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Abstract

Diffusion tensor imaging is often performed by acquiring a series of diffusion-weighted spin-echo echo-planar images with different
direction diffusion gradients. A problem of echo-planar images is the geometrical distortions that obtain near junctions between tissues of
differing magnetic susceptibility. This results in distorted diffusion-tensor maps. To resolve this we suggest acquiring two images for each
diffusion gradient; one with bottom-up and one with top-down traversal of k-space in the phase-encode direction. This achieves the
simultaneous goals of providing information on the underlying displacement field and intensity maps with adequate spatial sampling density
even in distorted areas. The resulting DT maps exhibit considerably higher geometric fidelity, as assessed by comparison to an image volume
acquired using a conventional 3D MR technique.
© 2003 Elsevier Inc. All rights reserved.

Introduction

A number of techniques to assess differences in gross
anatomy between healthy and diseased subjects based on
neuroimaging have recently been proposed (e.g., Ash-
burner et al., 1998; Ashburner and Friston, 2000, Good
et al., 2001) and applied (e.g., Wright et al., 1995; Gaser
et al., 1999; May et al., 1999; Maguire et al., 2000). An
interesting addition to this arsenal is represented by dif-
fusion tensor imaging (DTI) (Le Bihan et al., 1986;
Turner et al., 1990; Basser et al., 1994; Pierpaoli et al.,
1996), which may potentially offer information on dif-
ferences in the hardwiring of corticocortical connections
between different groups.

While alternative methods exist (e.g., Gudbjartsson et
al., 1996) most DTI is based on spin-echo echo-planar
images (EPI) acquired with and without special diffusion
gradients that spoil the signal in proportion to local

diffusability of water. A well-known problem with EPI is
the geometrical and intensity distortions caused by field
imperfections in conjunction with the poor bandwidth in
the phase-encode direction. These field imperfections are
caused by, among other things, eddy-current-induced
global gradients (Jezzard et al., 1998) and susceptibility
induced local gradients (Jezzard and Balaban, 1995). We
have in previous work dealt with the first of these
(Andersson and Skare, 2002) and in the present paper we
will address the latter.

We further an idea proposed by Bowtell et al. (1994)
which entails collecting two echo-planar images, once tra-
versing k-space bottom-up and once top-down. This results
in two images with identical magnitude distortions in op-
posing directions. These two images, together with a model
for the image formation process of spin-echo EPI, allow us
to estimate the underlying magnetic field map and undis-
torted images as they would have looked in a homogeneous
field.

In the present paper we:

(a) present a model for the image formation of spin-echo
EPI that allows us to reconstruct a least-squares
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estimate of an undistorted image from a displace-
ment field and two distorted images with opposing
polarity;

(b) present a simplified model that allows us to estimate
the displacement field from two distorted images
within a reasonable execution time;

(c) demonstrate and validate the method by comparing
the estimated displacement field with that obtained
by directly measured gradient-echo field maps. We
also compare the estimated undistorted spin-echo
echo-planar images with conventional T1-weighted
3D images;

(d) show that with this method we can obtain accurate
diffusion-tensor maps with very little distortion.

Theory

Susceptibility induced distortions

For a conventional 2D imaging sequence, if we assume a
perfect slice profile, the signal at a given time t can be

expressed as an integration of signal across the locations in
that slice,

S�t� � �
x

�
y

�� x, y�eiy��B� x,y��Gf � x,y,t��Gp� x,y,t��dxdy, (1)

where � is the gyromagnetic ratio, Gf and Gp denote the
time-integral of the field changes induced by the frequency-
and phase-encoding gradients gf and gp, respectively, and
�B denotes field inhomogeneity. Note that we have omitted
the effects from transverse relaxation during the readout in
Eq. (1). Munger et al. (2000) have formulated (a discrete
version of) this such that

s
m�1

� A
m�nxny

�
nxny�1

, (2)

where s is a column vector representation of our signal
measured at m time points, � is an “image,” the size of nx �
ny, of our “object” unravelled into a column vector and
where A is

A � �
eiy��B0� x1,y1�t1�Gf � x1,y1,t1��Gp� x1,y1,t1�� eiy��B0� x2,y1�t1�Gf � x2,y1,t1��Gp� x2,y1,t1�� · · · eiy��B0� xnx,yny�t1�Gf � xnx,yny,t1��Gp� xnx,yny,t1��

eiy��B0� x1,y1�t2�Gf � x1,y1,t2��Gp� x1,y1,t2�� eiy��B0� x2,y1�t2�Gf � x2,y1,t2��Gp� x2,y1,t2�� · · · eiy��B0� xnx,yny�t2�Gf � xnx,yny,t2��Gp� xnx,yny,t2��

···
···

· · ·
···

eiy��B0� x1,y1�tm�Gf � x1,y1,tm��Gp� x1,y1,tm�� eiy��B0� x2,y1�tm�Gf � x2,y1,tm��Gp� x2,y1,tm�� · · · eiy��B0� xnx,yny�tm�Gf � xnx,yny,tm��Gp� xnx,yny,tm��

� . (3)

However, let us henceforth ignore such things as ramp
sampling and assume that nx 	 ny 	 n and that m 	 n2.
For most MR imaging sequences (e.g., blipped trapezoi-
dal EPI) Gf and Gp are chosen such that the matrix A
(assuming �B0 
 0) implements the discrete 2D Fourier
transform.

Let us denote a matrix similar to A but with zero �B0 for
all voxels by F. There is then a formulation for the mapping
between the “true object” space and the EPI image space
given by

f
n2�1

� FH

n2�n2

A
n2�n2

�
n2�1

� K
n2�n2

�
n2�1

. (4)

The disadvantage of Eq. (4) is the sheer size of the
matrix K that renders it impractical to use for image
restoration. However, if we let the ti used to multiply �B0

by in Eq. (3) increase only in discrete steps for each
phase-encode step (i.e., we ignore any susceptibility ef-

fects in the frequency-encode direction) then K becomes
block-diagonal, i.e.,

K � �
K1

n�n

0 · · · 0

0 K2

n�n

· · · 0

···
···

· · ·
···

0 0 · · · Kn

n�n

� . (5)

This means that the problem has been reduced to a series of
manageable, column-wise (in the phase-encode direction)
1D equations. The “true” intensity-profile along a column in
the phase-encode direction is then related to the measured
profile according to

�̂i � Ki
�fi, (6)

where � denotes inverse or pseudo-inverse depending on
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whether Ki is of full rank, fi denotes the ith column of the
EPI image, �̂i denotes the estimated true column, and Ki is
given by Ki 	 FHAi where F is constructed such that the
element at its jth row and kth column is given by

Fjk � e�2���1
� j �

n

2
� 1��k �

n

2
� 1�

n ,

j, k � 1, 2, . . . , n (7)

and where the equivalent for Ai is

�Ai�jk � e�2���1�� j �
n

2
� 1��k �

n

2
� 1�

n
�

j

n
�B0� xi,yk��,

j, k � 1, 2, . . . , n, (8)

where �B0 has been scaled by the reciprocal of the band-
width per voxel in the phase-encode direction to yield a unit
of image pixels.

