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Summary: Minimum norm algorithms for EEG source reconstruction are studied
in view of their spatial resolution, regularization, and lead-field normalization
properties, and their computational efforts. Two classes of minimum norm solu-
tions are examined: linear least squares methods and nonlinear L,-norm ap-
proaches. Two special cases of linear algorithms, the well known Minimum Norm
Least Squares and an implementation with Laplacian smoothness constraints, are
compared to two nonlinear algorithms comprising sparse and standard L;-norm
methods. In a signal-to-noise-ratio framework, two of the methods allow automatic
determination of the optimum regularization parameter. Compensation methods for
the different depth dependencies of all approaches by lead-field normalization are
discussed. Simulations with tangentially and radially oriented test dipoles at two
different noise levels are performed to reveal and compare the properties of all
approaches. Finally, cortically constrained versions of the algorithms are applied to
two epileptic spike data sets and compared to results of single equivalent dipole fits
and spatiotemporal source models. Key Words: EEG—Current density reconstruc-

tions—Regularization—Minimum norm—LORETA.

Equivalent dipole models are commonly used for
EEG- and MEG-source reconstruction. Different ap-
proaches can be found with differing degrees of freedom
of the sources. Moving dipoles, representing a single
time slice only, are the most simple source model.
Spatiotemporal methods with rotating or fixed dipoles
are the next step representing additional physiological a
priori constraints (Scherg and von Cramon, 1985;
Mosher et al., 1992). Rotating dipoles have fixed posi-
tions over a selected latency range, but their components
are free to change independently, whereas fixed dipoles
exhibit fixed orientations over the selected time range as
well. For all these models of brain activity the nonlinear
source position parameters can be fitted by a multidi-
mensional minimization procedure (e.g., Nelder and
Mead, 1965), whereas the linear source component pa-
. rameters are calculated via an over-determined system of
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equations. With d dipoles, ¢ dipole components per
dipole (c=1 for known dipole orientations (gray matter
layer normals), ¢=2 for MEG with spherical volume
conductor geometry, ¢=3 otherwise), and ¢ measured
samples, a moving dipoles model has 3*d*: nonlinear
parameters and c*d*t linear parameters. A rotating di-
poles approach comprises 3*d nonlinear and c*d* linear
parameters. Finally, a fixed dipoles model exhibits
3*d + (c—1)*d nonlinear and d*t linear parameters. For
more than one fixed dipole, the best fit orientation of
each dipole has to be fitted as additional nonlinear
parameter ((c—1)*d).

All equivalent dipole algorithms need an a priori
knowledge of the number and class of sources involved
in the brain activity to be reconstructed. Thus often
principal component analyses (PCA) or singular value
decompositions (SVD) are used before the dipole fit to
obtain a first evaluation of the number (and strengths) of
field patterns that are contained in the measured data,
without applying a specific source model (Mosher et al.,
1992). The number of field patterns with strengths above
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the measurement noise represents the minimum number
of noncoherent fixed dipoles that are used to explain the
data.

Anatomical a priori knowledge of the source positions
(and orientations) cannot be involved in these equivalent
dipole methods directly. However, by evaluating the
least squares error function to be minimized at given
positions only, e.g., the gray matter layer segmented
from magnetic resonance images (MRI), the areas of
interest can be scanned. The nonlinear parameters no
longer need to be fitted then, but only the overall best fit
positions have to be found.

An increasing interest in current density reconstruc-
tion algorithms has occurred during the last several
years. From two-dimensional (2D)-approaches and Fou-
rier methods (Dallas, 1985; Kullmann and Dallas, 1987,
Gorodnitzky et al.,, 1992), simplified cortical folds
(Wang et al., 1992) and three-dimensional (3D) distribu-
tions were tackled (Jeffs et al., 1987; Smith et al., 1990;
Himildinen and Ilmoniemi, 1994; Pascual-Marqui et al.,
1995; Sekihara and Scholz, 1996; Phillips et al., 1997;
Grave de Peralta Menendez et al., 1997, 1998). All these
methods have in common that elementary dipoles are
distributed on given positions, e.g., on regular grids
inside the head or in cortically constrained implementa-
tions on the gray matter layer (Dale and Sereno, 1993;
Fuchs et al.,, 1994a, 1995). The calculation of the
strengths and orientations of these dipoles generally
leads to a highly underdetermined system of equations
(number of unknown dipole components c*d is much
larger than the number of sensors s). It can be solved by
additional, appropriate constraints only. By applying
these (e.g., minimum norm) constraints, mathematically
unique solutions can be achieved. The additional, con-
straining model term has to be weighted against the data
term, which is done by a so called regularization param-
eter. In a signal-to-noise-ratio (SNR) framework (Moro-
zov, 1968; Pflieger et al., 1996; Fuchs et al., 1998b), the
critical choice of the regularization parameter can be
automated with some methods, so that no overfitting or
underfitting of the data occurs. Otherwise, this parameter
has to be adjusted manually to achieve an adequate
representation of the measured data.

Current density methods are commonly applied to
single time-point evaluations, but do not need the num-
ber of sources as additional input. Also no assumptions
about the shape or size of an activated area are made,
whereas single equivalent dipoles are based on the im-
plicit assumption that patches of activated gray matter
are well represented by their centers of gravity and their
mean surface normals. Another hope is that one can
estimate the extents of the active brain areas with current
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density reconstructions as well. Due to the underdeter-
mined character of the problem and the blurring proper-
ties of the minimum norm least squares constraint, this
class of source reconstruction algorithms yields smooth
current distributions in contrast to the rather overfocus-
sing equivalent dipole methods.

The number of parameters (the dipole components) to
be calculated with the least squares approaches is
c*d(*t). It can be accomplished for each time slice by
solving a linear system of equations by matrix inversion
or singular value decomposition. If another norm is used
instead of the L,-norm of the least squares methods, e.g.,
the L,-norm, a nonlinear system of equations with the
same number of unknowns has to be solved. Therefore,
the latter methods need much more computational ef-
forts. However, the L;-norm approaches promise much
more focal solutions and a more robust behavior against
outliers in the measured data.

The spatial resolution power of the different current
density reconstruction methods is studied with noisy
data, which is a more realistic approach compared to the
more theoretical, noisefree resolution operator concept
(Backus and Gilbert, 1967; Grave de Peralta Menendez
et al., 1997, 1998).

METHODS

The first part of this section will deal with linear
current density methods, where closed formulations for
the minimum norm solutions can be achieved. The non-
linear L;-norm methods will be discussed in the second
part. The third part explains the setup and methods used
for the simulations and their evaluations. Finally, the
fourth part describes the approaches applied to the two
sets of epileptic spike data.

Generalized Minimum Norm Formulation

In a generalized formulation the data term D, that
accounts for deviations between measured data M (col-
umn vector of the s sensors) and calculated sensor
signals § = L*j (with the lead-field matrix L (s*(c*d),
comprising dipole positions and volume conductor prop-
erties, and the column vector j of the ¢*d current com-
ponents), can be written as: -

D = |w*M — S)|,” (1

The matrix W is an s%-weighting matrix for the s
sensors, m denotes the norm used for the weighted
differences and p is the power applied to the data term.

