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Abstract. In this paper dynamic inverse problems are studied, where the
investigated object is allowed to change during the measurement procedure.
In order to achieve reasonable results, temporal a priori information will be
considered. Here, ”temporal smoothness” is used as a quite general, but for
many applications sufficient, a priori information. This is justified in the case of
slight movements during a x-ray scan in computerized tomography, or in the field
of current density reconstruction, where one wants to conclude from electrical
measurements on the heads surface to locations of brain activity.

First, the notion of a dynamic inverse problem is introduced, then we
describe how temporal smoothness can be incorporated in the regularization of
the problem, and finally an efficient solver and some regularization properties of
this solver are presented.

This theory will be exploited in three practically relevant applications in a
following paper.
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1. Introduction

This paper is devoted to the study of dynamic inverse problems, where the object
under consideration changes with time during the measuring process.

Starting point is a measuring procedure which needs a certain amount of time.
During this time span, single measurements are taken at time steps ti. Then, a
dynamic problem is described by operators Ai, where i is a temporal index. That
is, the linear operator Ai maps the properties of an investigated object to the
measurements mi at time step ti.

Now two cases are considered:

• In the first case, the properties x of the examined object do not change during
the measuring process. Thus, we have to solve

Ai x = yi for all i.

This is called a static inverse problem.
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• In the second case, called dynamic inverse problem, the examined object is allowed
to change during the measuring process, and we have to solve

Ai xi = yi for all i. (1)

Examples for dynamic inverse problems are current density reconstructions based on
EEG/MEG measurements [1], dynamic electrical impedance tomography [2], process
tomography [3, 4] or x-ray CT where slight patient movements can be detected.

Due to the degree of freedom in (1) and the instability of the problem, a priori

information has to be considered to achieve reasonable and stable solutions of dynamic
inverse problems. This kind of regularization is done by assuming temporal smoothness

as a priori information and is considered by adding a penalty term

∑

i

‖xi+1 − xi‖
2

(ti+1 − ti)2

in a suitable norm to the known Tikhonov-Phillips minimization task. An application
of this smoothness measure in the context of inverse electrocardiography can be found
in [5]. If we try to solve the corresponding minimization problem in a straight-forward
manner as in [5], we get to a linear problem which is extremely large and thus too
expensive to solve.

Our approach starts in the context of operators between Hilbert spaces and leads
to a quite general formulation of our procedure. Discretization, which is needed to
achieve implementable algorithms, is done as late as possible. Using this method
in part two of this paper, we achieve a new type of temporal CT (computerized
tomography) algorithm, which avoids direct discretization of the forward model.
Statistical methods as Kalman-filters, which are discussed in part two of this paper,
are discribed in terms of matrices. These methods are not able to deduce a procedure
comparable to the temporal CT algorithm we will work out in part two.

In the following mathematical prerequisites will be supplied and two efficient

procedures for the solution of dynamic inverse problems are developed. These
procedures are formulated in terms of linear operator equations, which we will be
discretized by suitable projection schemes. Finally it is observed that in the case
of equidistant time steps these procedures are regularizations of the temporally
uncoupled respectively of the static problem, depending whether the parameter in
front of the penalty term

∑

i ‖xi+1 − xi‖
2 goes to zero or to infinity.

The temporal inverse problem described above could also be tackled in a statistical
context, e.g. by using Kalman-Smoothers or Wiener Filters as proposed in [6].
Our approach introduced above is rather analytical and achieves superior results
concerning efficiency: statistical procedures have to consider covariance matrices for
each timestep, which are often expensive to compute and are ”too large” which affects
the efficiency of the procedure. A comparision of these two approaches based on a real
world problem, namely temporal impedance tomography, can be found in the second
part of this paper. There, we will notice a significant enhancement of speed.

2. The mathematical prerequisites

To set the stage, Hilbert spaces H and Gi and linear operators Ai ∈ L(H,Gi) are
considered. The operator Ai maps the properties x ∈ H of an examined object to
measurements yi ∈ Gi. The H and Gi are equipped with norms ‖ · ‖H and ‖ · ‖Gi

and scalar products 〈·, ·〉H and 〈·, ·〉Gi
. These space related indices will be omitted in
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most cases if they are determined by their context. As the operators Ai all together
are assumed to determine a static x sufficiently, the single Ai are in most cases under-

determined. An operator A is called ”under-determined” if

• A is a matrix over K, which has more columns than rows,

• A maps from an infinite-dimensional Hilbert space to K
n, or

• A maps from a function space over a manifold to a function space over a less-
dimensional manifold. In the context of Sobolev spaces this can be stated as
A : Hs(M1) → Ht(M2) and dimM1 > dimM2.

