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Improving the Performance of Linear Inverse Solutions by
Inverting the Resolution Matrix

Rolando Grave de Peralta Menendez*, Micah M. Murray, and
Sara L. Gonzalez Andino

Abstract—This paper proposes a new strategy for improving the
localization capabilities of linear inverse solutions, based on the relationship
between the real solution and the estimated solution as described by
the resolution matrix equation. Specifically, we present two alternatives
based on either the partial or total inversion of the resolution matrix
and applied them to the minimum norm solution, which is known for
its poor performance in three-dimensional (3-D) localization problems.
The minimum norm transformed inverse showed a clear improvement
in 3-D localization. The strong dependence of localization errors with
the eccentricity of the sources, characteristic of this solution, disappears
after the proposed transformation. A similar effect is illustrated, using
a realistic example where multiple generators at striate areas are active.
While the original minimum norm incorrectly places the generators
at extrastriate cortex, the transformed minimum norm localizes, for
the example considered, the sources at their correct eccentricity with
very low spatial blurring.

Index Terms—Inverse problem, minimum norm solution, resolution ma-
trix, source localization.

I. INTRODUCTION

The neurolectromagnetic inverse problem (NIP), i.e., the reconstruc-
tion of the current density vector inside the brain responsible for the
electric and magnetic fields measured near/over the scalp, can be rep-
resented by a (first kind) Fredholm linear integral equation, denoting
the relationship between the data measured at the external point d(s)
and the superposition of the contribution of the unknown current source
density distribution at locations r inside the brain [1], [2]

d(s) =
Brain

L(s; r) � j(r)dr: (1)

The (vector) lead field function L(s; r) contains all the information
about the boundary conditions, as well as the media conductivities or
permitivities for the electric and magnetic cases, respectively.

Under experimental conditions, neither the measurements nor the
lead field function are known for arbitrary surface/brain locations.
However, assuming that the integral equation can be approximated by
a discrete sum, (1) can be represented by an underdetermined system
of linear equations

d = Lj: (2)
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Vectors d and j and matrix L represent the discretization of the
continuous functions, i.e., dk = d(sk), jm = j(rm), and Lkm =
wkmL(sk; rm) and wkm are the quadrature weights. All linear solu-
tions of (2) can be obtained solving a variational problem [3]. This
yields the inverse matrix G that, when applied to the measured data,
produces the estimated current density vector ĵ, i.e.,

ĵ = Gd: (3)

Substitution of the measured data, as described in (2), into (3)
yields the following fundamental equation for underdetermined linear
systems:

ĵ = Gd = GLj = Rj: (4)

Here, R = GL denotes the resolution matrix describing the rela-
tionship between the estimates and the original magnitudes. In simpler
terms, (4) tells us that our estimates separate from the original values
by a factor of R. The nearer this factor is to the identity matrix, the
better the estimated solution resembles the original sources.

This relationship was initially noted by the Italian mathematician,
Giuseppe Peano, in his work related to one particular case of linear
functionals, i.e., integral of functions. In 1967, Backus and Gilbert [4]
used the same idea to evaluate solutions to geophysical problems. Since
then, additional applications have appeared that can be included in this
framework (e.g., beamformers, methods [5]) or that generalize this idea
to the case of vector fields (WROP as in [6]).

In this paper, we reconsider this relationship for the development of
strategies to improve the performance of linear inverse solutions. The
idea is very simple. If there is a link between the real sources and the
estimates, why not try to improve the estimates to make it closer to the
real ones? Sections II–IV detail our proposal.

II. BASIC EQUATIONS

Formally, (4) can be inverted to obtain the original magnitudes from
the estimated ones. However, the rank of the resolution matrix cannot
exceed the rank of the lead field matrix L. For this reason, and exactly
in the same way we do with (2), we have to consider approximate (or
generalized) inverses for R.

For the particular case we are interested in (i.e., theNIP), different al-
ternatives exist, depending on the interpretation we assign to the blocks
of the resolution matrix. Bearing in mind that the unknown vector j
corresponds to the discretization of a continuous vector field, each
group of three components is associated with one location in the brain.
Consequently, the resolution matrix inherits a particular structure that
might influence the inversion strategy selected. In the following, we
will present two approaches corresponding to partial and total inver-
sion of the resolution matrix.

A. Partial Inversion Approaches

Consider the construction of an inverse solution aimed at the correct
localization of single sources. The first approach consists of approxi-
mating the resolution matrix by the 3� 3 diagonal blocks. Assuming
that the real source corresponds to one single source at location k, only
the three components (k�1)�3+1, (k�1)�3+2 and (k�1)�3+3 of
vector j would differ from zero. Thus, a partial inverse can be obtained
by inverting the 3� 3 diagonal block associated with point k.

