined sEEG/iEEG and single
sEEG and iEEG modalities. Results were computed for 10 mainly tangentially
oriented sources and 10 mainly radially oriented sources (Figure 2.10) with vary-
ing z-coordinates. As expected, localization errors were in the sub-millimeter
range for all tested configurations. However, the validation results for the tangen-
tial reference sources showed a further expected advantage of the sEEG/iEEG
combined measurements: The more distant the source is from the iEEG grid,
the less accurate the iEEG grid was able to reflect both poles of the dipole and
the larger the stabilizing effect of the additional scalp EEG sensors on the recon-
struction. With actual (not simulated, noise-free) data, this effect is assumed to
be much more distinct.

Preliminary ICA-based source reconstruction results for a peri-ictal compo-
nent of an epileptic seizure

The same iterative fitting methods were used to fit dipoles to either the sEEG
or the iEEG map of a selected peri-ictal ICA component from the joint scalp
and grid data ICA decomposition. Figure 2.12 shows representative results for
a point-source like component principally projecting to a small neighborhood
of the iEEG grid (left). FE model fitting successfully localized an equivalent
current dipole for this activity in cortex directly below the affected area (right
circle)–percent grid-map variance accounted for was high (96%). The scalp map
associated by ICA with this source was weakly but broadly distributed over the
scalp EEG recording array. The same equivalent dipole fitting method applied
to this scalp map found it also to be highly dipolar (percent variance accounted
for, 94%), confirming that ICA isolates sources with a simple biophysical struc-
ture, without use of any biophysical constraints. The location of the equivalent
dipole for the scalp map activity was (left circle), however, much deeper than the
computed source of the iEEG map activity (right circle). The orientation of the
scalp-map dipole was close to the center of the grid map excitation, as expected
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Figure 2.12: Inverse dipole fit results (encircled, in blue) for a peri-ictal ICA
component: iEEG map fit just under the affected electrode (right circle; vari-
ance accounted for, 96%) and much deeper sEEG map fit (left circle; variance
accounted for, 94%). The seed points for the inverse fits are shown in light green
in both figures.

for a coherent source. However, the difference in depths of the equivalent dipoles
was unexpected and points to the need for further research.

Preliminary CDT meshing results for the modeling of the iEEG silastic pads

The probably most obvious idea for the remaining difference in depths between
sEEG and iEEG dipole fits in the last section is the modeling of the highly re-
sisting iEEG Silastic grids.The Silastic pad is a kind of insulator and Zhang et al.
[2006] used a conductivity of only 3.3 · 10−11 S/m for it. An accurate modeling
might thus be of high importance. While Zhang et al. [2006] used an ordinary
Delaunay tetrahedralization (ODT) FE meshing approach for the Silastic pad, we
are working towards an appropriate constrained Delaunay tetrahedralization. The
preliminary CDT meshing results are shown in Figures 2.13 and 2.14.
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Figure 2.13: Röer [2008]: Constrained Delaunay tetrahedralization FE mesh of
the epilepsy patient with a special focus on the modeling of the high resisting
iEEG Silastic pads and the skull incision from trepanation. Visualization was
carried out using Tetview (Si [2007]).
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Figure 2.14: Röer [2008]: Same FE mesh as in Figure 2.13, but zoomed into the
area of the thin insulating iEEG Silastic grid. Visualization was carried out using
Tetview (Si [2007]).



Chapter 3

Discussion and conclusion

Accuracy and time play an important role in medical diagnostics and research
as well as in the field of neuroscience. The presented work examined advanced
numerical algorithms for a more accurate and fast source analysis of electroen-
cephalography (EEG) and magnetoencephalography (MEG) data. A strong fo-
cus was on an improved solution to the EEG and MEG forward problem used
within the inverse source analysis by means of a more realistic representation of
the geometry and conductivity inhomogeneity and anisotropy of the head tis-
sues using the finite element (FE) method. The improved forward modeling
was applied in modern EEG and MEG inverse approaches such as the standard-
ized low resolution electromagnetic tomography (sLORETA) method (Pascual-
Marqui [2002]), the minimum norm least squares (MNLS) (Hämäläinen and Il-
moniemi [1984]; Knösche [1997]; Fuchs et al. [1994]), the scanning (Mosher
et al. [1992]; Knösche [1997]) and the spatio-temporal dipole fit (Scherg and von
Cramon [1985]; Mosher et al. [1992]; Knösche [1997]; Wolters et al. [1999]) ap-
proaches. Additionally, a new and especially fast spatio-temporal current density
reconstruction (STR) method (Schmitt et al. [2002]) was shown to yield supe-
rior reconstruction results when compared to temporally uncoupled MNLS ap-
proaches and was applied for the first time to the field of source analysis using
a realistic high-resolution FE forward approach in Chapter 2.12. Two medical
application fields were considered, namely presurgical diagnosis of localization-
related medically-intractable epilepsy in Chapter 2.17 and the field of evoked
responses, or, more specifically, tactile somatosensory evoked potentials (SEP)
and fields (SEF) in Chapters 2.11 and 2.16. A major motivation of this work was
the special need in the medical diagnostic field of EEG and MEG source analysis
to achieve high accuracy, which might provide substantial progress to the field,
with acceptable computation costs in order to implement it in a clinical day-to-
day business. The promising results of the new methodological source analysis

287



288 ACCURACY OF THE SINGULARITY TREATMENT APPROACHES

developments in those application fields are addressed again in more detail in
Section 3.3 of this chapter.