The minimum norm model term 7T contains the
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weighting matrix C (( c*d)?) for the current components,
n describes the norm used, and ¢ is the power applied to
the model term:

7= el @

Both terms have to be minimized simultaneously and
are weighted by the positive regularization parameter A:

minimize A = D + A\*T

= [w*M = 9.7 + A*[Cxill.s (3)

Minimum Norm Least Squares

The commonly used minimum norm least squares case
(m=n=p=g=2) leads to Frobenius norms for both data
and model terms. The Frobenius norm of a u*v matrix A
is given by: B

lafl* = > > ak @
i=1 k=1
With nonsingular weighting matrices W and C, the
solution of Eq. 3 for the best fit current components, in
this special case, is given by (Lawson and Hanson, 1974;
Tarantola, 1994):

minimize A = |W*(M — L*p|,> + A5|C*jl.* (5)
j= (gT*g)*l*éT*gT*é—l*E*M (6)
with X = WLH(C™*C) *L™ W + AL ()

With no detector and no current component weighting
(W=1 and C=1) the standard solution for the minimum
nom least squares case is easily obtained:

minimize A = |M — Q‘]_”z2 + )\*”1”22 (8)
j=LMEL+ A DTHM ®)

This standard solution is known to lead to superficial
source distributions because small currents close to the
detectors can produce fields of similar strengths as larger
currents at greater depths, which will thus be suppressed
by the unweighted minimum norm term in Eq. 8. To
compensate for the undesired depth dependency of this
approach, the currents can be weighted to account for the
lower gains of deeper dipole components (lead-field
normalization) (Gorodnitzky et al., 1992; Fuchs et al.,

1994b).

minimize A = [M — L*j|,* + A*|C*j[2  (10)

z: (QT*Q_l*éT*(é*(gT*Q_l*y+ A*%)_l*M (11)

With a location- or component-wise depth weighting,
the large ((c*d)?) matrix C is diagonal and therefore
(C™#C)™! can be calculated_very easily. The other matrix
inversion (L*(C"™*C)~"*L" + A*1)™' is applied for a
much smaller (?) matrix?mly and is thus very fast, since
the number of sensors s is usually in the order of 100.

Laplacian Smoothness

The same solution as in the case with weighted current
components (Eqgs. 10 and 11) is achieved for a different
method, which uses the second order spatial derivatives
(Laplacians) of the current components to achieve a
smooth current distribution (Messinger-Rapport and
Rudy, 1988; Pascual-Marqui et al., 1995). In this special
case of the formulation described above, the weighting
matrix C is set up to use these derivatives by a discrete
formulation of the Laplacian. With source positions on
regular 3D-grids a 3° kernel is used for this purpose. The
boundaries of the volume conductor limit the source
space, so that special care has to be taken there. The
nonzero elements of the matrix C are (“LORETA”,
Pascual-Marqui et al., 1995): N

Ciy=—1 and Cy;=(6+ N)/(12N) (12)
for all locations i, with j denoting the N, (maximal 6)
direct neighbors of location i.

In a gray matter constrained implementation, a volume
with high gray matter probability is derived from a
statistical brain data set (Collins et al., 1995) and serves
as the boundary of the regular 3D grid. For a true
cortically constrained implementation that allows
sources to be oriented perpendicular to the cortical sheet
and measures smoothness along the cortex, a 2D surface
Laplacian has to be computed. Here, the spatial distances
on the folded gray matter layer are used and neighbor-
hood relations are taken from a triangle mesh covering
the cortex (Wagner et al., 1996). Now the nonzero
elements of C are (Huiskamp, 1991) C;; = —l and C; =
1/N;, or in a distance weighted formulation:

Ni
Ll e : (13)
=—— > — an = ——

E]N:] d; i1 ' d; DN d

i

Cii

i

with N; neighbor-nodes, and d;; the distance between
locations i and j.

Since with the Laplacian method the minimum norm
applies to a more indirect measure (second order deriv-
atives of the current strengths) as compared to the stan-
dard formulation (strengths are used directly in the
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model term), a smaller effect of the here also applicable
lead-field normalization can be expected.

The computational effort for the Laplacian methods is
much larger than for standard weighted minimum norm
approaches, because the weighting matrix C is not diag-
onal but sparse, and ( gT*g)"l has to be calculated
explicitly. Alternatively, an iterative solution can be
computed, e.g. by using the conjugate gradient (CG)
method on the normal equations of the rewritten Eq. 5
(Hanke and Hansen, 1993; Wagner, 1998), thus avoiding
the explicit computation of (C"*C)™":

~wL]|?
pYolm

2

Yum

0 +

(14)

minimize A = H

Nonlinear Methods

As soon as one of the m, n, p, or g is not equal to 2, no
closed formulation of a solution of Eq. 3 is possible, and
nonlinear minimization methods have to be used (Mat-
suura and Okabe, 1995, 1997). We will concentrate here
on the special case with m=n=p=g=1, that is the
“pure” L;-norm case. So the task is to

minimize A = |[W*(M — L*p)[, + A*[C*jl
_|[ma) L
o AC |

with Al =2 X laxl- (16)

i=1 k=1

1 (15)

Two different algorithms are used for optimization.
First, the iteratively reweighted least squares (IRLS)
method (Scales et al., 1988; Wagner, 1998) can be used.
With this method, an expression

A= l|é*l - )_’)”pp
= [R*(A*x = p)l,* with
R = diag(|A_~*1 - )_1|”/2'1) amn

is minimized by setting R,=1 and iteratively determining
R; from the result of the previous solution, which can
again be computed using CG methods.

A second option is the use of linear programming
techniques (Luenberger, 1984). This is made possible by
introducing vectors of non-negative components j*, j~,
e’, and e of currents and errors such that (Kﬁhfer,

1998; Wagner, 1998)
j=j —j ande=¢e" —e =W*M — L*). (18)
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For diagonal C, one can write Eq. 15 as a sum of terms
that depend linearly on the unknowns and that can be
minimized using linear programming.

A = WM — LEjll, + A Cjll; (19)
= g”” —e + )\*g*[f — )\*g*z—

A formulation for nondiagonal C can be found in
(Wagner, 1998). Advantages of the linear programming
framework include the ease of implementing upper
bounds on the current densities, i.e. the elements of j*
and j, and an elegant option of determining A which is
presented below.

Advantages of both L,-norm methods are that much
more focal current distributions can result and that they
are more robust with respect to outliers in the measured
data. Both effects have their origin in the fact that large
current components j; or data values m; are not punished
by their squared strengths as in the MNLS case, but
contribute with their (weighted) absolute values to the
function to be minimized only.

Lead-Field Normalization

To account for the undesired depth dependency of all
current density algorithms, a weighting of the current
locations or components can be introduced to compen-
sate for different gains and thus achieve an unbiased
lead-field distribution. To keep the formulations simple,
we will discuss the common case of ¢=3 dipole compo-
nents only, the special case of ¢=2 for MEG with
spherical volume conductor is very similar.

Each column of the lead-field matrix L contains the s
sensor responses generated by a unit current component
of a dipole located at a certain position. Three orthogonal
components at one position describe the effect of all
possible dipole orientations at this specific location. The
resulting dipole is represented by a linear combination of
these three components. Since every orthogonal basis
can be used, a component-wise weighting would depend
on the choice of this basis. A unique basis can be chosen
by using an SVD of the corresponding columns of the
lead-field matrix comprising the ¢ dipole components at
position i:

=

I~
=

PV 20)

The ortho-normalized sensor responses or field pat-
terns are contained in columns of matrix U,, the corre-
sponding gains or system sensitivities are the elements of
the diagonal matrix X;, and the new ortho-normal basis
vectors can be found in matrix ‘:/,T The elements o;; of
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the diagonal gain matrix X; can now be used to compen-
sate for the depth dependency. If a location-wise normal-
ization is performed, the inverse of the RMS gain

8= \/ig o} (21)

can be used in the diagonal weighting matrix C (Eq. 2).
For a components-wise weighting, that can also account
for the different gains of the different components, e.g.
the low gain quasi-radial components in a BEM-model
for MEG (Fuchs et al., 1998a,b), the inverted component
gains o;; can be used directly. Care has to be taken for
very small gain components to not overemphasize these
components (e.g., a regularized weighting should be
performed [Fuchs et al., 19945]).

