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Abstract. In the first part of this paper the notion of dynamic inverse problems
was introduced and two procedures, namely STR and STR-C, for the efficient
spatio-temporal regularization of such problems were developed.

In this part the application of the new methods to three practical important
problems, namely dynamic computerized tomography, dynamic electrical
impedance tomography and spatio-temporal current density reconstructions will
be presented. Dynamic reconstructions will be carried out in simulated objects
which show the quality of the methods and the efficiency of the solution process.
A comparison to a Kalman-smoother approach will be given for dynEIT.
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1. Introduction

In the first part [1] of this paper we introduced the notion of dynamic inverse problems
and developed two efficient procedures for spatio-temporal regularization, namely STR

and STR-C. We will now give a brief repetition of the key facts appearing in the first
part.

Starting point is a measuring procedure which needs a certain amount of time.
During this time span, measurements are taken at time steps ti. A dynamic problem
is then described by equations Ai xi = yi, where i is a temporal index, i.e. , the linear
operator Ai maps the properties xi of an investigated object to the measurements yi

at time step ti.
Since the operators Ai are under-determined in most cases, the degree of freedom

in Ai xi = yi is very high. Due to this fact, and due to the ill-posedness of these
equations, we consider the a priori information ”temporal smoothness” which is
introduced as follows: in order to achieve a solution with the desired properties we
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expand the well known Tikhonov-Phillips minimization task with an additional term
which measures the total variance of the xi. Thus, we solve

Φ(x) =

T
∑

i=1

‖Aixi−yi‖
2+λ2

T
∑

i=1

‖xi‖
2+µ2

∑

i

‖xi+1 − xi‖
2

(ti+1 − ti)2
→ min .(1)

If we introduce

D =











1
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− 1
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. . .

. . .
1

tT −tT−1
− 1
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∈ R
T×(T−1),

the efficient solution of this minimization task is given by the following procedure
named STR [1]:

(i) Input: data y, spatial regularization parameter λ, temporal regulariza-
tion parameter µ.

(ii) Calculate Q and R

Q =

(

DD> +
λ2

µ2
IT−1

)−1

R = IT −D>QD = (ri,j)i,j .

(iii) C is defined by

C = [ri,jAiA
∗
j ]i,j .

(iv) Solve

(C + λ2IG1⊕···⊕GT )u = y.

(v) Finally the xi are calculated by

xi =
∑

j

ri,j A
∗
juj .

In order to achieve efficiency, in a first step one calculates A∗
juj for each

j and afterwards xi.

As this procedure is formulated in terms of operator equations, which may
map between infinite dimensional spaces, one needs a discretization scheme for their
numerical solution. See [1] for further information.

If the linear operators Ai are identical for all time steps and if these operators
are matrices, one can enhance the efficiency by using the following procedure STR-C:
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(i) Input: data y, spatial regularization parameter λ, temporal regulariza-
tion parameter µ.

(ii) Calculate Q and R according to

Q =

(

DD> +
λ2

µ2
IT−1

)−1

R = IT −D>QD.

(iii) Solve the generalized Sylvester equation

(A0A
∗
0)UR+ λ2U = Matn(y) =: Y.

(iv) Calculate

X = A∗
0UR,

and get xi as the i-th column of X .

The equation in step (iii) is an equation of Sylvester type, an efficient solution
algorithm can be found in [2].

2. Dynamic computerized tomography

In the following the problem of dynamic computerized tomography (dynCT) will be
studied. We will describe how procedure STR can be applied and some numerical tests
will be carried out. An overview of the mathematics of computerized tomography can
be found in [3, 4, 5].

2.1. Application of procedure STR

dynCT is a linear problem which will be formulated as operator equations between
infinite dimensional Hilbert spaces.

We consider parallel geometry, i.e., the forward problem is described as follows:
First

L(s, ω) = {x ∈ R
2 | s− x · ω = 0} ω ∈ S1, s ≥ 0

is defined. Thus, L is a line orthogonal to ω with distance s to the origin. The Radon

transform R is then defined by

R : L2(Ω) → L2([−1, 1], S1)

Rf(s, ω) =

∫

L(s,ω)

f(x) dx =

∫

Ω

δ(s− x · ω)f(x) dx

and

Rif(s) = Rθif(s) = Rf(s, ωi)

according to ωi = (− sin θi, cos θi)
> , 1 ≤ i ≤ T , and Ω = {x | ‖x‖ ≤ 1}. We assume

that the θi are equidistant, 0 ≤ θi < 2π. So Ri maps the density fi of the scanned
object at a time ti to the measurements at this point of time. Due to the variation of
θ during a fixed period of time, we get a dynamic problem.
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In order to apply the procedure STR to this problem, we have to determine the
weights ri,j as described in step (ii) of STR. As the angles are equispaced, we assume

D =











1 −1
1 −1

. . .
. . .