Denote by R3k the 3� 3 diagonal block associated to solution
point k and compute M = R+

3k
where the superscript + denotes

Moore–Penrose pseudoinversion. The inverse matrix is updated in the
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following way:Gk := MGk , whereGk stands for the three rows of
the inverse associated to point k.

The row-by-row inversion, corresponding to solving the ith equation
for the ith component of j, can be readily calculated. The resulting
matricial equation to compute this update of the inverse isG := D[I�
O]G, where D is a diagonal matrix composed by the inverse of the
elements at the main diagonal ofR andO is a matrix with zeros in the
main diagonal and the off-diagonal elements as the resolution matrix.

However, there are many arguments against the use of partial inver-
sion by rows or by blocks. The main drawback is that they are associ-
ated with the retrieval of single sources, which we know already does
not determine the behavior of a linear inverse for arbitrary source con-
figurations [7], [8]. In practice, no partial inversion procedure seems
to work for all source configurations, and for this reason we prefer the
strategy described in Section II-B.

B. Total Inversion of the Resolution Matrix

As is usual in numerical mathematics, an approximate inverse ma-
trix can be obtained by regularizing it, i.e., making the matrix invertible
by adding a relatively small perturbation. The further away the matrix
is from the space of the regular matrices, the bigger the perturbation
needed to regularize it. Another aspect to consider is the size of the ma-
trix that could obstruct the inversion procedure. A solution that seems
to satisfy both previous aspects is to add a diagonal perturbation matrix
to the resolution matrix, i.e., invert (D+R)whereD is a perturbation
diagonal matrix using the following identity:

M =(D+R)�1 = (D+GL)�1

=D�1 �D�1G[I+ LD�1G]�1LD�1: (5)

This equation considers only the inversion of the diagonal matrix
and a matrix of size equal to the number of sensors. Using the previous
formula, the update of the inverse matrixG :=MG can be performed
without the explicit computation of the resolution matrix or its inverse.

III. SIMULATION RESULTS

For reproducibility and compatibility with previous publications, we
used a lead field model corresponding to the sensor configuration and
solution space described in ISBET Newsletter 6, [7], and [8]. Specif-
ically, this entailed a unit radius three-shell spherical head model [9]
with solution points confined to a maximum radius of 0.8. The sensor
configuration was comprised of 148 electrodes, and the solution space
consisted of 817 points on a regular grid with an intergrid distance of
0.133 cm, corresponding to 2451 focal sources.

The basic figure of merit used to evaluate localization accuracy was
the dipole localization error, defined as the Euclidean distance between
the point where the maximum of the modulus of the vector field is
observed and the actual source position. The errors were divided by
the size of the grid unit (0.133) and were evaluated for x values in the
set [0; 0:5; 1; 1:5; 2; 2:5; 3; 3:5; 4; 4:5; 5; 5:5; 6; 6:5; 7].

For each value xi, we computed the empirical density function and
the empirical probability function defined as

Density Function(xi)

= f% of sources with errors >= xi and < xi+1g

�
100

2451
Probability Function(xi)

= f% of sources with errors <= xig

�
100

2451
:

To evaluate possible dependencies of the solution on the depth of the
source, we used a measure defined as the average of the dipole localiza-
tion error for the sources in an eccentricity range. This was the average
dipole localization error for sources with eccentricities bigger than or

Fig. 1. Results for MNINV solution. Upper inset: Empirical distribution
function and empirical probability function for the localization error. Lower
inset: Average localization error as a function of the eccentricity.

Fig. 2. Results for the TMNINV solution. Upper inset: Empirical distribution
function and empirical probability function for the localization error. Lower
inset: Average localization error as a function of the eccentricity.

equal to the lower limit and strictly lower than the upper limit. The
eccentricity ranges considered were [0:0–0:2), [0:2–0:3), [0:3–0:4),
[0:4–0:5), [0:6–0:7), and [0:7–0:8].

To illustrate the improvement that can be obtained with the total in-
version procedure, we considered the minimum norm solution. This so-
lution corresponds to the Moore–Penrose pseudo-inverse, that is well
known for its poor performance in the localization of single sources.
The perturbation matrix, i.e., the diagonal matrix that is added to regu-
larize the resolution matrix was defined as ten times the absolute value
at the main diagonal of the resolution matrix. This resulted in a diag-
onal-dominant matrix that was obviously invertible.

The results for the original minimum norm inverse solution
(MNINV) and the transformed minimum norm inverse (TMNINV)
obtained by regularizing the resolution matrix are presented in Figs. 1
and 2, respectively. Readers interested in comparing these localization
results with those obtained for additional linear inverses, namely, the
minimum Laplacian and the weighted minimum norm solutions, are
referred to [8] and [10].