If the gain factors are applied directly to compensate
the depth dependency of the lead-field gains, a bias-free
lead-field matrix (L*C ~!)is used, for example, in Eq. 11.
The remaining term C~’ for the reconstructed current
components will lead to an overcompensation and thus
overemphasize deep source locations. This effect can be
reduced by using square root of the gains in Eq. 21, e.g.,
for component-wise compensation (Koéhler, 1998),
weight with (c;,: diagonal elements of C):

cu = 1 \oy (22)

The different depth-weighting approaches will be
studied by the simulations. For the nonlinear L,-norm
approaches the full gain compensation method (cy =
/o) is used (Matsuura and Okabe, 1996; Kohler, 1998).

Regularization

The regularization parameter A is, in principle, a free
parameter. Nevertheless, various techniques have been
proposed for finding its optimum value, such as gener-
alized cross-validation (Hanke and Hansen, 1993) and
the L-curve method (Hansen, 1992). Our Ansatz is mo-
tivated by the insight, that the solution should not explain
more of the data than is above the noise level (Morozov,
1968), i.e.

M — L#jll, = s/SNR or |W*(M — L*j)|, = 5. (23)

This goal can be used to iteratively refine the value of
A making use of the fact that there is a monotonous
dependency between the data term D and A. Depending
. on the method used for solving Eq. 11, it is possible to
determine the value of D for a given A with less com-
putational effort than needed to compute J (Kohler,
1998).

When using linear programming techniques and de-
manding, in the same spirit, that D=a%*s, with g in the
order of 1, the resulting linear programming problem is

A=Cr = CY
under the constraint that lle* — ||, = a*s (24)

No iterations are needed to determine A.

Simulations

To study and compare the different linear and nonlin-
ear current density reconstruction methods and different
lead-field normalization weights, simulations with well-
defined volume conductor geometry and given test-di-
pole positions are performed. For computational effi-
ciency an analytically solvable, three spherical shells
volume conductor model (e.g., de Munck and Peters,
1993) is used (radii: 85, 91, and 98 mm; conductivities:
0.33, 0.0042, and 0.33 1/€dm). Eighty-one electrodes are
placed according to an extended and refined 10/20 sys-
tem, and 19 test-dipole positions on the vertical z-axis
through the common center of the spheres are chosen
(z=—30 to 84 mm, —35% to 99% relative eccentricity,
Fig. 1). Radial (vertical) and tangential (horizontal) di-
poles are used to investigate orientation dependent ef-
fects. To understand noise-dominated properties of the
different approaches, two levels of white, Gaussian-
distributed, zero mean noise are added to the forward
calculated potential distributions.

First, noise with a standard deviation of 0.45 nV is
used, leading to a signal-to-noise-ratio (SNR) of about
100 for the most superficial dipoles (at z = 84 mm). The
dipoles have a constant strength of 1 nAm throughout all
experiments, so depth-dependent SNRs are obtained,
which decrease to 38% for radial and to 58% of the
maximum SNR for tangential dipoles at the center of the
volume conductor (z = 0 mm, Fig. 1). To simulate more
realistic conditions for the algorithms tested, a second
series of experiments is performed with a noise level of
4.5 nV, which leads to a reduction of all SNRs by one
order of magnitude.

All current density reconstructions are performed with
support points on a regular 3D-grid with 7-mm grid
spacing, clipped by the innermost volume conductor
sphere (84 mm radius). This leads to 7497 points and
thus to a lead-field matrix of size 81 * 22491. No
orientational constraints are used. Since the noise levels
are well defined in our studies, the regularization param-
eters are chosen to exactly match the given SNRs, so no
overfitting or underfitting of the data can occur.

The depth normalization of the Minimum Norm Least

J Clin Neurophysiol, Vol. 16, No. 3, 1999
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FIG. 1. Slightly tilted frontal (left) and side (middle) view of the set-up used for the simulations. The 81 electrodes are shown as small disks. The
outermost shell of the three spherical shells volume conductor model is displayed only. The 19 positions for radially and tangentially oriented test
dipoles are indicated by small arrows. Radii/conductivities: 85 mm/0.33 1/Qm; 91 mm/0.0042 1/Qm; 98 mm/0.33 1/Qm. The corresponding
signal-to-noise ratios (SNRs) of the simulated dipole fields as a function of the eccentricity relative to the innermost spherical shell radius are shown
on the right side. The fixed noise level (0.45 nV) was adjusted to yield SNRs of about 100 for the most superficial test position (z = 84 mm), all

dipoles have unit strength (1 nAm).

Squares (MNLS, L,-norm) and the Laplacian smooth-
ness approaches is performed without (standard imple-
mentation for MNLS), with component-wise full (stan-
dard for LORETA), and down-weighted powers (square
root) of the lead-field gains. The nonlinear L,-norm
methods are calculated with full component-wise nor-
malization weights, which is optimal for these algorithms
(Kohler, 1998; Wagner, 1998).

The results are presented as frontal views of a stack of
horizontal planes, slightly tilted by 5 degrees. Positions
carrying currents below 50% of the largest current (for
the linear MNLS and LORETA methods) are clipped to
have a better impression of the spatial shape of the
reconstructed current densities (full width at half maxi-
mum, FWHM). The less blurring, nonlinear methods are
differently clipped or displayed: The L,-CG results are
shown clipped at 25% of the maximum current, whereas
the L,-sparse results are visualized by pole symbols
scaled by the strengths of the reconstructed currents. All
results are shown together with single equivalent dipole
fits, that represent (at least in the high SNR series) the
generator positions to be reconstructed.

A more quantitative evaluation of the reconstruction
results is finally performed by calculating the weighted
(by the current strength j,) centers of the clipped (by a
50% threshold) current distributions for specifying the
mislocalizations 8. This is a more adequate method for
distributed sources than searching for the maximum
current (j,,,,) position and stating its distance to the true
source position r, only.

Ar= l|2ji*£;/2ff - lo”z

The spatial resolution is determined by calculating the
FWHM volume, that is all current positions with

with j;>0.5,. (26)
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strengths above 50% of the maximum current are
counted and then multiplied by the cell-volume of
7*7*Tmm® = 0.343cm’.

Epileptic Spike Data

The patient data were kindly supplied by Prof. J.
Ebersole (Yale, University, New Haven, CT, U.S.A.).
Both examinations consist of unaveraged 27 (EEG-1)
and 26 (EEG-2) electrode records, measured at 200 Hz
sampling rate, the 3D electrode positions, and the 3D
positions of three landmarks (Nasion, left and right
preauricular points) for registration of the functional data
with anatomical image data. The magnetic resonance
(MR) data of the first set (EEG-1) are a stack of 124
axial, T;-weighted, 256 * 256 pixels slices with 2.5-mm
slice thickness and a field of view (FOV) of 300 mm.
The second anatomic data set consists of 124 coronal
slices of the same resolution, a slice thickness of 1.5 mm
and a FOV of 220 mm.

Both data sets are analyzed by the linear and nonlinear
current density reconstruction methods as described
above. Since the individual anatomic data are available,
a more realistic volume conductor model is used, and
cortical constraints are applied to include physiologic a
priori knowledge.