1 −1











Now, R = (ri,j) can be computed as described in step (ii) of STR.
Then, we have to consider the operator

C = [ri,jAiA
∗
j ]

with Ai = Rθi = Ri. So C maps from
(

L2([−1, 1])
)T

to itself. It is easy to show that

R∗
i g(x) = g(x · ωi).

That is, R∗
i extends the function g on the detector to a function on the object Ω, such

that R∗
i g is constant along lines L(s, ωi). Due to geometric invariances of the Radon

transform [4] we have

RiR
∗
j = R(i−j) mod TR

∗
0

and if we define

Ci = RiR
∗
0

[C] can be written as

[C] = [ri,jC(i−j) mod T ] (2)

If we want to solve step (iv) in STR numerically by a projection scheme, we discretize
the Ci and weight and compound the emerging matrices according to Lemma 4.1 and
(2) to a discretization of [C].

For the discretization of Ci we start from angles

θi = 2π
i− 1

T
, 1 ≤ i ≤ T

and N detector elements at

sj =
2j − 1 −N

N − 1

such that s1 = −1 and sN = 1. If we now use pointwise linear basic functions φk

on the detector, defined by φk(sj) = δj,k and point collocations ψk = δsk
, we get a

discrete version C̃i ∈ R
N×N of Ci by

(C̃i)j,l = ψjCiφl = (RiR
∗
0φl)(sj).

That is, one has to extend the ”hat”-function φi to the object Ω, such that the
extension is constant along lines parallel to the x-axis. Next, one has to calculate the
line integral of this function along the line L(sj , ωi). See figure 1. In detail: first, we
have to calculate the points

p1 = L(sl−1, ω0)∩L(sk, ωi) p2 = L(sl, ω0)∩L(sk, ωi) p3 = L(sl+1, ω0)∩L(sk, ωi).(3)

Then, we determine linear functions αi such that

α1(p1) = 0 α1(p2) = 1 α2(p2) = 1 α2(p3) = 0.
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Figure 1. Calculation of the entries of C̃i

Now

(C̃i)k,l =

∫ p2

p1

α1(x) dx +

∫ p3

p2

α2(x) dx.

Further, we have to consider several subcases: the points pi may be outside the object,
the points pi may not exist, or the linecuts in (3) may be whole lines, not just points.
These are technical details which are handled accordingly.

Step (iv) of STR now delivers vectors ui and corresponding piece wise linear
functions ũi =

∑

j(ui)jφj .
In order to complete the implementation of STR we have to compute step (v)

as follows. First we divide [−1, 1] into n points zi = 2i−n−1
n−1 , such that z1 = −1 and

zn = 1. Then we construct a grid Gn by

Gn = {(zi, zj) | 1 ≤ i, j ≤ n}

The resulting dynamical solutions fi of Rifi = gi will be computed according to step
(v) of STR in points p ∈ Gn ∩ Ω by

fi(p) =
∑

j

ri,j(R
∗
j ũj)(p) =

∑

j

ri,j ũj(p · ωj).

In order to evaluate this formula in an efficient way, we first compute functions Uj on
Gn by

Uj(p) = ũj(p · ωj)

and then compute the sum

fi(p) =
∑

j

ri,jUj(p).

To summarize, we get the following algorithm
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(i) Input: data g, spatial regularization parameter λ, temporal
regularization parameter µ.

(ii) Starting with D,λ, µ compute Q,R according to

Q =

(

DD> +
λ2

µ2
IT−1

)−1

R = IT −D>QD = (ri,j)i,j .

(iii) Compute matrices (C̃i)j,l = ψjCiφl = (RiR
∗
0φl)(sj). Then, C̃ is

compounded according to

C̃ = (ri,j C̃(i−j) mod T ) ∈ R
NT×NT .

(iv) Solve

(C̃ + λ2INT )u = g.

with u = (u>1 , . . . , u
>
T )> and g = (g>1 , . . . , g

>
T )>.

(v) Discretize [−1, 1]2 using a grid Gn and compute

Uj(p) =

{

ũj(p · ωj) if p ∈ Ω ∩Gn,

0 else.