3.1 The FEM based EEG and MEG forward problem

3.1.1 Accuracy of the singularity treatment approaches

The numerical treatment of the singularity introduced into the differential equa-
tion by means of the mathematical point current dipole and the interplay with
the conductivity inhomogeneity and anisotropy of the complex head tissues and
with the FE meshing aspects was expatiated in the presented work. The subtrac-
tion approach is well-known in FE-based source analysis for the treatment of the
singularity (Bertrand et al. [1991]; van den Broek [1997]; Awada et al. [1997];
Marin et al. [1998]; Schimpf et al. [2002]), but a satisfying FE theory was not yet
derived and presented accuracies were not yet satisfactory. Therefore, in Chap-
ter 2.1, a mathematical theory was developed for the subtraction approach, which
contained a proof for existence and uniqueness of the weak solution in the func-
tion space of zero-mean potential functions and convergence statements of the
FE method for the numerical solution of the electric potential. It was shown
that the constant in the convergence proof largely depends on the distance of
the source to the next conductivity discontinuity, i.e., a theoretical reasoning for
the numerical finding that accuracy of the subtraction approach decreases with
increasing source eccentricity in sphere model validation studies as reported in
(Bertrand et al. [1991]; van den Broek [1997]; Awada et al. [1997]; Marin et al.
[1998]; Schimpf et al. [2002]) and also in this work. A projected subtraction ap-
proach was implemented, validated in an EEG study in ordinary Delaunay tetra-
hedralization (ODT) and regular and geometry-adapted hexahedral meshes of a
three compartment sphere model (skin, skull, brain) with anisotropic skull layer
for sources with maximal eccentricities of 95%, i.e., 4mm distance to the inner
skull, and applied in a realistic three-compartment head model with anisotropic
skull compartment. The method was shown to yield satisfactory results for both
the EEG in Chapter 2.1 as well as for the MEG evaluations in Chapter 2.5 in
three-compartment sphere models. However, the validation and comparison of
the projected subtraction approach with two direct potential methods, the par-
tial integration (Yan et al. [1991]; Awada et al. [1997]) and the Venant (Buchner
et al. [1997]) approach, were ambiguous in Chapter 2.5 (EEG, ODT and regular
hexahedral meshes, three compartment isotropic sphere model with source ec-
centricities up to 95%, i.e., 4mm distance to the inner skull), Chapter 2.6 (EEG,
regular hexahedral mesh, four compartment isotropic sphere model with source
eccentricities up to 97%, i.e., 2mm distance to the CSF compartment) and Chap-
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ter 2.7 (setup like in Chapter 2.6, with additionally geometry-adapted hexahe-
dral FE meshes). For the MEG, the projected subtraction approach was shown
to yield consistently better validation results than the Venant approach for tan-
gentially oriented MEG sensors, while for radially oriented MEG sensors, both
methods were nearly identical because of the low contribution of the secondary
compared to the primary currents in a sphere model (Chapter 2.5). Furthermore,
for the EEG and for tangentially oriented sources, the projected subtraction ap-
proach was also shown to be consistently superior to the Venant and partial inte-
gration direct potential approaches (Chapters 2.6 and 2.7). However, for the EEG
and eccentric dipoles with radial orientations, the Venant and partial integration
methods outperformed the projected subtraction approach (Chapters 2.5, 2.6 and
2.7).

Because of these shortcomings of the projected subtraction approach, a full
subtraction method was mathematically derived, implemented and validated in
four-layer sphere models with anisotropic skull compartment (Chapter 2.8). Ad-
ditionally to those developments, instead of the above ODT meshes, constrained
Delaunay tetrahedralization (CDT) meshing approaches were applied, so far as
the author knows, for the first time to the field of source analysis. The advan-
tage of CDT in comparison with ODT meshing is described in detail in (Si and
Gärtner [2005],Si [2004]). With a maximal relative Euclidian error (maxRE) of
0.71%, a maximal relative difference measure (maxRDM) of 0.34% and a maxi-
mal magnification factor (maxMAG) of 0.3% with regard to the forward problem
(Chapter 2.8) and with maximal single source reconstruction errors of 0.3mm (lo-
calization), 0.03 degree (orientation) and 0.21% (magnitude) (Chapter 2.9.2) for
sources with high eccentricities of up to 98.7%, i.e., up to 1mm below the CSF
compartment, the combination of the full subtraction approach in a high quality
CDT FE mesh with only 360K nodes led to accuracies that, to the best of the
authors knowledge, have not yet been presented before. In a direct comparison
with the projected subtraction approach from Chapter 2.1, it was found that the
full subtraction approach was by an order of magnitude more accurate for dipole
sources close to the next conductivity discontinuity. The fact that, in a realis-
tic head model, most sources of interest have eccentricities between 50% and
98% shows the importance of those results. Papadopoulo and Vallaghé [2007]
investigated a partial integration FE approach in a three layer sphere model with
anisotropic skull and sources up to 3.5mm below the inner skull surface. In their
article, a 1mm hexahedral approach (thus a much higher FE resolution than the
above CDT mesh with 360K nodes) with smoothed tissue boundaries using an
improved stiffness matrix integration by means of a levelset segmentation ap-
proach was used and a maxRDM of 2% was reported (maxMAG was not shown).
Schimpf et al. [2002] investigated an FE subtraction approach in a four layer
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sphere model with isotropic skull and sources up to 1mm below the CSF com-
partment. In their article, a regular 1mm cube model was used and a maxRDM
of 7% and a maxMAG of 25% was achieved. In a locally refined (around the
source singularity) tetrahedral mesh with 13K nodes of a four layer sphere model
with anisotropic skull, Bertrand et al. [1991] reported numerical accuracies up to
a maximal eccentricity of 97.6%. A maxRE of above 20% and a maxMAG up
to 70% were documented for the most eccentric source. van den Broek [1997]
also used a locally refined (around the source singularity) tetrahedral mesh with
3,073 nodes of a three layer sphere model with anisotropic skull. The author
mentioned in the conclusion that in some cases the accuracy could not further be
improved by adding points globally as the numerical stability of the matrix equa-
tion that had to be solved was reduced. Marin et al. [1998] restricted their finest
tetrahedral mesh of 88K nodes to eccentricities of 81% in order to reach a suffi-
cient accuracy for radial dipole forward solutions in a three compartment sphere
model with anisotropic skull. Awada et al. [1997] implemented a 2D subtraction
approach and compared its numerical accuracy with a direct potential method in
a 2D sphere model. A direct comparison with the above results is therefore dif-
ficult, but the authors concluded that the subtraction method was generally more
accurate than the direct approach. Finally, in Chapter 2.9, the full subtraction ap-
proach was compared to the Venant and the partial integration direct approaches
and was shown to perform consistently better in a quality CDT mesh of a four
layer sphere model with anisotropic skull compartment and eccentricities up to
98.7%. While error curves oscillated on a low level for both direct approaches,
they were smooth for the subtraction approaches. The oscillations do not have to
be a disadvantage because, as shown in Chapter 2.9.3, the minimum Venant error
for tetrahedral meshes was achieved for sources on FE nodes, so that a lead field
interpolation technique (Yvert et al. [2001]) can be used to avoid oscillations and
further decrease the numerical error of the direct potential approaches.