The Boundary Element Method (BEM) volume con-
ductor models are set up from the MR data by segmen-
tation and triangulation of the three main compartments:
brain with liquor (inside of the skull), outside of the
skull, and outside of the skin (Wagner et al., 1995; Fuchs
et al., 1998a). Standard conductivity values are used
(0.33, 0.0042, and 0.33 1/Qm) for the three compart-
ments. In the first case (EEG-1) these compartments
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FIG. 2. Boundary element method
models for the two epileptic spike data
evaluations. Three compartments are
segmented from the magnetic reso-
nance images and shown together with
the cortical gray matter layer surface,
which is used for cortically constrained
reconstructions. From left to right: up-
per row: EEG-1 (4448 nodes/8884 tri-
angles) left, frontal, and top view;
lower row: EEG-2 (3907 nodes/7802
triangles) top, rear, and right view.

EEG-2

consist of 1828 nodes/3652 triangles (mean edge length
8.6 mm) for the brain, 1354/2704 (10.6 mm) for the
skull, and 126672528 (12.5 mm) for the skin. Thus, the
model contains 4448 nodes or 8884 triangles in total. The
electric potential dependency over the triangles is ap-
proximated to be constant on virtually refined, planar
subtriangles (Fuchs et al., 1998a). To improve the mod-
els, the so-called isolated problem approach (IPA) (Hi-
maélédinen and Sarvas, 1989) is used for the innermost
compartments. The set-up for this model takes 300 sec-
onds for solid angle calculation and 600 seconds for the
BEM-matrix decomposition (24 seconds for the 1828
IPA-matrix) with a standard Intel Pentium II, 400MHz,
256MB RAM computer. For the EEG-2 case the follow-
ing model is used: brain: 1687 nodes/3370 triangles (7.5
mm), skull: 1197/2390 (9.4 mm), skin 1023/2042 (11.3
mm), total: 3907 nodes/7802 triangles; model set-up
times in this case: 230 seconds for solid angle matrix and
435 seconds for matrix decomposition (19 seconds for
the 1687° IPA-matrix). Figure 2 shows both BEM-
models together with the segmented cortical surfaces
(Wagner et al., 1995) that are used for overlay with the
reconstructed currents and for cortically constrained al-
gorithms.

Current density reconstructions for both studies are
performed on regular 3D-grids (7-mm distances) con-
strained to the inside of the innermost BEM-compart-
ment, leading to 8739 support points for the first data set
and 5340 points for the second. The cortical gray matter

layers are segmented from the MR-images and thinned to
give mean 3D-distances between the remaining nodes of
3.8 mm and 5.7 mm for EEG-1 (24,977 respectively,
9956 points), and 3.6 mm and 5.2 mm for EEG-2 (25,660
respectively, 11,202 points). The cortex normals are also
calculated and used for additional orientation constraints.

Both measured EEG-data sets are displayed in Figs. 3
and 4. Potential maps of the latency ranges selected for
source reconstructions (EEG-1: —15 to 60 milliseconds
[ms], EEG-2: —55 to 20 ms) are shown as isopotential
contour lines in spherical projections and projected to the
skin-surfaces from the segmented MRIs together with
the electrodes. First preanalyses of the chosen recon-
struction time ranges, which contain the epileptic spike
activities, are shown in Fig. 5. Principal components
analyses (PCA) are performed by singular value decom-
position (SVD) and the dominating three field patterns
are displayed together with their temporal loadings (am-
plitudes) and their overall weights. An SNR normaliza-
tion is performed (Fuchs et al., 1998b), to reveal the
number of relevant patterns, which corresponds to the
number of fixed current distributions needed to explain
the measured data. The noise of the first data set is
estimated from prespike latencies (—500 to —125 ms, 13
V) resulting in a maximum SNR of 15 at 25 ms, in the
second case an average noise of 10 wV is estimated,
which yields a maximum SNR of 11 at O ms. For the
EEG-1-data two patterns exhibit an SNR above 1,
whereas for the second data-set three patterns are above

J Clin Neurophysiol, Vol. 16, No. 3, 1999
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- = 5
FIG. 3. Epileptic spike data set 1 measured at 200 Hz sampling rate. Upper left corner: butterfly plot and mean global field power (MGFP, lower
trace) of the 27 electrode signals; upper right: isopotential contour lines as spherical projections (top view) of the selected time range around the spike
latency (— 15 to 60 milliseconds [ms]); lower part: three-dimensional potential maps on the skin segmented from magnetic resonance images together
with electrodes seen from the left frontal side of the subject.
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FIG. 4. As Fig. 3 for EEG data set 2. The potential maps (26 electrodes, —55 to 20 milliseconds [ms]) in the lower part of the figure are seen from
the upper right back of the subject. MGFP, mean global field power.
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FIG. 5. Principal component analyses of both epileptic spike measurements. The noise-normalized weights of the three largest patterns are shown
in the upper left corners above the corresponding patterns. Their temporal loadings are displayed in the lower right corners. For the first data set (left
side, EEG-1) the latency range from —15 to 60 milliseconds [ms] is analyzed, for the second data set (right side, EEG-2) the time range is —55 to
20 ms. Two (EEG-1) respectively three (EEG-2) patterns exhibit signal-to-noise ratios above 1. SVD, singular value decomposition.

this level. So in both cases it is obvious (as can of course
already be seen from the temporal dynamics of the
corresponding mappings in Figs. 3 and 4), that more than
one generator is responsible for the signals in the time
ranges of interest.

All simulations and all evaluations of the epileptic
spike data were performed with the CURRY V3 software
package for multimodal neuroelectromagnetic source re-
construction. (Neuroscan, Sterling, VA, U.S.A.). All
electric potential data are common average referenced.

RESULTS

First, the results obtained from the simulated data are
presented followed by the findings for the first epileptic
spike data evaluation. Lastly, results are presented from
the same methods being applied to the second data set.

Simulations

Four groups of simulated data are evaluated: radially
and tangentially oriented test dipoles at two different
SNR levels each. The high SNR examinations allow the
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general properties of the different linear and nonlinear
current density reconstruction algorithms to be studied
under idealized conditions, whereas the second series
shows the performance of the methods for more realistic
SNRs typical for measured data. The 3D current distri-
butions are displayed as stacks of horizontal planes.
Slightly tilted frontal views (compare Fig. 1) are pre-
sented to get an impression of spatial resolution and
characteristic localization properties of the different
methods.

Linear Methods

First, the standard MNLS method with different lead-
field normalization techniques is applied to radial and
tangential test dipoles at certain depths. Figure 6 shows
the results for the high SNR case. For source positions at
large eccentricities, relatively small, but too superficially
localized distributions, are reconstructed for all depth
normalizations used. For deeper sources (relative eccen-
tricities < 50%), the spatial resolution strongly drops
until finally, for very deep source positions, all support
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points in the volume conductor carry similar (small)
currents and the localization of the original source is no
longer possible. The results without lead-field normal-
ization are always localized to high, whereas the full-
depth normalization overcompensates this effect for the
deeper sources (compare Fig. 8). Similar extents and
shapes of the current distributions are obtained for radial
and tangential test dipole fields.