Compute ũj(s) by linear interpolation of uj .
Finally, the solution of dynCT is achieved by

fi(p) =
∑

j

ri,j Uj(p)

with p ∈ Gn.

Step (iv) in this procedure corresponds to a linear system on the detector and
step (v) is a weighted and discrete version of the backprojection R]ũj , see [5, 4].

If we had used step wise constant functions on the detector and functionals

ψl(f) =

∫ sl+1/2

sl−1/2

f(x)dx,

we would have got a dynamic version of the direct algebraic method as proposed in
[4].

2.2. Numerical Tests

We will see two numerical tests based on the procedure STR applied to dynCT.
The design parameters are as follows: We used a 300×300 grid for reconstruction,

that is n = 300. Further, we had 87 angular positions, which means we considered
T = 87 time steps. The detector is divided into 81 points, which means N = 81.
We determined λ = 0.01 and µ = 1.0 by experimentation. The data were generated
analytically, no noise was added.

The two dynamic objects, that will be studied, have the same structure, see
figure 2. The circular objects are static and the emphasized ellipse is dynamic.
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1.8

1.5 1.5

3.0 2.2

Figure 2. The structure of the considered dynamic objects. The numbers
describe the density of the objects, the highlighted ellipse is the dynamic part
of the object.

2.2.1. First Example The first example considers the case of slight patient motion:
the examined organs behave statically up to time step 44 and the ellipse lies on the
right side. Then, from time step 45 on, the ellipse lies on the left side, the other organs
do not move. The object and the according reconstructions are shown in figure 3. At

1 12 23

33 44 55

66 76 87

1 12 23

33 44 55

66 76 87

Figure 3. Dynamic object number one and reconstructions. In the left part
one can see the original dynamic object, in the right part the reconstructions are
depicted. The numbers above the single pictures are the corresponding time steps.

the beginning and at the end of the scanning process the quality of the reconstruction
is quite good, in the neighborhood of timestep 43 the reconstructions are blurred and
show slight artifacts. Nevertheless one can see the underlying dynamics.

2.2.2. Second Example In this case we examine a dynamic object where the size of
the ellipse increases from time step one to time step 87. This corresponds to a CT
at the human heart or to a CT of the lung during inhalation. The object and the
according reconstructions can be seen in figure 4.
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1 12 23

33 44 55
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Figure 4. Dynamic object number two and reconstructions. In the left part
one can see the original dynamic object, in the right part the reconstructions are
depicted. The numbers above the single pictures are the corresponding time steps.

2.2.3. Discussion As we have seen the described method is able to reveal dynamics
in a scanned object. The reconstructions are afflicted with artifacts which correspond
to the weak a priori information we considered. Nevertheless, the method is able
to distinguish between pathological findings (which should appear in reconstructions
belonging to all time steps) and motion artifacts (which are supposed to appear in
reconstructions according to few time steps only). Reconstruction procedures which
deliver only one picture do not have this property. Thus, a practical application of
our method is imaginable.

3. Dynamic electrical impedance tomography

Electrical impedance tomography (EIT) tries to determine the conductivity inside a
given object based on electrical measurements on the objects surface. For applications
see [6, 7, 8, 9, 10]. Article [11] gives an extensive survey of EIT.

EIT is based on a non-linear ill-posed problem that can be interpreted as a dynamic
problem, which we will name as dynEIT in the following. In the first section we will give
some preliminaries and we will apply the procedure STR to the problem of dynEIT

by linearization of the underlying problem. In a second section we will give some
numerical tests which we will compare to a known procedure based on so-called (fixed
interval) Kalman-smoothers.

3.1. Application of the procedure STR

The electrical measurements addressed above consist of measured voltages based on
injected current patterns. Due to the variation of the currents from time step to time
step, one can interpret EIT as a dynamic problem dynEIT. We assume that the time
steps are equispaced.

Our calculations are based on a so-called complete electrode model which is
proposed in [12]. The outstanding quality of this model is studied in [13]. It is
formulated by the following equations

div(σ∇u) = 0
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∫

el

σ
∂u

∂n
dS = Il 1 ≤ l ≤ L

σ
∂u

∂n

∣

∣

∂Ω\∪el
= 0

(

u+ zlσ
∂u

∂n

)

∣

∣

el
= Ul 1 ≤ l ≤ L.