Plis et al. [2007] speculated that boundary element (BE) forward approaches
are less computationally intensive compared to FE models, while providing im-
proved computational accuracy relative to simple analytical models. In Chap-
ter 2.10, the Venant FE approach was compared with the ISA vertex collocation
BE method, i.e., a collocation BE method (Barnard et al. [1967]) using the iso-
lated skull approach (ISA) (Meijs et al. [1989]; Hämäläinen and Sarvas [1989];
Zanow [1997]) and linear basis functions with analytically integrated elements
(de Munck [1992]; Zanow [1997]) in an isotropic three layer sphere model. Both
numerical approaches were combined with transfer matrices for a fast BE and
FE forward modeling. For a 2mm geometry-adapted hexahedral FE model, the
maximal RDM (MAG) of the FEM approach of 1% (5%) was about two (four)
times lower than the maximal RDM (MAG) of the BEM approach. At the same
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time, with 0.7 milliseconds, the FE forward computation was more than four
times faster than the BE forward computation. As recent investigations showed,
the BE method can still be improved through the use of a Galerkin approach
(Mosher et al. [1999]; Kybic et al. [2005]), a symmetric BE approach (Kybic
et al. [2005]), or virtual mesh refinement (Fuchs et al. [1998]). However, as
shown in Chapter 2.8 using a full subtraction approach, this is also true for the
FE method.

As a final note, instead of trying to reduce numerical errors for the proba-
bly “over-singular” mathematical point dipole, it is important to reconsider other
and especially smoother source models, taking into account the fact that the pri-
mary current sources are continuous throughout the cortical tissue (Tanzer et al.
[2005]). This is where the FE-based subtraction method might provide a further
important contribution to EEG and MEG source analysis.

3.1.2 Computational speed
With regard to computational speed, the state-of-the-art approach in FE based
source analysis was to solve one FE equation system for each source (Bertrand
et al. [1991]; Buchner et al. [1997]; Awada et al. [1997]; van den Broek [1997];
Waberski et al. [1998]; Schimpf et al. [2002]; Wolters et al. [2002]; Wolters
[2003]). Because of the non-uniqueness of the EEG and MEG inverse prob-
lem, in most applications (see for example Chapter 2.17.1), a variety of inverse
approaches with different a-priori constraints are examined and compared which
leads to a huge amount of necessary forward solutions for tens or even hundreds
of thousands of different sources. The excessive computational burden created
by such an approach often forced the examiner to use sub-optimal numbers of FE
nodes and sub-optimal numbers of possible sources in the brain (Bertrand et al.
[1991]; Buchner et al. [1997]; van den Broek [1997]; Waberski et al. [1998]). For
example, in Buchner et al. [1997], the setup of a lead field matrix which is needed
for inverse current density reconstruction (CDR) methods with 8,742 unknown
dipole components in a tetrahedral FE approach with 18,322 nodes took roughly
a week of computation time. In Waberski et al. [1998], an FE model with 10,731
nodes was used for the localization of epileptiform activity and it was concluded
that, for a general clinical use of FE source analysis, a finer FE discretization
and parallel computing is needed. Parallelized source analysis techniques were
investigated to alleviate the problem of the immense computational costs (Buch-
ner et al. [2000]; Zhukov et al. [2000]; Wolters et al. [2002]; Wolters [2003]),
but such approaches need specific computer systems and often have the disad-
vantage of more complex software structures which might limit a broader use in
the application fields. In Chapter 2.2 of this work, the concept of EEG and MEG
transfer matrices for the FE approach was derived and evaluated in Chapter 2.4
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in a comparison with the state-of-the-art approach. The transfer matrix concept
was already known to the BEM community for a longer time (Mosher and Leahy
[1999]). However, in BEM applications, because of the far lower dimensions of
only some thousand nodes, the geometry matrix can be directly inverted, while
this is not possible for high-resolution three-dimensional approaches. Therefore,
for the EEG, Helmholtz’ principle of reciprocity was used and similar reduc-
tions of computational complexity were achieved for a Finite Difference (FD)
(Vanrumste et al. [1998]; Mohr [2004]) and for an FE approach (Weinstein et al.
[2000]). In Chapter 2.2, it was, so far as the author knows, for the first time
shown how the concept of FE transfer matrices can be derived for both EEG and
MEG by just using operations from linear algebra and avoiding the complex reci-
procity theory. A similar development was presented simultaneously in (Gencer
and Acar [2004]). Using this concept, for each head model, one only has to solve
one large sparse FE system of equations for each of the possible EEG or MEG
sensor locations in order to compute the full transfer matrix. Each forward solu-
tion is then reduced to multiplication of the transfer matrix by an FE right-hand
side (RHS) vector containing the source load. Exploiting the fact that the number
of sensors (currently up to about 600) is much smaller than the number of rea-
sonable dipolar sources, the transfer matrix approach is substantially faster than
the state-of-the-art forward approach and can be applied to inverse reconstruc-
tion algorithms in both continuous and discrete source parameter space for EEG
and MEG. In Chapter 2.17.1, the speedup factor amounted to more than 20,000,
showing the immense reduction of computational costs.