Figure 7 displays the results for the high SNR data
reconstructed by the Laplacian smoothness method
(LORETA) together with the reconstructions of the low
SNR cases for both MNLS and LORETA with the
optimal depth normalization (gain®®) only. Since the
Laplacian smoothness approach is, as expected, rela-
tively insensitive to depth normalization, the optimum
weighting method is displayed only, the uncompensated
and overcompensated cases look very similar and are
quantitatively evaluated in Fig. 8 (see below). For the
large eccentricities, too deep localizations are found,
which is a well-known property of this method: for
support points close to the limiting inside of the volume
conductor, the 3D smoothness condition is hard to fulfill,
because the (virtual) outside neighbors of these points
are down-weighted. However, the centers of the nearly
spherical current distributions follow the true dipole

positions quite nicely for deeper positions and they
exhibit better spatial resolutions as compared to the
MNLS method. The lower SNR cases (all SNRs are
reduced by a factor of 0.1, compare Fig. 1) show similar
behavior as the high SNR cases, but more blurred and
more irregularly shaped distributions are reconstructed,
especially for deeper source locations which exhibit even
further reduced SNRs. More quantitative evaluations of
the MNLS and LORETA methods are displayed in Fig.
8, where for the high SNR case, all depth normalization
approaches are compared with respect to the localization
accuracy as a function of the relative eccentricities of the
test dipoles. The distances of the weighted (by the
reconstructed current strengths) centers of gravity of the
clipped (at half maximum values) distributions to the
true dipole positions are shown. In all cases the partial
depth normalization shows the best overall localization
accuracy. The quantitative evaluations of the low SNR
cases are shown later, together with the results of the
nonlinear methods.

Nonlinear Methods

Figure 9 displays the current density reconstruction
results of the nonlinear L,-norm approaches. Both CG

J Clin Neurophysiol, Vol. 16, No. 3, 1999
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minimization and sparse methods are shown for the high
SNR cases and more realistic low SNR cases. The CG
current distributions are clipped at 25% of the maximum
current, whereas the sparse solutions are not clipped, but
shown as pole symbols pointing in the directions of the
currents and with their base centers at the support point
positions. The CG method has relatively small localiza-
tion errors in the high SNR case at all source positions
above the center of the spherical volume conductor,
whereas below the center at negative eccentricities the
sources are reconstructed to deep (compare Fig. 10). For
low SNRs the current distributions are more blurred and
irregular shapes result for very deep source positions
(relative eccentricities below 20%). In some of the latter
cases no currents at all are reconstructed where the
original source was, but more superficial, scattered dis-
tributions are obtained.

The sparse L;-norm solutions exhibit the smallest
localization errors, except for very deep, low SNR
sources, where the reconstructed dipoles begin to scatter
and give spurious results.

For a quantitative evaluation of the reconstruction
methods presented above, the center positions and the
relative (to the innermost spherical shell) volumes of the
reconstructed currents with amplitudes larger than 50%
of the largest current (full width at half maximum) are
calculated. The results are shown in Fig. 10 for the high
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FIG. 7. As Fig. 6, but for Laplacian
smoothness reconstructions (LORETA)
and for more realistic signal-to-noise ra-
tios (SNRs) below 10. The two left col-
umns show the improved LORETA ap-
proach with partial (gain®®) depth
normalization for large SNRs (below
100), the middle and right columns dis-
play the results for reduced SNRs with
the optimum depth normalization for
minimum norm least squares (MNLS)
and LORETA respectively. dip., dipoles;
relative eccentr., relative eccentricity.

LORETA LORETA

radial dipoles tangential dip.

SNR < 10 SNR < 10

SNR cases (SNRs below 100) and all four linear and
nonlinear approaches. Figure 11 displays the same eval-
uations for the low SNR cases (SNRs below 10). All 19
test dipole positions are evaluated here, whereas in the
graphical figures above selections of seven representa-
tive positions are displayed only.

From Figs. 10 and 11 it is obvious, that the Laplacian
smoothness approach (LORETA) performs better than
the MNLS method. Superficial sources are localized too
deep, but the overall accuracy and spatial resolution is
superior to the classical MNLS results, where high ec-
centricity sources are reconstructed at too superficial
positions and deeper sources (relative eccentricity <
40%) suffer from bad spatial resolution. Close to the
volume conductor center the whole volume “lights up”
and all support points carry small currents. LORETA is
less sensitive to inadequate lead-field (depth) normaliza-
tion, since the model term depends only indirectly on the
current strength, whereas the MNLS model term directly
punishes the squared source strengths and thus this
method shows a strong dependency on the choice of the
gain compensation approach. With low SNR data both
linear methods loose localization accuracy and exhibit
slightly decreased spatial resolution.

The nonlinear L,-norm algorithms perform better than
the linear methods at high SNRs: for sources in the upper
hemisphere (rel. ecc. > 0%) the maximum relative lo-
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FIG. 8. Quantitative evaluations of the linear minimum norm least squares (MNLS) (upper row) and Laplacian smoothness reconstructions
(LORETA) (lower row) methods for radial (left) and tangential (right) test dipoles for different lead-field normalization approaches. The distances
of the weighted centers of the current density reconstructions (strengths above 50% of the largest current) to the true test dipole positions are plotted
as a function of the relative eccentricity. All distances are normalized to the innermost spherical shell radius.

calization errors are in the order of 10%. The spatial
resolution is about a factor of three better for the L, CG
method compared to LORETA. For the sparse L, method
the spatial resolution cannot be determined in the same
way as for the other approaches, since here the number of
active source positions is limited to the number of sen-
sors used.

With low SNR data and deep source positions both
nonlinear methods show their limits: scattered results
with large mislocalizations and bad spatial resolution can
be achieved only. The center of gravity of the largest
currents and their volume in these cases are no longer an
appropriate measure to quantify the main properties of
the results of these algorithms.

Regularization

As mentioned before, all reconstruction results so far
are obtained by adjusting the regularization parameter, so
that the known SNR of the simulated data is met. Thus

no overfitting or underfitting of the data occurred. To
study the sensitivity of the different methods with respect
to the wrong choice of this essential parameter, the
following studies are performed. With real measured
data, where in most cases the noise level can only
roughly be estimated, these issues are of special impor-
tance. Figures 12 and 13 show the stability of all linear
and nonlinear approaches for radial and tangential test
dipoles at a fixed depth (71% = 60mm) for high and low
SNR levels. The regularization parameter is adjusted to
give relative deviations to the correct fit quality ranging
from 0.1 to 10. In the high SNR cases, all methods are
rather uncritical to the choice of the regularization pa-
rameter, whereas in the low SNR cases all methods are
very sensitive to overfitting the data: scattered distribu-
tions or ghost sources appear. Underfitting the data is
less critical: the spatial resolution decreases and the
centers of distributions of the linear methods slightly
shift towards deeper locations, which is caused by the
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increasing influence of the model term. With the origi-
nal, overcompensating (gain') implementation of Lapla-
cian smoothness (LORETA), these effects are even
worse. Thus, for real data an appropriate choice of the
regularization parameter as a function of the SNR of the
measurement is essential.

Unknown Epileptic Spike Data

To have reference reconstruction results for the un-
known epileptic spike data sets, standard methods like
single equivalent moving dipoles and spatiotemporal
dipole models (MUSIC, [Mosher et al., 1992]) are fitted
at latency ranges around the spikes of the spike-wave
complexes and their results are compared to the current
density distributions calculated by the different linear
and nonlinear reconstruction methods.