Here, L is the number of electrodes, Il is the injected current at electrode el, Ul is
the measured voltage at this electrode, σ is the conductivity distribution, u is the
electrical potential inside the examined object Ω, zl is a so-called contact impedance
at electrode el and n is the outward normal at ∂Ω.

This equation can be solved by converting it to a variational equation which can
be solved by a finite element method (FEM), see [14, 15, 16, 13]. The uniqueness of
the solution induces a non-linear operator in form of a real valued matrix

T : (ρ, Il) 7→ U

Here ρ = (ρi)i and
∑

i ρi
χ

i is a discretized version of ρ = 1/σ. U is a vector of the
measured voltages. χi are characteristic functions of elements ∆i.

In order to consider EIT as a dynamic problem operators

At(ρ) = T (ρ, It),

are used which are linearized in ρ0 as follows:

At(ρ) = At(ρ
0) + Jt(ρ

0)(ρ− ρ0) + o(‖ρ− ρ0‖)

The matrix Jt(ρ
0) can be computed using the stiffness matrix of the underlying finite

element method, see [14, 15, 16]. ρ0 ∈ R can be estimated from the data according
to [14, 15, 16]. In the following, ρ0 is either a real number, or we identify ρ0 with the
vector ρ0(1, . . . , 1). The length of this vector is arbitrary.

Starting point for the solution of dynEIT are T measurement vectors Ui =
(Uk)i, 1 ≤ k ≤ L, 1 ≤ i ≤ T together with the minimization task

Φ(ρ) = ‖A(ρ) − U‖2 + λ2
∑

t

‖ρ− ρ0‖2 + µ2‖Bρ‖2 → min

with the notions

ρ = (ρ>1 , . . . , ρ
>
T )>

U = (U>
1 , . . . , U

>
T )>

A = diag(At)

B =











I −I
I −I

. . .
. . .

I −I











If we now use

J(ρ) = diag(Jt(ρt))

and approximate A iteratively by linearization we get the following Gauß-Newton type
iteration

ρi+1 = minargρ

{

‖A(ρi) + J(ρi)(ρ− ρi) − U‖2 + λ2‖ρ− ρ0‖2 + µ‖Bρ‖2
}

.
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The upper indices are iteration indices. It has to be pointed out, that this minimization
problem can not be tackled by the procedure STR due to the spatial regularization
term ‖ρ− ρ0‖. If we want to use procedure STR, we have to introduce u = ρ− ρ0 and
ui = ρi − ρ0. If we consider Bu = Bρ we get the iteration

ui+1 = minargu

{

‖J(ρi)u− (U + J(ρi)ui −A(ρi))‖2 + λ2‖u‖2 + µ2‖Bu‖2
}

respectively

ρi+1 = ρ0 + minargu

{

‖J(ρi)u− (U + J(ρi)(ρi − ρ0) − A(ρi))‖2 + λ2‖u‖2 + µ2‖Bu‖2
}

.

This iteration has now the right mode so that STR can be applied.

3.2. Numerical Tests

For the testing of our proposed method we used synthetic data calculated by a FEM
using 1968 elements for the discretization of the unit disc. Further we used L = 16
electrodes and T = 16 current patterns. For the discretization of the resistivities ρi we
used a coarser mesh with 492 elements. The examined object is drawn in figure 5. The
background has the resistivity 400Ω, the inclusions 200Ω. ρ0 was estimated [14, 15, 16]
as ρ0 = 396Ω. This object reflects the rise of a bubble in a three dimensional tube
through a two dimensional plane. In the following we will compare our method with a

Figure 5. The examined dynamic object.

so-called (fixed interval) Kalman-smoother approach. According to [15, 17], we choose
the identity matrix as regularization operator. Further details can be found in these
two references. For the theory of Kalman-smoothers see [18].

It should be pointed out that in the reconstruction results the contrast was
modified in order to achieve meaningful images.

3.2.1. Noiseless data We will now present three different reconstructions: our
proposed method with one iteration, see figure 6, our proposed method with two
iterations, see figure 7, and the Kalman-smoother method, see figure 8. All
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regularization parameters where chosen by experimentation. The reconstructions of
the Kalman-smoother have a slightly better quality as the reconstructions achieved
by one iteration of our procedure. The quality after two iterations is again enhanced.
More iterations do not result in improved reconstructions. After the precalculation
of J(ρ0), the Kalman-smoother needs about 80 seconds on a Pentium-II-CPU, one
iteration of our method needs about one second and two iterations need 60 seconds.
The leap in the running time between one and two iterations is caused by the
calculation of the linearization J(ρ1) in the second iteration of our procedure which
depends on the result of the first iteration and thus can not be precalculated. The
memory usage of the Kalman-smoother is about 80 times higher than the usage of our
iterative method.