Still, the solution of hundreds of large linear FE equation systems for the
construction of the EEG and MEG transfer matrices is a major time consuming
part within FE-based source analysis. The state-of-the-art is the use of iterative
FE solver techniques such as the successive over-relaxation method (Schimpf
et al. [2002]) or the conjugate gradient (CG) method without preconditioning
(Bertrand et al. [1991]) or with standard preconditioners like Jacobi (Jacobi-CG,
Zhukov et al. [2000]) or incomplete Cholesky without fill-in (IC(0)-CG, Buchner
et al. [1997]). In the mathematical community it is well known that multigrid
(MG) methods are optimal preconditioners for the CG method (Jung and Langer
[1991]; Hackbusch [1994]; Haase and Langer [1998]; Stüben [1999]) and re-
cently, such iterative solver techniques were also applied to the problem of source
analysis (Wolters et al. [2000]; Johnson et al. [2001]; Wolters et al. [2002]; Mohr
and Vamrunste [2003]; Mohr [2004]). As shown in Chapter 2.9, the algebraic
multigrid preconditioned CG (AMG-CG) (Ruge and Stüben [1986]; Haase and
Langer [1998]; Stüben [1999]) iterative FE solver technique achieved an order
of magnitude higher computational speed than IC(0)-CG and Jacobi-CG with an
increasing gain factor when decreasing mesh size. The examination was per-
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formed in a four-compartment sphere model with anisotropic skull layer, where
quasi-analytical solutions allowed for an exact quantification of computational
speed versus numerical error, while former examinations (Wolters [2003]; Mohr
[2004]) just considered the relative error in the solution of the FE equation system
in the KC−1K-energy norm (K: stiffness matrix; C: preconditioner). It was fur-
thermore shown in Chapter 2.3, that a multiple right-hand side (RHS) AMG-CG
approach can further speedup the computation of the transfer matrices by more
than a factor of 2.

In summary, the combination of the transfer matrix approach with the multi-
RHS-AMG-CG leads to highly efficient FE-based forward solutions and enables
resolutions which seemed to be impracticable before. It allows to just convert a
segmented MR image into a 1mm hexahedral model so that tedious FE mesh-
ing procedures are avoided. The developed code can be run on a standard 64bit
single processor Linux machine, as shown for a 1mm hexahedral FE mesh with
3.1 Million FE nodes and 517 thousand unknown dipole components in Chap-
ter 2.17.1, where the computation of the transfer matrix was carried out in less
than an hour (only once per head model) and each forward computation was then
performed in only 37 Milliseconds. The time for transfer matrix setup can be
further reduced using the parallel solver approach if a cluster of PC’s is available
(Haase and Langer [1998]; Wolters et al. [2002]).

3.1.3 Meshing aspects
An essential prerequisite for FE modeling is the generation of a mesh which
represents the geometric and electric properties of the volume conductor. The
difficult construction of the volume discretization is often seen to be a major
disadvantage of the FEM compared to the BEM which only requires the use of
surface triangulation meshes Kybic et al. [2005].

So far, ordinary Delaunay tetrahedralizations (ODT) were mainly used in
FE-based source analysis (Buchner et al. [1997]; Waberski et al. [1998]; Wag-
ner et al. [2000]; Wolters [2003]; Zhang et al. [2006]). The ODT exploits a set
of vertices in the three-dimensional head domain and does not take into account
faces between compartments of different conductivity. As described in detail in
(Wagner et al. [2000]; Si [2004]; Wolters [2003]), in a first step of the ODT mesh-
ing, the vertices are distributed on the segmented tissue boundaries (skin, skull,
brain) and on auxiliary surfaces which are generated by eroding the innermost
segmented boundary (brain gray or white matter). From this set of vertices and
under the constraint that the Delaunay criterion is fulfilled, tetrahedral elements
are constructed. The Delaunay criterion demands that no vertex lies inside the
circumsphere of a tetrahedron. The ODT does not guarantee that tetrahedra only
contain one type of head tissue and in certain rare cases, tetrahedra were found
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that crossed a tissue boundary. Such elements spoil the accuracy of the FE for-
ward modeling.

As discussed in detail in (Si [2004]), a constrained Delaunay tetrahedraliza-
tion (CDT) is a variation of the ODT that is additionally constrained to respect the
boundaries between different head tissues, i.e., the input to a CDT are the surface
meshes which describe the boundaries of the head tissues. As discussed in Sec-
tion 3.1.1, the high-quality CDT meshes (Si and Gärtner [2005],Si [2004]) could
significantly contribute to an improvement of numerical accuracy when compared
to ODT approaches. For the FE modeling of the 2mm thin highly resistant silastic
pads of the iEEG electrodes for the epilepsy patient in Chapter 2.17.2, the use of
CDT approaches is considered to be of especially high importance, because ODT
or hexahedralization approaches might definitely produce unrealistic holes in the
silastic pads.

