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Multiple Current Dipole Estimation
Using Simulated Annealing

Hideaki Haneishi, Nagaaki Ohyama, Kensuke Sekihara, and Toshio Honda

Abstraci—A method for estimating electrical current distribu-
tion in the human brain using a multiple current dipole model
is presented. A cost function for estimating multiple dipoles is
proposed and a simulated annealing algorithm is used to obtain
an acceptable solution. Computer simulation is used to evaluate
the effectiveness of this method.

I. INTRODUCTION

METHOD based on magnetic field measurement for

imaging electrical current distribution in the human brain
has been studied in recent years. The magnetic field induced
by current distribution is measured using a highly sensitive de-
tector and current distribution is estimated from the measured
data. This problem estimating curtent distribution, therefore,
can be seen as an inverse problern.

Until recently, most research has focused on simple external
magnetic fields created by, for example, audio or visual
stimuli. In this estimation, a single current dipole has been
used as the current source model because of its simplicity [1].
When the source current is localized in one small region of
the brain, this model is reasonable. All of the fields created by
external stimuli, however, are not always explained by asingle
current dipole. Of course, a single dipole poorly represents the
current distribution caused by higher brain functions.

Two- and three-dimensional reconstruction of current dis-
tribution has also been tried [2}-{7]. This approach, however,
still has some problems in terms of the signal-to-noise ratio,
the total amount of measured data, and so forth.

We therefore propose using a multiple dipole model as an
intermediate model. While a more complicated field can be
expressed using this method, the problem to be solved becomes
more difficult because of the existence of suboptimal solutions
[7]. To overcome this, we also propose using a stochastic
algorithm which is called simwulated annealing.

In Section II, the multiple dipole model is introduced and
the inverse problem is formulated. We treat this problem as
an optimization problem and design a cost function which is
minimized for the solution. Particularly, we propose a cost
function that can handle an unknown number of dipole. In
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Section III, the simulated annealing algorithm is shown. In
Section IV, the proposed method is evaluated using computer
simulation,

II. FORMULATION OF THE PROBLEM

In neuromagnetic imaging, magnetic field components, nor-
mal to the surface of the head, are often measured. For dipole
estimation, the head is often modeled by a spherically sym-
metric conductor or 2 homogeneous conductor with spherical
shape [8]. Since the volume current does not induce a radial
magnetic field component on the surface of the head in such
models, it is easy to estimate the current dipole (impressed
current) from data measured on the surface of the head. In
this paper, we assume that the head can be modeled by a
homogeneous conductor with a spherical shape and that the
magnetic field component normal to the surface can be used
for the dipole estimation.

The center of the sphere is defined as the coordinate origin.
Let 1, be a position vector of the n-th dipole, q, be a
moment of the dipole, and r,, a position vector of the m-
th measuring point. The magnetic field induced by N dipoles
at the measuring position r,, is subject to Biot-Savart's law
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where M is the total number of measuring points. The
magnetic permeability g of the medium is approximately
expressed by the permeability po of free space and X means
the vector product. The radial component measured by the
detector is written as follows
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where the dot means the scalar product. The objective of this
inverse problem is to find both the position and the moment
of each current dipole from the measured data set {g(r,,)}.
Under the assumptions that the head can be modeled by a
homogeneous conductor with a spherical shape and that the
magnetic field component normal to the surface can be used
for the dipole estimation, the radial component of the current
dipole g, produces no magnetic field outside the conductor.
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Thus, it is theoretically impossible to estimate this component
from the measured data. The parameters which we can estimate
are two tangential components of the moment vector and three
components of the position vector.

We will now look at the cost function needed to solve
the inverse problem. For simplicity, we will first consider a
case where the number of current dipoles is known. The cost
function to be minimized is the squared error between the
measured data and the magnetic field induced by the estimated
dipoles. If {g(rm)} is the field induced by the estimated
dipoles, the cost function is

M
By =Y {g(rm) - §(rm)}*. 3)
m=1

This function can also be expressed using vector notation as
=2
By = |g - g (4)
where

g = [g(r1), 9(r2),.- -, g(rm)]” (5)

and
g = [g(r1),G(xr2), ..., Glra)]". (6)

Next, consider a much more practical case where the number
of current dipoles is unknown. The upper limit on the number
of dipoles is based on the total number of measuring points.
For example, if the total number of measuring points is 32, no
more than six dipoles (5 x 6 = 30 parameters) can be originally
identified, This limit of roughly six dipoles is, however, only
an estimate and is not always representative of the actual
number.