K means either the real field or the complex field.
These operators have the property that equations of the form AA∗u = y are easier

or cheaper to solve (maybe numerically) than equations like A∗Ax = A∗y.

Definition 2.1 Given Ai, x, yi as above, xi ∈ H , we call

Ai x = yi for all i

a static problem, and

Ai xi = yi for all i

a dynamic problem.

For the further steps we need the following definition.

Definition 2.2 The Hilbert space sum H1⊕· · ·⊕Hn is the set H1×· · ·×Hn equipped
with the scalar product

〈x, y〉 :=
∑

i

〈xi, yi〉Hi
.

The associated norm is defined accordingly.

Definition 2.3 An operator matrix is a collection of operators Ai,j : Gj → Hi, 1 ≤
i ≤ n, 1 ≤ j ≤ m. These matrices can be multiplied by

(A · B)i,j =
∑

k

Ai,kBk,j ,

provided that the involved operators match. Addition of operator matrices is done
entry by entry. To such a matrix we can assign an linear operator

[A] : G1 ⊕ · · · ⊕Gm → H1 ⊕ · · · ⊕Hn

by

([A]x)i =

m∑

j=1

Ai,jxj .

The next theorem is important for the following calculations

Theorem 2.4 The map A 7→ [A] is an isomorphism between the set of operator
matrices and the set of the linear operators L(H1⊕· · ·⊕Hn, G1⊕· · ·⊕Gm) according
to [A] ◦ [B] = [A · B] and [A] + [B] = [A+B].
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Proof: Most steps of the proof are easy. We only want to show that the considered
map is surjective: for a given operator B ∈ L(H1 ⊕· · ·⊕Hn, G1 ⊕· · ·⊕Gm) we define
the operator matrix

Ai,j = PiBEj

with canonical projections

Pi : H1 ⊕ · · · ⊕Hn → Hi

and canonical embeddings

Ej : Hj → H1 ⊕ · · · ⊕Hn.

Now it is easy to show [A] = B.

This theorem allows to calculate with operator matrices and operators which are
assigned to operator matrices in the same way as with the well known matrices about
fields. This includes that block matrices can be multiplied block wise, see [7], and that
one needs not to distinguish between a matrix of operators and the assigned linear
operator.

Furthermore the known Kronecker product of matrices [7] can be extended in the
following way

Definition 2.5 Let M be a matrix in K
n×m and B an linear operator B : H → G.

Then the generalized Kronecker product M ⊗B is the operator

M ⊗B =






m1,1B · · · m1,mB
...

...
mn,1B · · · mn,mB




 .

The following properties are easy to show:

(M ⊗A)(N ⊗B) = (MN) ⊗ (AB)

(M ⊗A)−1 = M−1 ⊗A−1

(M ⊗B)∗ = M∗ ⊗B∗

Furthermore ⊗ and + are distributive, ⊗ is associative.
For simplifying the solution process of equations of the type

T∑

i=1

(Mi ⊗Ai)x = y

in the special case that the Ai are matrices over a filed K, the following theorem is
quite useful. First we have to give a definition:

Definition 2.6 Suppose x ∈ K
nm. Then define the rearrangement

Matn(x) = X :=








x1 x1+n . . . x1+(m−1)n

x2 x2+n . . . x2+(m−1)n

...
...

xn x2n . . . xmn







.

Now the following theorem can be stated. The proof is easy and therefore omitted.
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Theorem 2.7 Given Mi ∈ K
n×n, Ai ∈ K

m×m, 1 ≤ i ≤ T and x, y ∈ K
nm,

X = Matn(x) and Y = Matn(y), then the equation

T∑

i=1

(Mi ⊗Ai)x = y

is equivalent to the matrix equation

T∑

i=1

AiXM
>
i = Y.

Equations of the type AXB> + CXD> = Y are called generalized Sylvester

equations and can be solved much more efficiently than the equivalent Kronecker type
equation (A⊗B + C ⊗D)x = y; see [8].