Eq. (6) is what Munger et al. suggest (a related formu-
lation was suggested by Kadah and Hu, 1997) should be
used to restore susceptibility degraded EPI images, given
knowledge of �B0.

However, there are areas of the image that are not suc-
cessfully restored using Eq. (6) and we will now see why
and what can be done about it.

On the implementation of K

Note that K is a complex matrix and that an intensity
profile through an EPI image corresponds to �Ki�i�abs, i.e.,
the modulus of the complex vector resulting from multiply-
ing the real object � with the complex matrix K. That means
that with this formulation we would need to work with
complex image data (f) in Eq. (6). We think that would limit
the practical usefulness of the method and we would prefer
to work with modulus images. To achieve this we choose to
implement the matrix K in a slightly different manner. We
use a linear interpolation model and geometrical arguments
similar to that of Weis and Budinsky (1990) to obtain a
matrix K with one interpolation kernel for each row. The
difference between �Ki

�fi�abs (where Ki is created using Eq.
(7) and (8)) and Ki

��fi�abs (where Ki is created using geom-
etry) is one of interpolation model (Fourier vs linear).
Hence, K will hereafter denote a real matrix.

On the existence of K�1

The matrix K is simply the mapping from (a column of)
the true (pixelised) object to the distorted image (see Fig. 1).
Deviations from the identity matrix, i.e., the wiggles on the
diagonal band, are indicative of distortions. Any portion of
the matrix with several nonzero values on the same row
indicates a many-to-one mapping. We cannot reverse that,
just as we cannot deduce a sample from its mean. Hence, K
is rank deficient and no unique inverse exists. Using the
pseudo-inverse will just yield that the values of the entire

sample are identical to the mean. Hence, whenever large
gradients in the phase-map coincide with nonzero gradients
in the intensity map (the image) the problem is poorly
solved. The lower right panel of Fig. 1 demonstrates the
distortions expected from the displacement field in the up-
per right panel when acting in the intensity image in the

Fig. 1. The upper left panel shows a gradient-echo image through a plane
known to be affected by susceptibility problems. The upper right panel
shows a field-map through the same plane. The field-map has been scaled
using acquisition parameters for a typical 128�128 single-shot EPI image
to render it in terms of pixels of displacement. Dark areas indicate a
downwards displacement and the bright areas an upwards displacement for
an EPI acquisition with positive blips. The middle right panel shows the
displacement (in pixels) of each pixel along the line indicated in the upper
panels (going from top to bottom). The middle left panel shows the
corresponding interpolation matrix (K) from true to distorted space. The
lower left panel shows the intensity profile along that same line (going
from top to bottom) for the original image (solid line) and after multipli-
cation with the matrix shown in the middle left (dashed line). The lower
right panel shows the resulting “distorted” image after each column has
been multiplied with the appurtenant K matrix. It is interesting to note the
quite long stretch of monotonically increasingly positive displacements
from pixel �30 to �70 which indicates that all these pixels (the entire front
bit of the brain along this column) have been compressed. After that, there
is a stretch of monotonically decreasing displacements which means that
the posterior half has been stretched. A careful study of the top left and
lower right panels shows that this is indeed the case.
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upper left panel. The hyperintense areas in the distorted
image correspond to a stacking of intensity from several
voxels in the image in upper right panel to a single (or at
least fewer) voxel in the distorted space. It should be clear
from this image that it is not possible to accurately recon-
struct the intensity from these areas given just the distorted
(measured by an EPI sequence) image and knowledge of
�B0.

On the existence of � K�

K�
	�

k-space can be traversed from the bottom towards the top
(positive blips) or from the top towards the bottom (negative
blips). Eq. (7) implicitly assumes top-down sampling in that
k increases when going left to right in the matrix F. A
bottom-up sampling would be described by simply travers-
ing k in the reverse order when creating A and F. This
results in a sign reversal of the effects of �B0 (it would be
equivalent to retain the sign of k and sign-reverse �B0)
which means that each susceptibility-induced displacement
in the top-down image is mirrored by a displacement of
identical magnitude but opposite direction in the bottom-up
image.

The idea of traversing k-space in opposite directions was
originally suggested by Chang and Fitzpatrick (1992) for non-
EPI sequences. It was subsequently adapted to EPI (Bowtell et
al., 1994) as an alternative to multiple echo times for the
assessment of field-maps (Jezzard and Balaban, 1995). We will
here show how it can be used to solve the problem of recon-
structing the true intensity image from distorted data.

Let us denote, for a given column in the phase-encode
direction, the matrix mapping from the true column to that
observed with a top-down traversal by K� and that for a
bottom-up traversal by K�. Note that both are easily created
using Eq. (7) and (8) and that their existence is guaranteed
by the simple fact that we can observe their effects (by
performing the corresponding EPI acquisition). We can now
formulate a model for data acquired in both these manners,
denoted f� and f�, according to

2n�1

�f�

f�
	 �

2n�n

�K�

K�
	 �

n�1

, (9)

which is easily solved, in a least squares sense, by

�̂ � � �K�
T K�

T �� K�

K�
	��1

�K�
T K�

T �� f�

f�
	 , (10)

i.e., by using the generalised inverse of the augmented
matrix. There is a matrix-inverse also here, but this time its
existence is guaranteed by the specifics of K� and K�. Each
portion of K� with a less than unity slope of the nonzero
band is counteracted by a corresponding band of more than
unity slope in K�. In other words, each area of f� where
voxels have been compressed, and hence are indistinguish-

able, corresponds to an area of f� where they have been
stretched and hence are easily resolved. In Fig. 2 we attempt
an intuitive explanation of the concepts in this section.

Fig. 2. The upper two panels show a gradient echo image (left) and a
field-map at the same location (right). The next two panels show the
interpolation matrices for the column indicated by a dashed line in the top
two panels for an EPI acquisition with positive blips (K�) and negative
blips (K�). The third row shows the (expected) distorted images acquired
with positive (left) and negative (right) phase-encode blips. A low level
(standard deviation: 0.1% of average image intensity) of white gaussian
noise has been added to the distorted images. This was done to demonstrate
the extreme noise sensitivity resulting from using the Moore–Penrose
pseudo-inverse of a singular matrix. The lower left panel shows the result
when attempting to restore the “true” image using Eq. (6) and the positive
blip data alone (third row, left). The obvious ringing artefacts originate
from the inversion (Moore–Penrose pseudo-inverse) of a set of fundamen-
tally noninvertible matrices. Less obvious in this figure, but still present, is
the total loss of any detail in the areas that were previously compressed
(bright in the third row, left). The lower right image has been restored using
Eq. (10) and both sets of distorted images and is almost a replica of the
original image.

873J.L.R. Andersson et al. / NeuroImage 20 (2003) 870–888



Hence, given knowledge of �B0, we suggest acquiring
data by traversing k-space twice with different directions in
the phase-encode direction and using Eq. (10) to reconstruct
the true image. In the next section we will see how these
data can be used also for the estimation of �B0(x, y, z)
without the need for any additional measurements.