For example, even if six dipoles are estimated, the actual
number might be two. In this case, the ideal solution is for only
two of the dipole estimates to have actual values and for the
other four dipole estimates to become zero. The squared error
criterion (4) however, does not always provide such a solution.
There exist infinite combinations of estimated six dipoles that
induce the same magnetic field as the actual field induced by
true dipoles. In other words, the cost function has a wide flat
bottom where the solution provides the minimum value for (4).
This ambiguity of solution is caused by the ill-posed nature
of this inverse problem.

We therefore modified the cost function to provide one
reasonable answer from an infinite number of solutions. The
criterion used to select a solution is “the solution which is
composed of least number of dipole is the best solution.” This
criterion should provide a reasonable solution when the current
distribution is caused by some sensory stimulation, since it
tends to be localized in a small region. Even when we have no
a priori knowledge about the current distribution, this criterion
is appealing since it can provide the most reasonable solution
in the sense that the resulting solution corresponds to the least
brain activity which explains the measured data [4].

Taking the above criterion into account, we propose the
following revised cost function

N
Ey=|g-8f+uw)_ J&l° )

=1

1005

where « is a real number satisfying 0 < @ < 1 and the constant
w is a proper weighting factor. In the second term, g;
represents the contribution by the i-th estimated dipole only.
Each element of g; can be expressed as

~ _@aﬁ‘(rm XFi)
(I‘m) = 4T llrm __ffil;; E (8)

It should be noted that the norm for the magnetic field vector
g is calculated rather than dipole vector G;. This is done
to avoid a position shift; if the norm of q; was used, each
dipole would tend to shift towards the detector [4]. This is
understood intuitively through the following simple example.
There are two dipoles; one is an arbitrary dipole and the other
is closer to the detector than the first dipole and has lesser
magnitude. These two dipoles may induce almost the same
magnetic field. If the norm of a moment is added to the cost
function, the dipole near the detector is selected. This example
explains why the dipoles tend to shift to the detector side. If g;
is used, there is no bias based on the position; consequently,
a more exact solution is determined.

Furthermore, the exponent index ¢, which is less than one,
helps to select a lesser number of dipoles. The reason for this
is explained in the Appendix.

ITI. ESTIMATION PROCEDURE

In Section II, the cost function to be minimized was es-
tablished. The rest of our task is to construct an algorithm
that provides the globally optimum solution. As mentioned
above, and as we shall see in the computer simulation, the cost
function may have local minima. We therefore apply simulated
annealing to this problem.

Simulated annealing, which is analogous te thermodynam-
ics, was originally proposed by Kirkpatrick et al. [9] to solve
optimization problems. One of the most important character-
istics of this algorithm is that it can estimate the globally
optimum solution even when there are local minima. The
following is a brief review of this algorithm.

Fig. 1 shows a flow chart of the simulated annealing al-
gorithm for the current dipole estimation. First, an initial
estimate of the current dipoles are arbitrarily made. Next,
perturbations are introduced to each parameter for each dipole
by adding or subtracting a small value. Then, the change
in the cost function, AF, caused by this perturbation is
calculated. If AF < 0, the perturbation is accepted as a
favorable change which decreases the cost function and the
value of the parameter is updated. If AE > 0, the perturbation
is accepted, subject to the Boltzmann probability statistics
p(AE) = exp(—AFE /kT), where T is a factor associated with
the thermodynamic temperature.

This stochastic acceptance is essential in avoiding a trap at
a local minima. These trials and updates over all parameters
are repeated until thermal equilibrium is reached. The thermal
equilibrium is defined as the condition where the number of
accepted perturbations that increase the cost function is equal
to that of accepted perturbations that decrease the cost func-
tion. When thermal equilibrium is reached, the temperature T
is decreased according to a predetermined schedule. The same
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Fig. 1. Simulated annealing algorithm for dipole estimation.

procedure is repeated until the next thermal equilibrium is
obtained. This process continues until the temperature becomes
so low that no more updating of parameters occur. The whole
process described above enables the estimates to reach the
global minimum.

