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ABSTRACT

With diffusion MR imaging, the Brownian motion (or self-diffusion) of water
molecules is measured. In the corresponding ADC (Apparent Diffusion Coefficient)
image, each image element (voxel) represents the average diffusion. In MRI, the
diffusion is measured with diffusion gradients along certain directions in space. The
diffusion-weighting gradients are often incorporated in an echo planar imaging
(EPI) pulse sequence. Depending on the type of tissue being imaged, the measured
diffusion may be isotropic, i.e. equal for all directions of the diffusion gradient, as
seen, e.g., in grey matter and the cerebrospinal fluid (CSF). In contrast, in white
matter, the diffusion is higher along the nerve fibres than across because water
molecules moving along fibres are not hindered – this is referred to as anisotropic
diffusion. In diffusion tensor imaging (DTI), the diffusion, for each voxel, is
represented by an ellipsoid with a certain shape and orientation. For e.g. grey matter
the ellipsoid is a sphere, whereas for white matter it is elongated in one direction like
a cigar. From the diffusion tensor the mean diffusion (size of the ellipsoid) and the
degree of anisotropy (shape of the ellipsoid) may be calculated.

In this thesis different strategies to improve the image quality and reliability of the
DTI data and diffusion anisotropy maps are presented. These include simulation
studies to determine 1) which anisotropy index is most insensitive to noise and 2)
which diffusion scheme (i.e. which set of diffusion gradients to use in the scanning
process) minimises the variance and bias of the calculated DTI data. The simulation
results were also complemented with data from phantoms and volunteers.
Additionally, two major types of image artefacts in diffusion weighted single-shot
echo planar imaging (DW SS-EPI) and means of correcting them have been
investigated. The first artefact is signal dropout, predominantly in the mid-lower
part of the brain, due to brain motion. The second is eddy currents induced by the
diffusion gradients that cause the DW images to be distorted differently depending
on the direction of the diffusion gradient. The distortions are translation, scaling and
shear effects in the phase encoding direction of the image. These distortions,
together with patient motion, result in anatomical mismatch between the different
DW images used for the calculation of the diffusion tensor data. A new distortion
correction method that corrects for this mismatch has been developed. DTI has
been performed in a study comparing schizophrenic patients and normal controls
with respect to diffusion anisotropy, mean diffusion and morphological differences.

Keywords: Diffusion tensor, magnetic resonance imaging, optimisation, artefacts
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LIST OF ABBREVIATIONS
γ The gyromagnetic constant. 1H: 42.576 MHz/T = 267.5 rad/sT
λ1, λ2, λ3 The eigenvalues of D
∆B0 Inhomogeneity of the B0 field
D , D , Trace(D)/3, ADCmean

Mean diffusivity
b Diffusion gradient dependent variable. Determines the amount of

diffusion weighting
B0 The static magnetic field
CSF CerebroSpinal Fluid
D, ADC Diffusion measured in one direction. Apparent Diffusion Coefficient
DEC Directional Encoded Colour. Colour definition for displaying diffusion

tensor images
DT, D Diffusion Tensor
DTI Diffusion Tensor Imaging
DWI Diffusion Weighted (component) Image
EC Eddy Currents
ECG ElectroCardioGram containing signals from the heart
EPI, SS-EPI (Single-shot) Echo Planar Imaging pulse sequence
fMRI Functional Magnetic Resonance Imaging
FOV Field Of View. The size of the MR image (unit: cm)
FSE, SS-FSE (Single-shot) Fast Spin Echo pulse sequence
GM Grey matter
Gx, Gy, Gz The magnetic field gradients
MR, MRI Magnetic Resonance Imaging
Pixel Image element
PSF Point spread function
RA, FA, VR, Amajor, LI, Add Various diffusion anisotropy indices
rBW, prBW Receiver bandwidth, pseudo receiver bandwidth
RF Radio Frequency pulse
RMS Root Mean Square
ROI Region Of Interest. An area defined in an image
R-R Time interval between (the R-wave of) two heart beats
SE Spin Echo pulse sequence. Also refers to the actual echo for the SE,

FSE and EPI pulse sequences.
SNR Signal-to-Noise Ratio
Spins In MRI: The (magnetic moment of ) 1H protons in water and fat
Spiral, SS-Spiral (Single-shot) Spiral pulse sequence
STE Stimulated Echoes. Occurs in FSE sequences
T1-w T1-weighted
T2-w T2-weighted
TD Trigger Delay. Time after the heart beat (or pulse) that imaging starts
TE MR scan parameter. Controls the extent of T2-weighting
TR MR scan parameter. Controls the extent of T1-weighting
TW Trigger Window. Time when the MR scanner stops and waits for the

next heart beat (or pulse)
TWB Thesis Writing Block
WM White Matter. The nerve fibres
Voxel Image volume element. A pixel with a thickness
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Whenever a new finding is reported to the world, people say:
“It is probably not true”

Later on, when the reliability of the new finding has been fully confirmed, people say:
“OK, it may be true but it has no real significance”

At last, when even the significance of the finding is obvious to everybody, people say:
“Well, it might have some significance, but the idea is not new”

Michel de Montaigne
1533 - 1592
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1. The diffusion tensor
This summary does not cover any clinical aspects of diffusion or historic remarks on
diffusion MR imaging. In Sweden alone, three theses1-3 have recently been presented,
covering these aspects of the subject.

The introduction below (1.1) gives a basic presentation of the diffusion tensor without
involving the MR measurement framework at all. In section (1.2) different scalar or single
valued measures derived from the diffusion tensor are discussed, still without mention of
how we quantify it by diffusion MR imaging. These measures are useful because they
provide ways to combine the diffusion tensor, consisting of 6 unique elements, to a single
quantity that can be represented as a grey scale image. In the following section (1.3) we
focus on ways to visualise the diffusion tensor data in an image without breaking it down
to a scalar measure. Last, in section 1.4, a brief overview of fibre tracking or diffusion
tractography is given.

1.1 INTRODUCTION

Basser et al.4,5 proposed a tensor model for diffusion. Mathematically the diffusion tensor
is a symmetric and positive definite 2nd-order tensor which can be represented as a 3×3
matrix.

xx xy xz

yx yy yz

zx zy zz

D D D
D D D
D D D

 
 =  
  

D [1]

where the three upper and lower off-diagonal elements are identical; Dxy = Dyx, Dxz = Dzx,
and Dyz = Dzy. The diffusion tensor, D, therefore contains six unique elements.

Diffusion often occurs in non-uniform systems, where there is a macroscopic flux of a
certain type of particles, e.g. water molecules.  This can be described using Fick’s first law:

C( , )

C( , )C( , )

C( , )

xx xy xz

yx yy yz

zx zy zz

t
xD D D

tt D D D
yD D D t
z

 ∂
 

∂   
∂   = − ⋅∇ = −    ∂

     ∂ 
∂  

r

rj D r

r

[2]
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where [ , , ]Tx y z=r , C( , )tr  the particle concentration, C( , )t∇ r  the concentration
gradient and j  the particle flux density.

The minus sign in Eq. [2] indicates that the diffusing mass flows in the direction of
decreasing concentration. To explain why diffusion should be modelled by a matrix
(rather than a vector or scalar) let us look at the following example in 2D. I.e. for a brief
moment the diffusion tensor is a 2×2 matrix. Consider a drop of ink in a homogeneous
medium that at time t = 0 has the concentration C(r, 0) = δ(r), where δ denotes the Dirac
function. Assume also that the ink has exactly the same properties as the medium. Due to
random thermal motion, known as Brownian motion, the ink will spread into the rest of the
medium, as time passes. In Figure 1, that tiny drop is illustrated by the small black circle in
the left panels. The particle flux density is indicated with dashed arrows and the
concentration gradient with solid arrows. If the medium is isotropic, i.e. the diffusion of
water molecules is equal in all directions, the diffusion tensor D is given by the expression
in Figure 1a. With this tensor the flux goes in the direction of the concentration gradient
∇C . If we could freeze the molecules after a certain time, we would see a blurry drop of
ink with the shape of a circle. On the other hand, if the media is anisotropic, i.e. the water
molecules can move more easily in a certain direction, the diffusion tensor will look
different. If e.g. the diffusion in the y-direction is twice of that in the x-direction, the
tensor is given by the expression in Figure 1b. For this tensor, the flux is no longer parallel
to the gradient, and the ink will spread out and form an ellipse. Last, if the medium have
the same anisotropy as in Figure 1b but is rotated 30°, the diffusion tensor and the flux
changes according to Figure 1c. Note again, that the direction of the flux is not equal to
the concentration gradient.

Figure 1. An illustration of Fick’s first law for three different two-dimensional (!) tensors.

The 2D case was only deliberated here for motivating the matrix form of diffusion and for
presenting Fick’s first law in a clearer way in Figure 1. In reality, diffusion occur of course
in 3D and the 3×3 tensor in Eq. [1] is the form always used in MRI.
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Instead of using Fick’s law it is more useful in MRI to describe the diffusion as a
distribution function. Assume that we can mark a diffusing water molecule located at
position 0 at time t = 0.

The general form of the probability of finding a water molecule at time t at position r, is
given by6,7

( )
( )1

3

/4

4
1f( , ) e

T t

t
t

π

−−
= ⋅

r D r

D
r [3]

where D  in the denominator denotes the
determinant of the diffusion tensor. It is
outside the scope of this thesis to derive
the proof for why the random motion of
particles gives rise to a Gaussian
distribution. A 1D projection of the
function in Eq. [3] is indicated for a given
tensor at three different times in Figure 2.
For isotropic diffusion, e.g. in a glass of
water, the off-diagonal elements of D are
all zero and the diagonal elements are
equal.

Figure 2. Probability distributions of finding a water
molecule (originating at location r = 0 at time t = 0) at
different locations at time t = t1, t2 and t3.

1 0 0
0 1 0
0 0 1

D
 
 =
 
 

D [4]

In this case the diffusion process could as well be described by a single scalar, D. That is, if
we know that the diffusion is isotropic, then there is no need to measure diffusion in more
than one direction since it will be equal to D in all other directions. To visualise the
diffusion tensor in Eq. [4] we can, based on Eq. [3], create an iso-probability surface. For a
given tensor, D, time t = τ and an arbitrarily chosen probability, piso, of finding a water
molecule at position r, we can create the iso-probability surface by finding all
corresponding r’s. In the following equation we have omitted the normalisation factor in
Eq. [3] for simplicity.

( ) ( )

[ ] ( )

( )

1
1

1

2 2 2 2

/4
ln 4

1 0 01, , 0 1 0 ln 4
0 0 1

ln 4

e
T

T
iso iso

iso

iso

p p

x
x y z y p

D z

x y z p D R

τ
τ

τ

τ

−
−

−

−
= ⇔ = − ⋅ ⇔

   
    = − ⋅ ⇔
   
   

+ + = − ⋅ =

r D r
r D r

[5]
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Since piso can only take values between 0 and 1, the factor “-ln(piso)” is always positive, as is
of course also τ. The last row of Eq. [5] is easily recognised as the formula for a sphere of
radius R, where R depends on time τ, the scalar diffusion constant D and the chosen level
of probability piso. The “diffusion sphere” is shown in Figure 3a.

Figure 3. Three iso-probability surfaces corresponding to the diffusion tensors in Eq. [4], [6] and [9], respectively. The surfaces
represent the locations in space where the probability of finding a water molecule at time τ is equal to piso. The axes are in
arbitrary units but consistent between a)-c).

Let us now look at other diffusion tensors. In a homogeneous isotropic medium there is
no preferred direction of molecular motion. In contrast, for an anisotropic medium the
molecular mobility varies spatially and depends on the orientation of the medium. In
biological tissues, such as brain white matter (WM), the mobility of water is higher along
the WM fibre bundles than across. The fibres hinder the water movement. The exact
mechanism is not known8, but the theory of tortuosity9,10 has gained rather wide
acceptance for the experimental conditions (i.e. b values, section 2.1) normally used in
diffusion MR imaging11.

Consider e.g. the case where the root-mean-squared (RMS) displacement of water
molecules is three times higher along the z direction than in the directions perpendicular
to it. The diffusion tensor is then given by

2

1 0 0
0 1 0
0 0 3

D
 
 =
 
  

D [6]

Using this tensor in Eq. [5] we now get
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( ) [ ] ( )

[ ] ( ) ( )

2

1

1

2 22

2
2

1 0 0
, , 0 1 0 ln 4

0 0 3

1 0 0
, , 0 1 0 ln 4

0 0 1/3

1ln 4

ln 4
1 1 3

iso

iso

T
iso

iso
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x y z y p
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x
x y z y p D

z

p
D

y zx p D

τ

τ

τ

τ

−

− = − ⋅

⇔ = − ⋅ ⇔

   
   = − ⋅ ⇔
      

   
    + + = − ⋅
      

r D r

[7]

where the right hand side of the last row is again a constant. This is recognised as the
standard equation for an ellipsoid with relative radii 1-1-3 and is depicted in Figure 3b.