Epileptic Spike Data EEG-1

For the EEG-1 data set single equivalent dipole fits
with a three spherical shells volume conductor (common
center fitted to the 27 electrodes) are used for compari-
son with the more realistic BEM model (Fig. 2). Traces
of the best fit dipole positions (—15 to 60 ms, compare
Figs. 2 and 5) for both volume conductor models are
shown in Fig. 14, overlayed onto an enlarged view of the
left temporal lobe area of the cortical gray matter layer.
Because of the nonspherical shape of the head in the
temporal lobe region, the oversimplifying spherical
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model results in mainly vertically, upwards (2 to 3 cm)
shifted dipole positions (Yvert et al., 1997; Fuchs et al.,
1998a). Lateral and horizontal shifts to posterior loca-
tions can also be seen. The qualitative behavior of both
reconstruction series is the same: a nearly circular trace
of the dipoles, which represent the centers of gravity of
the activated cortical patch (de Munck et al., 1988), and
similar source orientations (Scherg and Ebersole, 1993),
when the SNR is large enough to give stable results.
Because the source locations are close to the innermost
compartment boundary, the BEM dipoles tend to be
slightly more unstable in position and orientation (Fuchs
et al., 1998c¢). Both volume conductor models are able to
explain the data reasonably well, so the explained vari-
ance or deviation (a measure we prefer, since otherwise
every meaningful result is between 90 and 99.9% and
comparisons to the SNRs, which are field and not power
ratios, are more difficult) gives no hint for the large
localization errors introduced by the spherical shells
approximation. Thus, all following studies are performed
using the more realistic BEM models.

The reconstructed epileptic spike activity seems to
start (—10 ms) at the basal, frontal part of the left
temporal lobe and then evolves with increasing strengths
clockwise (as seen from the front) in a slightly back-
wards and inwards tilted plane. At the maximum signal
strength latencies between 20 and 40 ms, the center of
activity seems to originate form the central region of the
left temporal lobe. The dipole orientations change from
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FIG. 10. Quantitative evaluations of localization errors and spatial resolution power of linear (upper row) and nonlinear (lower row) current density
reconstruction algorithms at high signal-to-noise ratio (SNR) levels (< 100) as a function of the relative eccentricity of the radial and tangential test
dipoles with optimal depth compensation. As in Fig. 8, the thresholded (> 50%) results are used to determine the weighted centers and the full width
at half maximum volumes of the reconstructed distributions. The localization errors (left) are normalized to the innermost spherical shell radius, the
spatial resolutions (right) are normalized to the volume of this compartment. CG, conjugate gradient; tang., tangential.

pointing backward and upward to a rather vertical inward
direction, as can already be expected from the potential
maps (Fig. 3).

The spatiotemporal reconstruction results are pre-
sented in Fig. 15. Because it is not quite clear from the
principal component analysis (Fig. 5) whether the la-
tency range chosen contains two or three relevant pat-
terns, MUSIC fits and scans (Mosher et al., 1992) with
two and three fixed dipoles are performed. The dipole
reconstructions with the MUSIC metric are performed by
an iteratively applied fit (using a multidimensional non-
linear simplex minimizer (Nelder and Mead, 1965)) and
projection procedure, very similar to the R-MUSIC ap-
proach, published recently by (Mosher and Leahy, 1998).
Our implementation will be subject of a future publica-
- tion. The loadings and the MUSIC scans of the two
dipoles fits are shown in Fig. 15. The three dipoles result
is also shown (red poles), the third dipole can improve
the fit quality slightly, but it is also located at the basal
part of the left temporal lobe, so we will continue with

the two dipoles case only. The upper dipole loading trace
corresponds to the dipole at the basal tip and exhibits a
phase reversal, the middle trace belongs to the dipole
located in the central region of the left temporal lobe.
The lower trace visualizes the explained deviation as a
function of time.

MUSIC scans on a 3D grid (5 mm spacing, 24,016
points) and cortically constrained (3.8 mm mean support
point distance, 24,977 points) reconstructions without
and with surface normals are displayed in the lower part
of Fig. 15. All show similar activation of the basal frontal
part of the left temporal lobe, without resolving more
details, but giving an impression of confidence ranges of
the results. Including the surface normals punishes cor-
tical patches with wrong normal orientation, so the result
appears more scattered and correctly oriented areas are
more emphasized. This approach is nevertheless ques-
tionable, because the actual generators are expected to be
spread patch-like and to comprise neurons of different
orientations. '
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FIG. 11. Same as Fig. 10, but for the low signal-to-noise ratio (SNR) level (< 10) studies. CG, conjugate gradient; Loreta, Laplacian smoothness

reconstructions; MNLS, minimum norm least squares; tang., tangential.

Linear and Nonlinear Current Density
Reconstructions
The linear current density methods are first applied
without cortical constraints, but of course the source

space must be limited to the inside of the innermost
BEM compartment as before. The results for MNLS,
LORETA, L;-CG, and L,-sparse methods on regular
3D grids (7 mm spacing, 8739 points) are shown in Fig.
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16 as color coded maps overlayed to the cortical
surface for three selected latencies. The results of both
linear and the L,-CG methods are clipped at 50% of
the maximum current to give an impression of the
spatial resolutions of the different approaches and for
better visualization. The spatial resolution is not suf-
ficient to reveal details like the much more focal single

dipole models. However, the left temporal lobe area is
activated.

As expected from the simulations, MNLS tends to
emphasize too superficial source positions, whereas
LORETA suppresses activity at these locations and thus
results in too deep, blurred current distributions. At later
latencies around 20 ms with both linear methods, a

FIG. 14. As reference single moving equivalent dipoles are fitted to EEG-1 epileptic spike data in the latency range from —15 to 60 milliseconds
[ms]. Results for a standard three spherical shells volume conductor model (center fitted to the 27 electrodes) (yellow arrows) are compared to a more
realistic boundary element method model (Fig. 2, red poles). Enlarged views of the left temporal lobe are shown from left, front, and bottom. Selected
latencies for current density reconstructions: —10 ms (black), 20 ms (green), 40 ms (blue).
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spread and shift of the reconstructed distributions toward
more posterior positions seems to occur, whereas around
40 ms two centers seem to be active simultaneously.
Similar behavior is found by the L,-CG method. The
overfocussing L, sparse approach results in single or two
dominating centers of activity in or around the center of
the left temporal lobe and some small outliers, as can be
expected from the simulations (Fig. 9).
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FIG. 15. Spatiotemporal reference re-
constructions (EEG-1: =15 to 60 mil-
liseconds [ms]): Dipole fits with MU-
SIC-metric overlayed to the cortical
gray matter layer (upper right): 2 fixed
dipoles (black poles), 3 fixed dipoles
(red poles). The reconstructed loadings
of the two dipoles case are shown in
the upper left together with the ex-
plained deviation (lower trace) as a
function of time. The upper trace cor-
responds to the dipole at the basal front
of the left temporal lobe. The three
lower rows show MUSIC scans (2 di-
poles) on a three-dimensional grid (5
mm, 24,016 nodes), cortically con-
strained without (mean node distance:
3.8 mm, 24,977 nodes), and with nor-
mals as color coded overlays (all scans
clipped > 75%, left to right: left, front,
and bottom views).

Cortically constrained current density reconstructions
(5.7 mm spacing, 9956 points) of the first EEG data set
are displayed in Figs. 17 and 18. All approaches are first
calculated without additional surface normal constraints
and shown as color coded maps overlayed to the cortical
layer, whereas the L -sparse results and all methods with
normals are presented as current symbols (poles) in Fig.
18. This display option has the advantage, that the
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important current orientations are also visible. All recon-
struction algorithms confirm the findings described
above. The Laplacian smoothness approach without cor-
tical surface normals exhibits the worst spatial resolu-
tion, the nonlinear methods yield more focal results and
the L, sparse results seem to be overfocussed. Including
orientational constraints results in more focussed distri-
butions, especially for the Laplacian method. Support
points with the wrong orientation are suppressed and the
remaining cortical surface patches are active only. To
insure that the real cortical surface structure is well
approximated by the nodes distributed on the cortical
gray matter layer and their normals, the thinning radius
or mean distance between the nodes should not exceed
typical cortical curvature radii.