IV. COMPUTER SIMULATIONS AND DISCUSSIONS

We investigated both the ability of the proposed cost func-
tion and the need for annealing by using computer simulation.
The human head was modeled as a spherical homogeneous
conductor with a radius of 80 mm. The magnetic field compo-
nent normal to the spherical surface was measured at 64 points
evenly distributed over the upper hemispherical surface along
the head. For the measurement, a noise-free environment was
assumed in order to focus on the ill-posed nature of this inverse
problem and the treatment for the existence of local minima.

The simulated annealing temperature was decreased accord-
ing to the decrement rule [10], [L1]

k< Kiim

_ [To/(1+k)
Tk = { k > Klim ’ (9)

0.8T%—1

where Tk is the k-th temperature and 7 is the initial tempera-
ture. The decrement rule is switched from Tx = To/(1+k) to
a much faster decrement according to Ty = 0.8Tj_1 at Kyim.
In our simulation, Kj;, was determined empirically as 300.

In the modified cost function, the exponent index « in the
second term was set at 1/2.
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TABLE I
ORIGINAL SOURCES (UNIT OF POSITION VECTOR IN
[Mm]. UniT OF CURRENT VECTOR IS ARB{TRARY.)

Current vector

Position vector

dipole  px Py Pz qu Qv 3

#1 18.5 299 155 98 -28.4 30.0

#2 01 33 477 275 -11.9 30.0

#3 20.3 38 5.3 -3.1 29.8 30.0
TABLE 1I

IniTIAL ESTIMATE
Position vector Current vector

dipole  px Py Dz Qu Qv 8

#1 20.0 40.0 40.0 89 30 94

#2 -20.0 400 40.0 26.8 4.9 28.2

#3 00 20.0 40.0 20.0 89 219

#4 0.0 40.0 40.0 20.0 0.0 20.0

TABLE III
FINAL ESTIMATE WHEN w = 0

Position vector Current vector
dipole px Py Pz qu Qv d 5 Ey
#1 23.1 32.1 154 10.0 -17.8 51 204
#2 0.9 39 48.0 235 -17.5 1.2 339 0.58
#3 26.5 0.3 156 9.7 29.0 112 306
#4 8.6 30.8 229 3.6 -9.3 - 100

A. Effectiveness of the Modified Cost Function

Ability of the modified cost function to estimate an unknown
number of dipoles was investigated. In the first example, we
assumed an original source to be composed of three dipoles
and prepared four dipoles for the estimation. Although the
upper limit, based on the number of measuring points, is
greater than four, four dipoles were sufficient to show the
ambiguity of solution.

Table I shows the original sources. The values p.,p, and p.
denote the Cartesian coordinates of the position of the dipole
in [mm]. The values ¢, and ¢, denote the two tangential
components of a moment of the dipole in an arbitrary unit. The
magnitude of the dipole in a tangential plane, s, is defined as

s=Va+a. (10)

Table II shows the initial values for each parameter in the
estimating procedure. Table III shows the final estimate when
the weighting factor, w, in the cost function, (7), is zero, which
corresponds to (4). In this table, d is the localization error for
each dipole estimate corresponding to an eriginal dipole, and
is defined as

d= ‘/(ﬁz - p::)z + (ﬁy "'p'y)z + (ﬁz i pz)g' (11)

The E; in the table is the squared error of the magnetic field in
arbitrary unit calculated by (4). While there is a good estimate
for dipole #2, a localization error of over 10 mm occurs for
dipole #3. Furthermore, all four dipoles have nonzero values
for dipole magnitude. This leads to a misunderstanding that
there exists four dipoles.

£, in the final estimates is very small compared with
that of the initial estimate which was 8052.06, but still
not zero. This means that the estimate does not completely
reach the global minimum. We believe the reason for this is
as follows. Theoretically, the cooling temperature inversely
proportional to a logarithmic function of time is necessary
to reach the global minimum [12]. The actual schedule used
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TABLE IV
FINAL ESTIMATE WHEN w = 0.5

Position vector Current vector
dipole  px Py Pi qu v d 5 Ey
41 18.2 286 15.3 112 -29.5 14 31.6
#2 0.2 32 41.7 280 -11.3 0.1 0.2 0.17
#3 310 39 73 -4.0 265 26 268
#4 16.9 214 0.3 00 0.0 - 0.0

TABLE V
FivaL ESTIMATE WHEN w = 1.0

Position vector Current vector
dipole pyx Py Pz Qu v d 5 E,
#1 195 380 193 6.2 -169 9.0 18.0
#2 2.0 25 428 429 11.3 53 44.4 2188
#3 -59 0.6 318 0.0 0.0 s 0.0
#4 2148 269 227 00 0.0 0.0