The transformed inverse (TMNINV) matrix drastically improved its
localization capability of single sources with respect to the original in-
verse (MNINV) as revealed by the following facts.
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1) The localization errors of the TMNINVwere concentrated in the
lower ranges as shown by the number of sources with zero dipole
localization that increased from 13% to 22% and the sources with
one unit error that increased from 34% to 70%.

2) The TMNINV localized more than 92% of the sources with
errors lower than 1.5 grid units.

3) The average localization error of the TMNINV was not depen-
dent on the eccentricity and was reduced for all eccentricity
values to less than 1.4 grid units.

4) For the TMNINV, the higher localization errors (>2.5) only ap-
peared for less than 1.2% of the sources and the upper limit of
maximum localization error decreased from 5.5 to 4.5.

In order to illustrate the practical consequences of using the trans-
formed inverse (TMNINV) instead of the original minimum norm
inverse (MNINV) for the localization of multiple simultaneously active
sources, we have designed the simple, but nonetheless neurophysi-
ologically plausible, example presented in Fig. 3. In this computer
simulation, we calculated both inverses for a solution space of 4024
nodes homogeneously distributed within the inner compartment of a
realistic head model derived from the Montreal Neurological Institute
average brain (Human Brain Mapping Consortium). The solution
space was restricted to the gray matter of this inner compartment
and formed a regular grid of 6-mm resolution. The sensor space
consisted of 111 electrodes with a spatial distribution resembling the
125-channel Geodesics Sensor Net1 without its lowest electrode line.

Fig. 3(a) depicts the positions of the three simultaneously active
dipoles considered. A dipole was placed within each the left and
right lingual gyrus (Brodman area 17) to mimic bilateral activation
of primary visual areas (V1), and a third dipole was placed within
the left superior frontal gyrus (Brodmann area 10). Note that the
frontal dipole is higher along the axial direction than the visual
dipoles, which is somewhat obscured by the 3-D projection used.
All three dipoles had identical dipole moments in the three Cartesian
components, which were set to one. In the picture, voxels represented
as black circles are the ones where actual or estimated strength
exceeds the 85% of the maximum strength.

Fig. 3(b) shows the localization results obtained for the original min-
imum norm solution, and Fig. 3(c) shows those obtained for the trans-
formed minimum norm. Note that as predictable from its well-known
limitations, the original minimum norm solution produces maxima for
all the three sources at the borders of the solution space (near the sen-
sors). This will lead to the absolutely erroneous conclusions that ac-
tivity is elicited at extra striate visual areas. In contrast, the transformed
solution correctly indicates bilateral activation of primary visual cortex
(striate cortex), although slightly more extended than in the original
source distribution, and a third source perfectly localized at the left
superior frontal gyrus. Note also that the level of spatial blurring (the
number of active nodes at the selected threshold) of the transformed
minimum norm solution is considerably smaller than the one present
in the original minimum norm reconstruction.

More importantly, this example is only illustrative and does not
imply that all possible combinations of simultaneously active sources
will be localized with the same accuracy.

IV. DISCUSSION

One important point about both the total or partial inversion of the
resolution matrix deserves further discussion. Specifically, these pro-
cedures almost always transform the inverse matrix in a quasi-inverse
manner, in the sense that the original system of (2) is no longer solved in
the identity. Rather than being disadvantageous, this feature, common
to all the Backus and Gilbert types of solutions (e.g., Beamformers and
WROP), seems to be critical for the success of the inverse solution. This
separation from the data results in a robust solution that might produce
reliable results in the presence of noise. In fact, our experience in the

1Electrical Geodesics Incorporated, Eugene, OR.

Fig. 3. Localization results for three simultaneously active sources.
(a) Original three dipoles situated at the left superior frontal gyrus and left and
right primary visual cortex. Note that the frontal dipole is higher along the
axial direction than the visual dipoles, which is somewhat obscured by the 3-D
projection used. (b) Localization results for the original minimum norm inverse
(MNINV). (c) Localization results for the transformed minimum norm solution
(TMNINV). Note how the original minimum norm incorrectly attribute striate
cortex activation to extrastriate visual areas.

analysis of real data indicates that the updated inversematrices obtained
by inversion of (4) are more robust than inverse matrices obtained by
regularization of problem (2). One could, thus, consider this new ap-
proximate inverse as a new type of regularized solution of problem (2).
In fact, regularization of problem (2) is just another way to separate
your inverse from the original system of equations.

This link with regularization methods suggests a clear alternative to
select the perturbation matrix in the presence of noise. Representing
this perturbation as the product of a diagonal matrix and an unknown
factor, i.e.,D = �W, any of the standard methods suggested to com-
pute the regularization parameter � (e.g., [11]) could be applied. The
diagonal matrixW can be set to the identity or to a different value ac-
cording to some available a priori information, e.g., scaled version of
the diagonal of the resolution matrix.