In the third and last example we assume that the direction of higher diffusion is no longer
collinear with our coordinate system, but rotated around the x and z axes. The rotation
matrix R for an arbitrarily chosen rotation around the x axis of 45° followed by a rotation
around the z axis of 15° is given by

0.966 0.183 0.183
0.259 0.683 0.683

0 0.707 0.707

cos(15 ) sin(15 ) 0 1 0 0
sin(15 ) cos(15 ) 0 0 cos(45 ) sin(45 )

0 1 1 0 sin(45 ) cos(45 )

= −
−

   
   = − =   

−     
 
 
  

R

D D

D D D D

D D
[8]

The rotated tensor will now look like this

2

2

0.966 0.183 0.183 0.966 0.259 0
0.259 0.683 0.683 0.183 0.683 0.707

0 0.707 0.707 0.183 0.683 0.707

1 0 0
0 1 0
0 0 3

1 0 0
0 1 0
0 0 3

1.268 1 1.035
1 4.732 3.864

1.035 3.864 5

TD

D

D

−
− −

−

 
 = =
 
  

    
    = =
         

 
 =
 
 

D R R

[9]

Performing the same calculations as in Eq. [5] and [7] for this tensor we get

( )2 2 20.970 0.585 0.556 0.222 0.230 0.859 ln 4isox y z xy xz yz p Dτ+ + − − − = − ⋅ [10]

which is also the equation for an ellipsoid, but one whose principal axes do not coincide
with the coordinate system. This rotated tensor is drawn in Figure 3c. Only when the
tensor and coordinate axes coincides will the cross terms (xy, xz, yz) vanish.
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These three examples show how the diffusion tensor describes both the shape of the
probability distribution of the molecular diffusion, and its orientation. We can easily
imagine other diffusion tensors whose ellipsoids have other shapes. For instance, if the
diffusion is high in a plane and low in the remaining dimension, as in the case of water
diffusion between two parallel sheets, the ellipsoid would have the shape of a discus.

In Figure 4, six unique tensor
component images of an axial slice
of the brain are shown according to
their position in the diffusion tensor
matrix. The diagonal elements are
similar except for intensity
differences in the brain white matter
(near the centre of the image) due to
anisotropy. Note that the off-
diagonal images have been scaled
differently compared to those on the
diagonal.

Figure 4. Actual tensor components of an axial slice in the brain
arranged according to their position in the diffusion tensor. Note the
symmetry of the off-diagonal elements. The grey scale level of the
off-diagonal images differs from that of the diagonal ones.

1.2 SCALAR ROTATIONALLY INVARIANT MEASURES
DERIVED FROM THE DIFFUSION TENSOR

In reality, tensor data are not presented as in Figure 4 since it gives little understanding to
the viewer. Instead, one reduces the six-dimensional diffusion tensor information into
different scalar measures that are each physically meaningful and can each be depicted as a
grey scale map. Specifically, these measures, and functions of them, are independent of the
orientation of both tissue structure and the image scan plane.  This is referred to as
rotational invariance. Images of rotational invariant measures, such as those demonstrated
below, will have the same intensity for the same anatomical location regardless of the
orientation of tissue (patient) in the scanner and of the image scan plane. In contrast, a
diffusion-weighted image measured along one single direction is not rotationally invariant.
Nor are any of the elements in the diffusion tensor. Here follows a description of three
types of scalar measures calculated from the diffusion tensor. The last of them is very
seldom used, but included here for completeness.
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1.2.1 Mean diffusivity

We have in the previous section depicted the RMS displacement (iso-probability surfaces)
for three different diffusion ellipsoids (Figure 3). The average of the radii of the ellipsoid
can be considered as a “scale factor” of the diffusion ellipsoid. This is referred to as mean
diffusivity and will hereafter be denoted by D . For example, in the CSF, D  is about
2×10-3 mm2/s. For comparison, in grey and white matter it is three times lower, about
0.7×10-3 mm2/s. D  is similar (it just happens to be) in grey and white matter despite the
fact that the diffusion is isotropic in grey matter and highly anisotropic (cigar-shaped) in
white matter. To calculate D  from the diffusion tensor one can simply average the
diagonal elements

( )Trace
3 3

xx yy zzD D D+ +
= =

DD [11]

Images of D  are therefore often called Trace-maps. Another commonly used notation
is D  (pronounced "dee-bar"). The trace of the diffusion tensor map in Figure 4 is shown
in Figure 8a.

1.2.2 Diffusion anisotropy

The second scalar measure is diffusion anisotropy and comes in many flavours. Unlike
D , which can only be calculated in more or less one way, several diffusion anisotropy

indices have been proposed in the literature, many of them summarised in paper 112.
Common to all of them is that the anisotropy index should depend on how anisotropic
the diffusion is, i.e. how much the diffusion ellipsoid deviates from a sphere. At the same
time, anisotropy indices should be independent of the orientation of the diffusion ellipsoid
– rotational invariance. The diffusion tensors illustrated in Figure 3b and c therefore have
the same anisotropy although their orientation differs. Before continuing, we need to
understand the eigenvalues and eigenvectors of the diffusion tensor, of which the former
is the basis for all anisotropy indices.

λ and εεεε are called an eigenvalue and eigenvector, respectively, of a square n×n matrix A if

 =       ; λ ≠A ε 0ε ε [12]

The eigenvalues of the matrix can be calculated e.g. using the QR method (see Appendix,
section 5.1). For our case with a 3×3 diffusion tensor, the three eigenvalues and
eigenvectors may be calculated easily by solving the characteristic equation (see Appendix,
section 5.2). So what do they tell us? The eigenvalues of the tensor are the diffusion
constants (unit: m2/s) along the three principal axes of the diffusion ellipsoid. The
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eigenvectors are vectors parallel to the axes of the ellipsoid and are defined in the image
coordinate system. Hence, the eigenvalues of the two tensors in Eq. [6] and [9] are
identical; namely λ1 = 9, λ2 = λ3 = 1. A two-dimensional example with an ellipse (rather
than an ellipsoid) rotated away from the frame of reference (x,y) is depicted in Figure 5.
The square roots of the eigenvalues are proportional to the RMS displacements of the
water molecules.

Figure 5. The relation between the shape and orientation of
the diffusion ellipsoid and its eigenvalues and eigenvectors.
Here shown in two dimensions for clarity. The square roots
of the eigenvalues (λi) correspond to the RMS
displacement of the water molecules, which is proportional
to the radii of the ellipsoid. The eigenvectors, εεεεi, correspond
to the principal axes of the ellipsoid expressed in the
imaging coordinate system (x,y). Specifically, εεεε1, points in
the direction of highest diffusion constant, λ1.   

After the eigenvalues of the tensor have been calculated, we can construct a rotationally
invariant anisotropy index based on the eigenvalues and no longer dependent on the
orientation of the tensor. A very intuitive definition of an anisotropy index is the ratio
between the largest and the smallest eigenvalue as follows

1

3
ratioA λ

λ
= [13]

where λ1 is the largest and λ3 is the smallest eigenvalue. This index will be equal to 1 if the
diffusion tensor is isotropic since λ1 = λ2 = λ3. However, taking the ratio makes the
definition very numerically unstable and prone to noise. A more stable index is the relative
anisotropy index, RA13. It is defined as

( )2
1,2,31

6

i
iRA

λ λ

λ
=

−
=

∑
[14]

The numerator is, apart from a scale factor of 2 , the standard deviation of the
eigenvalues. The denominator is the mean diffusivity and is used to normalise with the
size of the ellipsoid. Therefore RA represents the ratio of the anisotropic and the isotropic
part of D. It is zero for isotropic diffusion and approaches 1 when 1 2 3λ λ λ≈� . (Note:
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The normalisation factor in Eq. [14] differs from the original definition where the max
value of RA was 2 ). For the presentation of diffusion anisotropy as a grey scale map,
the scale factor is of no importance. In contrast, it is important that people use the same
scale (preferably between 0 and 1), and clearly state the anisotropy index used, when
reporting anisotropy values in tables. Otherwise it will be harder to compare results and
draw conclusions. The RA of the diffusion tensor map (Figure 4) is depicted in Figure 8b.

Another commonly used anisotropy index is the fractional anisotropy index FA13, defined
as

( )2

1,2,3
2

1,2,3

3
2

i
i

i
i

FA
λ λ

λ
=

=

−
=

∑
∑

[15]

FA measures the fraction of the total “magnitude” of D that can be ascribed to
anisotropic diffusion13.

In summary, different anisotropy indices have slightly different physical interpretations.
Furthermore, several groups have shown that different proposed indices differ in how
strongly they are affected by image noise (see section 1.2.4).

1.2.3 Skewness

The next scalar invariant measure, skewness, has been proposed for DTI by e.g. Basser7

and Bahn14. The rationale behind it is that a diffusion anisotropy index cannot distinguish
between a cigar-shaped (λ1 > λ2 ≈ λ3) and a discus-shaped ellipsoid (λ1 ≈ λ2 >λ3). The
skewness measure could, potentially, contribute with some information. The
(unnormalised) skewness is defined as7

( )3
1,2,3

1Skewness( ) 3 i
i

λ λ
=

= −∑λ [16]

For a cigar-shaped ellipsoid the skewness is positive, while it is negative for the discus-
shaped ellipsoid (Note: This is the opposite of what is claimed in ref 7). In Figure 6 the
normal distribution function, which has zero skewness, is compared with two other
distributions with negative and positive skewness, respectively. The skewness of the
eigenvalues may be represented as a grey scale image, in which case high intensity would
indicate fibres and low intensity tissue with flat membrane-like structure. The usefulness
of this image is not too clear. How many true discus-shaped ellipsoid structures is one
expected to find in the brain? The relationship between the eigenvalues and the scalar
measures discussed is summarised in Figure 7.
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In Figure 8c-d the skewness of the eigenvalues calculated from data in Figure 4 is
presented. To better distinguish positive and negative skewness, only positive skewness
values are shown in c) and only negative in d). Bright areas in Figure 8c indicate cigar-
shaped diffusion ellipsoids. Cylinder symmetry can be appreciated especially in the
occipital white matter region (forceps major). In Figure 8d the voxels with negative skewness
are overlaid on the RA map to better show the location of the somewhat isolated discus
blobs. The findings are not very conclusive.

Figure 6. The Normal distribution function with zero
skewness compared with two other distributions with
positive and negative skewness. For the distribution
between the three eigenvalues, positive and negative
skewness corresponds to cigar and discus-shaped diffusion
ellipsoids, respectively.

Figure 7. The relation between the eigenvalues of the
diffusion tensor and the three scalar measures: mean
diffusion (first moment), anisotropy (second moment) and
skewness (third moment).

Figure 8. Images of the scalar measures of
the diffusion tensor data depicted in Figure
4. a) mean diffusivity, b) RA anisotropy. The
skewness data has been separated in c)
positive and d) negative skewness values for
better visualisation. The RA anisotropy map
in b) is used as an underlay to help the
viewer locate the positive skewness blobs in
d).



1.2.4 Reality check I – Noise induced bias

In reality, noise is unfortunately always present in our data. This results in an
overestimation of anisotropy for areas where the diffusion is isotropic. The reason is that
any deviation from the identity matrix (i.e. true isotropy) will give rise to unequal
eigenvalues.

In Figure 9 (Fig. 4 in paper 1) several anisotropy indices have been compared with respect
to a) bias and b) sensitivity to noise.

Figure 9. Monte Carlo simulations of bias and standard deviations (σ) due to noise for
different anisotropy indices as a function of the ratio λ1/λ3 (Note: Here λ2 = λ3). Both bias
and σ increase for isotropic diffusion for all indices except for the 8

ddA , which has nearly
zero bias thanks to the comparisons with eigenvectors in neighbouring voxels.

Among the indices based on only eigenvalues, the Amajor or RA index seems to perform
better than the FA. Other groups have found that FA is the most stable index. The
differences in findings may at least to some extent be explained by the handling of
negative eigenvalues (see next section, 1.2.5). In Figure 9, no eigenvalue filtering has been
performed. As a result of this the VR index, which is very sensitive to negative
eigenvalues, differs completely from the behaviour of other indices. The index proposed
in paper 1 is 8

ddA , which is a variant of the lattice index, LI, proposed by Pierpaoli et al.15,16.
The advantage of this index is that its use of eigenvectors and comparisons of ellipsoid
collinearity with neighbouring voxels make the 8

ddA  index almost bias free even for
isotropic structures. The drawback is that the comparison with neighbouring voxels
imposes a partial volume effect that reduces the effective image resolution. The Add index
is best suitable if the resolution is higher in-plane than through plane, which often is the
case. In paper 1 an alternative “time-domain” Add index is also proposed that perform the
same tensor collinearity calculations between different tensors measured after each other
instead of between spatially adjacent tensors. The time-domain Add index is free from the
partial volume effects.
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1.2.5 Reality check II – Negative eigenvalues

Noise in the DWIs will perturb the elements of the diffusion tensor in such a way that it
may no longer be positive definite which is equivalent to not all eigenvalues being larger
than zero. A tensor is positive definite only if

2

2

2

0
0
0

xx yy xy

xx zz xz

yy zz yz

D D D
D D D
D D D

 − >


− >
 − >

[17]

which will be fulfilled if the diagonal elements are larger than the off-diagonal elements of
the tensor. Negative eigenvalues have no physical meaning since negative diffusion cannot
exist – the water molecules cannot be less than still!

It has been rather quiet about this issue in the literature even though everybody who
develops a program for calculation of anisotropy needs to deal with, or at least be aware
of, this problem in some way.

One could argue that it is fair to set
negative eigenvalues to zero, just to barely
make them physical, and then calculate
the anisotropy. This will cause an
undesirable bias in the anisotropy and is
not really a good solution. Another
approach is to exclude voxels with
negative eigenvalues, i.e. we let those
voxels be black. This will, however, result
in quite a few removed voxels, the
number of which depends on the SNR.
As seen in Figure 10, the probability of
getting one or more negative eigenvalues
(per tensor) increases with diffusion
anisotropy and with the noise level (given
in % of the T2-w image).

Figure 10. The probability of obtaining negative eigenvalues
as function of the ratio λ1/λ3 (note: here λ2 = λ3) for different
noise levels (defined in %). The probability is substantially
higher for anisotropic diffusion and for higher noise levels
(i.e. low SNR).