Only few studies examined regular hexahedral elements exploiting the spa-
tial discretization inherent in medical tomographic data (Schimpf et al. [2002]).
While the construction of CDT meshes can be tedious and time-consuming in
topologically difficult situations, high-resolution hexahedral meshes can always
easily and fastly be generated from segmented medical datasets and will in most
situations (except the modeling of volume conductor anomalies such as the silas-
tic pad in Chapter 2.17.2) be highly accurate, as shown in Chapters 2.1, 2.7, 2.10
and 2.17.1. Especially geometry-adapted hexahedral meshes have been shown to
achieve high accuracies with RDM and MAG errors that were reduced by factors
of between 1.5 (radial sources) and 2 (tangential sources) when compared to reg-
ular hexahedral elements (Chapter 2.7). Furthermore, as shown in Chapter 2.10,
a 2mm geometry-adapted hexahedral Venant FE approach outperformed a BE
forward approach with regard to both accuracy and computational speed.

Finally, as a future goal, the promising approach of combining the segmenta-
tion result of levelset segmentation approaches with FE-based forward modeling
(Papadopoulo and Vallaghé [2007]) should be mentioned, which might help to
further increase numerical accuracy for the EEG and MEG forward problem.

3.1.4 Sensitivity to tissue geometries and conductivities
The spatial resolution of especially EEG, but to a lesser extent also MEG, is
dependent on the degree of modeling accuracy of the different head tissue geo-
metries and conductivities.

With regard to the geometries, CT was used in the presented clinical stud-
ies for the extraction of the skull (Chapter 2.17.2) and for the identification of
intra-cranial electrode locations (Chapters 2.17.1 and 2.17.2). CT is not justi-
fied for routine physiological studies in healthy human subjects. Therefore, a
combination of T1-weighted MRI, which is well suited for the identification of
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soft tissues (scalp, brain) and proton-density (PD) weighted MRI, enabling the
segmentation of the inner skull surface, was proposed in Chapters 2.11, 2.13
and 2.17.1. This approach leads to an improved modeling of the skull thickness
over standard T1-MRI based approaches as shown in Chapter 2.11, an important
parameter for EEG source analysis. An improved modeling of the inner skull sur-
face also increases accuracy with regard to MEG source analysis. The presented
FE volume conductor models consisted of the individually and accurately shaped
compartments scalp, skull, CSF, and brain gray and white matter, which were
segmented with quasi-automatic algorithms (Chapters 2.11, 2.13, 2.14, 2.15 and
2.17.2) or more or less manually (Chapter 2.17.1) from registered T1-MRI/PD-
MRI or T1-MRI/PD-MRI/CT datasets, respectively. The importance of model-
ing the CSF has been shown in Chapter 2.13 and also by others (Ramon et al.
[2004]). In most BEM based studies, only three isotropically conducting head
tissue compartments are considered: skin, skull and brain (Meijs et al. [1989];
Hämäläinen and Sarvas [1989]; Zanow [1997]; Fuchs et al. [1998]; Mosher et al.
[1999]; Kybic et al. [2005]). Even if it would be theoretically possible to also
model, e.g., the isotropic CSF compartment, it is practically difficult with the
BEM. Because of the cortical convolutions and because of BE accuracy reasons,
the inner CSF surface mesh (identical to the outer gray matter surface) would
need a high resolution of possibly some tens of thousands of BE nodes. Since in
most BE approaches, the geometry (or stiffness) matrix is densely populated 1,
the computational amount of work is quadratically increasing and would thus be
huge. However, while most conductivities of the head tissues vary across indi-
viduals and within the same individual due to variations in age, disease state and
environmental factors as shown by (Haueisen [1996]; Oostendorp et al. [2000];
Latikka et al. [2001]; Baysal and Haueisen [2004]; Gonçalves et al. [2003b,a]),
the CSF was measured by Baumann et al. [1997] and is considered to be less
variable. When using the presented fast and accurate FE approaches, the compu-
tational amount of work with the FEM is only increasing linearly with the number
of nodes and it is therefore possible to take a further tissue compartment such as,
e.g., the highly conducting CSF compartment, into account, as validated in the
spherical studies in Chapters 2.8 and 2.9 and evaluated and applied to realistic
geometries in Chapters 2.11–2.17.

As described above, there is a large inter-individual variability of skull and
brain conductivities that were measured with regard to the EEG inverse problem.
Assuming wrong conductivity values especially in the EEG inverse problem can
lead to severe localization errors, there is thus an obvious need to incorporate
individual conductivity values.

1except within the recently presented symmetric BE approach of Kybic et al. [2005], where it
has a block structure
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The first proposed approach, the low resolution conductivity estimation (LRCE)
in Chapter 2.11 is to simultaneously estimate skull and brain conductivity and
source location based on high signal-to-noise (SNR) focal SEP data in combina-
tion with a geometrically realistic FE model based on combined T1- and PD-MRI
data. A similar approach was examined by Vallaghé et al. [2007]. The LRCE
simulation studies showed that for realistic SNR SEP data, both the brain and the
skull conductivity together with the underlying dipole source in somatosensory
cortex could simultaneously be reconstructed and provided an improved source
analysis result. When applied to measured SEP data, the LRCE estimated a skull
conductivity of 0.004S/m, which is in the range of the commonly used value,
while the reconstructed brain conductivity was 0.48S/m, which is higher than the
commonly used value of 0.33S/m. With these results, the viability of an approach
was shown that computes its own conductivity values and thus reduces the depen-
dence on assigning values from the literature and likely produces a more robust
estimate of source location. Using the LRCE method, the individually optimized
(with regard to both geometry and conductivity) volume conductor model can
in a second step be used for the analysis of clinical or cognitive data acquired
from the same subject. However, there is a trade off between the number of in-
dependent parameters that can be determined and the complexity of the assumed
source model. The specific trade off point is also strongly influenced by the qual-
ity of the measured electric potentials. Thus the number of parameters that can
be dependably estimated is a function of both the signal quality and the num-
ber and quality of a priori knowledge about, for example, the source location
or orientation through a combination with other modalities or anatomical and/or
functional arguments (e.g., a strong restriction of the source location to anatom-
ically and physiologically reasonable areas close to the somatosensory SI area).
In this context, Gonçalves et al. [2003a] and Huang et al. [2007] have suggested
that by including MEG data in the scheme, it will be possible to improve stability
considerably. As described in Chapter 2.16.3, this is also our future goal.