For the further calculations we need another Lemma, it is about the solution of
the so called Tikhonov-Phillips minimization problem:

Lemma 2.8 Given linear operators A : H → G1, B : H → G2 between Hilbert
spaces H and G1, G2 respectively, such that B∗B is positive definitive. Furhermore
let x ∈ H, y ∈ G1 and λ ∈ R, λ 6= 0. The unique solution of the minimization task

‖Ax− y‖2 + λ2‖B x‖2 → min

can be determined by solving

(A∗A+ λ2B∗B)x = A∗y. (2)

If we have the relation

B∗BA = A∗E (3)

for a positive definite E : G1 → G2, equation (2) is equivalent to solving

(AA∗ + λ2E)u = y (4)

and setting x = A∗u.

Proof: Due to λ 6= 0 the functional Φ(x) = ‖Ax − y‖2 + λ2‖B x‖2 is strictly
convex. So this functional has a unique solution, which can be achieved by solving
DΦ(x) = 0 where DΦ is the Frechet derivative of Φ. If we take into account that
DF (x) of F (x) = ‖Ax − y‖2 fulfills We define DF (x)h = 2〈A∗(Ax − y), h〉, we get
the linear equation stated above. The last statement is true because of

(A∗A+ λ2B∗B)−1A∗ = A∗(AA∗ + λ2E)−1.

If A is under-determined, the last equation is easier respectivly cheaper to solve
than the first one.
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3. The procedure STR

In the following three procedures which can be used to solve dynamic inverse problems
under the consideration of temporal smoothness as a priori information are presented.
The first one, called normal equation approach, is not very efficient in the case of
under-determined forward operators. Therefore a more efficient procedure called STR

(=Spatio Temporal Regularizer) will be derived.
We start with linear operators Ai, 1 ≤ i ≤ T , which map the dynamic solutions xi

to measurements yi. Further, it is supposed that the Ai either are compact operators
between infinite-dimensional Hilbert spaces or are ill-conditioned matrices.

In order to solve the dynamic problem, we start with the minimization problem

Φ(x) =

T∑

i=1

‖Aixi − yi‖
2 + λ2

T∑

i=1

‖xi‖
2 + µ2

∑

i

‖xi+1 − xi‖
2

(ti+1 − ti)2
→ min . (5)

Minimization of the first term forces compliance with the relation Ai xi = yi for all
i. The second term is of the type ”spatial Tikhonov-Phillips-Regularization” and the
third term measures the temporal smoothness of the xi.

The following notations are introduced

HT = H ⊕ · · · ⊕H (T times)

A = diag(Ai) ∈ L(HT , G1 ⊕ · · · ⊕GT )

x = (x1, . . . , xT )> ∈ HT

y = (y1, . . . , yT )> ∈ G1 ⊕ · · · ⊕GT

B = D ⊗ IH ∈ L(HT , HT−1)

D =








1
t2−t1

− 1
t2−t1
1

t3−t2
− 1

t3−t2

. . .
. . .
1

tT −tT−1

− 1
tT −tT−1








∈ R
T×(T−1).

One could use other forms of D. For example, if we assume equidistant timesteps
ti = i, D = (−δi,j+1 + 2δi,j − δi,j−1)i,j leads to second order temporal smoothness of
the xi.

Now, the functional in (5) can be rewritten as

Φ(x) = ‖Ax− y‖2 + λ2‖x‖2 + µ2‖B x‖2 → min .

As this functional is strict convex, a minimum exists, which is achieved by solving
DΦ(x) = 0. This derivative can be calculated according to the derivative occurring in
the proof of Lemma 2.8, and we get the normal equation

(A∗A+ λ2I + µ2B∗B)x = A∗ y. (6)

As the Ai are under-determined this is a ”quite large” problem. Unfortunately the
technique used in the proof of Lemma 2.8 does not work here, a relation like (3) is
not valid in this case. Thus, another technique must be used to achieve an efficient
procedure, involving ”small” operators AiA

∗
j .