This implies that predominantly anisotropic regions in the image (i.e. white matter) will be
jumbled with black “non-data” voxels, which cannot be distinguished from true diffusion
isotropy. Instead of performing this kind of non-linear filtering, a better way is to increase
the SNR so that the risk of negative eigenvalues becomes negligible. This can be done by
making more measurements or by increasing the voxel size, but also by smoothing the
DWI data by a moderate Gaussian smoothing filter of e.g. 2 mm.
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1.3 VISUALISING THE DIFFUSION TENSOR

1.3.1 Attempts to see it all

From the tensor data (Figure 4) diffusion ellipsoids in each voxel can be calculated to
transform the data into an interpretable form without losing information. For a commonly
used image resolution of 128×128 pixels we would end up with 16384 diffusion tensors. It
is practically impossible to draw this many ellipsoids in an image without making it
cluttered and impossible to interpret with the unaided eye. Several attempts have been
made to combine the information about anatomical position and the diffusion tensor
information.

One way is to use an MR image as an
anatomical underlay, line out a small
rectangular area of interest, which is then
zoomed up to show a reduced number of
diffusion tensors15,17 (see Figure 11). With
this approach it is at least possible to see
the ellipsoids, although they may not be
easy to interpret. For example, from a
certain view angle it is impossible to
distinguish a spherical ellipsoid from a
highly anisotropic one pointing straight
towards the viewer.

Figure 11. Visualisation of diffusion tensors in an area of the
brain defined on the T2-w image on the upper-left. The large
spherical ellipsoids correspond to the high isotropic
diffusion of CSF, while the cigar-shaped ellipsoids below
correspond to the water diffusion in the fibres of corpus
callosum running left-right in the image. (Courtesy of Carlo
Pierpaoli. Fig 7 in ref 17)

1.3.2 Using colours

Another approach is to colour encode the diffusion tensor data. The first approach,
proposed by Douek et al., was to measure diffusion along two perpendicular image axes in
the coronal plane and colour code them as18
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The intensity was proportional to the diffusion constant while the hue (i.e. colour nuance)
showed the directionality of diffusion.

Since then, new colour schemes have been proposed. Defining vmax as the eigenvector in
the tensor that corresponds to the largest eigenvector – i.e. the direction of highest
diffusion, one could assign colour to the x-y-z components of vmax. To avoid noisy
eigenvectors in isotropic areas, vmax is usually weighted or filtered with some anisotropy
index. This algorithm was named directionally encoded colour (DEC)19,20. The method has later
been improved further by Pajevic et al., who have also made a thorough comparison of
different DTI colouring approaches21,22. Two colour-coded coronal slices, created using the
method of Pajevic et al., are shown in Figure 12.

1.4 FIBRE TRACKING

Fibre tracking, or fibre tractography as it is also named, has become a major research area
within DTI during recent years. The idea is to use the directional information of vmax
(previous paragraph) to find the neuronal fibre pathways. By doing so for the entire brain,
ideally a three-dimensional map showing the locations of the white matter fibres could be
obtained. Among many possible applications that can be envisioned, one is e.g. to see if
two regions in the brain are connected with a WM fibre tract. This may be of interest in
fMRI studies, to see if there is a direct connection between two activated areas.

The problem with the technique is that very high resolution and high SNR are required to
obtain reliable DTI data without partial volume effects. In reality the voxel sizes of DTI
data are usually not smaller than about 2×2×2 mm. The diameter of the fibre bundles is
often smaller than that and partial volume effects will occur. This leads to an apparent
reduction in anisotropy and an error in the estimated principal diffusion direction vmax.
Also, SNR is a limiting factor, causing the orientation of the principal eigenvector (vmax) to
deviate from its expected value. These problems must be addressed to obtain reasonably
accurate tracks.
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Figure 12. Coronal view of different white matter structures visualised with the
directionally encoded colour scheme (DEC). The different colours denote different
orientations of the eigenvector corresponding to the largest eigenvalue. (Courtesy of
Carlo Pierpaoli. Modified from Fig. 7 in ref 21)

Figure 13. Illustration of the FACT (Fibre
Assigning using Continuous Tracking)
method. The arrows in each voxel represent
the direction of the largest eigenvector. The
black arrows denote the tracked path using
FACT. (Courtesy of S. Mori. Fig. 1 in ref23)

a) b)
Figure 14. The fibres to be viewed are selected by defining two ROIs. Only
fibres passing both ROIs are shown. The position of the lower ROI differs
in a) and b), which has an impact on the result. (Courtesy of S. Mori. Fig. 1
in ref 24)

Mori et al.25 have developed a method called FACT (Fibre Assigning using Continuous
Tracking) where the track through the image volume is continuous onto the discrete DTI
data. Tracking is started in a chosen voxel (or rather a ROI containing several voxels) in
WM from which the direction of vmax for the ellipsoid of that voxel is followed into the
next voxel. The starting point of the next voxel is now not in the centre of that voxel but
rather at the intercept between the two voxels. This is illustrated in Figure 13. The tracking
will go on until one of the following termination criteria is met26: 1) the FA anisotropy is
lower than 0.25; or 2) the dot product between vmax of the current voxel and the next is
less than 0.75  (remember: dot product is 0 for perpendicular vectors and ±1 for parallel
vectors). The dot product termination criterion imposes limitations on the change in
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direction for adjacent voxels, namely that the change of fibre direction may not exceed θ
= arccos(0.75) = 41°.

Rather than defining a ROI from which fibres are tracked, one can follow fibres starting
from each and every voxel within the WM. When the results are displayed, only those
fibres that pass through two chosen ROIs are shown. An example of this is given in Figure
14, where the lower ROI location differs in a) and b), which clearly affects the results.

Other groups have also developed fibre-tracking techniques with different ways to
improve tracking reliability. These include data interpolation27,28 and regularisation
techniques such as the “spaghetti” model29,30 and the continuous tensor field
approximation model31.

For the spaghetti model, where the spaghetti is the fibre bundles (fascicles), the analogy is
the following (after Poupon et al.). Before cooking, the spaghetti is stiff. After it is put in
boiling water its curvature increases with time. The cooking effect on the spaghetti is
assessed by the bending energy of the spaghetti by integrating the curvature. This can be
extended to a whole plate of spaghetti30, i.e. to the entire brain. The tracking method
searches for the fascicle set that is the best trade-off between adherence to the DTI data
and low bending energy. For each voxel, a plane spanned by the eigenvectors
corresponding to the two largest eigenvalues can be defined. With this model the
underlying fascicle is argued to be in the direction within this plane that leads to the lowest
curvature of the fascicle.

Yet another tracking method is the continuous tensor field approach, where one creates a
continuous field for each of the six unique tensor components. How this is done in detail
is outside the scope of this overview but the interested reader is referred to Pajevic et al.31

and Aldroubi et al.32. Basically they use B-splines as basis functions to approximate the
DTI-data, achieving higher SNR at the expense of resolution. Small fibre structures with
high curvature may be lost in the approximation. Additionally, the algorithm does not
ensure that the tensors of the continuous field are positive definite, which means that
negative eigenvalues may still occur.

The need for validation of fibre tracking techniques has resulted in studies comparing the
fibre tracks with histology, e.g. in the myocardium33-35. Histology involves dissection,
freezing and fixation etc., which will hamper the comparisons. Another group36 has
injected Mn2+ locally in the optic tract of rats, making it visible on T1-weighted images.
This made it possible to compare tracking results from DTI data acquired during the same
experiment. They found an RMS angular error of 10-50° (quite high!), depending on the
SNR, which ranged between 5 and 30. Unfortunately, from this kind of validation on rats
it is hard to judge how reliable fibre tracking data is in humans.
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2. Diffusion tensor imaging

2.1 DIFFUSION GRADIENTS AND THE B VALUE

2.1.1 Derivation of  the b value

Diffusion in MRI is encoded by diffusion gradients, which have been incorporated in
various pulse sequences. The most common type of diffusion gradient design is the
Stejskal-Tanner scheme37 where the first diffusion gradient is applied between the
excitation pulse and the refocusing 180° pulse, and the second between the 180° pulse and
the echo. Initially this was implemented for the spin echo pulse sequence depicted in
Figure 15, but today the readout gradient (see figure) is often replaced by an EPI readout
train.

Figure 15. Stejskal-Tanner diffusion gradients (black) in a spin echo sequence. The duration (δ),
amplitude (G) and time shift between the gradients (∆) affects the amount of diffusion weighting – the
“b” value. Note that the diffusion gradients may be applied on any of the three imaging axes or on a
combination thereof. The readout gradient is nowadays often replaced by an EPI readout.

The diffusion gradients introduce phase shifts of the spins as a function of position. They
can be applied in the x, y or z direction or a linear combination of these. If the gradients
are e.g. applied in the z direction, the phase shift due to the first gradient is
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1 10
 dtG z G z

δ
ϕ γ γ δ= ⋅ = ⋅ ⋅ ⋅∫ [19]

where z1 is the position of spin or molecule which is assumed to be still during the time δ
when the diffusion gradient is applied. This assumption is only valid if δ ∆� , i.e. the
diffusion process is negligible during the application of the diffusion gradients (not as
illustrated in Figure 15). This requirement is usually not met for human MR scanners
today where the gradient amplitude is limited to 20-50 mT/m and where a fairly large δ is
needed to obtain the desired diffusion weighting. Nevertheless, this assumption makes the
derivation of the b value reasonably simple and serves to provide a basic understanding.

After the first diffusion gradient has been switched off the 180° pulse is applied, which
changes the sign of the phase (ϕ1 ⇒ -ϕ1). The second diffusion gradient will then produce
a phase shift of

2 2 dtG z G z
δ

ϕ γ γ δ
∆+

∆
= ⋅ = ⋅ ⋅ ⋅∫ [20]

where z2 is the position of the spin during the second diffusion gradient. For a “static”
spin, i.e. a spin that doesn’t move between excitation and the echo, z1 = z2 and the net
phase of the two diffusion gradients is

( )1 2 1 2 0G z zϕ ϕ ϕ γ δ= + = ⋅ ⋅ − + = [21]

For spins that move (diffuse) during the time interval between the gradients, the phase will
be non-zero. Since diffusion is a random process one has to consider the entire spin
population in each voxel. Depending on the displacement path along the diffusion
gradient, each individual spin j will get a certain net phase, jϕ . The resulting net
magnetisation M for a voxel is the vector sum of the magnetic moments µ of each of the
N spins within that voxel

i

1
e j

N

j
M ϕµ ⋅

=
= ∑ [22]

This is also illustrated in Figure 16 below. In the (hypothetical) absence of diffusion all
j kϕ =  (constant) and the net magnetisation is maximal

i
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= = ⋅∑ [23]



Figure 16. If no motion has occurred during the application
of the diffusion gradients the phase of the magnetic
moments (µ) of the spins in each voxel are still parallel and
the net magnetisation M (i.e. the signal) is unaffected by the
diffusion gradients. In contrast, if motion has occurred the
spins are dephasing randomly in the transverse plane. The
vector sum of all magnetic moments now results in a lower
net magnetisation.

Let P(z2|z1, ∆)dz2 be the conditional probability of finding a spin, originating at z1 at t = 0,
between z2 and z2+dz2 at t = ∆. Then, by combining Eq. [21], [22] and [23] we get

2 1i ( )
0 2 1 2e P( , ) dzG z zM M z zγ δ⋅ −= ∆∫ [24]

where P(z2|z1, ∆) for this 1D case is given by (cf. Eq. [3], set D = D and 3D=D )
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Combining Eq. [24] and [25] gives the following

( )2

0
e eG D b DM

M
γ δ− ⋅ ⋅ ⋅∆⋅ − ⋅= = [26]

Equation [26] shows the degree of signal attenuation due to diffusion as a function of
gradient amplitude, duration and time interval between the two diffusion gradients. The
expression for the b value is here ( )2b Gγ δ= ⋅ ⋅ ∆ , which again is only valid if δ ∆� .
The b value may be considered as the parameter that controls the amount of diffusion
weighting in an image, analogous to TE's and TR's role for T2-weighting and T1-weighting,
respectively.

A more general expression for the b value, which will not be derived here, is38
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    − ⋅  

  − ⋅  
∫ ∫

= = [27]

where TE is the echo time. This expression does not assume δ ∆�  and the diffusion
gradients may be more than two and can be combined without invalidating the expression.
For the Stejskal-Tanner diffusion gradient scheme (Figure 15), the diffusion gradient
function g(t) is
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Putting Eq. [28] into [27] gives
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∫ ∫ … [29]

And so, we have arrived at the familiar expression for the b value. By letting δ ∆� , Eq.
[29] becomes identical to the b factor derived in Eq. [26].

It should be noted that in the general expression for the b value, g(t) can also include the
imaging gradients for an even more accurate calculation of the b value. However, the
amplitude of the imaging gradients is much smaller than that of the diffusion gradients,
and thus the diffusion effect due to the imaging gradients can be ignored (the error of
omitting them is usually about 1%).

2.1.2 Optimal b value

In the absence of noise and round-off errors (images are normally stored in integer
format), the choice of b value does not matter when calculating the ADC. However, due
to noise the choice of b value becomes important. A too low b value results in a diffusion-
induced signal attenuation that is comparable to the variance of the DW data. The
implication is that the ADC will be estimated with low precision. On the other hand, a too
high b value yields high signal attenuation and the signal may drop below the system noise
level. This results in an underestimation for high ADCs because the system noise is higher
than the true DW signal.