TABLE VI
FINAL ESTIMATE FOR ORIGINAL SOURCES
COMPOSED OF #1 AND #2 WHEN w = 0.5

Peosition vector Current vector
dipole  px Py Pz qu Qv d s Ex
#1 191 811 152 9.1 262 14 PXk]
#2 0.4 3.3 476 284 -10.0 0.3 30.1 0.22
#3 25 362 313 0.0 0.0 - 0.0
#4 152 257 4.6 0.0 0.0 - 20

here, however, is a modified version of the ideal schedule.
Though the schedule used takes much less time to converge
than the ideal schedule, the probability of reaching the global
minimum decreases a little. The result is therefore due to the
suboptimal annealing schedule. The final value of the cost
function, however, is sufficiently small and we feel that there
is no problem with practical use.

Table IV shows the final estimate when w is 0.5. Dipole
estimates #1, #2, and #3 are very close to the original dipoles
#1, #2, and #3. Furthermore, it should be noted that dipole
estimate #4 disappears, i.e., the magnitude of the current dipole
becomes zero. This confirms the effectiveness of selecting a
solution based of the minimum number of dipoles. The squared
error of the magnetic field remains a small value.

Table V shows the final estimate when w is set to 1.0. The
localization errors of the #1 and #2 dipole estimates are greater
than the those in the case where w = 0.5. Furthermore, both
the #3 and #4 dipole estimates disappear. This is due to the
excess effect of the second term in the cost function.

A computer simulation where two original dipoles were
estimated using four dipoles was also performed. The #1 and
#2 dipoles in Table I were used as the two original dipoles, and
the four dipoles shown in Table II were again used as the initial
guess. Table VI shows the results when w = 0.5. A very good
estimate, close to the original dipoles, was obtained. It was
found from the above simulations that the proposed method,
using the cost function with an appropriate w, successfully
provides a good estimate for current source, even if the number
of dipoles is unknown.

We conducted a second computer simulation with another
dipole set for the original sources. Table VII shows the original
sources. Four dipoles were prepared for estimation, and the
initial estimate shown in Table II was used again. Table VIII
shows the final estimate when w = 0. In this case, #1 to #3
are very close to the original dipoles. The magnitude of dipole
#4 is relatively small. This is considered to be a case that the

TABLE VI
OtHER ORIGINAL SOURCES
Current vector

Position vector

dipole  px Py Pz Qu av 8

#1 7.0 0.8 69.3 -1.2 300 30.0

#2 56.2 5.8 39.4 25.9 -15.2 30.0

#3 -0.4 70 - 386 26.6 138 30.0

TABLE VIII
FINAL ESTIMATE WHEN w = 0
Position vector Current vector
dipole px Py Pz qu av d 8 Ey
#1 69 0.9 68.7 -1.3 31.6 0.7 31.6
#2 564 58 396 253 -15.0 03 294 077
#3 -3.0 9.2 335 313 58 4.0 318
#4 -16.8 140 29.7 -3.4 2.1 i 4.0
TABLE IX
FinaL ESTIMATE WHEN w = 0.5
Position vector Current vector

dipole px Py Pz Qu Qv 8 E1
#1 6.5 1.3 675 0.4 343 39 M3
#2 56.5 6.0 394 254 -14.7 0.1 29.3 313
#3 24 9.7 296 25.0 94 55 26,7
#4 13.8 19.7 198 0.0 00 == 0.0

estimate occasionally reached to one optimum solution among
the wide solution space.

Table IX shows the final estimate when w = 0.5. Although
the results are not as good as those shown in Table VIII, the
obtained estimates are acceptable. Estimate #4 vanished again
as before.

From the several computer simulations, it was found empir-
ically that the best value of w is about 0.5, in the noise-free
case. We have not yet found how to determine the optimum
value for w. The first temm of the cost function has a wide and
flat bottom in the case of an ill-posed and noise free condition.
On the other hand, the second term causes the bottom to
slant. Therefore, theoretically, w should be nonzero, but so
small that the minimum point produced by the addition of
the second term does not move away from the bottom. In the
case of noisy conditions, there seems to be an optimum value
for w dependent on the noise statistics. In any case, further
investigation is needed to determine the optimal value for w.