Starting point for an efficient procedure involving operator matrices with entries
AiA

∗
j is the following minimization problem which is equivalent to (5): We introduce

new variables di and solve

Ψ(x, d) =

T∑

i=1

‖Aixi − yi‖
2 + λ2

T∑

i=1

‖xi‖
2 + µ2

T−1∑

i=1

‖di‖
2 → min (7)
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in connection with the constraints

di = (xi+1 − xi)/(ti+1 − ti). (8)

In order to solve this constrained minimization problem, the constraints are
coupled to the functional Φ by adding a penalty term. That is, we get solutions
xα and dα of the unconstrained minimization task

Ψα(x, d) =

T∑

i=1

‖Aixi − yi‖
2 + λ2

T∑

i=1

‖xi‖
2 + µ2

T∑

i=1

‖di‖
2

+ α2
T∑

i=1

∥
∥
∥
∥
di −

xi+1 − xi

ti+1 − ti

∥
∥
∥
∥

2

→ min (9)

and achieve the solution x of (7), (8) by

x = lim
α→∞

xα.

If di is scaled as di = λ/µ δi, and if the following notion is used

δ = (δ1, . . . , δT−1)
> ∈ HT−1,

the minimization problem (9) can be written as
∥
∥
∥
∥
∥

[
A 0
αB αλ

µ
I

]

︸ ︷︷ ︸

Mα

(
x
δ

)

−

(
y
0

)
∥
∥
∥
∥
∥

2

+ λ2

∥
∥
∥
∥

(
x
δ

)∥
∥
∥
∥

2

→ min .

This is a Tikhonov-Phillips problem which can be solved as stated in Lemma 2.8:
(
xα

δα

)

= M∗
α

(
MαM

∗
α + λ2I

)−1
(
y
0

)

. (10)

In order to determine xα, first the following equation

(
MαM

∗
α + λ2I

)
(
u
v

)

=

(
y
0

)

.

is solved. We have

MαM
∗
α + λ2I =

[

AA∗ αAB∗

αBA∗ α2(BB∗ + λ2

µ2 I)

]

+ λ2I.

Thus, one has to solve

AA∗ u+ αAB∗v + λ2 u = y (11)

αBA∗ u+ α2(BB∗ +
λ2

µ2
I) v + λ2 v = 0. (12)

v can be calculated from (12) as

v = −
1

α

(

BB∗ +

(
λ2

µ2
+
λ2

α2

)

I

)−1

BA∗ u. (13)

Substituted in (11), the following equation for u is achieved :

A

(

I −B∗
(

BB∗ +

(
λ2

µ2
+
λ2

α2

)

I

)−1

B

︸ ︷︷ ︸

Nα

)

A∗ u+ λ2 u = y. (14)
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Nα can be simplified to

Nα = (D> ⊗ IH)

[

(D ⊗ IH )(D>IH ) +

(
λ2

µ2
+
λ2

α2

)

(IT−1 ⊗ IH )

]−1

(D ⊗ IH)

= (D> ⊗ IH)

[(

DD> +

(
λ2

µ2
+
λ2

α2

)

IT−1

)−1

︸ ︷︷ ︸

Qα

⊗IH

]

(D ⊗ IH)

= (D>QαD) ⊗ IH .

Then, (14) is equivalent to

A
[
IT ⊗ IH − (D>QαD) ⊗ IH

]
A∗ u+ λ2 u = y,

respectively

A

(
(
IT −D>QαD
︸ ︷︷ ︸

Rα

)
⊗ IH

)

A∗ u+ λ2 u = y.

So we define

Cα := A(Rα ⊗ IH )A∗ =
[
rα
i,jAiA

∗
j

]

i,j
,

and

(Cα + λ2IG1⊕···⊕GT
)u = y (15)

has to be solved. If we consider (13), an analogous calculation yields

v = −
1

α
[(QαD) ⊗ IH ]A∗u.

Because of (10) one gets
(
xα

rα

)

= M∗
α

(
u
v

)

,

which supplies

xα = A∗ u−B∗ [(QαD) ⊗ IH ]A∗ u

= [Rα ⊗ IH ]A∗ u.

Finally, one gets the following procedure for calculating xα: First solve

(Cα + λ2IG1⊕···⊕GT
)u = y,

then put

xα = [Rα ⊗ IH ]A∗ u.

The last step to achieve a solution x of (7), (8) is to perform the process α → ∞:
from (15) we get the equation

(C + λ2IG1⊕···⊕GT
)u = y

with

C = lim
α→∞

Cα = A ( lim
α→∞

Rα)A∗ = ARA∗,

whereas

R = IT −D>QD

Q =

(

DD> +
λ2

µ2
IT−1

)−1

.
(16)
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So one gets the solution x of (7), (8) by

x = lim
α→∞

xα = (R⊗ IH )A∗ u. (17)

That is

xi =
∑

j

ri,j A
∗
juj .