Since the amount of signal attenuation is determined by the product ADCb ⋅  there is an
optimal b value for each ADC. This optimum has been found to be ADCb ⋅  = 1.1, which
corresponds to a signal drop of the DWI to 1.1e−  = 33% of the T2-w image39. Higher b
values require longer TE, which decreases the SNR. Taking this into account, it has been
found that an optimum value is about ADCb ⋅  = 0.85, or 43% of the T2-w signal40. For
diffusion studies in the brain the mean diffusivity is about 0.7×10-3 mm2/s corresponding
to an optimum b value of ∼1200 s/mm2. In white matter the ADC ranges from about 0.35
to 1.3×10-3 mm2/s depending on the direction of measured diffusion41. It is not possible to
optimise the b value for all WM voxels simultaneously, and therefore a fixed “trade-off” b
value is normally used, common for all diffusion-encoding directions. Frequently, b =
1000 s/mm2 is chosen for DTI brain studies.
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2.2 ESTIMATING THE DIFFUSION TENSOR FROM DW IMAGES

2.2.1 Calculating the apparent diffusion coefficient (ADC)

It is evident from Eq. [27] that if one acquires two MR images with different b values, the
unknown diffusion coefficient, D, can be calculated. If M0 and M1 are the signal intensities
in a voxel for the two images with b = b0 and b1, respectively, D is calculated by

( )1 0

0 1

ln /
ADC

M M
D

b b
= =

−
[30]

The diffusion coefficient is most often denoted ADC (Apparent Diffusion Coefficient)
because we really measure an overall coefficient of diffusion obtained by experiment, in
which more than one diffusion mechanism is contributing to the total flux42. Performing
the same calculations for all voxels will result in an ADC map (or image), which is a real-
value map representing the ADC along the direction of the diffusion gradient.

Often the lower b value is chosen equal to zero, i.e. without diffusion gradients (T2-
weighted). In this way it is possible to re-use that image when calculating the ADC in
another diffusion encoding direction.

2.2.2 Calculating the diffusion tensor from ADC data

By substituting the scalar D (or ADC measured in one direction) in Eq. [29] with the
diffusion tensor D, the expression in Eq. [27] becomes4

( )2 2 2

0

/3e
TgM

M
γ δ δ− ∆−= q Dq [31]

In order to calculate the six unknown elements of the diffusion tensor we need to measure
the ADC in at least six non-collinear diffusion gradient directions, i.e. a minimum of 7
images (one T2-w + 6 DW). Usually the magnitude of the diffusion gradients in a diffusion
scheme is chosen to be identical for all directions. If they are not, 2 Tg q Dq  in Eq. [31]
should be replaced with Tg Dg . In this context, however, Eq. [31] will however hold.
Assume now that we have acquired and calculated the ADC in n non-collinear directions
( 6n ≥ ), each one denoted [ ,  ,  ]Tix iy izq q q=iq ( 1 )i n= … , where 1=q . The obtained
ADC measured along the i:th direction has the following relation to the diffusion tensor
D

ADC T
i i i= q Dq [32]
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Now we want to obtain D, or more specifically the six unique elements of D, namely
=      xx yy zz xy xz yzD D D D D D  d . We know all qi from the design of our diffusion pulse

sequence and we have in each voxel measured n ADC values, here defined as
1 2[ADC  ADC ADC ]Tn=y … . Expanding Eq. [32] to an equation system with n rows

(one for each direction i ) we can construct a matrix X that is solely dependent on the
directions q1..qn and gives us a simple matrix expression of the mapping between the
unknown d and the measured y.

= +y Xd e [33]

where X is defined as

2 2 2
1 1 1 1 1 1 1 1 1

2 2 2

2 2 2
...

2 2 2

x y z x y x z y z

nx ny nz nx ny nx nz ny nz

q q q q q q q q q

q q q q q q q q q

 
 =  
  

X [34]

and where e is the error term. The estimate of the unknown d, denoted d̂ , can be
calculated from

( ) 1ˆ T T−
=d X X X y [35]

Here d̂  is the voxel-wise least squares estimate of the tensor data from the measured data,
y.

Analogous to fitting a straight line using only two data points, using only six directions
(n = 6) will give us no information on how well the tensor fits to the ADC data (contained
in y).

2.3 CALCULATING THE MEAN DIFFUSION FROM ADC DATA

Consider now that we use less than six directions. Then the elements of the tensor cannot
be uniquely determined. However, to calculate D , the mean diffusivity, full tensor
information is not needed. According to Eq. [11], it is sufficient to calculate the diagonal
elements, Dxx, Dyy and Dzz. Two diffusion gradient schemes that allow calculation of the
mean diffusion are illustrated in Figure 17, where the thick solid lines denote the actual
direction of the diffusion gradient. In Figure 17a, diffusion encoding is made along the
imaging axes, with gradients

1 2 3

1 0 0
0 , 1 , 0
0 0 1

     
     = = =
     
     

q q q [36]
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To prove that averaging of the ADC values measured along these directions will give D ,
we put Eq. [36] into [32]

[ ]1

1
1 0 0 0

0
ADC

xx xy xz

yx yy yz xx

zx zy zz

D D D
D D D D
D D D

   
   = =      

[37]

Analogously, ADC2 = Dyy and ADC3 = Dzz. Figure 17b depicts the tetrahedral gradient set,
proposed by Conturo et al.43, where the gradients vectors are

1 2

3 4

1 11 11 1
3 31 1

1 11 11 1
3 31 1
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   = = −
   
   

−   
   = − =
   − −   

q q

q q

[38]

Again, using these vectors in Eq. [32] gives

( )( )
( )( )
( )( )
( )( )

( )

1

2

3

4

1ADC 2
3
1ADC 2
3

1ADC 2
3
1ADC 2
3

1 1ADC
4 3

xx yy zz xy xz yz

xx yy zz xy xz yz

xx yy zz xy xz yz

xx yy zz xy xz yz

i xx yy zz

D D D D D D

D D D D D D

D D D D D D

D D D D D D

D D D

 = + + + + +


= + + + − −

 = + + + − − +

 = + + + − + −

⇒ = + + =∑ D

[39]

Note that, since the displacement probability of diffusion is symmetric, it does not matter
if the gradient is applied along the solid line or in the opposite dashed-dotted line.
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Figure 17. Diffusion schemes used to measure the mean diffusion. In a) the diffusion is
measured along the three imaging axes (solid lines) whereas the tetrahedral scheme shown
in b) uses diffusion encoding in four directions. For each of the four directions full amplitudes
of the gradients along the imaging axes are employed simultaneously. Provided that the
imaging axes and the physical gradient axes of the scanner coincide, this gives a three times
higher b value for a given diffusion time. Since the diffusion is symmetric, it does not matter if
the gradients are applied all along the solid lines or all along the dashed-dotted line.

The advantage of using the tetrahedral scheme is that, for a given diffusion gradient
duration δ, the effective gradient in each direction is 3  times higher since the physical x,
y and z gradients are applied simultaneously. This results in a 3 times higher b value per δ
― or vice versa, for a desired b value, the δ can be reduced and thereby minimise the TE,
which in turn increases the SNR. This is only true, however, if the image scan plane is
normal to one of the physical gradients. For oblique scan planes, the improvement in b
value efficiency is smaller.

2.4 DIFFUSION SCHEMES

A diffusion scheme is, as mentioned earlier, a set of n diffusion gradient directions in the
directions q1...qn. To what extent does the choice of directions and the number of
directions affect the accuracy of the estimation of the tensor? This issue has been dealt
with in paper 244. Diffusion schemes proposed in the literature17,27,40,45-48 as well as new ones
have been compared. The main conclusions from paper 2 are:
1) Given the same total number of measurements, it is better to measure the diffusion in

many directions rather than do more averages of DWIs in fewer directions. Because of
noise, the eigenvalues are not rotationally invariant. The accuracy of the eigenvalues
and diffusion anisotropy varies with the direction of the tensor relative to the image
plane (Figure 18a-b). The smaller number of directions used, the larger the variations.

2) For any n, the optimum direction set is to distribute them isotropically in space. This
was first suggested by Jones et al.40 but confirmed here.

3) The condition number of the matrix X (see Eq. [34]), which is solely determined by the
chosen diffusion scheme, is to a large extent proportional to the noise properties of
that scheme. In other words one can predict if a certain scheme will produce good or
bad images just by looking at the condition number.
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A discussion of the condition number and other possible indices of “good diffusion
schemes” are deliberated in the Appendix (5.3).

In Figure 18, the uncertainty of FA, ( | , )FAσ θ ϕ , as a function of the orientation of the
ellipsoid (λ1 = 10, λ2 = λ3 = 1) is shown for three diffusion scheme. With 30 directions
any orientation of the tensor ellipsoid results in the same variance of FA, where as for n =
6, it does not.

Figure 18. The standard deviation of the FA anisotropy index vs. the orientation of the diffusion tensor ellipsoid, defined by the
angles θ and φ for three diffusion schemes. The same number of measurements has been used for each point in each of the
three plots. a) Scheme #1, b) scheme #10 and c) scheme #8 in paper 2. In a) and b) the number of diffusion encoding
directions is 6. In c) the number of directions is 30. The directions are isotropically distributed in b) and c), which has been
found to be optimal. Scheme #1 was found to be the most noise-sensitive of the diffusion schemes investigated in paper 2.

Figure 19. FA maps of an axial slice of the brain scanned with the same diffusion schemes as in Figure 18 (see caption of this
figure for more details).
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3. Problems with single-shot
pulse sequences

One may divide pulse sequences into two groups - multi-shot and single-shot pulse
sequences. Multi-shot sequences include spin echo (SE), fast spin echo (FSE), gradient
echo (GRE) and multi-shot echo planar imaging (MS-EPI) – requiring several excitations
to fill the k-space.

SE, FSE and GRE are practically the only pulse sequences used clinically for conventional
imaging. They provide good resolution, image contrast and signal-to-noise (SNR) and are
virtually free from geometric distortions. Typical scan times are a few minutes for a set of
about 20 slices. The reason they are not so commonly used today for diffusion imaging is
primarily the long scan times for a complete DTI-scan and the troublesome ghosting
artefact caused by patient motion, described further in section 4.1. With the multi-shot
EPI sequence and FSE with long echo trains the scan time can be reduced. However the
ghosting problem remains.

Single-shot means that after a single excitation all lines/echoes in k-space are acquired. An
image is obtained within about a tenth of a second, making these types of pulse sequences
ideal for studying dynamic processes, or acquiring several image volumes with different
diffusion gradients as in DTI. Single-shot (SS) sequences include SS-spin echo EPI
(further on referred to as SS-EPI), SS-spiral and SS-FSE. The SS-EPI sequence is
currently the predominant diffusion imaging technique. However, SS techniques are not
without drawbacks ― there is no free lunch.

3.1 IMAGE BLURRING, PSF

With single-shot imaging techniques the acquisition time needed to fill the k-space is on
the order of 70 ms for an image with a matrix size of 128×128 using SS-EPI or SS-spiral
methods. The acquisition time is about 400 ms with the SS-FSE pulse sequence. For
comparison, the acquisition time for a single echo/line is about 8 ms with conventional
sequences. The T2 (or T2

* for GRE) decay during such a long readout time will lead to a
significant signal reduction from the first to the last echo. This leads to a widened point
spread function (PSF), which especially for SS-FSE implies a blurry image. The long
acquisition time for data in the phase encoding direction is equivalent to a very low
“pseudo”-receiver bandwidth (prBW) in this direction that has further implications for the
image quality (see sections 3.2, 3.4, 3.5, 4.4). The blurring of the SS-FSE image can be
appreciated in Figure 20b, where the phase encoding direction is left-right. This effect may
be even worse for a T2-w SS-FSE in a diffusion experiment, because the potential need to
spoil the stimulated echo signal component implies an even faster signal decay (see 4.2).
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Figure 20. Image blurring due to T2-decay during the readout train. a) FSE sequence with only
8 echoes gives substantially less blurring than b) SS-FSE with 72 echoes (256x128 resolution
with half Fourier imaging). The blurring effect would be even higher if the stimulated echo (STE)
component, which is inclined by a longer T1/T2-mix decay time, had not coherently added to the
signal. For DW-SS-FSE the STE interfere with the spin echoes and causes artefacts (see
section 4.2).

Off-resonance effects, such as eddy currents and magnetic susceptibility variations can
lead to image blurring, which is characteristic for DW-Spiral imaging. These off-resonance
effects can give rise to different image artefacts in DW-EPI. Since DW-spiral is less
commonly used, in the following sections the discussion of off-resonance effects will be
focused on DW-EPI.

3.2 SUSCEPTIBILITY ARTEFACTS

3.2.1 Problem

Inhomogeneities in the static magnetic field as well as local field changes due to
susceptibility effects near tissue-air boundaries in the body give rise to an undesired
spatially varying magnetic field. For conventional imaging the field inhomogeneity effects
are low or moderate. On the other hand, for single-shot techniques with low pseudo
receiver bandwidth in the phase encoding direction, this is a severe problem near tissue-air
boundaries (not to mention the case where metals are present in the image volume!).

For SS-FSE imaging each echo in the echo train is refocused using an RF pulse that
cancels the effect of magnetic field inhomogeneities. This is not the case for SS-EPI,
where the phase and frequency encoding gradients are used to acquire the entire k-space
data in a single echo. The long readout and the reduced bandwidth in the phase encoding
direction for SS-EPI can lead to geometric distortions. The image artefacts become more
severe with higher image resolution due to the further increased readout length and
reduced prBW. In Figure 21, the effect of susceptibility is depicted for b) 4-shot EPI and
c) single-shot EPI. An image acquired with conventional FSE sequence is also given in
Figure 21a for comparison. The effect of the reduced prBW in c) compared to b) is
evident as shown by the arrows.
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Figure 21. Susceptibility artefacts at tissue-air boundaries. a) FSE is insensitive to these small local changes in the magnetic
field. In b) a 4-shot SE-EPI sequence have been used and the distortions are moderate while in c) they are substantial as
indicated with the arrows.

3.2.2 Solutions

There are at least three types of solutions that can be applied to diffusion imaging, one of
which has been developed “in-house”.