B. The Necessity of Annealing

A dipole estimation using quenching instead of annealing
was also done. During estimation, the temperature was fixed
at zero degrees. As the cost function, (7) was used. The result
of quenching is shown in Table X. The final estimate does
not provide an acceptable estimate. Also the final value of the
squared error remains high compared with the annealing case.
This means a local minimum trap in the solution. In this sense,
the quench method is identical to conventional optimization
algorithms, such as the steepest descent method. This clearly
shows the superiority of simulated annealing to conventional
optimization algorithms.

Since the algorithm for simulated annealing is simple, its
programming is very easy compared to the conventional meth-
ods. It is true, however, that the computational performance of
simulated annealing is not as good because of slow cooling.
In our simulation, it takes about five hours on average to
estimate four dipoles using a mini-computer capable of 1
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TABLE X
FINAL ESTIMATE BY QUENCHING (THE LOCALIZATION ERROR
d CouLp NoT BE CALCULATED BECAUSE ANY DIPOLE
EsTiMATE DOES NOT CORRESPOND TO THE ORIGINAL DIPOLES.}
Paosition vector Current vector
dipole px Py Pz qu qv d 5 By
¥1 262 385 293 5.6 104 — 118
#2 3.9 94 692 0.2 1.3 1.3 1380
#3 2.4 2.2 415 396 18.2 436
#4 3.4 381 227 -0.8 7.7 7.1

MIPS. This time could be reduced considerably by using
higher performance computer. Furthermore, parallel estimation
of multiple dipoles could make even higher speed processing
possible [11].

V. CONCLUSION

A conventional single dipole model is a poor match for
the complicated current sources in the human brain. We
introduced a multiple dipole model which can overcome this
problem. The results, however, can be ambiguous. We thus
proposed a cost function which determines a solution with a
minimum number of dipoles. Since the proposed cost function
generally has local minima, the conventional optimization
algorithm using a gradient is not applicable. This difficulty
was overcome by using a stochastic algorithm called simulated
annealing. Through computer simulation, the effectiveness
of the proposed method was demonstrated. Although the
fundamental characteristics of the proposed method have been
shown in this paper, further research, including the problem
of how to determine the weighting factor, is needed.

APPENDIX

Equation (7) with exponent index « greater than zero and
less than one determines a solution with a minimum number
of dipoles from among the solutions which minimize (4). This
is shown in the following simple case.

First, the true number of dipoles is assumed to be one, and
two dipoles are used for estimation. The magnetic field induced
by the true dipole is gg and the magnetic fields induced by the
two estimated dipoles independently are g; and g5. The total
field of dipole estimates is therefore g1 + g2. After completing
the estimation process when the value of (4) becomes small
enough, the equation

80 =81 +8 (A1)
must be satisfied. There exist, however, an infinite number of
solutions for (Al). Fig. 2(a) shows this graphically. The pair
(€1,g2) is an example of vectors whose summation is equal
to gp and whose directions are different from each other. It
is clear that there are an infinite number of such examples.
Now consider one more pair (g},g5) whose directions are
both the same as gg, as in Fig. 2(a), and then evaluate the
second term of (7) for these examples. For 0 < «, since
[87]% < |g1]™ and [g5|* < |g2|*, the following relation is
obtained

811" + [82]* < 1&|* + 82" (A2)
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Eo

(2)

} fcy,0)

(b)

Fig. 2. (a) Two examples of pair (g1,g2) whose summation g1 + g2 is
equal to go. (b) Curve of the cost function f(c1,¢3) = ciﬂ + céfz along
o = ¢ 4+ 2.

Therefore, by minimizing (7), the pair (g, g5) with the same
direction, rather than the pair (g},g5) with the different
directions, is selected.

An ambiguity in the magnitudes of the vectors g} and g5,
however, still remains. If we denote a unit vector go/|go| as
eg for the pair (g1,g5) with the same direction, there exist
some positive scalars ¢g, ¢1, ¢ which satisfy the following:

8o = €o€o
E’1 = 1€
g2 = 20 (A3)
where
€g = c; + Ca. (Ad)

Minimizing the second term of (7) corresponds to minimizing
the following function

fler,e) = e + 5. (A5)

If @ < 1, then the curve of the function f(cy,co) is as in
Fig. 2(b) and consequently, the solution is

(2)=(5)=()-(2)

In these cases, one vanishes and the other agrees with the
true cp. This means that the solution composed of a minimum
number of dipoles is selected.

(A6)
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