If the calculations above are summarized, we get the following procedure STR for
the solution of (5):

(i) Input: data y, spatial regularization parameter λ, temporal regulariza-
tion parameter µ.

(ii) Calculate Q and R according to (16)

Q =

(

DD> +
λ2

µ2
IT−1

)−1

R = IT −D>QD = (ri,j)i,j .

(iii) C is defined by

C = [ri,jAiA
∗
j ]i,j .

(iv) Solve

(C + λ2IG1⊕···⊕GT
)u = y.

(v) Finally, calculate the xi by

xi =
∑

j

ri,j A
∗
juj .

In order to achieve efficiency, in a first step one calculates A∗
juj for each

j and afterwards xi.

The procedure presented above involves ”small” operators AiA
∗
j which leads to

the announced efficiency compared to (6). Statistical procedures as the Kalman-filter
which will be introduced in the second part of this paper, result in linear equations in
terms of AiCiA

∗
i . These are as ”small” as the operators in the procedure above but

are in most cases expensive to compute due to the size of the appearing Ci.
As the linear operator C may be an operator between infinite dimensional Hilbert

spaces, the procedure above is not an algorithm. In order to get an algorithm the
operator equation in step (iv) must be solved numerically for instance by a projection
scheme. In the next section it is explained how a projection scheme works, and then
how such a scheme can be applied in order to approximate the solution of the equation
in step (iv). In the end, an efficient algorithm for the numerical stable solution of
dynamic inverse problems is achieved.

4. Solving operator matrix equations by projection schemes

Here we give a short description how projection schemes work and how we can apply
them to the operator matrix equation emerging in procedure STR. More detailed
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information about projection schemes, especially convergence theorems can be found
in [10].

Given are Banach spaces X,Y and a linear, continuous and injective operator
T : X → Y . The operator equation T x = y is considered. In order to calculate an
approximative solution, one searches xh in an finite dimensional subspace Xh of X
such that

ΨT xh = Ψy for all Ψ ∈ Y ∗
h .

Here Y ∗
h is a finite dimensional subspace of Y ∗. If it is assumed that Xh =

span{φ1, . . . , φn} and Y ∗
h = span{ψ1, . . . , ψn}, one gets xh as

xh =

n∑

i=1

αiφi,

where α fulfills

Th α = yh.

Here (Th)i,j = ψiTφj and (yh)i = ψiy.
Now, we can describe how to achieve a projection scheme in case of an operator

matrix T = [C]. We start from linear operators Ci,j : Hj → Gi with Banach spaces
Gi, Hj , 1 ≤ i, j ≤ n. The spaces Hi are approximated by

Hh
i = span{φi,j | 1 ≤ j ≤ mi} ⊂ Hi.

As functionals in Gi we have

(G∗
i )

h = span{ψi,j | 1 ≤ j ≤ ni} ⊂ G∗
i .

Now the operator equation

[C]f = g

with

[C] : H1 × · · · ×Hm
︸ ︷︷ ︸

H

→ G1 × · · · ×Gn
︸ ︷︷ ︸

G

will be considered. Starting from the given subspaces Hh
i and (G∗

i )
h, the subspaces

Hh and (G∗)h are constructed as follows. We define

p(i, j) =
i−1∑

l=1

nl + j and q(i, j) =
i−1∑

l=1

ml + j.

p maps {(i, j) | 1 ≤ i ≤ n, 1 ≤ j ≤ mi} bijectively to {1 . . .
P

mi}. q has an analogous
property. Now one uses

Φq(i,j) = (0, . . . , φi,j
︸︷︷︸

i−th place

, . . . , 0)

as a basis of a finite dimensional subspace Hh of H and

Ψp(i,j)(y1, . . . , yn) = ψi,j(yi)

as testing functionals in G∗. In other words:

Hh = span{Φl | 1 ≤ l ≤
∑
mi} and (G∗)h = span{Ψl | 1 ≤ l ≤

∑
ni}

are chosen.
Finally, the matrix D as a discretization of [C] and Bi,j as a discretization of Ci,j

are constructed. That is

Di,j = Ψi[C]Φj and (Bi,j)k,l = ψi,kCi,jφj,l.