Estimating �B0(x, y, z): an image restoration approach

Eq. (9) relates the true intensity profile along an image
column to that expected in a bottom-up acquired EPI (de-
noted f�) and a top-down acquired EPI (denoted f�) in a
least squares sense. From Eq. (10) we can project data back
into the distorted spaces, yielding the best model fit to the
data given the present model as instantiated by K� and K�.

�f�
ˆ

f�
ˆ	 � � K��b�

K��b� 	
� � �K�

T �b� K�
T �b��� K��b�

K��b� 	��1

� �K�
T �b� K�

T �b��� f�

f�
	 , (11)

where the displacements have been parameterised by some
vector b. When assuming no displacements (i.e., b 	 0),
both K� and K� are simply the unity matrix and the
estimate �̂ given by Eq. (10) is the average of f� and f�. The
ability of b to explain the observed data can be assessed
from the difference between the observed f� and f� and the

best model fit f�
ˆ and f�

ˆ , i.e., by

�e�̂

e�̂
	

2n�1

� R�b�
2n�2n

�f�

f�
	

2n�1

, (12)

where R(b) is

R�b�
2n�2n

� I
2n�2n

� �K��b�

K��b� 	
2n�1

� � �K�
T �b� K�

T �b��� K��b�

K��b� 	�
�1

n�n

� �K�
T �b� K�

T �b�
n�2n

� , (13)

i.e., the residual forming matrix for the image restoration
model for displacements determined by b.

Hence, we suggest that the displacements (b) that best
explain the observed data are those given by

min
arg	b

O�b� � �

c	1

m

�fc�
T fc�

T �Rc�b�� fc�

fc�
	� , (14)

i.e., that which minimises the squared deviation between the
observed data and the model fit across all (in the entire
volume) phase-encode columns c.

Fig. 3 offers an intuitive explanation of the concepts of
this section.

Fig. 3. The top left panel shows an SE-EPI image acquired with negative
phase-encode blips. The top middle panel shows the intensity profiles
(for the column indicated in the previous panel) for positive (solid line)
and negative phase-encode blips (dashed line). Note that these corre-
spond to the vectors f� and f� in Eq. (9) and (10). The top right panel
shows �̂ estimated using Eq. (10) assuming a homogeneous field (i.e., K� 	
K� 	 I). In the middle left panel the solid line is the observed intensity profile
with negative phase-encode blips (f�) and the dashed line is the intensity

profile predicted by the model (i.e., f�
ˆ from Eq. (11)) when assuming a

homogeneous field. The dotted line finally corresponds to the difference
between the observed and predicted intensity profiles, i.e., e�̂ from Eq. (12).
The middle middle panel shows e�̂ for every column stacked to form an error
image. It can be seen from this image that there is some considerable mismatch
between the observations and the model predictions and hence that the as-
sumption of a homogeneous field was not tenable. If instead we “assume”
another displacement field, for which the pertinent column is shown in the
middle right panel, the estimated intensity profile �̂ is given by the lower left

panel. This results in the f�, f�,̂ and e�̂ (solid, dashed, and dotted lines,
respectively) shown in the lower middle panel. The lower right panel finally
shows the error image for this “other” field, indicating a much better corre-
spondence between data and model.
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Estimating �B0(x, y, z): modelling the field

Let us denote the true space as x 	 [x, y, z]T, the space
of a bottom-up acquired EPI image as x� 	
[x�, y�, z�]T, and that of a top-down EPI by x� 	
[x�, y�, z�]T. Furthermore, let us denote the mapping
x3x� by T� and the mapping x3x� by T�. Both T� and
T� are uniquely determined by a displacement field
d(x)��B0(x) where x� 	 T�(x) 	 [x, y � d(x), z]T and
x� 	 T� (x) 	 [x, y � d(x), z]T. The process of finding
the �B0(x) field that results in two observed data sets
f�(x�) and f�(x�) can be thought of as finding the dis-
placement field d(x) that fulfills

���x��

��x� �
x�

f��x�� � ���x��

��x� �
x�

f��x�� (15)

for every x (for an explanation of relevant concepts see
Chap. 5 of the excellent Marsden and Tromba, 1981).

Previous implementations of the “dual phase-blip”
method (Bowtell et al. (1994)) have addressed a fundamen-
tally three-dimensional estimation problem as if it was a
large set of independent one-dimensional problems. Hence,
the 1D displacement “field” along one column has no con-
nection to those of the surrounding columns. This will make
the problem poorly conditioned, since fewer data are used
for the determination of each parameter, and results in
nonsensical “striped” �B0(x) fields.

Spatial continuity of warps can be ensured by model-
ling them as linear combinations of basis warps (e.g.,
Thurfjell et al., 1993; Woods et al., 1998; Ashburner and
Friston, 1999; Kybic et al., 2000; Studholme et al., 2000;
Andersson et al., 2001). In this paper we will model the
�B0(x) field as a linear combination of basis warps con-
sisting of a truncated 3D cosine transform (Jain, 1989;
Ashburner and Friston, 1999). We will denote this as
�B0(x, b) where b is the vector of weights of the basis
warps. Similarly we will use the notation d(x, b). In
contrast to previous implementations of the Chang and
Fitzpatrick idea (1992), this will result in a smooth and
continuous estimate of the displacement field. We present
Fig. 4 as a demonstration of this.

Estimating �B0(x, y, z): an approximate approach

We shall precede the results and disclose that Eq. (14) is
not practical to use for the estimation of b. The problem
originates from viewing the matrix R, rather than the data f
as is common practice (e.g., Ashburner et al., 1999), as a
function of b. This renders the estimation of the partial
derivatives of O(b) with respect to b difficult, which means
that one has to resort to very slow search methods (e.g.,
Powell, 1964).

We will therefore present a method to estimate the
displacement field d(x, b) that is based on an approximate

Fig. 4. The top panels show SE-EPI images acquired with positive (left)
and negative (right) phase-encode blips. Note the high degree of agree-
ment with the simulated data shown in the third row of Fig. 2. The
second row shows the estimated displacement fields using a 1D- (left)
and a 2D-model (right). Both fields were estimated using Eq. (14) (i.e.,
using the exact model), although in the 1D case there were of course no
summations across columns. For the 1D case the field along each of the
96 columns were modelled as a linear combination of the 12 first basis
functions of the DCT set, yielding a total of 1152 unknowns. The 2D
field was modelled as the 9�12 first basis functions of the 2D DCT set.
The bottom row shows the restored images (using both blip directions
and Eq. (10)) based on the field from the 1D model (left) and that from
the 2D model (right).
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model, one that is computationally more tractable.
The estimated field will then be used to reconstruct the
intensity map using the exact model. In addition the
ability of the approximate model to find the true displace-
ment field will be gauged by comparison to the exact
model.