Epileptic Spike Data EEG-2

Like for the first unknown data set, standard spatio-
temporal models are applied to the most interesting
latency range around the spike (—55 to 20 ms, Figs. 4
and 5) as reference solution. The results of a three
dipoles MUSIC fit and scan are shown in Fig. 19. The
spatiotemporal dipole loadings are displayed together
with the explained deviations as a function of time. The
scan results for a regular 3D grid (§ mm spacing, 14,659
points) and cortically constrained scans (3.6 mm mean
distance, 25,660 points) with and without normals can be
seen in the lower part of this figure. Furthermore, single
equivalent dipoles at two time-points (—40 ms: “tangen-
tial” field pattern and O ms: “radial” field pattern) are
fitted and shown together with the three spatio-temporal
dipoles in the upper right. For comparison, a three
spherical shells volume conductor model (fitted to the 26
electrodes) is used. In this more favorable case (spherical
part of the head) dipole position deviations below 10 mm
relative to the BEM model locations are found.

All reconstructed dipoles are located in the upper
hemisphere relatively deep below the central sulcus area
close to the midline, with the center of gravity slightly
shifted to the right side of the brain. At early latencies
around —40 ms, the radial components of the posterior
dipole and the middle, mainly radially oriented source
partly cancel each other to appear as one mainly tangen-
tially oriented generator that can be represented by a
single dipole (red pole) as well. At later latencies (around
0 ms) the deep radial source close to the interhemispheric
gap pointing to the postcentral gyrus dominates, accom-
panied by the small anterior source. The middle and the
anterior dipole can be resolved by MUSIC scans,
whereas the posterior source position is not so obviously
visible. However, the reconstructed activated regions of

J Clin Neurophysiol, Vol. 16, No. 3, 1999

the brain confirm the single equivalent dipole findings.
The spatial resolution is limited by the small SNR of the
measured data, where “noise” also includes correlated
background activity, and not only statistically distributed
fluctuations. Unfortunately with single trial data it cannot
be distinguished between these different types.

Linear and Nonlinear Current Density
Reconstructions

As before, three different classes of support points are
used for all distributed source reconstruction algorithms:
regular 3D grids (7 mm, 5340 points) and the cortical
gray matter layer (5.2 mm, 11,202 points) without and
with surface normal constraints. Figures 20, 21, and 22
display the results of these examinations. The linear
MNLS and LORETA-like methods exhibit rather blurred
current distributions in all cases. The low SNR and the
small number of electrodes with rather large interelec-
trode distances above the reconstructed source areas
(compare Fig. 19, top view) show the limits of all
approaches in this case. The nonlinear methods reveal
rather scattered source patterns, which do not allow
further conclusions about the nature of the generators.
Again, this behavior can be expected from the low SNR
simulations that show similar results even for much more
sensors and thus better experimental conditions. The
cortically constrained Laplacian smoothness result with-
out normals totally fails to reproduce the outcome of the
other methods: blurred, distributed activity far away
from the sensors at physiologically not very meaningful
areas (cerebellum) is reconstructed in this case. How-
ever, this example shows the limitations of source recon-
structions caused by the inverse problem, since all results
shown are able to explain the measured data. Only a
comparison between all possible methods may lead more
trustable results, whereas exclusively applied methods,
even if they normally work quite well, may fail under
some conditions.

Computational Performance

In view of an everyday usage of the algorithms applied
and discussed in this article, their computational efforts
should not be too demanding. Table 1 presents the
performance of the implementations running on a stan-
dard high performance PC (Pentium II, 400MHz,
256MB). The set-up and decomposition of the BEM
model is of course performed only once (for N nodes the
set-up time is proportional to N, the time for decompo-
sition ® N°). The lead-field matrix is also calculated only
once per support point set-up (time consumption is linear
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MNLS

LORETA

L CG

-10 ms 20 ms

40 ms

FIG. 18. Similar to Fig. 17, cortically constrained, with normals. Top to bottom rows: minimum norm least squares (MNLS), Laplacian smoothness
reconstructions (LORETA), L, conjugate gradient (CG) (all clipped > 70%, 1nAm/mm), L, sparse (50 nAm/mm). Left to right: —10, 20, 40

millisecond (ms).

in the number of support points). Once the lead-field
matrix is calculated, the computational performance no
longer depends on the volume conductor model used.
The times needed for the rather demanding CG algo-
rithms used for LORETA and L, are one to two orders of
magnitude larger than for the linear MNLS approach,
whereas the L, sparse simplex algorithm needs about
twice the time as the Laplacian method. One should keep
in mind, that for the latter approach and for L, CG
several iterations may be needed to achieve an appropri-
ate choice of the regularization parameter. However, all
methods can be performed in reasonable times, and thus
should be used for comparison and confirmation of other
findings (e.g., from spatiotemporal dipole models).

DISCUSSION

Extensive simulations with spherical volume conduc-
tor geometry and a large number of electrodes are per-
formed to study the basic properties of different current
density reconstruction algorithms with respect to local-
ization accuracy and spatial resolution for the most

J Clin Neurophysiol, Vol. 16, No. 3, 1999

simple case of single pointlike, dipolar sources. The
linear and nonlinear approaches used here are described
in detail in the methods section. In the simulations the
sensors are distributed according to an extended 10-20
system, and exhibit a rather close spacing and good
coverage of the upper hemisphere. Radial and tangential
unit strength test-dipoles at 19 different eccentricities are
used to evaluate depth and orientation dependencies of
the reconstruction methods. Two different signal-to-
noise levels are studied: below 100 for idealized condi-
tions, revealing the inherent properties of the approaches,
and below 10 for more realistically simulating measured
data quality. Support points for the current density re-
constructions are chosen on a regular 3D grid limited by
the innermost shell of the three spherical shells volume
conductor model. Lead-field normalization techniques
are tested to find the best compensation method for the
undesired tendency of linear and nonlinear minimum
norm algorithms to underestimate the source depths. The
correct adjustment of the regularization parameter is
another important issue studied here.

The partial lead-field compensation gives the best
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_ Dipole Time Courses: 1to 3

-550

o~

Loadings jufmm}

T TS —

67.1 .

FIG. 19. Similar to Fig. 15, but for
EEG-2. Spatiotemporal reference re-
constructions (—55 to 20 milliseconds
[ms]). Three fixed dipole fits with MU-
SIC-metric overlayed to the cortical
gray matter layer (upper right, black
poles). The reconstructed loadings of
the three dipoles are shown in the up-
per left together with the explained
deviation (lower trace) as a function of
time. Upper trace: middle dipole, sec-
ond trace: anterior dipole, third trace:
posterior dipole. Moving dipole recon-
structions at —40 ms (red) and 0 ms
(blue) are also shown. The three lower
rows show MUSIC scans (3 dipoles)
on a three-dimensional grid (5 mm,
14,659 nodes), cortically constrained
(3.6 mm, 25,660 nodes) without, and
with normals as color coded overlays
(all scans clipped = 75%. left to right:
top, rear, and right views).

results for the standard Minimum Norm Least Squares
and Laplacian smoothness algorithms. However, even
with an optimum choice of depth normalization, MNLS
underestimates the depth of sources at most eccentrici-
ties. The Laplacian smoothness approach (the overcom-
pensated implementation with fixed regularization is

OdccnnNecinn

[ms

cortically constrained, with normals

known as LORETA (Pascual-Marqui et al., 1995)) at
eccentricities above 70% overestimates the source
depths, which is due to the smoothness constraint, that
cannot be well fulfilled at the source space boundaries.
Nevertheless, the modified LORETA method shows the
smallest overall localization errors and the best spatial

J Clin Neurophysiol, Vol. 16, No. 3, 1999
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MNLS

LORETA

L, CG

L, sparse

-40 ms

Oms

FIG. 22. As. Fig. 21, EEG-2, cortically constrained linear and nonlinear algorithms, with normals. Top to bottom rows: minimum norm least squares
(MNLS), Laplacian smoothness reconstructions (LORETA) (clipped > 70%, 1 nAm/mm), L, conjugate gradient (CG) (clipped > 70%, 1 to 5
nAm/mm), L, sparse (50 nAm/mm). Left: —40, right: 0 millisecond (ms).

resolution for the simulated data. Furthermore, due to the
more indirect effect of the source strengths in the model
term, lead-field normalization is less critical as compared
to the standard MNLS algorithm.