While the idea of inverting the resolution matrix seems to be new,
this communication is by no means an exhaustive demonstration of the
different inversion strategies that can be used. However, the following
theoretical case is worth mentioning. When G is the Moore–Penrose
inverse of L (as the example developed in the Section III), the
Moore–Penrose inversion of R = GL will produce the same inverse
matrix and, therefore, no update. In other words, there are cases where
an approximate inverse can perform better than a theoretical one.

To illustrate the method, we considered the application to the linear
neurolectromagnetic inverse problem. However, the procedures pro-
posed here are equally valid for any inverse problem with a resolution
operator associated to it.
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Role of Transdermal Potential Difference During
Iontophoretic Drug Delivery

Andriy Bandrivskyy, Alan Bernjak, Peter V. E. McClintock, and
Aneta Stefanovska*

Abstract—Potential differences have beenmeasured during transdermal
iontophoresis in order to establish the effect of voltage, as opposed to cur-
rent, on cutaneous blood flow. It is known that, even in the absence of
drugs, the iontophoresis current can sometimes produce increased blood
flow. The role of voltage in this process is studied through single-endedmea-
surements (between electrode and body) of the potential difference during
iontophoresis with 100- A, 20-s current pulses through deionized water,
saturated 20.4% NaCl solution, 1% acetylcholine, and 1% sodium nitro-
prusside. It is found that the voltage needed to deliver the current varied by
orders of magnitudes less than the differences in the conductance of these
different electrolytes, and it is concluded that, at least for the present cur-
rent protocol, the voltage as such is not an important factor in increasing
the blood flow.

Index Terms—Blood flow, iontophoresis, laser-doppler flowmetry, trans-
dermal potential.
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TABLE I
SUMMARY OF DATA FOR THE 11 SUBJECTS, SHOWING THEIR GENDER, AGE,

AND THE AVERAGE POTENTIAL DIFFERENCES (IN VOLTS) NEEDED TO

DELIVER IONTOPHORESIS CURRENTS OF 100 �A, FOR THE SIX

ELECTROLYTE CONFIGURATIONS. IN EACH DATA-SET THE

MEDIAN VALUE IS EMBOLDENED

I. INTRODUCTION

Iontophoresis is widely used for transcutaneous delivery of ioniz-
able drugs for the assessment of skin microvascular function. In prac-
tice, a small electrical current is used to carry e.g., vasodilators such as
acetylcholine (ACh) and sodium nitroprusside (SNP) through the skin,
while consequent changes in blood flow aremonitored by laser Doppler
flowmetry [1]–[3]. It is known, however, that increases of blood flow
can be produced in response to the current, even in the absence of drugs,
when using pharmacologically neutral electrolytes such as H2O [4],
[5] or NaCl solution [6]. This phenomenon is known as the galvanic
effect or current-induced vasodilation. The mechanism is unclear but
could involve, for example, local heating due to the voltage required to
convey the ions through the dermal barrier. Because a finite potential
difference is always needed to maintain the chosen iontophoresis cur-
rent, it is obviously important to establish whether or not the magnitude
of this voltage is a significant factor in causing vasodilation.

We have therefore carried out a systematic study of the voltages
needed for iontophoresis with a constant current under different
conditions, and of how they change with time. The present work
differs in two important respects from the investigations recently
reported by Ferrell et al. [7] and Ramsay et al. [8]. First, all of
our measurements are for pulsed iontophoresis, rather than for a
continuous longer period of stepped current delivery. Second, our
measurements are all single-ended, i.e., we measure the potential
difference when a fixed current is passed between an iontophoresis
cell and the body, rather than the combined voltage difference across
two cells of opposite polarity, with the body in between. This enables
us to establish unambiguously the voltage needed for iontophoresis of
given polarity with particular electrolytes.

II. METHODS

The measurements were performed on 11 healthy subjects (two fe-
male, nine male) aged 24–68 years (see Table I). They lay comfortably,
semi-supine, with the measured forearm placed in a horizontal position
on a cushion, in a quiet roomwith an ambient temperature of 20�1

� C.
The study was approved by theMorecambe Bay Local Research Ethics
Committee and the subjects gave their fully informed consent.

Currents were derived from a battery-powered constant-current ion-
tophoresis controller (Moor Instruments MIC1-e). The iontophoresis
chambers were of perspex with internal platinumwire electrodes. Their
internal diameter was 8 mm, giving an area of 1 cm2 in contact with the
skin. Four chambers were used, placed in a square of side 2 cm on the
volar aspect of the forearm. They were held in position with double-
sided adhesive disks, avoiding hair or skin defects. The earth-potential
electrode was a 4 cm� 4 cm conducting pad, placed on the wrist at
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