The next approximation we will use is based on the
Jacobian modulation indicated in Eq. (15). Specifically we
will assume that

f��x � �0 d�x, b� 0�T��1 �
�d

�y �
x

�
 f��x � �0 d�x, b� 0�T��1 �

�d

�y �
x

� , (16)

which makes



x�V

� f��x � �0 d�x, b� 0�T��1 �
�d

�y�
x

�
� f��x � �0 d�x, b� 0�T��1 �

�d

�y �
x

�� 2

,

(17)

i.e., the sum of squared differences between the resampled
and modulated top-down and bottom-up image volumes, a
suitable choice of cost function.

Furthermore, we denote our basis set as
B�x�
n�m

	
Bz�z�
nz � mz

�
By�y�
ny�my

�
Bx�x�
nx�mx

where nz, ny, and nx are

the size of the image volume in the z-, y-, and x-directions,
respectively, and where mz, my, and mx denote the number
of basis functions for each direction. This allows us to
express the partial derivatives of the two image volumes
with respect to b as

df�

db
n�m

� �diag��f�

�y �
n�n

B
n�m

� diag�f��
n�n

�B
�y

n�m

(18)

and

df�

db
n�m

� diag��f�

�y �
n�n

B
n�m

� diag�f��
n�n

�B
�y

n�m

, (19)

where

�B
�y

n�m

� Bz

nz�mz

�
�By

�y
ny�my

� Bx

nx�mx

. (20)

This allows us, using ideas from Ashburner and Friston

(1999) and Andersson and Skare (2002), to formulate an
estimation model for b

bi

m�1

� bi�1

m�1

� ���df�

db �
T �df�

db �
T	

m�2n

� I �I

�I I 	
2n�2n

�
df�

db

df�

db
�

2n�m

�
�1

� ��df�

db �
T �df�

db �
T	

m�2n

� I �I

�I I 	
2n�2n

� f�

f�
	

2n�1

(21)

for iterations i 	 1, 2, . . . , where m now denotes the num-
ber of spatial basis functions used to model d(x, b) and n is
the total number of voxels in the 3D image volume.

We leave a detailed derivation of Eq. (21) to the Appen-
dix and just state that this can be calculated in a rapid
manner, capitalising on the separability of the basis set as
has been described previously (Ashburner and Friston,
1999). As will be seen later in the paper, we need to model
the displacement field with a large number of basis func-
tions so a direct calculation of Eq. (21) would literally be
impossible.

Estimating �B0(x, y, z): including subject movement and
regularisation

Eq. (21) above is based on the assumption that any
difference between f� and f� can be attributed to suscepti-
bility effects. Unfortunately, there are at least two other
sources that can contribute to this difference. One has to do
with the handling of the centre frequency in the reconstruc-
tion software, which may cause in-plane translations be-
tween the two acquisitions. The other is subject movement.
Movements between the acquisition of f� and f� will cause
differences between them and severely disrupt any attempt
at estimating the susceptibility-induced displacement field.
Furthermore, as can be appreciated from the top panels of
Fig. 4, any attempt at realigning them prior to the estimation
is likely to fail.

Our solution is to include a rigid-body movement into
the model, simultaneously estimating any position differ-
ences between the two acquisitions and the displacement
field.

Additionally, in parts of the image volume where the
signal is close to zero (i.e., in the air outside the object) there
is little information to guide the estimation of warps, and
pretty much any set of warps will yield an equally “good”
solution. To prevent excessive warping in these areas we
have included also a regularisation term based on the sum of
squared first derivatives of the warping field.

The full derivation of how to include movement effects
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is also left for the Appendix. For the inclusion of the
regularisation term we simply refer to Ashburner and Fris-
ton (1999).

Special considerations for diffusion tensor imaging

A diffusion tensor image is formed by combining
information from a “regular” T2-weighted spin-echo
echo-planar image with information from (six or more)
diffusion-weighted images with diffusion gradients ap-
plied in different directions. Multiple acquisitions are
often performed for each direction to improve the signal-
to-noise ratio. Hence, in contrast to, e.g., in fMRI, we are
imaging a parameter that is expected to be stationary in
time. It is therefore particularly suited for the method we
suggest in the present paper since the underlying assump-

tion that the signal in the two acquisitions differs only
with respect to the effects of susceptibility induced field
inhomogeneities is fulfilled. We suggest collecting two
images, with different sign phase-encode blips, for each
diffusion direction, as well as for the T2-weighted refer-
ence scan. This means, given knowledge about the dis-
placement field, that a pristine image, with susceptibility-
induced effects removed, can be restored for each
diffusion direction. These can subsequently be combined
to yield a distortion-free diffusion tensor map.

In addition, each pair of images contributes information
about the displacement field and can be used in Eq. (21) for
its estimation. This is done by augmenting the data vectors,
the derivative matrices, and the residual-forming matrix to
reflect all the pairs in the set.
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and
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fi�
	

2n�1

(25)

and where l is the number of different acquisitions (i.e., the
number of diffusion directions plus the unweighted acqui-
sition).

Experiments and implementation

Implementation

The method outlined above was implemented in Matlab
(Mathworks, Natick, MA) on a Linux 500-MHz Pentium III
PC with 1 GB of RAM. Any number of pairs of images (as
outlined in Eq. (22) to (25)) could be entered and used for
the determination of the displacement field. An optional
number of basis functions could be used to model the
displacement field, although in practice it was limited to
�4000 by the RAM requirements. Subject movement pa-
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rameters could be included in or excluded from the model.
It was assumed that all images in a “set” (i.e., all images
acquired with the same phase-encode blip direction) were in
the same space (with respect to position and eddy-current
induced distortions). Hence, a single set of movement pa-
rameters was estimated. A “plastic” regularisation model
based on the zeroth- to fourth- (optional) order derivative of
the displacements was implemented. A first-order model
was used for all calculations in the present paper. Prepro-
cessing of data consisted of Gaussian smoothing (with an
arbitrary FWHM) and global intensity normalisation (to
compensate for possible differences in gain settings be-
tween the two acquisitions).

When the displacement field had been determined undis-
torted images were reconstructed using the image restoration
approach (Eq. (10)) with optional inclusion of a regularisation
(first derivative) term for high-noise data. Creation of the K
matrices used for the restoration was optionally according to
Eq. (7) and (8) (for use when complex image data are avail-
able) or using geometry (Weis and Budinsky, 1990).

Diffusion weighted EPI

Scanning was performed on a 1.5-T GE Signa (GE,
Milwaukee, WI) whole body scanner equipped with 22
mT/m gradients. A diffusion-weighted (with a b-value of
1000 s/mm2) single-shot spin-echo EPI sequence was used.
A total of 4 unweighted and 30 isotropic (Jones et al., 1999;
Skare et al., 2000) diffusion weighted acquisitions was
performed for each blip direction. Acquisition parameters
were TE 95 ms, FOV 240 mm, matrix size 128 � 128, and
slice thickness 3 mm. Peripheral pulse gating (Skare and
Andersson, 2001) was employed, collecting two planes per
heart beat, yielding an effective TR in the order of �15 s.
Scanning was centred on the caudal parts of the brain
including the orbitofrontal cortex, the temporal lobes, and
the brain stem, all areas known to be affected by suscepti-
bility artefacts.