Compared to the linear methods, the nonlinear ap-
proaches exhibit better localization accuracy and im-
proved spatial resolution at high SNRs. The interpreta-
tion of the results is more difficult, since especially at

small SNRs and with the L,-sparse approach a few,
relatively strong dipoles are reconstructed close to or
around the true source location and no smooth distribu-
tions with approximately matching center positions can
be seen.

For the more realistic low SNR cases spatial resolution
and localization accuracy decrease for all methods stud-
ied and at deep source positions the reconstructed current

TABLE 1. Computational efforts for the different BEM models, lead-field matrix set-up, and reconstruction algorithms

BEM- Lead-field

BEM-model BEM matrix IPA-matrix ~ matrix size ~ Lead-field L, L, MUSIC

No. of setup decompose decompose (cortical matrix ~ MNLS LORETA CG sparse fit (3 dip.) MUSIC scan

nodes/triangles  [s] [s] [s] surface) setup [s] [s] [s] [s] [s] [s] (3 dip.) [s]

EEG-1 (9956 nodes) (24,977 nodes)
4448/8884 300 600 24 29,868 * 27 1.3 20 216 50 8.7 6.4

EEG-2 (11,202 nodes) (25,660 nodes)
3907/7810 230 435 19 33,606 * 26 170 L5 24 270 45 4.7 6.4

All times are given in seconds for an Intel Pentium II 400MHz PC with 256MB RAM. BEM model and lead-field matrix set-up have to be
performed only once. BEM, boundary element method; IPA, isolated problem approach; LORETA, Laplacian smoothness method; MNLS, minimum
norm least squares; MUSIC, (multiple signal classification) a spatiotemporal dipole model.

J Clin Neurophysiol, Vol. 16, No. 3, 1999
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densities develop irregular shapes. The nonlinear L,-
norm algorithm suffers most from low SNRs by showing
scattered and spurious results for deep source locations.

Adjusting the regularization parameter, that weights
between data and model term, can be performed auto-
matically for the MNLS and L,;-sparse approaches, if the
noise of the data is known and specified correctly. All
methods are found to be very sensitive to overfitting the
data in the realistic SNR cases, since then the algorithms
will start to fit the noise or correlated background fea-
tures of the data. Thus fixed or wrong choices of the
regularization parameter will lead to spurious results or
ghost sources, that explain more of the data than their
signal contents. Small deviations between measured and
calculated fields can always be achieved by adjusting
small values of the regularization parameter. For current
density methods, they are thus no longer a good criterion
for the quality of the reconstruction result. It is essential
to have a good estimate for the noise in the data and
adjust the regularization parameter accordingly.

Unknown Epileptic Spike Data

Finally, all current density reconstruction methods are
applied to two unknown epileptic spike data sets. In both
cases realistic volume conductor models, segmented
from individual anatomic magnetic resonance images,
are used. The measured, unaveraged data exhibit a low
number of electrodes (27 respectively 26), but neverthe-
less a good coverage of the upper hemisphere, thus
revealing relatively large interelectrode distances. All
reconstruction methods are applied with support points
on regular 3D grids limited by the innermost compart-
ment of the BEM volume conductor model. The cortical
gray matter layers are segmented from the anatomic data
to enable cortically constrained reconstructions. To im-
plement even more a priori knowledge the surface nor-
mals of these layers can also be used in addition.

The reconstructions from the first data set reveal
source activity in left temporal lobe of the patient. As
found earlier (Yvert et al., 1997; Fuchs et al., 1998a),
realistic volume conductor models are essential for tem-
poral lobe source analyses, since otherwise localization
errors in the order of 2 to 3 c¢m, mainly in the vertical
direction, result. The early components of the spike seem
to originate from the frontal basal region of the left
temporal lobe, as all applied methods suggest with more
or less spatially resolved details. In conclusion, the re-
sults for the first epileptic spike data set all confirm each
other and give a similar picture as the spatiotemporal
source reconstructions, which should always be per-
formed for comparison. The correct choice of the regu-

larization parameter is critical, especially in low SNR
cases or when systematic errors like correlated back-
ground activity are present. The properties of the distrib-
uted source reconstruction algorithms in this case behave
as expected from the idealized simulations. The overfo-
cussing L, sparse results should not be overinterpreted,
since the remaining few centers of strong activity may be
grouped around a real dipolar source or represent the
center of unresolvable activated areas only. Including
more physiologic a priori knowledge like the cortical
gray matter layer normals as orientational constraints
improves the results by suppressing sidelobes and corti-
cal patches with wrong orientation. The resolution of all
methods is not sufficient to reveal more spatial or tem-
poral details of the epileptic spike development, but this
should be seen in the light of the rather limited number
of electrodes. Better results as published earlier under
even more idealized conditions (Wang et al., 1992) as in
our simulations thus cannot be expected here.

The second epileptic spike data set with nearly all
source reconstruction methods shows activity at the mid-
dle of the upper hemisphere around the interhemispheric
gap and the vertex (C,-electrode, compare Fig. 19). The
spatiotemporal and most distributed source reconstruc-
tions seem to have their centers slightly shifted to the
right hemisphere, but the poor spatial resolution, which
is mainly due to the low SNR (where “noise” need not be
limited to statistical processes only) and the large inter-
electrode distances, allow no unique decision. However,
looking at the potential maps on the skin (Fig. 4), the
results seem to be reasonable.

Care should be taken not to overinterpret the results of
the nonlinear algorithms because they may not reflect the
true source configurations especially in low SNR cases.
This may also be due to the conjugate gradient algorithm
used for acceptable performance of some of the methods:
the choice of convergence criteria may be critical. The
best approach is to compare all methods available to
come to a more settled conclusion and not to rely on a
single method that worked well in a special case. One
should also keep in mind, that the inverse problem has no
unique solution, but that physiologically meaningful
source models are needed the achieve an appropriate
result.

An adequate choice of the regularization parameter is
very important and has to rely on trustable estimates of
the SNR and/or the background signals. Finally, looking
at the strongly underdetermined character of the prob-
lems (about thousand times more unknowns than mea-
sured data), a limited spatial resolution is expectable,
since the number of source distributions, that form the
result by linear combination, is less or equal to the

J Clin Neurophysiol, Vol. 16, No. 3, 1999
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number of sensors used (Jeffs et al., 1988; Kohler, 1998).
Thus, high spatial frequencies in the source space do-
main are rather strongly damped.

All independent source models available should be
applied and compared to achieve confirmed results. The
limited spatial resolution of current density reconstruc-
tions can be improved by an increased number of sen-
sors. However, even with low spatial sampling as in the
epileptic spike cases analyzed here, the results shown
may confirm classical diagnostic approaches and may
help to guide further invasive measurements (e.g. EcoG),
which are needed for verification.

Acknowledgment: The authors thank Prof. John Ebersole,
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