The second approach is based on the determination of electrical conductivity
data of brain tissue through the water diffusion tensor as measured by diffusion
tensor MRI (DT-MRI) (Basser et al. [1994]; Tuch et al. [1999, 2001]). Further-
more, because of its three-layeredness into soft bone (spongiosa) and hard bone
(compacta), the skull was described by an effective anisotropic conductivity with
a ratio of up to 1 to 10 radially to tangentially to its surface (Rush and Driscoll
[1968]; van den Broek [1997]; Marin et al. [1998]; Akhtari et al. [2002]). The
importance of modeling anisotropies and the feasibility to do so using the pre-
sented FE approaches was shown in the anisotropic multilayer sphere studies in
Chapters 2.8 and 2.9. The influence of skull and white matter anisotropy on
EEG and MEG source analysis was then studied in high-resolution FE models
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in Chapters 2.13–2.15 and in 2.17.1. For the MEG, the importance of correctly
modeling the return currents, which are dependent on tissue conductivity, was
shown in (Haueisen et al. [1995]; Uitert et al. [2003]). In this work, it was found
that anisotropic white matter conductivity causes return currents to flow in di-
rections parallel to the white matter fiber tracts (Chapter 2.13). Especially local
anisotropies around the sources with regard to both EEG and MEG (Chapter 2.14
and Haueisen et al. [2000]), but also remote anisotropies between the sensors
and the sources with regard to especially the EEG (Chapter 2.13) have a larger
influence on the forward problem. The deeper a source lies and the more it is sur-
rounded by anisotropic tissue, the larger the influence of this anisotropy on the
resulting electric and magnetic fields. With regard to the EEG inverse problem,
white matter anisotropy mainly seems to effect source orientation and strength
parameters (see Güllmar et al. [2006] and Chapter 2.13). However, as reported
by Salayev et al. [2006] and Pataraia et al. [2005], dipole orientations might even
be more important than absolute dipole localizations in attributing epileptic activ-
ity to subcompartments of the respective brain area. Skull anisotropy was shown
to have a smearing effect on the forward potential computation and thus mainly
leads to a localization error in depth (see Chapters 2.13 and 2.16.3). In Chap-
ter 2.15, the anisotropy of especially skull and to a lesser extent also white matter
substantially compromised the EEG restoration ability of an L1-norm current
density reconstruction approach, the centers of activity of the early left anterior
negativity (ELAN) in language processing were strongly shifted along the Syl-
vian fissure in the anterior direction. In contrast, the L1-approach using the MEG
data successfully reconstructed the main features of the ELAN. In summary, it
was found that for the EEG, the presence of tissue anisotropy both for the skull
and white matter compartment substantially compromises the forward computa-
tion and the inverse source reconstruction. In contrast, for the MEG, only the
anisotropy of the white matter compartment has a significant effect on source
analysis.

Sadleir and Argibay [2007] recently reported that the approximation of the
skull’s three-layered conductivity (inner compacta, spongiosa, outer compacta)
through a radial to tangential conductivity anisotropy is not sufficient. As long
as the individual isotropic conductivity values of the three skull tissues and a
segmentation of the spongiosa are available, the three-layeredness can easily be
incorporated in a 1mm hexahedral FE approach. It is therefore a future goal
to combine the DT-MRI method for the determination of anisotropic brain tis-
sue conductivities with the LRCE parameter estimation approach in combined
SEP and SEF source analysis scenarios based on geometrically realistic 1mm FE
models to estimate the inter-individually varying skull compacta and spongiosa
conductivity parameters as well as the inter-individually varying linear scaling
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factors between the diffusion tensor and the conductivity tensor as discussed in
Chapter 2.17.1.

3.2 The EEG and MEG inverse problem
EEG and MEG source analysis is an ill-posed inverse problem. There are an
infinite number of solutions that explain the measured data due to the existence
of silent sources, i.e., source configurations that produce no external magnetic
or electric field. Those ghost sources can thus be added to any estimate without
affecting the data fit (v. Helmholtz [1853]; Sarvas [1987]). This non-uniqueness
is handled by making assumptions about the nature of the sources, e.g.,

• number of sources in the spatio-temporal dipole fit: Scherg and von Cra-
mon [1985]; Mosher et al. [1992]; Knösche [1997]; Wolters et al. [1999]

• anatomical and neurophysiological constraints, i.e., dipole sources should
be localized in brain gray matter and their orientation should be perpendic-
ular to the cortical surface: Dale and Sereno [1993]; Murakami and Okada
[2006]

• norms, spatial extent constraints and smoothness in spatial current density
reconstruction (CDR) methods such as

– minimum norm least squares (MNLS) or L2-norm CDR: Hämäläinen
and Ilmoniemi [1984]; Knösche [1997]; Wagner [1998]; Fuchs et al.
[1999]; Wolters [2003]

– L1-CDR: Wagner [1998]; Fuchs et al. [1999]; Wolters [2003]
– sLORETA: Pascual-Marqui [2002]; Dannhaur [2007]

• smoothness constraints in spatio-temporal reconstruction (STR) methods:
Schmitt [2001]; Schmitt and Louis [2002]; Schmitt et al. [2002]

• correlation: In the MUSIC (Mosher et al. [1992]) and adaptive spatial
filtering (beamforming) (Veen et al. [1997]; Sekihara et al. [2005]) algo-
rithms, only sources can be reconstructed which are not temporally corre-
lated. Furthermore, the independent component analysis (ICA) can only
disentangle sources which are not temporally correlated: Kobayashi et al.
[2001]; Makeig et al. [2002].