Slight modifications of the vendor-supplied pulse se-
quence and reconstruction program were necessary to en-
able acquisition and reconstruction of sign-reversed phase-
encode blip data.

Eddy-current induced distortions and subject movements
within a set of diffusion weighted images were corrected as
previously described (Andersson and Skare, 2002) and coreg-
istration of T2- and diffusion-weighted images was performed
using mutual information (Maes et al., 1997).

Acquisition and calculation of phase-maps

Gradient-echo images with different echo times were ac-
quired in the same session as the EPI images (above) and with
the exact same slice positions and thickness. Acquisitions pa-
rameters were TR 800 ms, flip-angle 30°, TE 8.4, 12.6, and
16.8 ms, matrix size 256 � 256, FOV 240 mm, and slice
thickness 3 mm. Images were reconstructed into real and imag-

inary parts and maps of the regression on the phase-differences
between the acquisitions were calculated. An estimate of vari-
ance of the phase-difference estimate was calculated for each

Fig. 5. The top panels show one slice of an “undistorted” gradient-echo
image volume (left) and an image that has been restored based on a field
estimated using the approximate method (as defined by Eq. (18) to (21))
(right). The second row shows the “true” displacement field (left) that was
used to create the two simulated bottom-up and top-down images (third
row). The right panel of the second row shows the displacement field
estimated from the two simulated images using the approximate method.
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voxel and a seed was placed in a central low-variance voxel. A
fully 3D watershed algorithm (using the variance of the
phase estimate as the “water level”) was used to direct the
evolution of the phase-unwrapping from low- to high-vari-
ance areas (somewhat similar to Cusack and Papadakis,
2002). The unwrapped phase-maps were regularised (Jen-
kinson, 2001) by a weighted (by variance) fit to a 3D
cosine-basis set in a manner similar to that of Hutton et al.
(2002). The unwrapped, regularised phase-maps were
scaled to pixel displacement maps using echo-time differ-
ence from the GRE acquisition and echo-readout time from
the EPI acquisitions. In addition, unwrapping was compared
to that using a completely independent method (Jenkinson,
2003) to ensure that there were no wrapping errors.

Conventional 3D MR data

In order to obtain an anatomical reference a T1-weighted
3D-SPGR sequence with imaging parameters TR 24 ms, TE
6 ms, 35° flip-angle, and a 256�256�124 matrix with
0.9�0.9�1.5 mm resolution was used. This scan was per-
formed on a separate occasion.

Analysis

Assessing the accuracy of the approximate model

A crucial question is whether the d(x�b) that we estimate
using the approximate model is a decent likeness of the
underlying �B0(x) field. In order to assess this we used Eq.
(9), an experimentally determined (from the from dual-blip
EPI images) �B0(x) field, and undistorted images (gradient-
echo again) to create “synthetically” distorted bottom-up
and top-down acquired “EPI” images. These images were
used to estimate the displacement field by means of Eq. (21)
and to restore an undistorted image using the estimated field
and Eq. (10). This was performed with and without white
noise added to the distorted images.

Assessment of the spatial scale of the distortions

We wanted to determine the number of spatial basis
functions necessary to model the observed distortions. Us-
ing only the T2-weighted reference images from the EPI
data set and Eq. (21) we estimated the field d(x�b) using

Fig. 6. Rows show, from top to bottom, estimated field, resulting error image, restored image, and zoomed part of restored image. Columns correspond to,
from left to right, 0�0�0 (i.e., homogeneous field), 8�8�3, 10�10�4, 12�12�5, 14�14�5, 16�16�6, 18�18�7, 20�20�7, and 22�22�8 basis
functions, respectively. The square in the left panel of the third row indicates the area that has been blown up for the bottom row. Note in the bottom row
how the sulcus starts out as two distinct hyperintense areas that move towards each other as distortions are modelled with a higher degree of detail until at
about 18�18�7 basis functions they merge (correctly) into one sulcus.
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[8 8 3], [10 10 4], [12 12 5], [14 14 5], [16 16 6], [18 18 7],
[20 20 7], and [22 22 8] basis functions. These all corre-
spond to roughly the same number of basis functions per
distance in the three directions. The resulting fields were
visually inspected, as was the restored image associated
with each field. The values of both the exact objective-
function (Eq. (14)) and the approximate objective function
(Eq. (17)) on convergence were recorded for each field.

Sensitivity of estimated field with respect to data

If our model is correct, the estimated field should be
independent of the specific information content of the data.
For example, if we use Eq. (22), l 	 1, and use the T2-
weighted reference images we would expect to find the
same field as if we used an image diffusion weighted in the
[1 0 0] direction or in the [0 1 0] or if we used l 	 3 and all
three image pairs. To verify this we estimated displacement
fields using Eq. (22), l 	 1, a T2-weighted image pair, and
two diffusion-weighted pairs with near orthogonal diffusion
gradients. In addition, we estimated the field using all three
pairs. We used [18 18 7] spatial basis functions throughout.

Comparison to dual-echo phase mapping

Displacement maps and restored images estimated using
our method were compared to those obtained from the phase
measurements.

Visual assessment of registration accuracy

Distorted (f� or f�) and undistorted (�̂, estimated from
Eq. (22) and (10)) EPI images were coregistered to the
conventional T1-weighted scan using mutual information as
implemented in SPM. Points of large curvature (e.g., the
fundi of sulci) were manually identified and marked in the
conventional scan and transferred to the EPI images. Visual
inspection was used to assess the correspondence of the
marks in the anatomical and the EPI images.

Generation of distortion-free diffusion tensor maps

The entire set of EPI images (5 T2-weighted and 30
diffusion-weighted) was employed to assess the displace-
ment field using Eq. (22). An undistorted image was created
using Eq. (10) for each pair of reference or diffusion-
weighted images. These undistorted images were used to
estimate tensor-component images from which maps of
mean diffusion and anisotropy were calculated. In addition,
the same maps were calculated separately from the top
down and bottom up (to serve as an example of typical
distorted maps). The maps based on the corrected and un-
corrected EPI data were coregistered to the conventional
images and visual inspection was used to compare them.

Results

Assessing the accuracy of the approximate model

An example of images that have been “synthetically”
distorted using the exact method (Eq. (9)) to mimic top-
down and bottom-up acquired EPI images is shown in the
lower row of Fig. 5. The displacement field estimated from
these, using the approximate model (Eq. 21), is shown in the
middle right panel and demonstrates a high level of simi-
larity to the true field (middle left panel). The resulting
restored image in the upper right panel is virtually indistin-
guishable from the true image in the upper left panel.