The first approach relies on measuring the static magnetic field inhomogeneities, ∆B0, with
a field mapping technique from which the displacements for each voxel can be calculated.
The ∆B0 field map can be calculated by acquiring two (or more) GRE images with
different TE. From the phase difference between these two images the ∆B0 is given by49

0
( , , )( , , ) x y zB x y z

TE
ϕ
γ

∆∆ =
⋅∆

[40]

Due to the phase wrapping at 2π, the phase map, ∆ϕ(x,y,z), must first be unwrapped50.
This is particularly difficult in regions with low SNR and high susceptibility, which are
unfortunately also the areas where it is most important to obtain an accurate field map.
Yet another obstacle is tissues or areas surrounded by air or bone. If there is no brain
tissue pathway between the areas along which reliable unwrapping can be performed,
there may potentially be an 2n π⋅  phase difference between these areas that cannot be
resolved. If the phase wrapping can be resolved properly, a displacement map can be
readily calculated using ∆B0 from Eq. [40]. The “undistorted” image can then be
constructed by resampling the distorted image at the points indicated by the displacement
map. Alternatively, more sophisticated methods can be used that automatically perform a
Jacobian modulation and correct also for intensity variations and effects in the frequency
encoding direction51.

Reber et al.52 have also shown that it is possible to calculate a field map from EPI images
with the same distortions as the actual EPI data. High reliability in the field maps was
obtained thanks to the use of several EPI images with a range of TEs allowing the phase
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unwrapping to be performed in the time domain rather in the spatial domain. Thereby, the
unwrapping problem for isolated tissues is eliminated.

Another approach that does not rely on field maps is the use of multi-reference scans. As
a calibration step, Nph (number of phase-encoding steps) EPI readout trains are collected
in the absence of phase blips during the readout. For each of the Nph scans a phase
encoding gradient placed before the EPI train is stepped as in the conventional GRE
manner. By doing so, phase maps for each echo in the EPI train are obtained. Based on this
kind of data, Wan et al.53 and later also Chen et al.54,55 were able to correct both intensity
and geometric distortions. In fact, this method (Chen et al.) can correct any off-resonance
effect, including chemical shift (see 3.4) and eddy current effects (see 4.4). This approach
nonetheless has its drawbacks too. The scan time of the calibration step is TRphN ⋅ . For
30 slices with 128×128 resolution the minimum TR becomes about 10 seconds yielding a
calibration scan time of over 20 minutes. No doubt, patient movements during this period
will also have an impact on the result. The long calibration time may still be justified for
high quality and lengthy dynamic EPI based studies in e.g. fMRI and DTI.

The third approach, which uses neither field maps nor pre-scan calibration, was first
suggested by Chang et al.56 for conventional SE images, followed by Bowtell et al. for
EPI57. Unlike the other methods, the correction is performed on the reconstructed
magnitude images. The idea is that the distortions differ depending on whether the k-
space is sampled bottom-up or top-down, which only is a matter of the sign of the phase
encoding blips. By acquiring data twice using both k-space trajectories, one gets in the first
image stretching in areas that are compressed in the second image, and vice versa.

We have recently developed Bowtell’s method further. An example of an image corrected
for susceptibility using our method is given in Figure 22, with a) k-space sampled bottom-
up, b) top-down and c) the corrected image, based solely on the two magnitude images in
a) and b).

Figure 22. An axial slice of the brain scanned with SS-EPI (res. 128×128). In a) k-space has been sampled “bottom-up” while
in b) it has been sampled top-down. No other changes of scan parameters were made. It is evident that areas that are
squeezed in a) are stretched in b). Our susceptibility correction method, based only on these two images, gives the corrected
image in c).
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3.3 SNR

Each line in k-space is acquired in 1-2 ms for SS-EPI and about 4 ms for SS-FSE. This is
a prerequisite to keep the above-mentioned acquisition times down to a minimum. This
implies that a high receiver bandwidth (rBW) has to be used since acqrBW  1/t∝ , which

in turn leads to a decrease in SNR, which is proportional to 1/ rBW . Therefore, a
feature common to all single-shot sequences is a comparatively lower SNR. Because of
this reduction in SNR, as well as to avoid excessive geometric distortions, the image
resolution for single-shot sequences is seldom chosen larger than 128×128. This lower in-
plane resolution is usually not a limitation since the through-plane resolution, i.e. the slice
thickness, is generally lower anyway. Typical values for diffusion weighted SS-EPI are an
image FOV of 24 cm, resolution of 128×128 and slice thickness of 3-5 mm, resulting in a
voxel size of 1.8×1.8×3-5 mm.

3.4 CHEMICAL SHIFT IN THE PHASE ENCODING DIRECTION

Fat and water differ in resonance frequencies by 3.5 ppm, which equivalent to about
220Hz at 1.5T. This will be a source of chemical shift artefacts in the image, i.e. fat and
water signals originating from the same point will end up in different voxels in the image.
The effect is inversely proportional to the rBW. Unlike conventional sequences, where the
chemical shift artefact is manifest as a shift of the fat signal in the frequency encoding
direction, the fat signal is shifted in the phase encoding direction in EPI. This is because in
the frequency encoding direction the rBW may be e.g. ±62.5kHz or higher, which is
substantially higher than the chemical shift between water and fat, whereas in the phase
encoding direction the prBW is typically on the order of 1 kHz. In the case of FOV = 23
cm, the shift of the fat signal will be 23 cm × 220 Hz / 1 kHz = 5.1 cm!

There are two ways to avoid the fat signal: either a narrow bandwidth fat-saturating RF
pulse can be applied before each excitation, or one can use a spectral spatial RF excitation
pulse that only excites the water. Two SS-EPI images acquired using these imaging
parameters are shown in Figure 23. Fat saturation has been employed in a) but not in b).
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Figure 23. SS-EPI a) with and b) without fat-saturation. The arrows in b) indicate the fat
signal belonging to the scalp.

3.5 MAXWELL TERMS

The static magnetic field and the imaging gradients determine the local magnetic field.
This relation is normally denoted as

0( , , ) x y zB x y z B G x G y G z= + + + [41]

This is not completely true, however. The Maxwell equations require the overall magnetic
field to satisfy the following conditions

0∇ =
∇× =

B
B 0
i

[42]

To fulfil the second requirement58, Eq. [41] has to be rewritten as59,60
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Here the spatial dependence of order 2
01/B  and above has been neglected. For scan

parameters used in multi-shot imaging these Maxwell terms are negligible, but for single-
shot imaging with strong readout gradients in combination with low prBW in the phase
encoding direction they may be significant. Norris and Hutchison58 have also
demonstrated Maxwell effects at low B0 field strength.
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3.5.1 Problem

When a readout gradient is applied in an axial EPI scan, Gz is zero and the only “extra”
term in Eq. [43] is

( )2 2 2

0

1
2C x yB G G z
B

= + [44]

This term is quadratically dependent on the slice location z and is zero for the centre slice
in the image volume. This leads to three effects59:
1) Nyquist ghosting due to shift of odd and even echoes in the EPI readout train.
Appreciable ghosting will be present if

01  

ro ro

Bz
g N

ν
γ
∆≥ [45]

where ∆ν is the full receiver bandwidth, Nro the number of data points in the readout
direction, gro the readout gradient amplitude and γ is the gyromagnetic constant in Hz/T.
Using common DW SS-EPI scan parameters (B0 = 1.5T, resolution = 128×128, gro = 11.6
mT/m, ∆ν = ±62.5kHz = 125 kHz) ghosting will occur if the slice is acquired at z = 51
cm from the centre! This is far outside the usable imaging volume.

2) Parabolic shift
The shift from the true location of the object in the phase encoding direction will have a
quadratic dependence on the z distance from the isocentre. The shift will be
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[46]

where t1 is the readout ramp time and t2 the readout plateau time for one echo (Figure 24).
With the same EPI imaging parameters as before and with t1 = 128 µs and t2 = 1024 µs,
the shift will be 2( ) 0.49pe z zδ = ⋅ . For 35 slices of 4 mm, z  will for the first and last slice
be 35⋅4/2 = 70 mm, which according to Eq. [46] will result in a shift of about 2.5 mm.
This effect is shown in Figure 25, where a spherical water phantom has been scanned with
SS-EPI using the scan parameters above. An image scanned with a conventional SE
sequence is shown for comparison (left). At isocentre (Figure 25a), the position of the
phantom in the phase encoding direction is the same, whereas at z = 70 mm (Figure 25b)
the phantom is shifted by about 6 mm. This is higher than predicted from Eq. [46].
However, at 70 mm off-centre bad shimming also contributes to shift in the image (and
scaling), making it difficult to isolate the Maxwell effect.
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Figure 24. The first part of the EPI readout train with the
parameters given in Eq. [46]-[47] outlined.

Figure 25. A spherical water phantom scanned with a
conventional SE sequence and an SS-EPI sequence at two
locations. a) z = 0 and b) z = 70 mm from isocentre. The
white lines indicate the top and bottom edge of the phantom
scanned with the SE sequence. In b) the phantom scanned
with SS-EPI is shifted due to the Maxwell parabolic shift.

3) Signal attenuation
The phase evolution in k-space caused by the Maxwell terms is 2z  dependent. This means
than for any slice thickness ∆z > 0, there will be a phase dispersion causing signal
attenuation (similar to diffusion!). The signal attenuation at slice position z = z0 is
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where M is the echo number when the central k-space line is sampled. t1p is the ramp time
and t2p the plateau time for the pre-phasing gradient before the readout. gp is the gradient
amplitude (Figure 24). The effect is very different depending on whether full or partial k-
space is sampled. If full k-space is sampled with 128 phase encoding steps then M = 64.
For a slice thickness of ∆z = 4 mm, the signal attenuation becomes about 14% at slice
position z = 70 mm. In most cases, however, about 60% of k-space is sampled to
minimise blurring effects and to obtain more slices per TR. Then M may for example be
equal to 8 and the Maxwell induced signal attenuation is then only 0.2%.
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3.5.2 Solutions

The first Maxwell effect can be ignored because it lacks significance for common scan
parameters. The parabolic shift and the signal attenuation might not.

The parabolic shift can be solved by implementing a correction method in the pulse
sequence that adjusts the receiver phase during the echo train59. Alternatively, if an
undistorted image volume is available, the shift can be corrected by rewriting the image
registration software so that it in addition to rigid body adjustments also models a 2z -
dependent parameter.

The signal attenuation effect is easily avoidable by using fractional k-space sampling, with
early collection of the central k-space lines. This is what most DTI users do anyway, so
this problem may not be frequently encountered. Nevertheless, if full k-space is sampled
this effect must be corrected by pulse sequence modifications, since attenuation due to
phase dispersion cannot be recovered after the signal has been acquired – analogous to
signal attenuation for diffusion imaging. We will not go into this in detail, but the
interested reader is recommended to read the paper by Zhou et al.59.
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4. Image artefacts in diffusion
imaging

4.1 PATIENT MOTION: IMAGE GHOSTING USING MULTI-SHOT PULSE
SEQUENCES

The rationale for using multi-shot pulse sequences for diffusion imaging is, as discussed
earlier, that the geometric distortion is much less and the SNR is higher than in single-shot
pulse sequences. This allows the use of higher image resolution with low geometric
distortions.

4.1.1 Problem

For multi-shot pulse sequences the k-space is acquired in several segments, ultimately one
line at a time as for the conventional spin echo sequence. Due to patient motion, sudden
phase shifts in k-space occur between adjacent phase encoding lines acquired after
different excitations. For non-diffusion weighted imaging, the motions of the patient must
be quite large to introduce a phase shift sufficient to cause image ghosting. However,
when diffusion gradients are applied, even minor motion will cause severe phase shifts.
Fixation tools and cooperable subjects are usually not sufficient and the acquired DWI
becomes practically useless. As an example a conventional DW-SE image of a healthy
volunteer, instructed to remain as still as possible, is shown in Figure 26b, with the T2-w
SE for comparison (Figure 26a).

Figure 26. a) T2w SE image and b) corresponding DW-SE image with ghosting artefacts due to
minor head motions during the acquisition. Images acquired on a healthy volunteer instructed to
remain as still as possible.
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4.1.2 Solutions

To correct for these phase shifts in k-space, different types of navigator echo techniques
have been employed for diffusion imaging. Use of navigator echoes was first pioneered by
Anderson and Gore61. They added an echo before the actual echo and the phase encoding
gradient (Figure 27a). The navigator echo will contain phase information induced by the
patient. The actual echo, which is preceded by the phase encoding gradient, will contain
phase information from both motion and the phase encoding gradient. The phase of the
navigator echo can then be subtracted from the phase of the actual echo. Provided that
the two echoes have been acquired closely in time, the phase shift induced by motion in
the frequency direction will be greatly reduced.

As a natural next step to correct for motion also in the phase encoding direction, Butts et
al.62 introduced a pair of orthogonal navigator echoes (Figure 27b) applied sequentially in
the phase and frequency encoding direction. This allowed the correction of motion also in
the phase encoding direction. Unlike the correction along kx in k-space, the correction in
the ky direction requires interpolation and regridding before Fourier transformation. The
pair navigator technique was not guaranteed to find the correct phase shifts, however.

A year later Butts et al.63 improved the technique by implementing a 2D spiral navigator
echo prior to the multi-shot EPI readout (Figure 27c). The spiral navigator echo sampled
a circle in the centre of k-space with a radius long enough to include the location of
maximum signal in the presence of motion. With this technique, the actual k-space centre
could be found in cases where the orthogonal navigator echoes failed. A variable density
gridding kernel was also proposed to reduce the residual ghosting due to regridding errors
in the ky direction.

Based on the same idea of sampling an area in the centre of k-space, Atkinson64

implemented a 2D EPI based navigator echo, this time with the navigator placed after the
multi-shot EPI readout (Figure 27d).