Then we have
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Lemma 4.1 The discretization D of [C] can be constructed from the discretizations
Bi,j of Ci,j by block wise compounding.

Proof: We have

Dp(i,k),q(j,l) = Ψp(i,k)[C]Φq(j,l) = Ψp(i,k)(C1,jφj,l, C2,jφj,l, . . . Cn,jφj,l)

= ψi,kCi,jφj,l = (Bi,j)k,l.

Now we know how to solve step (iv) in the procedure STR numerically, and we
get an efficient algorithm for the solution of dynamic inverse problems.

5. The procedure STR-C

In some applications, e.g. current density reconstruction, the operators Ai are not
depending on i, that is Ai = A0 for all i. In this case, the operator C is

C = [ri,jA0A
∗
0] = R ⊗ (A0A

∗
0).

If A0 additionally is a matrix of size n×N we get according to Theorem 2.7, equation
(17) and the relationA∗ = IT⊗A

∗
0 the following procedure STR-C (’C’ means ’Constant

operator’):

(i) Input: data y, spatial regularization parameter λ, temporal regulariza-
tion parameter µ.

(ii) Calculate Q and R according to

Q =

(

DD> +
λ2

µ2
IT−1

)−1

R = IT −D>QD.

(iii) Solve the generalized Sylvester equation

(A0A
∗
0)UR+ λ2U = Matn(y) =: Y.

(iv) Calculate

X = A∗
0UR,

and get xi as the i-th column of X .

The Sylvester type equation in (iii) can efficiently be solved by methods provided
in [8].

6. Some remarks about efficiency

Now the costs of the three approaches ”normal equation” (6), STR and STR-C will be
compared. We start from matrices Ai ∈ R

n×N and T time steps.
According to [7] the direct solution of a n × n system needs 2n3/3 FLOPS.

According to [8] the costs for the solution of the Sylvester type equation in procedure
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STR-C can be bounded by 25(n+T )3 FLOPS. The step (iv) in STR and STR-C needs
2Tn(T +N) FLOPS in each case.

If we assume n = 64, N = 5000, T = 100, we get

• a total cost of 2/3(NT )3 FLOPS, if we use the normal equation approach.
Considering the given numbers, this is 8.3 · 1016 FLOPS.

• a total cost of 2/3(nT )3 + 2Tn(T + N) FLOPS in the case of procedure STR.
Based on the numbers given above, this is an amount of 1.75 · 1011 FLOPS.

• a total cost bounded by 25(n + T )3 + 2Tn(T + N) FLOPS for the procedure
STR-C, which makes 1.76 · 108 FLOPS.

So we see, that the procedures STR and STR-C are really efficient compared to
the ”naive” normal equation approach.

7. Regularization properties of the procedure STR

As the solution x provided by the procedure STR depends on λ and µ, it can be
written as x = xST (λ, µ). In the following, the processes µ → 0 and µ → ∞ will be
considered. One additional assumption is ti+1 = ti + 1 for all i, so that D has only
entries 1 and −1. Other constant increments can be put into the parameter µ.

Now matrix R∞ = R∞(λ/µ) = R∞(ρ) will be analyzed.
Before we start we need the following lemma. See, e.g. [9]:

Lemma 7.1 In the case of ti+1−ti = 1 the Matrix DD> ∈ R
(T−1)×(T−1) has normed

eigenvectors uµ with

(uµ)ν =

√

2

T
sin
(νµπ

T

)

1 ≤ µ, ν ≤ T − 1

and corresponding eigenvalues

λµ = 4 sin2
(µπ

2T

)

1 ≤ µ ≤ T − 1.

Theorem 7.2 We have

lim
ρ→∞

R∞(ρ) = (δi,j)i,j

and

lim
ρ→0

R∞(ρ) =

(
1

T

)

i,j

.

Proof: It is R∞(ρ) = IT − D>(DD> + ρ2IT−1)
−1D. Thus, the first statement

follows from

(DD> + ρ2IT−1)
−1 = ρ−2(ρ−2DD> + IT−1)

−1.

Due to Lemma 7.1 the eigenvalues of DD> do not vanish, so the matrix DD> is
regular. Thus, we consider

M := lim
ρ→0

R∞(ρ) = IT −D>(DD>)−1D. (18)

The matrix M has the properties MD> = DM = 0, thus mi,j = mi,j+1 and
mi,j = mi+1,j . So we can conclude that M is a matrix with constant entries. In



Dynamic inverse Problems – Part I: Theory 13

order to calculate this entry, we analyze (D>XD)1,1 with X = (DD>)−1. Due to
Lemma 7.1, X can be written as

X =

T−1∑

µ=1

λ−1
µ uµu

>
µ .