Assessment of the spatial scale of the distortions

A cursory examination of the error-maps (ê�) in the second
row and the restored images in the third row of Fig. 6 may
indicate that already a limited number of basis functions (e.g.,
12�12�5 as in the third column) would be sufficient. How-
ever, careful scrutiny (as that offered by the blow-up in the
fourth row) shows that for the problematic areas (areas with
large y-gradients of the susceptibility-induced field) results
keep improving all the way up to the maximum number of
basis functions permissible by the amount of RAM
(22�22�8). The same conclusion can be drawn from Fig. 7
where it is shown that the “error” assessed using either the
exact (Eq. (14)) or the approximate method is still decreasing
as a function number of basis functions.

Furthermore, the close correspondence between the two
error terms demonstrated in Fig. 7 lends additional support
to using the approximate method for estimation of the field.

Fig. 7. The solid and dashed lines demonstrate the value of the exact (as
given by Eq. (14)) and the approximate (as given by Eq. (17)) cost
function, respectively, as a function of the number of basis functions used
to model the field.
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Sensitivity of estimated field with respect to data

Fields estimated from a pair of T2-weighted reference im-
ages and from pairs of diffusion weighted images are shown in
the first three columns of Fig. 8. The fourth column shows the
field resulting from using all three pairs and Eq. (22). There is
a high degree of correspondence between the estimates. The
main difference lies in the inability to estimate the field cor-
rectly around the eyes from the diffusion-weighted images.
This is not surprising since the diffusion gradient obliterates
virtually all the signal in the area. Note also how the field
estimated from all three pairs is closest to that estimated from
the reference pair. This is due to the much higher SNR of the
T2-weighted scans, causing it to dominate any company as
defined by Eq. (22).

Comparison to dual-echo phase mapping

Field maps obtained from the GE dual echo-time data
and from dual-blip data using Eq. (21) are alternated in the
second row of Fig. 9. Good correspondence is found be-
tween the two ways of estimating the fields. The final row

shows images restored using field map methods (the left in
each pair) and the present method. A good correspondence
can be seen also here.

Visual assessment of registration accuracy

One example of points defined in the anatomical image
transferred to an uncorrected and a restored EPI image is
shown in Fig. 10. It is evident that geometric fidelity has
been much improved. Similar results were obtained for
other image planes.

Generation of distortion-free diffusion tensor maps

The DT maps based on the undistorted EPI images are
shown in Fig. 11 and showed (not surprisingly) the same
apparent improvement in geometric fidelity as that evi-
dent in Fig. 10. The reason we show them is that it might
be of interest to see the final maps resulting from a
pair-wise restoration of all component images, rather
than just a single pair.

Fig. 8. The top row shows SE-EPI images acquired with positive phase-encode blips without diffusion gradients and with diffusion gradient directions [0.17
0.99 0] and [0.09 0.19 �0.98] from left to right, respectively. The bottom row shows the fields estimated from the pairs (with positive and negative blips)
corresponding to the top row. The fourth panel in the bottom row shows the field estimated using all pairs above and Eq. (22).
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Discussion

Diffusion tensor images based on SE-EPI images are
subject to severe intensity and geometric distortions.
Consider the pair of images in the top panel of Fig. 4, that
these are from the same subject, both wrong, and that in
a typical study you get one of them. It is then very
intuitive that this is not ideal and that the problem should
be properly addressed.

We have shown that, and explained why, it is not
possible to reconstruct the true image from a single EPI
acquisition, even with perfect knowledge of the field
inhomogeneity �B0(x, y, z). There is an inevitable, and
irreversible, undersampling of the signal from areas
where the susceptibility-induced local gradient collabo-
rates with the phase-encode gradient of the sequence.
This explains, for example, the observations made by
Munger et al (2000). If not taken into consideration, i.e.,

if attempting a restoration based on a single EPI image,
this will lead to a nonstationary image resolution. In
particular for modern high field scanners this nonstation-
arity may be quite substantial.

We have suggested a solution to this problem based on
revisiting an old idea (Bowtell et al., 1994) of acquiring two
images, differing by a sign reversal of the phase-encode blips.
This means that for each area where the local field and phase-
encode gradients concur in one image they will oppose in the
other, leading to an oversampling of the signal. This enables us
to solve for the true intensity on a stationary grid in a least
squares sense. In addition, we suggest a novel method to assess
the field based exclusively on these two images, eliminating
the need for any additional measurements (e.g., dual echo-
time). In contrast to earlier methods (Bowtell et al., 1994;
Kannengießer et al., 1999) we estimate a true 3D field, simul-
taneously considering all the data, rendering it quite robust. On

Fig. 9. The top panels show SE-EPI images acquired with positive (left in each pair) and negative (right in each pair) phase-encode blips for three different
planes. The middle panels show the displacement-fields resulting from a direct measurement of the field using dual echo-times (left in each pair, see main
text for details) and that estimated from the dual-blip data and the approximate model (right in each pair, Eqs. (18) to (21)). There is clearly a high degree
of correspondence. The bottom row finally shows the restored images. In each pair, the left image was corrected using the measured field and Jacobian
modulation and the right was restored using Eq. (10) and the estimated field.
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the downside it implies simultaneously estimating a large (sev-
eral thousands) number of unknowns using an iterative proce-
dure. This is potentially very time-consuming and prompted us
to develop an approximate method that capitalises on a previ-
ously described method (Ashburner and Friston, 1999) that
utilises the separability of the basis functions to speed up
calculation of the curvature matrix.

The main equation of the paper is Eq. (22), which de-
scribes the updating rule for estimating the parameters from
an entire DT data set. Compared to Eq. (21) that considers
a single image pair, the execution time scales with the
number of pairs. While we believe Eq. (22) to be important,

because it is principled way of utilising all data and because
it points forward to future work, it appears to be “over the
top” for the present application. It is our experience that
using Eq. (21) with a T2-weighted reference pair, or with a
pair consisting of the averages of all acquisitions for each
k-space traversal direction, yields virtually identical results
to using Eq. (22) with the entire data set (see, e.g., Fig. 8).
Hence, we believe that in practice Eq. (21) will be used for
the estimation of the field, followed by a pair-wise restora-
tion of the images using the estimated field and Eq. (10).
The execution time thus saved can be put to better use by
including the largest possible number of basis functions

Fig. 10. An SE-EPI image with positive phase-encode blips (left) and an SE-EPI restored using a field estimated from dual-blip data (right) were coregistered
to a T1-weighted 3D SPGR image. Points were manually defined on the SPGR image in sulci and in other readily identifiable locations. These were displayed
in red on the SPGR image and in the coregistered SE-EPI images alike. It should be obvious from the images that the geometric fidelity has been vastly
improved by the restoration approach.
Fig. 11. The same transversal SPGR slice that was shown in Fig. 10 is shown in the middle panel along with an isocontour serving as a crude delineation
between white and gray matter. On the left is an anisotropy (FA) map based on bottom-up acquired SE-EPIs and on the right a map based on images restored
from both acquisition directions. It is quite difficult to visually identify homologous structures between an anatomical scan and an anisotropy map. Still, the
impression from Fig. 10 of a much higher geometric fidelity in the corrected image remains.
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since it appears clear that a portion of these effects reside at
rather high spatial frequencies (Fig. 6).