The other way to avoid ghosting artefacts is to use a single-shot sequence where there is
no need for navigator echoes. This is what most groups tend to do.
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Figure 27. Different navigator techniques for correcting phase errors leading to image artefacts as in Figure 26b. The navigator
echo gradients are illustrated in black. a) A single navigator correcting for motion in one direction. b) Two orthogonal navigator
echoes able to correct for in-plane translational motion. c) Spiral navigator echoes scanning the centre of k-space – an
improved way of correcting in-plane motion. d) A navigator EPI readout placed after the actual EPI readout. As in c), the central
part of k-space is sampled.

4.2 SPIN ECHOES AND STIMULATED ECHOES IN SS-FSE

The SS-FSE sequence is robust and has none of the geometrical distortions that plague
SS-EPI. Another property of SS-FSE is that, apart from the normal spin echoes,
stimulated echoes (STE) will also be present. STE will occur if the refocusing pulses used
in the readout train have flip angles <180°. Even if 180° pulses are employed, the
existence of smaller flip angles at the edges of the slice profile creates STE. Because of this
a portion of the transverse magnetisation is placed along the longitudinal axis after each
refocusing pulse. After three refocusing pulses this effect contributes to the signal
increasingly in subsequent echoes. If the 90°-excitation pulse is phase shifted by 90°
relative to the following refocusing pulses, the phase of the transverse magnetisation and
the first refocusing pulse will be parallel65,66 (the Carr-Purcell-Meilboom-Gill (CPMG)
condition). In that case, coherent addition of transverse magnetisation is obtained of the
(T2-decaying) spin echoes (SE) and the (T1/T2-mix-decaying) stimulated echoes (STE).
This causes the signal decay more slowly allowing for long echo trains.

4.2.1 Problem

When diffusion gradients are inserted in an SS-FSE (or a FSE) sequence the CPMG
condition is very hard to fulfil. This is because patient motion or minimal mismatch
between the two diffusion gradients will change the phase of transverse magnetisation.
When the CPMG condition is not fulfilled the phase of the SE and the STE are non-
coherent, causing unpredictable signal interference that leads to image artefacts as in
Figure 28b.
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Figure 28. The DW-SS-FSE sequence with a) b = 0 s/mm2 and b) b = 500 s/mm2. As soon as
the diffusion gradients are applied, as in b), the phase between the stimulated echoes (STE)
and the spin echoes (SE) are no longer coherent. This yields artefacts in form of irregular dark
stripes in the image.

4.2.2 Solutions

Different strategies have been used to avoid the effects of phase differences of the SE and
STE components. One is to remove the STE component by changing the crusher
gradient areas for consecutive refocusing pulses67 or by using asymmetric crushers65,68

(Figure 29a). This reduces the signal by about 50%69, which together with the increased
PSF of SS-FSE results in rather blurred and noisy images.

A second strategy is to split the SE and STE in time during the readout65,66,70 (Figure 29b).
The k-space then consists of two halves in the frequency encoding direction, containing
signal from the SE and STE, respectively. These can be reconstructed individually and the
magnitude images in the image domain finally added phase-insensitively. This requires,
however, that either the receiver bandwidth or the readout time be doubled. The first
alternative decreases the SNR by ∼30% and the second increases the echo train length,
which also yields SNR reduction as well as more pronounced blurring.

Recently, Norris et al. proposed an online correction method for FSE69 (should be
applicable to SS-FSE too) that did not cause these SNR reductions. Using orthogonal
navigator echoes followed by correction gradients preceding the readout train, the phase
was monitored and corrected before the start of the readout (Figure 29c). In this way, the
CPMG condition was possible to fulfil.



Figure 29. Methods to avoid the destructive
interference between STE and SE in SS-
FSE. a) The use of asymmetric crushers
(see arrows) spoils the STE component.
This results in a signal loss of about 50%. b)
Separating the SE and the STE in time for
each echo to store them in separate k-
spaces. The reconstructed magnitude
images are then averaged together. This
requires either a doubled receiver bandwidth
or an almost doubled total readout time, both
leading to reduction in SNR. c) An online
correction method to fulfil the CPMG
condition before the readout train starts, to
make the SE and STE coherent despite the
diffusion gradients. Two navigator echoes
(N1 & N2) are used to detect the phase error
after the diffusion gradients. From this data
the amplitudes of the correction gradients
(C) are calculated.

4.3 BRAIN MOTION: SIGNAL LOSS DUE TO BRAIN MOTION

4.3.1 Problem

By using single-shot sequences such as EPI, ghost artefacts due to patient motion
discussed in section 4.1 can be avoided without the need to use navigator echoes. This,
and the high acquisition speed, are the main reasons why this sequence has been so
popular for diffusion MR imaging. But even if the effects of patient motion can be
avoided, there are other sources of motion that may still lead to artefacts in the DWI.

The brain might not normally be thought of as a moving tissue like other organs in the
body, e.g. the heart or the abdomen. However, due to the arterial pulse wave, the brain
experiences a vertical force during systole. This force causes primarily the part of the brain
below the corpus callosum to move. Peak velocities of about 1-1.5 mm/s and
displacements on the order of 0.1-0.13 mm have been reported71. Brain motions that are
present during the operation of the diffusion gradients will cause a pseudo-diffusion
effect. Considering that signal attenuation in diffusion imaging occurs for molecular
displacements on the order of a few microns, these motions are an order of magnitude
larger and will result in substantial signal loss. The brain motions are present only during a
part of the heart cycle. In Figure 30 (Fig. 1 in paper 3), one slice for an image volume
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acquired 18 times consecutively is presented. In this figure no gating (see 4.3.2) has been
carried out and a fixed TR of 8 s has been used. One notices that there is a fair chance of
obtaining a single DWI without this artefact. However, for a whole brain DTI scan, with 6
or even more DWI volumes and 20-40 slices in each volume, it is very likely that these
artefacts will be present in the acquired data. This will lead to bias and a bad estimate of
the diffusion tensor.

Figure 30. Brain motions in DW-SS-EPI. One slice (of an image volume) acquired 18 times consecutively, separated in time
with a TR of 8 sec. Since the TR and the heart rate are not synchronised, slices will be acquired randomly in the heart cycle,
which will jeopardise the image quality. Of these 18 images about 3-4, or ≈ 20%, suffer from severe brain motion artefacts. The
diffusion gradient has been applied in the z (through-plane) direction for all images.

4.3.2 Solutions

All MR systems can be run synchronously to the heartbeats so that each echo in the pulse
sequence is acquired in the same phase of the heart cycle. This is called gating or triggering.
By this means, it is possible to avoid imaging during systole when the brain is moving.

One can measure the so-called R-wave in the ECG, either directly using electrodes on the
chest (cardiac gating), or indirectly by measuring the pulse wave in the finger (peripheral or
pulse gating). The latter is often used because it is easier to handle. From the onset of the
trigger point (either the R-wave or the pulse wave) one can choose a trigger delay (TD)
after which imaging starts. Additionally, because the heart rate may vary, one also needs to
define a trigger window (TW), usually expressed in percent of the R-R interval time,
during which the scanner waits for the next pulse. This is schematically illustrated in
Figure 31.

Greitz et al. have shown that brain motions occur within the 200-250 ms after the
R-peak71, corresponding to approximately 20-25% of the R-R interval time. This is in
agreement with Figure 30 where 20-25% of the images suffer from brain motion artefacts.

As delineated in Figure 31, one needs to use different TDs depending on whether cardiac
or pulse gating is employed. This has implications for the available imaging time between
two heartbeats. If pulse gating is used, a minimum TD may be used and the major part of
brain motions are in the TW interval. For DW SS-EPI the acquisition is about 150 ms for
one slice. Based on practical experience, it is possible to acquire three slices per heartbeat
with pulse gating provided that the pulse rate is below about 70 bpm. For almost any
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patient, it is possible to acquire two slices per R-R interval, unless the pulse rate exceeds
about 100 bpm. As an example, the effective TR for a DTI scan with 30 slices should be
no more than 15 heartbeats (usually written as TR = 15×R-R ≈ 12-15 sec).

Figure 31. Gating techniques and the impact on the available imaging time
(AIT). Brain motions occur very soon after the R-wave of the heart and last for
about 200-250 ms. Depending on if cardiac or pulse gating is employed the
delay (TD) after the trigger point and when imaging starts differ. Imaging may
then be performed until the trigger window (TW) starts, during which period the
scanner stops acquiring data and waits for the next pulse. The AIT is longer for
pulse gating, which in most cases leads to a shorter total scan time.

A common argument against gating is that the scan time is increased. This is because
fewer slices per second may be acquired because of the TD and TW during which no
scanning can be performed. Nevertheless, bearing in mind the artefacts in Figure 30, the
results from paper 3 have shown that the variance and bias are much smaller when
triggering is performed72 for areas in the brain inferior to corpus callosum where brain
motions predominantly occur. Consequently, for a given variance in the DTI data, the
number of measurements needed may be about 2-3 times higher for the ungated case.
Thus, the total required scan time becomes in fact longer if gating is not used, despite its
higher acquisition rate.

Furthermore, even when the number of measurements (and the SNR) approaches infinity,
the brain motion will still induce significant bias in the DTI data yielding an
overestimation of mean diffusion and anisotropy.
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4.4 EDDY CURRENTS

When a gradient is applied, the change in magnetic field, dB/dt, induces an eddy current
(EC) which in turn creates an extra magnetic field. This will for a “normal” trapezoidal
gradient cause a smoother gradient waveform than the expected one. To get the desired
waveform, pre-emphasis is used, where the gradients are ramped up in a way that
compensates for this (Figure 32).

Figure 32. Eddy current pre-emphasis. a)
The dashed line denotes the current applied
in the gradient coil. Due to eddy currents
during the ramp times, the actual field
gradient obtained differs from the nominal
(solid line). b) Employing gradient pre-
emphasis the applied current during the
ramps is adjusted so that the actual
magnetic field gradient becomes close to the
nominal shape indicated by the dashed line
in a).

The eddy currents decay multi-exponentially with different time constants. There are fast
decaying components such as the ones shown in Figure 32 and longer ones whose half-
life may be on the order of a second. Many manufacturers have a pre-emphasis system
with three time constants whose amplitudes are adjusted by the routine service program.

4.4.1 Problem

The pre-emphasis system provided by the manufacturer is typically not sufficient to
correct for the ECs induced by the very strong diffusion gradients applied in the EPI
sequence. Especially the long-term eddy currents are difficult to correct, partly due to
inter-slice effects. The actual effects of eddy current components depend on the
proportions of amplitudes and time constants (how fast they decay). Eddy currents
present during the acquisition (50-100 ms for SS-EPI), will be superimposed on the
imaging gradients and cause the k-space trajectory to deviate from its desired path. Strong
and fast-decaying eddy currents during the acquisition will cause non-equidistant sampling
of k-space, resulting in a blurry image.

For eddy current components that are approximately constant during the acquisition, the
effects in k-space and in the image domain are linear and can be corrected using post-
processing methods on the reconstructed magnitude images (see 4.4.4). In the rest of this
section we assume constant or long-term EC and see how this affects the k-space and the
image.
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Residual eddy currents in the slice selection direction will induce a slice-wise change in the
static magnetic field (Note: Non-zero EC gradients in the phase and frequency encoding
directions at the iso-centre will also contribute). This will change the precessing frequency of
the spins, which in k-space is equivalent to a phase accumulation along the k-space
trajectory. For EPI, this phase change between consecutive data points along the kx
direction is low thanks to the high bandwidth. On the other hand, the time between
consecutive points along ky is Nx times longer, why the phase accumulation in the ky
direction may be significant. Such a linear phase trend in k-space is equivalent to a shift of
the object in the phase encoding direction in the image domain. This is illustrated in
Figure 33a. The shift measured in pixels can be calculated using

0

2
B Ty γ
π

⋅∆ ⋅∆ = [48]

where 0B∆  = the slice-wise field change of B0 and T = the total readout time of k-space.
This eddy current will be denoted ECtr (tr = translation).

Figure 33. Eddy currents (EC) during the EPI readout. a) An EC in the slice selection direction will cause
a linear phase shift in the ky direction in k-space. This corresponds to a shift of the object in the phase
encoding direction (here y) in the reconstructed image. b) An EC in the frequency encoding directions
will cause the k-space to be sheared resulting in a shear of the object in the image in the phase encoding
direction. c) Finally, an EC in the phase encoding direction makes sampling density of k-space to change
in the ky direction. This causes the effective FOV to change in the MR image, which is equivalent to a
scaling effect of the object.
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The slice selection eddy current can be divided in two parts, one termed B0 eddy
(described above) and the other z eddy current. The distinction is shown in Figure 34. The
average ECslice for a given slice will induce, as mentioned earlier, a shift of the image – this
is the B0 eddy current (here ECtr). Within the slice the ECslice will induce a dephasing due to
the fact that spins at the left edge of the slice will precess slower than spins on the right
edge – this is z eddy current (here ECint, int = intensity) and will result in a signal intensity
reduction. Clearly, the slice thickness will have an impact on this effect. Thinner slices will
have less ECint.

Figure 34. The two effects of eddy currents in the z (slice) eddy current. For a given
slice, the major effect (pointed out in Figure 33a) is due to the local change of the
static magnetic field that causes an shift of the object in the image. The other effect
is that the magnetic field will vary through the slice. This causes the spin within the
slice to dephase, leading to an irrecoverable loss of signal. The magnitude of signal
attenuation varies with slice thickness but is usually rather low.

An eddy current in the frequency encoding direction (Figure 33b) causes the sampling step
size to increase for odd echoes and to decrease for even echoes. This leads to a shift to the
right (left if the eddy current gradient is negative) for consecutive kx lines, which results in
a sheared sampling of k-space. In the image domain the object becomes sheared in the
phase encoding direction. This eddy current will here be denoted ECsh.