If we consider (D>XD)1,1 = x1,1 − x1,2 − x2,1 + x2,2 together with Lemma 7.1 and
the representation of X given above, we get

(D>XD)1,1 =
1

2T

T−1∑

µ=1

(

sin
(

µπ
T

)
sin
(

µπ
T

)

sin2
(

µπ
2T

) − 2
sin
(

µπ
T

)
sin
(

2µπ
T

)

sin2
(

µπ
2T

) +
sin
(

2µπ
T

)
sin
(

2µπ
T

)

sin2
(

µπ
2T

)

)

.

If we write the sin function in terms of exponential functions, and if x2 − y2 =
(x+ y)(x − y) is applied successively, we arrive at

(D>XD)1,1 =
T − 1

T
.

Together with (18) one gets

(M)1,1 = 1 −
T − 1

T
=

1

T
,

which proves the second statement of the theorem.

For further interpretations of the limits of xST (λ, µ), two operators describing the
temporal uncoupled problem and the static problem according to the linear operators
Ai are introduced.

The operators are

Astatic =






A1

...
AT




 and Auncoupled =






A1

. . .

AT




 .

Then solving Astaticx = m provides the static solution x ∈ H of Ai x = mi for all i ,
and solvingAuncoupledx = m provides the temporal uncoupled solution x = (xi)i ∈ HT

of Ai xi = yi for all i.
First limµ→∞ xST (λ, µ) will be analyzed. Due to Theorem 7.2 and step (iii) of

STR we get u by solving
([

1

T
AiA

∗
j

]

+ λ2I

)

u = y,

which is the same as
(

1

T
AstaticA

∗
static + λ2I

)

u = y.

If we set v = u/T this is equivalent to
(
AstaticA

∗
static + λ2TI

)
v = y.

The last step in procedure STR delivers a vector xST with T constant entries

xk =
∑

j

1

T
A∗

juj = A∗
staticv 1 ≤ k ≤ T.
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For stating the next theorem the Tikhonov-Phillips operator

Tλ,modey = minarg
{
‖Amodex− y‖2 + λ2‖x‖2

}
mode ∈ {static, uncoupled}

= A∗
mode

(
AmodeA

∗
mode + λ2I

)−1
y

and the projections

Pk(x1, . . . , xT ) = xk 1 ≤ k ≤ T

are introduced. The projections are needed, because xST is a vector of size T with
constant entries.

Theorem 7.3

lim
µ→∞

Pk(xST (λ, µ)) = Tλ
√

T ,static y 1 ≤ k ≤ T

lim
λ→0

lim
µ→∞

Pk(xST (λ, µ)) = A†
static y 1 ≤ k ≤ T

Proof: The first statement was proven above. The second statement follows from
regularization properties of the Tikhonov-Phillips operator, see [10, 11].

Now limµ→0 xST (λ, µ) is studied. Again, Theorem 7.2 shows that step (iii) in
STR is equivalent to solving

(AiA
∗
i + λ2I)ui = yi for all i

and x is calculated by

xi = A∗
i ui for all i

These two steps can be written as

(AuncoupledA
∗
uncoupled + λ2I)u = y,

followed by

x = A∗
uncoupledu.

So we get

Theorem 7.4

lim
µ→0

xST (λ, µ) = Tλ,uncoupled y

lim
λ→0

lim
µ→0

xST (λ, µ) = A†
uncoupled y

Proof: Again, the first statement is proven above. The prove of the second
statement is done in the same way as in the proof of Theorem 7.3.

So, one can say, that procedure STR delivers regularizations of the static as
well as the uncoupled problem, depending on the limiting process of the temporal
regularization parameter µ. STR produces a balance between the two extremes
”static” and ”uncoupled”.

One last remark: The limiting processes in Theorems 7.3 and 7.4 can not be done
in an arbitrary way. For example if we proceed (λ, µ) → (0, 0) by (λi, µi) = (α/i, 1/i),
we get the matrix R∞(λi/µi) = R∞(α) and the result of the procedure STR does not

converge to A†
static y or A†

uncoupled y.
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