Figure 6. Reconstruction after one iteration of our procedure based on noise-free
synthetic data. λ = 0.001, µ = 0.0055.

3.2.2. Noisy data Now we superpose our synthetic data with uniform noise in the
range [−0.025 · max |U |,+0.025 · max |U |]. The reconstructions can be seen in figures
9 and 10. Again, the Kalman-smoother reconstructions seem to have a comparable
quality as the results of our approach. According to the results in 3.2.1 one further
iteration of our procedure leads to slightly better reconstructions.

3.3. Discussion

We have seen that our iterative approach based on STR leads to reconstructions
with a satisfying quality. The quality seams to be comparable to the quality of the
reconstructions gained by the Kalman-smoother.

There is one important difference between the two approaches which has an
impact on the practical use: the Kalman-smoother is controlled by three parameters,
the STR approach only needs two of them. As we have already mentioned, the Kalman
approach is significantly slower and has a much higher memory usage.
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Figure 7. Reconstruction after two iterations of our procedure based on noise-
free synthetic data. λ = 0.014, µ = 0.005.

Figure 8. Kalman-smoother reconstruction based on noise-free synthetic data.
According to [15, 17] we used α = 0, a1 = 30, a2 = 0.00001.

It should be annotated, that there is another approach called fixed-lag smoothing

[19] which has less memory consumption than the (fixed-interval) Kalman-smoother
used here.

The extended Kalman filter studied in [20], is an analogue to our Gauß-Newton
approach. This method is supposed to work better than the Kalman-smoother in
certain cases.
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Figure 9. Reconstruction after one iteration based on noisy data. λ = 0.02, µ =
0.07.

Figure 10. Kalman-smoother reconstruction based on noisy data. α = 0.08, a1 =
30, a2 = 0.08.

4. Spatio-temporal current density reconstructions

Current density reconstructions (CDR) appear in the field of inverse source
localizations. Here, one tries to determine electrical activity in an object by electrical
measurements on the surface of the object.

One field of application is the study of neurological activity in the human brain,
by means of electroencephalography (EEG) measurements on the heads surface. Focal
epileptogenic discharges [21] or sources, underlying somato sensoric evoked potentials
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(SEP’s) can be localized [22].
An overview of the broad field applications is given in [23] and [24]. Comparable

techniques can be applied to the human heart, see [25].

4.1. The forward model

The fundamental equation governing the interaction of electrical sources j and the
electrical potential Φ is the Poisson equation in connection with a Neumann boundary
condition

div(σ∇Φ) = div j in Ω

〈σ∇Φ, n〉 = 0 at Γ = ∂Ω.

Here, σ is the conductivity tensor and the open and bounded set Ω describes the
geometry of the head. n is the outward normal at ∂Ω. We define Γ0 ⊂ ∂Ω as the
measurement surface. Then, the electrical measurements are obtained as Φ|Γ0.

In order to achieve a discrete forward model, the current in the object Ω is
discretized as a fixed number of dipoles, located at points pi ∈ Ω, 1 ≤ i ≤ N , and point
collocation at the measurement points are used. It is assumed that the measurements
are taken at points ξi ∈ Γ0. The set {pi | 1 ≤ i ≤ N} is called influence space.

If we name the kth unit vector in R
3 as ēk, and if we set ei,k as a dipole in pi

with moment ēk, that is ei,k = δpi ēk, j can be discretized by

j =

N
∑

i=1

2
∑

k=0

αi+kNei,k

The forward model of CDR is the so-called leadfield matrix. Depending on the
geometrical model of the head, this matrix can be computed by analytical formulas
[26, 27], boundary element methods [28] or finite element methods [29]. A fast forward
solution in realistically shaped anisotropic FE head models is described in [30]. In [31]
methods were described how Ω and especially tensor valued σ can be determined
non-invasively and individually through multi-modal magnetic resonance imaging.

The leadfield matrix maps a current distribution j described by a vector α to
the electrical measurements by m = Lα. For details see [23]. The determination of
α is typical for the CDR methods in contrast to dipole fit methods, where only some
few dipoles explaining the measured data are determined through an optimization
procedure, see [32].