Finally, an eddy current gradient in the phase encoding direction, as depicted in Figure
33c, will cause the effective area of the phase encoding blips to increase. Note that each
line in k-space is no longer sampled at the same ky, but rather in a zig-zag manner through
k-space, which induces some blurring in the image. The dominant effect is however that
k-space is more sparsely sampled in the ky direction. This is equivalent to a decreased
FOV in the image domain, which will make the object magnified or scaled in the phase
encoding direction. The situation is vice versa if the eddy current gradient is negative or if
k-space is sampled top-down (negative blips) instead of bottom-up. This eddy current will
be denoted ECsc.
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Because these EC effects depend on the direction of the diffusion gradient, there will be a
mismatch not only between the DWIs and the T2-w EPI but also between the different
DWIs. As a result, the diffusion tensor calculated from these images as well as the mean
diffusion and anisotropy maps will be blurred. For the latter, there will also be artefactually
high anisotropy values along tissue edges.

4.4.2 Pulse sequence solutions

Several groups have attempted to minimise the EC by applying “extra” diffusion gradients
or using other diffusion gradient configurations in the sequence. For instance Alexander et
al.73 employed bipolar gradients, i.e. a diffusion gradient pair before and after the 180°
pulse, and have shown that this decreases the EC (Figure 35a). Unfortunately, this
gradient configuration gives less diffusion weighting and hence requires that the duration
of the DW gradients is longer, which increases TE and decreases the SNR as well as the
number of slices/TR. To avoid increasing TE the insertion of one extra diffusion gradient
with opposite sign before the excitation has also been proposed73 (Figure 35b). Since this is
placed before the excitation, obviously, it will not contribute to the diffusion encoding.
Calamante et al.74 improved the technique by combining the use of extra gradients with a
non-phase encoded reference scan for k-space phase correction to remove the ECtr
effects.

Yet the seemingly most promising solution was proposed by Reese et al.75 (based on
Feinberg and Jakab76 and later improved by Heid77). They have suggested a gradient
combination applied in a double spin echo EPI sequence (i.e. with two 180° pulses) that
has higher b value efficiency and therefore shorter TE compared to the above-mentioned
methods. The use of two 180° pulses allows the diffusion gradient train to be designed in
a way that makes the diffusion encoding close to the Stejskal-Tanner gradient pair. At the
same time, the gradients actually played out are similar to the bipolar gradient
configuration in terms of eddy currents (Figure 35c). By adjusting the length of the first
gradient, different eddy current time constants may be nulled.

Another pulse sequence modification has been proposed by Jezzard et al.78. Instead of
using a low-eddy current diffusion pulse sequence designed as above, the eddy currents
are measured during the diffusion scan using two reference scans. After filling k-space
(single or multi-shot-wise) the first reference scan is acquired by setting the phase
encoding amplitudes to zero, followed by the second reference scan where the
phase/frequency encoding axes are swapped (see Figure 35d). Consider e.g. the data
acquired using the readout-train shown in Figure 35d-2, where the phase encode blips
have been set to zero. Under ideal circumstances each echo should be identical (T2

*

dependent decay between successive echoes excluded), and represent the Fourier-
transform of a projection of the object onto the frequency-encoding axis. The amplitude
of the 1D inverse Fourier-transform applied to any of these echoes should then represent
that projection. The corresponding phase will be due to a multitude of causes, but is
generally dominated by “machine factors” such as slight timing errors.
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However, the phase evolution between consecutive acquisitions is directly related to the
deviation of the local field from its “tentative” value such that 0B tϕ γ∆ = ∆  where ∆ϕ
denotes the phase evolution during the time interval t at a specific location. So, if we
assume there is an x-gradient (over and above the readout-gradient) caused by eddy-
currents we would expect that to cause a phase evolution between the “complex
projections” corresponding to consecutive echoes. Furthermore, let us assume this
gradient causes a higher magnetic field at the right side of the object: we would then
expect the phase-evolution between the two projections to be greater there than at the left
side. Hence, the assumption behind the method of Jezzard et al. is that the subtraction of
the phase of two consecutively acquired “complex projections” should yield a straight line,
the slope of which is proportional to the eddy-current induced gradient in that direction.
The intercept of this line is expected to coincide with the centre of the projection
(assuming the centre of the FOV coincides with the iso-centre of the scanner in this
direction) and any deviation from that is considered to constitute an eddy-current induced
B0 component.

In addition, Jezzard et al. can assess the development over time of the eddy-current
induced gradients. Consider the straight line resulting from the subtraction of the phase of
the “complex projections” corresponding to echoes #1 and #3. Furthermore, consider
the corresponding line for echoes #3 and #5. If all had remained constant between the
times corresponding (roughly) to the midpoints of the acquisitions of these echo-pairs we
would have expected these lines to be identical (except for noise). A difference in slope
between these lines would indicate a change, over this time interval, in eddy-current
induced gradient along this direction, whereas a disagreement in intercept would suggest a
change in the B0 component. Everything that has been written above applies equally well
when the readout-gradient is applied in the y-direction (Figure 35d-3) (the phase-encoding
direction of the “true” acquisition scheme, Figure 35d-1). Hence, the eddy-current
induced gradient in that direction is calculated in an equivalent manner. Both schemes
yield estimates of the B0 component and Jezzard et al. simply use the average. Once the
eddy-current induced gradients have been characterised for each slice and diffusion
gradient, the data acquired with the “proper” sequence are corrected accordingly. The
method is fairly time efficient for multi-shot EPI, but for single-shot EPI the scan time is
increased by a factor of three.
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Figure 35. Diffusion gradient configurations to minimise eddy currents. a) The use of bipolar diffusion gradients reduces the EC
but unfortunately also the b value. The consequence is a longer TE and reduced SNR. b) An extra gradient added before the
excitation. This allows the TE to be kept constant, but has not proven to reduce the EC sufficiently. c) The double spin echo
sequence. The diffusion gradients are similar to the bipolar configuration, giving substantial reduction of the EC. By employing
two refocusing pulses the gradient configuration becomes similar to the standard Stejskal-Tanner scheme. d) The EC’s are
measured by alternating the actual EPI readout (#1) with two readouts (#2 and #3) that measure the eddy currents. From these
measurements the distorted image data can be corrected. For single-shot EPI, this increases the scan time by a factor of three.

4.4.3 Gradient pre-emphasis solutions

The major drawbacks of making changes in the pulse sequence are increased TE, fewer
slices/TR or longer scan times. Instead, one could try to improve the eddy current pre-
emphasis calibration.

Zhou et al.79,80, Terpsta et al.81, Papadakis et al.82 and Schmithorst et al.83 have all proposed
methods to determine the amplitudes of the eddy current time constants in the pre-
emphasis system. The first two groups were able to use an arbitrary number of time
constants, while the latter two were “limited” to three. The Papadakis group, unlike the
others, estimated the EC parameters slice-wise. After the calibration step, these
parameters were used in the DW-EPI sequence to modify, in real-time, the phase and
frequency offset of the receiver before and during the EPI acquisition window79.

4.4.4 Post-processing solutions

All EC effects except the intensity reduction can be corrected using post-processing
methods on the magnitude MR images, provided that the EC are fairly constant during
the acquisition.

The problem is to remove the EC induced distortions in the DW component images,
which each has a unique geometric distortion, so that an anatomical match between the
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DWIs and the T2-w image is obtained – the images are registered to each other. The first
obstacle is the fact that the image contrast differs between the T2-w and the DW images.
Most obvious is the presence of CSF signal in the T2-w image. Hence it is not possible to
directly use an image registration method based on similarity (as commonly done in
fMRI), unless the CSF signal in the T2-w is nulled using a FLAIR-EPI sequence.

To register two images based on similarity one can minimise the sum-of-squares
difference between the images, i.e.

( )2
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N
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O I i I i

=
= −∑ [49]

where I1 and I2 are the images to be registered and N the number of voxels. Haselgrove
and Moore84 have made an approach based on similarity. First, the T2-w image and a low-b
value DWI (b < 300 s/mm2), in which the CSF signal is still present, are registered. Then,
under the assumption that the distortion is proportional to the b value, they could
extrapolate to higher b values normally used (≈ 1000 s/mm2). Rather than finding the
slice-wise translation, shear and scale parameter Haselgrove use a column-wise
registration. This makes it unnecessary to find the shear of the image as it is, for a single
column, included in the translation term.

There are several issues with this method. First, extrapolation of distortion parameters
could easily generate more distortion instead of less. Second, one is forced to acquire also
a low-b value DWI, which will increase the scan time.

Bastin85 and de Crespigny86 have continued this approach. de Crespigny, however, used the
average of the DWIs as a template instead of the T2-w image to correct each component
DWI, avoiding the need for a low-b value DWI because the image contrast is similar.
Since the averaging of the distorted component DWIs for the generation of the template
results in a blurred mean DWI with little remaining distortion, the corrected component
DWIs are expected to match the T2-w image fairly well.

Horsfield has proposed the use of mutual information87,88 as the objective function in the
distortion correction algorithm of the component DWI and the T2-w image89,90. The
mutual information (MI) measure makes very few assumptions about the information
content in the images. It is therefore potentially to prefer over Haselgrove’s or de
Crespigny’s approach. In fact, any two images (e.g. DWI vs. T2-w or T1-w MRI vs. PET
image) can be registered to each other using this method. When two images are properly
aligned to each other the mutual information is maximised. The drawback of the MI
method is that it is rather slow. An execution time of about one day for 20 slices and a 6-
directional diffusion scheme has been reported90.

Bammer et al.91 have used the MI measure to, estimate not only the affine transformations
(i.e. shear, scaling and translation), but also non-linear or “elastic” transformations. The
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aim was to make the DW images geometrically “look more alike the T2-w”. However,
there is no physical model or reasoning behind these non-linear distortions.

4.5 PATIENT MOTION: MISMATCH BETWEEN THE DW COMPONENT
IMAGES

In the previous section (4.4) a variety of techniques to correct for eddy current induced
distortions were presented, all intended to minimise the mismatch between the DW
images and the T2-w image(s). However, apart from Bastin85 who performed an in-plane
correction for motion, little has been done about the mismatch due to motion. For many
DTI applications high resolution and high image quality are needed and scan times of half
an hour are not uncommon. During an acquisition time as long as that, patient motion will
occur unless a stereotactic frame is used, adding another source of mismatch between the
DW component images – in some cases larger than the eddy current distortions. For
fMRI, where the scan times are comparable to a DTI scan, image realignment is virtually
always employed. It is therefore a bit peculiar that this issue has not been debated in the
DTI field, where the same problem exists.

For 3D image realignment in fMRI, all image volumes are similar and Eq. [49] may be
used to find the six rigid body parameters (translation in x, y and z and rotations around
the three axes) for each image volume. However, for 3D image realignment in DTI the
same measure could not really be used even in the absence of EC distortions for the same
reasons as for EC correction – the images are not similar due to diffusion anisotropy in
WM. Mutual information could be used to find the motion parameters for each image
volume even though this takes a lot of computation time.

A principle question of interest is, however, in which order should image realignment and
EC correction be performed? The eddy current distortions act along the direction that was
parallel to the phase encoding direction when that particular image was acquired. If
motion has occurred and image realignment is performed before the EC correction, the
image volume will be rotated so that the EC distortions no longer are in the phase
encoding direction. Performing the EC correction on motion corrected images is
consequently not expected to yield very good results. On the other hand, if EC correction
is performed before image realignment, an in-plane rotation of the object will alter the
estimation of the shear parameter, as a rotation is mathematically identical to three
consecutive shears. The biased shear parameter cannot be undone by the image
realignment performed afterwards.

Based on these arguments it would be desirable to correct for these two sources of
mismatch simultaneously.
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4.6 3D SIMULTANEOUS CORRECTION OF EDDY CURRENTS AND MOTION

In this section, an overview of the correction model developed in paper 592 is presented.
This work has been given more space in this summary because of its relative novelty.

4.6.1 Estimated parameters and constraints

For each slice of each of the component DWIs, the three distortion types (shear, scaling,
translation) are estimated. For each DW volume the six rigid motion parameters are
estimated. For instance, with a diffusion scheme of 20 diffusion gradient directions and 25
slices, the total number of parameters that need to be estimated is nparam = 3⋅nslices⋅ndir + 6⋅ndir
= 1620. Although these parameters can be estimated directly from the DTI data itself
using our method (described below), we have also proposed and implemented two types
of constraints that significantly reduce the number of independent parameters.

Spatial constraints
Even though it has indeed been shown that the distortions may vary for different slices in
the image volume86 it is reasonable to assume that they will vary smoothly rather than
abruptly from slice to slice. Variation of the shear distortion through the slices (and
likewise that of scaling and translation) could be modelled very well by e.g. a polynomial
or a cosine basis set of, let us say, four parameters. This is what we call a spatial constraint.
For a 3rd degree polynomial set the shear variation through the slices of a particular DWI
volume can be determined by finding the coefficients, ci

3 2
1 2 3 4( )shear x c x c x c x c= + + + [50]

For each DWI volume now only 4 parameters are estimated for each distortion type
instead of as many parameters as there are slices. This reduces the dimensionality of the
problem in this example to nparam = 3⋅4⋅20 + 6⋅20 = 360.

Figure 36 shows the rationale behind spatial constraints, exemplified with the shear
distortion (not actual data). The estimates of the shear parameters for each slice for a
specific diffusion direction are given in Figure 36a. In this example it is clear that the shear
is not constant across slices. Figure 36b shows that much of the variation may be captured
by a simple linear relationship. Finally in Figure 36c, where a slightly higher order model is
used, described by four parameters in a cosine basis set, virtually all of the variability is
accounted for.
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Figure 36. Spatial constraints. An example of the shear distortion as a function of slice number. a)
In principle the shear parameter for each slice can be estimated. b) A major part of the variance
across slices can be modelled by a linear relationship that reduces the estimated shear parameters
per image volume to two. c) Using a slightly higher order model (four parameters in a cosine basis
set) virtually all variance is accounted for.