In addition to enabling a complete restoration of the images,
we believe that our method offers advantages even when
strictly considering just the evaluation of a field-map. As easy
as it is in principle to calculate the field from a dual echo-time
measurement (Jezzard and Balaban, 1995), as difficult is it in
practice (see, e.g., Cusack and Papadakis, 2002). The need to
unwrap the phase makes the problem highly nonlinear, involv-
ing a binary decision for each voxel. Inevitably, this leads to
methods based on arbitrary heuristics (e.g., level of smoothing
prior to unwrapping, part of volume to unwrap, temporal evo-
lution of unwrapping, and basis set to fit to unwrapped map).
It is certainly our experience that it is not easy to find a set of
parameters that work satisfactorily for all data sets.

The method suggested by us is also nonlinear, but is
based on an iterative sequence of linearisations of the prob-
lem. As such it appears to be quite robust for the range of
distortions normally encountered in EPIs. Hence, we be-
lieve that the method can be an attractive alternative in any
application where a field-map is desired.

An interesting option would be to use DT images to esti-
mate high-resolution intersubject deformation fields. Previous
attempts have been based on scalar anatomical data (e.g.,
Christensen et al., 1996; Ashburner et al., 1999) which means
the all the information is contained along edges of different
tissue types. This leads to solutions (deformation fields) that
have a high frequency content along these edges and which are
maximally smooth in between where there is effectively no
information (see, e.g., Freeborough and Fox, 1998, for an
illustrative example). This means that any local tissue loss in
white matter will be attributed to a large, possibly global area.

By basing the estimation of the deformation fields on DT
images (see, e.g., Alexander et al., 1999) white matter ceases to
be a featureless lump and will now contain information that
may be used to determine the local “deformations.” Hence,
these deformation fields may prove useful for assessing tem-
poral evolution or group differences in shape at a high resolu-
tion. An obvious prerequisite for this is that the images are
anatomically faithful to begin with. We hope that the method
suggested here might help provide that.

For gradient-echo EPI data (i.e., fMRI) the pristine im-
age cannot be completely recovered in the manner described
here. This is due to additional signal loss from “through
plane” dephasing (Frahm et al., 1995). This is dephasing
caused by susceptibility-induced field gradients orthogonal
to the imaging plane and which is hence not rephased by the
readout gradients. In spin-echo EPI the rephasing is accom-
plished by the 180° pulse (at least for the centre of k-space).
In contrast, in gradient-echo EPI it leads to signal dropout
(i.e., the signal is never measured and hence cannot be
recovered by any amount of postprocessing).

However, the signal dropout will be independent of k-
space acquisition direction so Eq. (15) should remain valid,
allowing us to still use the approximate method to estimate
the field. Hence, it might be of interest as an alternative to

dual echo-time measurements for finding either the “static”
field map (Jezzard and Balaban, 1995) or the temporal (due
to subject movement) development of the field (Hutton et
al., 2002). The advantage over dual echo-times would be
that both acquisitions are contributing to the signal-to-noise
ratio of the time series in a straightforward manner.

High geometric fidelity would be especially important for
studies where high-resolution fMRI data are collected and
results projected onto flat-maps or reconstructed brain surfaces.

The application to fMRI data has not been examined in
the present paper and will be the subject of future work.

Conclusion

We have described, implemented, and demonstrated a
method for correction of susceptibility-induced geometrical
and intensity distortions in EPI images. We have shown its
usefulness for diffusion tensor images based on spin-echo
EPI data. Furthermore, we believe it will prove useful also
for gradient-echo EPI data used in fMRI.

Appendix:

Deriving the operational equations for the approximate
method

In our implementation we use an �3 3 �3 mapping of
the form (x, y, z) 	 (u, v � d(u, v, w), w) (where (u, v, w)
denotes the true undistorted space). From the perspective of
a single voxel the intensity that rightfully belongs to that
voxel is deflected by an equal distance in the bottom-up and
the top-down acquired image. Hence, if we denote the two
mappings T� and T� for bottom-up and top-down, respec-
tively, these are given by

� x, y, z�� � T��u, v, w� � �u, v � d�u, v, w�, w�

(A1)

and

� x, y, z�� � T��u, v, w� � �u, v � d�u, v, w�, w�,

(A2)

where the sign of the deflection has been arbitrarily chosen.
If we use f *(u, v, w) to denote the undistorted intensity
values in the undistorted space (“the truth”), we can de-
scribe the “restored” intensity function in two ways:

f *�u, v, w� � �1 �
�d

�v � f��u, v � d�u, v, w�, w�

� �1 �
�d

�v � f��u, v � d�u, v, w�, w�.

(A3)

884 J.L.R. Andersson et al. / NeuroImage 20 (2003) 870–888



Of these, we will use the second equality where f� and f�
are our observed data and the d-field is the unknown of our
problem.

Up until now we have treated the problem as a con-
tinuous one, when in reality we have sampled f� and f�
(and hence also d) on a discrete grid. In fact, f� and f�
have been sampled on two distinct grids. If we assume
integers a, b, and c, these are given by (u0 � a�u, v0 �
b�v � d(u � a�u, v � b�v, w � c�w), w � c�w) and
(u0 � a�u, v0 � b�v � d(u � a�u, v � b�v, w � c�w),
w � c�w), respectively. It is when we consider the
discrete version of the problem that Eq. (A3) above
becomes an approximation, which is why we refer to it as
the “approximate method.” For the discrete case, we will
denote the acquired data by f� and f�, being n�1 column
vectors obtained by unravelling an image volume into a
single “thread.” The displacement field is modelled as a
linear combination of basis warps, i.e.,

d
n�1

� �B1 B2 · · · Bmxmymz
�

n�mxmymz

b
mxmymz�1

� Bb,

(A4)

where each vector Bi is an unravelled version of one basis
function from a truncated 3D discrete cosine transform
and where mx, my, and mz are the order of the transform
in the x-, y-, and z-directions, respectively. Furthermore,
given that we have measured f� (or f�) on some grid we
can estimate the value for an arbitrary point in the volume
using interpolation (trilinear or sinc). When we have a
nonzero b vector (and hence a nonzero displacement field
d) we will sample (by interpolation and Jacobian inten-
sity modulation) new points, yielding a new vector of
values. We will denote this resampled and modulated
vector f�(b) (or f�(b) for the top-down data). Hence, we
view f� (or f�) as a continuous n-dimensional function of
mx � my � mz variables (i.e., a �mxmymz 3 �n mapping).
The objective function that we wish to minimise in order
to find b is simply the sum of squared differences
between f�(b) and f�(b) (i.e., O(b) 	 (f�(b) �
f�(b))T(f�(b) � f�(b))).