Thus, the accuracy and validity of the source analysis result depends much on the
biological correctness of the assumptions and priors adopted in the model. This
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is why priors should not only be informed by neurophysiology domain know-
ledge, but should also be flexible and adaptive to particular data sets. Since the
experimenter often does not feel certain about the prior, it is common practice to
compare results of inverse approaches with different priors. This is why compu-
tational speed of the forward problem solutions is so important.

Besides of the results of the above inverse EEG and MEG source reconstruc-
tion methods based on realistic FE forward approaches that are discussed in the
next section, a new and fast spatio-temporal current density approach (STR) was
developed and applied to EEG source analysis in Chapter 2.12. STR is new to the
EEG and MEG source analysis domain, since it interweaves spatial and temporal
a-priori information to a new regularization approach and cannot be obtained by
applying known spatial regularization methods to temporally filtered data. In a
statistical evaluation and comparison of STR with MNLS applied to temporally-
filtered data, STR proved to be more stable with regard to both spatial localization
error and temporal source waveform deviation in the presence of noise in a sim-
ple volume conductor model. STR was furthermore implemented in the SimBio
[2000] code and a first reconstruction of two simulated simultaneously active au-
ditory sources was successfully carried out in a realistic FE head model. In the
future, STR will be statistically evaluated in realistic scenarios with regard to both
volume conductor modeling as well as realistic EEG and MEG data. STR will
furthermore have to be combined with appropriate standardization approaches for
improving its depth localization properties.

3.3 Application of FE-based source analysis

3.3.1 Reconstruction of SEP and SEF sources

Chapter 2.16 first introduced into the active noise cancellation system of the MEG
machine at the Institute for Biomagnetism and Biosignalanalysis of the Univer-
sity of Münster, since its understanding and modeling is necessary for correct
MEG forward simulations. The early component of tactile somatosensory evoked
potentials (SEP) and fields (SEF) from a stimulation of the right index finger were
then analyzed.

As generally accepted in the EEG and MEG domain (Sarvas [1987]; Hämäläinen
et al. [1993]; M.S.Gazzaniga et al. [2002]; Andrä and Nowak [2002]) and also
shown in this work in Chapters 2.5, 2.13 and 2.16, the EEG is stronger dependent
on accuracy aspects of volume conductor modeling than the MEG, especially
with regard to the compartments skull and skin. Moreover, Chapter 2.16 corrobo-
rated the finding that the MEG is more sensitive to eccentric tangentially-oriented
sources than the EEG, since the averaging over about a three times higher number
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of trials was necessary to achieve a similar signal-to-noise ratio for the SEP than
for the SEF. Besides of the need for a correct modeling of the inner skull surface,
the thickness, the three-layeredness and the accurate conductivity values of the
skull tissues are not important for MEG source analysis (Chapter 2.13) as long
as there are no skull anomalies such as, e.g., incisions from trepanation (van den
Broek [1997]).

For SEP and SEF source analysis of the early component around 35 Millisec-
onds post-stimulus, a five compartment (skin, skull, CSF, brain gray and white
matter) FE volume conductor model with a 1 to 10 (radially to tangentially to
the skull surface) anisotropically conducting skull compartment was used. A sin-
gle equivalent current dipole fit was performed and the resulting dipoles for both
SEP and SEF were localized in the left primary somatosensory cortex. As shown
by (Mertens and Lütkenhöner [2000]; Hari and Forss [1999]), the single dipole
model is adequate for source analysis because the measured SEP/SEF data arise
from area 3b of the primary somatosensory cortex (SI) contralateral to the side of
stimulation. An explained variance of about 98% in the presented study further
corroborated this model. With a difference in location of less than 4mm, EEG
and MEG reconstructed at nearby positions. Since this difference was shown to
be mainly a difference in source depth, it might be due to an erroneous choice of
the skull anisotropy (see Chapter 2.13). A recent study reported that the skull’s
three-layeredness (outer compacta, spongiosa, inner compacta) should be mod-
eled as a three-layeredness and not indirectly by means of the anisotropy (Sadleir
and Argibay [2007]), which might also be a reason for the small location differ-
ence. It will be examined in the future if the SEP/SEF-combined LRCE approach
might contribute to the solution of this problem.

3.3.2 Presurgical epilepsy diagnosis

The precise localization of the epileptogenic foci in medically-intractable epilepsy
patients with focal seizures, preferably with non-invasive methods, is the major
goal of the presurgical diagnosis (Rosenow and Luders [2001]). In addition to
evaluation by video and EEG long-term monitoring, MRI, single photon emission
computed tomography (SPECT) and neuropsychological examination, EEG and
MEG source analysis has risen to a promising tool (Roth et al. [1997]; Huiskamp
et al. [1997]; Waberski et al. [1998]; Merlet and Gotman [1999]; Huiskamp et al.
[1999]; Waberski et al. [2000]; Kobayashi et al. [2001]; Stefan et al. [2003];
Salayev et al. [2006]).
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sEEG source analysis of epileptiform activity using high resolution FE head
modeling