Gradient constraints
The EC distortions of the different DW component image volumes are not independent
of each other. There is a strong correlation between the direction of the diffusion
gradients and the distortions. For instance, a diffusion gradient along the frequency
encoding direction induces mainly an EC in the same direction although some cross-term
effects will be present. The simplest  gradient constraint - and most rigid - is to say that
the EC distortions are a simple function of the diffusion gradient amplitudes. In order
words, the expected distortions are
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where i = 1…ndir and , , ,[ , , ]Tx i y i z iG G G  is the i:th diffusion gradient vector in the diffusion
scheme. By doing so we estimate for each distortion type only one constant ci per slice (or
spatial hyper parameter) rather than one for each DW image volume and slice (or spatial
hyper parameter). Assuming spatial constraints with four hyper parameters per distortion
type and 20 diffusion directions, this reduces the number of parameters to be estimated
to: nparam = 3⋅4 + 6⋅20 = 132, of which only 12 are used to model the ECs. To also account
for first order cross-terms (i.e. a diffusion gradient along x will give some EC in the y and
z direction) we could set up another gradient constraint, namely



IMAGE ARTEFACTS IN DIFFUSION IMAGING

66

1 , 2 , 3 ,

4 , 5 , 6 ,

7 , 8 , 9 ,

( )

( )

( )

x i y i z i

x i y i z i

x i y i z i

shear i c G c G c G

scaling i c G c G c G

translation i c G c G c G

 = + +


= + +
 = + +

[52]

In this case the number of parameters to be estimated becomes nparam = 9⋅4 + 6⋅20 = 156.
This is only slightly higher than for the gradient constraint with no EC cross-terms
modelled.

Figure 37a shows for a given slice, the shear estimates vs. the strength of the x-component
of the diffusion gradient (not actual data). Applying a gradient constraint without cross-
terms (as in Eq. [51]) is equivalent to assigning a linear relationship between shear and x-
component, which only partly explains the shear effect. If cross-terms are included (as in
Eq. [52]) the shear should be plotted against x, y and z, which is hard to present.
Nonetheless, in Figure 37b the shear is however plotted against x- and y-component of
the diffusion gradients. (In reality the shear does not significantly depend on z anyway. See
Fig 11, paper 5.) This explains most of the structure of the shear distortions.

Figure 37. Gradient constraints. An example
of the shear distortion vs. the x-gradient
component for a 20 directional diffusion
scheme. a) Instead of estimating a shear
parameter for each image volume (diffusion
direction) indicated by the asterisks, one can
reduce the number of parameters to be
estimated by assigning a linear relationship
(i.e. one parameter) with the x-gradient. b) A
slightly more flexible, and in practice more
accurate, constraint is to account for cross-
terms too. I.e. to say that the shear distortion
is proportional to a linear combination of the
x- and y-components of the diffusion
gradients (two parameters).

4.6.2 Using the residual error of  the tensor to correct for motion and eddy
current distortions

The idea behind our algorithm developed in paper 5, is that the tensor model explains our
DW data better in the absence than in the presence of motion and distortions. Distortions
and motion will increase the residual error term given in Eq. [33] for all voxels in the
image volume. This can be used as an objective function to be minimised in the
simultaneous search for motion and distortion parameters (see section 4.6.1). Residual
error information is obtained if a diffusion scheme with more than six unique directions is
used, since we then have a voxel-wise over-determined system with more measurements
than unknowns.  The residual error can be derived from Eq. [33] according to the
following. In each voxel we have estimated the diffusion tensor elements d̂  from the
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measured ADC values contained in y . The DW data that exactly corresponds to d̂  is here
denoted ŷ  and is given by

( ) 1ˆˆ T T−
= =y Xd X X X X y [53]

The difference between the actual data y and ŷ  is the residual error, e. The sum-of-
squares errors (see Eq. [49]) can then be written as

( )( ) ( )( )
( )( ) ( )( )

1 1

1 1

T

T
T T T T

T
T T T T T

T T

O
− −

− −

= =

− − =

− − =

=

e e

y X X X X y y X X X X y

y I X X X X I X X X X y

y R Ry

[54]

R is the residual forming matrix and has the properties of being symmetric and idempotent.
The symmetry implies that RT = R while being idempotent implies that RR = R.
Therefore the expression can be simplified to

TO = y Ry [55]

which is a quadratic form. This expression is valid for only one voxel. However it is possible
to formulate an expression that is valid for the entire image volume.

When estimating a large number of parameters one needs an efficient search algorithm.
These can be divided in two groups – those that use the derivatives of the objective
function and those that do not. Whenever possible a search algorithm employing
derivatives should be used.

Because it is possible to calculate the derivatives of our objective function, we may use a
fast search algorithm (Leveberg-Marquardt). Our objective function is a function of the
images, which in turn are multidimensional functions of the parameters to be estimated.
Then by the chain rule (with inner derivatives) there will be a huge second order derivative
matrix that would make the calculations very tedious and memory consuming. However,
since our objective function is a quadratic form, it can be shown that the term containing
the second derivative becomes nearly zero, obviating the need to calculate this matrix.
This speeds up the algorithm significantly.

Besides, preliminary results indicate that the accuracy of the method is better than mutual
information93. This finding is illustrated in Figure 38. In Figure 38a the dashed line
delineates the common anatomical location (a column along the phase encoding direction
of a single slice) of all columns in Figure 38b-d. Each of the 20 columns in Figure 38b-d
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depicts a stacking of the intensity profiles for a 20-direction isotropic diffusion scheme.
Figure 38b shows an intensity profile without any correction while Figure 38c-d shows the
corresponding data after correction with MI and the residual error model, respectively.
Since the dashed line is placed off-centre in Figure 38a, the shear effect is included in the
comparison. It can be seen that both methods reduce geometrical distortions, but that the
residual error algorithm appears to perform slightly better.

a) b) c) d)

Figure 38. Eddy current correction using MI and residual error model. In b)-d) each
column corresponds to one of the 20 diffusion directions at the anatomical location
shown by the dashed line in a). b) without correction, c) with MI d) with residual error.
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5. Appendix

5.1 GENERAL EIGENVALUE CALCULATION

One method to calculate the eigenvalues of a matrix A, is to use the QR method which is
an iterative method based on QR-decomposition of the matrix A.

1. QR-decomposition
Any m×n matrix A (m≥n) with linearly independent columns can be factored into

A=QR
where Q is an m×m orthonormal matrix and R is an m×n upper triangular matrix with
non-zero diagonal elements.

There are several methods to orthogonalise A. One of the simplest is called the Gram-
Schmidt orthogonalisation method and goes as follows
Let the column vectors of A be a1..an

[ ]
11 12 1

21 22 2
1 2

1 2

... n

n
n

m m mn

a a a
a a a

a a a

 
 

= = 
 
 

A a a a" "# # % #
"

Find the column vectors of [ ]1 2 n=Q q q q"  using the following approach (Gram-
Schmidt)

Vector 1: 1
1

1
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a

Vector 2: ( )2
2 2 2 2 1 1

2
,  where T= = −fq f a a q q

f
and so on. For qk the expression becomes

Vector k:  ( ) ( )1 1 1 1,  where T Tk
k k k k k k k

k
− −= = − − −fq f a a q q a q q

f
…

Now that Q is determined, R is calculated using

1
-1

 is orthonormal

 =
T

T
−  

= ⇔ = ⇒ ⇒ = 
⇒ 

Q
A QR R Q A R Q A

Q Q

continuing on next page
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2. The QR method
Start by QR-decomposing A into Q0 and R0.
Set 1 0 0 0 0 0

T= =A R Q Q A Q (note the reversed order of R and Q!!) and perform QR-
decomposition of A1 into Q1 and R1. Continuing iteratively in n steps the general
expression becomes

0 0

T
n n

n i i
i i= =

   
=    
   
∏ ∏A Q A Q

The eigenvalues of A are contained in the diagonal elements of An provided that n is large
enough. One notices that there is no need to calculate R. The power series of Q form a
rotation matrix that rotates A into the principal coordinate system spanned by its
eigenvectors.

5.2 SOLVING THE CHARACTERISTIC EQUATION

The characteristic equation can be used to calculate the eigenvalues of D

( )det 0
xx xy xz

yx yy yz

zx zy zz

D D D
D D D
D D D

λ
λ λ

λ

−
− = − =

−
D I

where I here is the 3×3 identity matrix.
For example, if we have the tensor defined by Eq. [9], the characteristic equation becomes

3 211 19 9 0λ λ λ− + − + =

which has roots λ1 = 9, λ2 = λ3 = 1. Voila!
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5.3 MEASURES FOR STABILITY OF DIFFUSION SCHEMES

In this section we attempt to clarify the significance of two different indices of “diffusion
scheme goodness”, the κ index suggested by Papadakis48 and the condition number
suggested in paper 2. The model for estimation of the diffusion tensor elements is given
by

( )

1

2 2 20
1 1 1 1 1 1 1 1 1

2 2 22
2 2 2 2 2 2 2 2 2

2 2 2 0

2 2 2

0
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/ 3
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γ δ δ
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y
# # # # # #

#

+ = +


 
 
 
 
 
 
 

e Xd e

where e is an (unknown) n×1 stochastic error vector.
The tensor elements are estimated in a least-squares sense by

1ˆ ( )T T−=d X X X y

Our concern is the precision by which we are able to estimate d. In other words, we are
concerned with ˆCov( )d , which is a 6×6 matrix with the variance of the estimates along
the diagonal and their covariances off the diagonal. So, how can we estimate ˆCov( )d
given the model above? First, we combine these two equations yielding

1 1ˆ ( ) ( ) ( )T T T T− −= + = +d X X X Xd e d X X X e

From this, it is easily seen that the covariance matrix of d̂ can be expressed as

1 1ˆCov( ) Cov( ) Cov(( ) ) Cov(( ) )T T T T− −= + =d d X X X e X X X e

where the latter equality comes from d being a constant in our model. Using the basic
equality Cov(Ax)=ACov(x)AT, where A is a constant matrix and x a stochastic vector, this
can be expressed as

1 1ˆCov( ) ( ) Cov( ) ( )T T T− −=d X X X e X X X

In order to progress we shall now need to make certain assumptions regarding e.
Specifically we will assume that Cov(e)=σ2I, i.e. that the variance is equal for all
measurements, and that the measurements are independent (iid). Using this assumption
we get
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1 2 1 1 2ˆCov( ) ( ) ( ) ( )T T T Tσ σ− − −= =d X X X IX X X X X

Hence, using only minimal assumptions we have obtained an expression for the
covariance-matrix of our estimate of the diffusion tensor elements. Furthermore, from
our perspective σ2 can be seen as a constant (the variance of the individual measurements
is not affected by our choice of diffusion gradient directions). This means that we should
chose a set of diffusion gradients that minimise the elements of (XTX)-1.
However, there is still an ambiguity. What specifically is meant by “the elements of”?
Ideally, we would like a scalar measure that is proportional to the efficiency of the gradient
set as embodied by X. An intuitive candidate would be the trace of (XTX)-1 i.e. the sum of
the variances of the elements of the tensor. An alternative candidate would the
determinant of (XTX)-1, denoted |(XTX)-1|, which can be thought of as proportional to
the volume (in 6D space) spanned by the multivariate probability density function of the
estimated parameters.
Both these candidates, tr((XTX)-1) and |(XTX)-1| are reasonable indices that depend only
on ones choice of diffusion gradient directions and that have a direct relationship to the
precision by which we can estimate the diffusion tensor.

The condition number (with respect to inversion) of the resulting design matrix has a
somewhat different meaning. In order to understand that we need the concept of a matrix
norm. First consider the vector norm, denoted a  for some vector a. The vector norm
−a b  is a useful scalar measure for determining how “similar” two vectors a and b are.

It is e.g. the measure used for all least-squares estimation.
Imagine now that we have two matrices A and B, and that we want to determine how
“similar” they are. More specifically one often wants to know if “A is more similar to B or
C”. Hence, what we need is a matrix norm, denoted A , by which we can measure
“distance” in a matrix space. A commonly used choice of matrix-norm is the “spectral
norm”, often denoted 

2
A , which is simply the largest singular value of the matrix A. A

discussion of different matrix norms would lead much to far, so suffice to say

2 2
− < −A B A C  would indicate that B is more similar to A than is C.

Using the matrix-norm as a tool one can then start to gauge the error sensitivity of matrix-
valued functions of matrices, and specifically the matrix inverse. Assume we have a matrix
A, and that we want to calculate its inverse A-1 but that, due to round-off or stochastic
errors, we really obtain (A+E)-1 where E is a stochastic matrix. If 1 1

2
( )− −− +A A E  is

large for a given E the matrix A is said to be poorly conditioned, and its “condition
number”, defined as 1cond( ) −=A A A , will be large. It can be shown that one can

obtain an upper bound on the error of ones solution to a linear equation system based on
the condition number according to94
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� 1( ( ) )
cond( )

T T−− −
≤

d d I X X X X y
X

d y

where symbols have been used as in the previous section. If we attempt to dress this
equation in words it would be; the relative squared error of the tensor-elements is less
than, or equal to, the condition number of X times the relative residual error of the data.

Hence, even though a formal derivation, which we have only sketched above, of why the
condition number is relevant is much more complex than is the case for ˆCov( )d  it is still
clear that they have some relation. In particular tr((XTX)-1), which is almost the same as
Papadakis κ, should have a close relation to cond(X).
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