As we alluded to in the main text, there is another
potential cause of differences between f� and f�, namely
subject movements between the two acquisitions. If we
denote the six parameters associated with a rigid body
model by p we can denote the resampled vector f� that is
obtain after transforming the sampling points first with a
rigid body model according to p and then a displacement
field according to b by f�(p, b). We could pick any of the
acquisitions as reference, in terms of subject position, but
have instead opted for realignment to the geometrical
midpoint, thereby rendering both f� and f� functions of
both p and b. In the following we will use the “residual
error” formulation (Andersson and Skare, 2002) when
deriving the equations because it is more convenient

when extending the model to include more than just a
single pair of images. From Eq. (A3) the model for a
single voxel is

� f��p,b�

f��p,b� 	 � � 1

1 		 � � e�

e�
	 , (A5)

yielding the residual forming matrix

R �
1

2 � 1 �1

�1 1 	 (A6)

and extending the model to all voxels

R
2n�2n

�
1

2 �
I

n�n

�I
n�n

�I
n�n

I
n�n

� , (A7)

which makes the objective function

O�p,b� �
1

2
�f��p, b�T f��p, b�T �

� � I �I

�I I 	 � f��p, b�

f��p, b� 	 . (A8)

As demonstrated by Andersson and Skare (2002) this
results in the following update rule for a Levenberg–Mar-
quardt type algorithm for minimisation of O(p, b),

� pi�1 � pi

bi�1 � bi
	

6�mxmymz�1

� � �� � �f
�p�

T

6�2n

� �f
�b�

T

mxmymz�2n

� � I �I

�I I 	
2n�2n

�� �f
�p�
2n�6

� �f
�b�

2n�mxmymz

	�
�1

� � � �f
�p�

T

6�2n

� �f
�b�

T

mxmymz�2n

� � I �I

�I I 	
2n�2n

� f��p, b�

f��p, b� 	
2n�1

, (A9)

where

�f
�p

� �
�f�

�p

�f�

�p
� (A10)

885J.L.R. Andersson et al. / NeuroImage 20 (2003) 870–888



and

�f
�b

� �
�f�

�b

�f�

�b
� . (A11)

Given Eq. (A3) and (A4) above we can describe the partial
derivatives with respect to b as

�f�

�b
n�m

� �diag��f�

�y
n�1

�
n�n

B
n�m

n�m

� diag� f�

n�1

�

n�n

�B
�y

n�m

n�m

, (A12)

and

�f�

�b
n�m

� �diag��f�

�y
n�1

�
n�n

B
n�m

n�m

� diag� f�

n�1

�

n�n

�B
�y

n�m

n�m

, (A13)

where m 	 mxmymz and where, given an n�1 vector a, the
diag operator creates an n�n matrix with the values of a on
the diagonal.

Implementation of Eq. (A9) requires some care since it
involves the multiplication of some really large matrices.
Specifically we define the matrix A as

A � � ���f�

�p �
T ��f�

�p �
T 	

BT

m�n

��diag��f�

�y � diag��f�

�y �	
n�2n

� ��B
�y �

T

m�n

��diag�f�� diag�f���
n�2n

�
6�m�2n

� I �I

�I I 	
2n�2n

� ��
�f�

�p

�f�

�p
�

2n�6

� �diag��f�

�y �
diag��f�

�y � �
2n�n

B
n�m

� � �diag��f��

diag��f�� 	
2n�n

�B
�y

n�m
� . (A14)

The direct creation of A would entail calculating roughly
m2/2 elements, each requiring 2n multiplications and addi-
tions. With m in the order of thousands (which is demon-
strated to be needed in the main text) and n in the order of
hundreds of thousands this is a formidable task even for
present day computers. Luckily, we are able to use the
cunning trick suggested by Ashburner and Friston (1999)
where they capitalise on the fact that B is separable into a
Kronecker product, i.e., B 	 Bz V By V Bx. When a matrix
B is separable in that way BTB can be calculated as BTB 	
Bz

TBz V By
TBy V Bx

TBx, which is ridiculously fast compared
to the direct calculation. What Ashburner and Friston (1999)

showed was that with some additional thought it is possible
to find a similar shortcut for (Bz V By V Bx)

T DD(Bz V By

V Bx) where D is some arbitrary diagonal matrix. In the
present paper we will use also the fact (stated without proof)
that there is a shortcut also for (Cz V Cy V Cx)

T D1D2(Bz V

By V Bx) where C is a matrix implementing some other
separable 3D basis set and where D1 and D2 are both
diagonal matrices. We will refer to these as SC1 and SC2
(shortcut 1 and 2).

Some additional consideration of Eq. (A14) shows that
it can be thought of as consisting of a small set of
submatrices,

A � � X1
T

X2
T � X3

T�R�X1 X2 � X3� � �
X1

TRX1

6�6

X1
TRX2 � X1

TRX3

6�m

�X1
TRX2 � X1

TRX3�
T

m�6

X2
TRX2 � X3

TRX3 � X2
TRX3 � �X2

TRX3�
T

m�m

� , (A15)
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where

R � � I �I

�I I 	 (A16)

and where the specifics of X1, X2, and X3 should be clear
from a comparison to Eq. (A14).

Deriving these a bit further it is easy to see that

X1
TRX1 � ��f�

�p
�

�f�

�p 	
T��f�

�p
�

�f�

�p 	 , (A17)

which does not take long to calculate directly. Furthermore,

X2
TRX2 � BTdiag��f�

�y
�

�f�

�y �diag��f�

�y
�

�f�

�y �B

(A18)
and

X3
TRX3 � ��B

�y �
T

diag�f� � f��diag(f��f�)
�B
�y

,

(A19)

where

�B
�y

n�m

� Bz

nz�mz

�
�By

�y
ny�my

� Bx

nx�mx

, (A20)

i.e., separable, and where nx, ny, and nz are the volume size (in
voxels) in the x-, y-, and z-direction, respectively. It is clear that
both of these are of a form suitable for SC1 and hence we can
calculate them rapidly. The next term is given by

X2
TRX3 � ��B

�y �
T

diag�f� � f��diag��f�

�y
�

�f�

�y �B,

(A21)

which can be calculated using SC2, and the fourth term
finally is just the transpose of the third term.

Ashburner and Friston (1999) also discuss the related
problem of calculating BTDy, where y is an n�1 column
vector, and derive a shortcut also for this calculation. This
we might call SC3. It is easily shown that

�X1
TRX2�

T

m�6

� BT

m�n

diag��f�

�y
�

�f�

�y �
n�n

��f�

�p
�

�f�

�p �
n�6

(A22)
and

�X1
TRX3�

T

m�6

� ��B
�y �

T

m�n

diag�f� � f��
n�n

��f�

�p
�

�f�

�p �
n�6

.

(A23)

This formulation is relevant because it shows how the terms of
the off-diagonal partitions in Eq. (A15) can be calculated by

six (one for each column of (�f�/�p � �f�/�p) consecutive
calculations of the same type as BTDy. Hence, there is a rapid
way of calculating these terms also.

That is really all there is to it. Combining Eq. (A9),
(A14), (A15), (A17), (A18), (A19), (A21), (A22), and
(A23) offers a fast and convenient way to estimate the field.
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