In Chapter 2.17.1, a goal function scan (GFS) (Mosher et al. [1992]; Knösche
[1997]), an MNLS approach, a moving and a rotating dipole fit and an sLORETA
approach were based on a 1mm anisotropic hexahedral FE model with about 3.1
Million unknowns to analyze the peak of 9 averaged ictal surface EEG (sEEG)
delta spikes of a medically-intractable residivous epilepsy patient. The FE head
model was constructed using non-linearly registered T1-, T2- and DT-MRI. Brain
tissue conductivity anisotropy was derived from the measured DT-MRI using the
methods proposed by Tuch et al. [1999, 2001]. To the best of the authors knowl-
edge, this level of accuracy in head volume conductor modeling has not yet been
applied to source analysis in presurgical epilepsy diagnosis before. GFS, MNLS
and sLORETA clearly showed a single center of activity. Moving and rotating
single dipole fits resulted in an explained variance of more than 97%, corroborat-
ing the source model of a single focal center of activity. With only small differ-
ences in location, i.e., a maximal difference of 2.6mm between GFS, sLORETA,
moving and rotating dipole fit and 6.6mm between the MNLS and the other ap-
proaches, the FE-based surface EEG inverse algorithms localized a single center
of activity at the posterior lateral border of the brain tumor. This non-invasive
current estimate was successfully validated with post-surgical intra-cranial EEG
(iEEG) measurements. While the MNLS localized about 6mm posterior to the
other inverse methods, the GFS and the sLORETA localization results were iden-
tical. This might corroborate the result of Pascual-Marqui [2002], who carried out
a large series of single test source simulations at arbitrary positions and depths in
the volume conductor and showed that sLORETA produced zero-localization er-
ror, while, despite of all weighting efforts (Fuchs et al. [1999]; Dale et al. [2000]),
former linear solutions such as MNLS produced images with systematic non-zero
localization errors.

In summary, non-invasive surface EEG source analysis based on realistic
head models can contribute to clinical presurgical evaluation in epilepsy patients.

ICA-based source modeling of combined iEEG/sEEG epileptic seizure data
using a realistic head model

ICA was shown to be able to disentangle functionally independent components,
which are not correlated in time and which were shown to arise from a single
or a pair of focal activated cortical areas (Kobayashi et al. [2001]; Makeig et al.
[2002]). The remaining localization problem is then broken down to the fit of a
single or a pair of dipoles to the spatial ICA topographies of interest. This local-
ization subproblem has a unique solution and the quality of the source analysis
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result is mainly dependent on the accuracy of the volume conductor model.
In Chapter 2.17.2, concurrently collected sEEG and intracranial EEG (iEEG)

data of an epilepsy patient whose seizures were not controlled by medications and
who underwent neurosurgery, were evaluated using an ICA-based source analy-
sis approach. The overall goal of this project is to estimate and model volume
conduction based relationships between noninvasive and invasive human electri-
cal brain data and to explore the use of FE-based ICA source analysis methods
for localizing seizure foci and modeling the activity of networks responsible for
spontaneous seizures in neocortical and mesial temporal lobe epilepsies. One of
the major challenges of the study is the volume conductor modeling, which has
to take into account the skull incision from trepanation and the highly resisting
Silastic pads of the iEEG.

In a first approach, a 2mm geometry-adapted hexahedral FE model was used,
which was generated from a pair of T1-MRI and CT datasets of the patients head.
The CT dataset also allowed the identification of the iEEG electrode locations.
The four compartment (skin, skull, CSF, brain) FE model accounted for the skull
incision, but geometry-adapted hexahedral elements were found to be inappropri-
ate for the modeling of the highly resisting thin iEEG Silastic pads which were
therefore initially ignored. In a simulation study, it was shown that ignoring the
trepanation hole would lead to a much blurred sEEG potential distribution. Sin-
gle dipole fits were then carried out for either the iEEG or the sEEG map of a
selected peri-ictal ICA component from the joint scalp and grid data decomposi-
tion. An explained variance of 96% for the iEEG dipole and 94% for the sEEG
dipole corroborated the single dipole source model. However, while the iEEG
dipole was reconstructed directly beneath the iEEG grid, the dipole for the scalp
map activity was localized much deeper. It was concluded that the modeling of
the Silastic grid is a key point in the analysis of combined iEEG/sEEG data, as
also recently shown by Zhang et al. [2006].

As a future perspective, while Zhang et al. [2006] used an ordinary Delau-
nay tetrahedralization FE meshing approach for the Silastic pad, we are working
towards an appropriate constrained Delaunay tetrahedralization. First meshing
results were shown in Figures 2.13 and 2.14.
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Gonçalves, S., de Munck, J., Verbunt, J., Heethaar, R., da Silva, F. L., 2003b. In
vivo measurement of brain and skull resistivities using an EIT based method
and the combined analysis of SEP/SEF data. IEEE Trans.Biomed.Eng. 50 (9),
1124–1127.
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Röer, C., 2008. Source analysis of simultaneous surface and internal EEG mea-
surements in presurgical epilepsy diagnosis. Diploma thesis in Physics, Insti-
tut für Biomagnetismus und Biosignalanalyse, Westfälische-Wilhelms Univer-
sität Münster.

Rosenow, F., Luders, H., 2001. Presurgical evaluation of epilepsy. Brain 124 (Pt
9), 1683–1700.

Roth, B., Ko, D., von Albertini-Carletti, I., Scaffidi, D., Sato, S., 1997. Dipole
localization in patients with epilepsy using the realistically shaped head model.
Electroenc. Clin. Neurophysiol. 102, 159–166.
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R., Rienäcker, A., 1998. The properties of source localization of epileptiform
activity using advanced headmodelling and source reconstruction. Brain Top.
10 (4), 283–290.

Waberski, T., Gobbele, R., Herrendorf, G., Steinhoff, B., Kolle, R., Fuchs,
M., Paulus, W., Buchner, H., 2000. Source reconstruction of mesial-temporal
epileptiform activity: Comparison of inverse techniques. Epilepsia 41 (12),
1574–583.



326 APPLICATION OF FE-BASED SOURCE ANALYSIS

Wagner, M., 1998. Rekonstruktion neuronaler Ströme aus bioelektrischen und
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