The data are given as functions of time, as provided by an EEG. Most existing
CDR methods use separate time slices of voltage measurements without temporal
coupling of neighboring time steps. Due to the physiologically motivated a priori

information of temporal smoothness, it makes sense to use our procedures in order to
achieve stability in the presence of noise. As the leadfield matrix is independent of
the time, we use procedure STR-C.

4.2. A simple volume conductor model

The setup of the model is as follows: a two-dimensional influence space consisting of
a 10 × 10 grid with a length of ten arbitrary units per side centered at (5.5, 5.5, 0) is
considered. Nine sensors are placed in a planar array above the grid with center at
(5.5, 5.5, 2), see figure 11. We use constant conductivity σ in R

3. Thus, the leadfield
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Figure 11. Sketch of the model.

matrix is obtained by

Li,j =
1

4πσ

ri,1 − pj,1

‖ri − pj‖3

Li,j+N =
1

4πσ

ri,2 − pj,2

‖ri − pj‖3

Li,j+2N =
1

4πσ

ri,3 − pj,3

‖ri − pj‖3
.

Here ri ∈ R
3 is the position of the ith sensor, pj ∈ R

3 is the position of the jth
gridpoint.

Two equally oriented dipoles with moment (0, 0, 1)> at x = 3, x = 8 both at
y = 5 are placed on the ten by ten grid, see figure 11. A Gaussian dipole-strength
time series is assigned to each dipole by

q(t) = q0 exp

{

−
(t− tp)

2

w2

}

with peaks at time slice tp = 5 (dipole 1) and tp = 9 (dipole 2) and a width of w = 2.5.
See figure 12.
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Figure 12. The activation curves of the dipoles.
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4.3. Numerical Tests

In the following we will compare the results of STR-C and temporal uncoupled
Tikhonov-Phillips regularizations [27]. The latter means, that jt is computed based
on

αt = minargα‖Lα− yt‖
2 + λ2‖α‖2

for each time step t and data yt, 1 ≤ t ≤ T . In order to improve the signal to noise
ratio for the uncoupled case, we used a Savitzky-Golay filter of order 3 and length 5,
see [33, 34].

For the following reconstructions we used synthetic data which were superposed
by uniform noise in the range [−0.3 maxt |yt|, 0.3 maxt |yt|]. This noise range is typical
for EEG measurements.
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Figure 13. Temporal uncoupled reconstructions. λ2 = 2.0.
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Figure 14. Reconstructions based on STR-C. λ2 = 2.0, µ2 = 1.5.

In figure 13 we see the result of the temporal uncoupled Tikhonov-Phillips
procedure, in figure 14 we see the result of STR-C. In the left half of these figures
the current density ‖j(p, t)‖R3 for each of the 16 time steps t is shown. The small
boxes mark the exact positions of the dipoles. In the right half, the reconstructed
activation curves are shown.
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4.4. Discussion

As one can see, our approach STR-C yields reconstructions with a smaller localization
error and a more exact activation curve. Furthermore, the two dipoles are better
separated. Thus, the a priori information of temporal smoothness leads to higher
robustness against noise in the data.

For a systematic comparison of these approaches, based on an exactness measure
for the localizations and a correlation measure for the activation curves, see the joint
work [35].

If we compare our methods with the work of Brooks as proposed in [36], we start
from the same model introducing temporal smoothness, but yield an immensely faster
algorithm which has a significant impact on the clinical usability.

5. Conclusion

As shown the procedure STR is suited for the regularization of a large class of dynamic
inverse problems. It was applied to dynCT which is modeled by operators between
infinite dimensional spaces. Here, we could develop a procedure which is able to
distinguish between pathological findings and motion artifacts.

Further dynEIT was studied, which is formulated by finite dimensional non-linear
operators. Here, linearization lead to a practical algorithm. This algorithm provides
reconstructions with a quality comparable to the reconstructions gained by so called
Kalman-smoothers. In contrast to this Kalman approach which depends on three
regularization parameters, our procedure only needs two such parameters which has an
impact on the practical use of these procedures. Further our procedure is significantly
faster and has less memory usage.

The last application to Electroencephalography source localization, namely
stCDR, proved that the a priori information of temporal smoothness leads to an
algorithm with higher robustness against noise than a known procedure based on
temporal uncoupled Tikhonov-Phillips regularization. Further, the reconstructed
peaks and the reconstructed activation curves are more accurate.

Although the used a priori information of temporal smoothness is quite general,
STR leads in general to reconstructions which give an insight into the temporal
behavior of the examined objects. In all applications the efficiency was outstanding.
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