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Abstract

Accuracy and run-time play an important role in medical diagnostics and research as well as
in the field of neuroscience. In Electroencephalography (EEG) source reconstruction, a current
distribution in the human brain is reconstructed noninvasively from measured potentials at the
head surface (the EEG inverse problem). Numerical modeling techniques are used to simulate
head surface potentials for dipolar current sources in the human cortex, the so-called EEG
forward problem.

In this paper, the efficiency of algebraic multigrid (AMG), incomplete Cholesky (IC) and
Jacobi preconditioners for the conjugate gradient (CG) method are compared for iteratively
solving the finite element (FE) method based EEG forward problem. The interplay of the three
solvers with a full subtraction approach and two direct potential approaches, the Venant and
the partial integration method for the treatment of the dipole singularity is examined. The
examination is performed in a four-compartment sphere model with anisotropic skull layer,
where quasi-analytical solutions allow for an exact quantification of computational speed versus
numerical error. Specifically-tuned constrained Delaunay tetrahedralization (CDT) FE meshes
lead to high accuracies for both the full subtraction and the direct potential approaches. Best
accuracies are achieved by the full subtraction approach if the homogeneity condition is fulfilled.
It is shown that the AMG-CG achieves an order of magnitude higher computational speed than
the CG with the standard preconditioners with an increasing gain factor when decreasing mesh
size. Our results should broaden the application of accurate and fast high-resolution FE volume
conductor modeling in source analysis routine.

Key words: electroencephalography, source reconstruction, finite element method, dipole singularity,
full subtraction potential approach, Venant potential approach, partial integration potential approach,
preconditioned conjugate gradient method, algebraic multigrid, incomplete Cholesky, Jacobi,
constrained Delaunay tetrahedralization, anisotropic four-layer sphere model.
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1. Introduction

Electroencephalography (EEG) based source reconstruction of cerebral activity (the
EEG inverse problem) is an important tool both in clinical practice and research [34],
and in cognitive neuroscience [2]. Methods for solving the inverse problem are based on
solutions to the corresponding forward problem, i.e., the simulation of EEG potentials
for a given primary source in the brain using a volume-conduction model of the human
head. While the theory of this forward problem is well established and many numerical
implementations exist, there remain unresolved questions regarding the accuracy and
efficiency of contemporary approaches. In this study, we compared a range of numerical
techniques and source representation approaches and have shown that careful choice of
both are critical in order to solve realistic electroencephalographic forward (and inverse)
problems.

The general approach for solving bioelectric field problems under realistic conditions is
well established. All quantitative solutions for the EEG forward problem are based on the
quasi-static Maxwell equations [25]. The primary sources are electrolytic currents within
the dendrites of the large pyramidal cells of activated neurons in the human cortex. Even
if there are also smoother models [32], most often the primary sources are formulated as a
mathematical point current dipole [25,6,18]. The finite element (FE) method is often used
for the solution of the forward problem, because it allows for a realistic representation
of the complicated head volume conductor with its tissue conductivity inhomogeneities
and anisotropies [40,3,1,33,4,15,20,36,26,38,7].

To implement the point current dipole as a current source in the brain, the FE method
requires careful consideration of the singularity of the potential at the source position.
One way to address the singularity is to use a “subtraction approach”, which divides
the total potential into an analytically known singularity potential and a singularity-
free correction potential, which can then be approximated numerically using an FE ap-
proach [3,1,33,15,26,38,7]. For the correction potential, the existence and uniqueness for a
weak solution in a zero-mean function space have been proven and FE convergence prop-
erties are known [38]. It has also been established that a full subtraction approach [7]
leads to an order of magnitude more accurate solution than a common alternative, the
projected subtraction approach [38], especially when considering sources that are close to
a conductivity inhomogeneity. Another family of source representation methods, known
as direct FE approaches to the total potential [40,1,4,36,26], are computationally less
expensive, but also mathematically less sound under the assumption that a point dipole
is the more realistic source model.
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Another general prerequisite for FE modeling of bioelectric fields is the generation of
a mesh that represents the geometry and electric properties of the volume conductor.
An effective meshing strategy will balance acceptable forward problem accuracy against
reasonable computation times and memory usage. Very high accuracies can be achieved
by making use of a Constrained Delaunay Tetrahedralization (CDT) in combination
with a full subtraction approach [7]. Adaptive methods, using local refinement around
the source singularity [3,33], are another potential utility but they preclude the use of
fast transfer matrices [36,8,39,11] and lose efficiency in solving the inverse problem (see
discussion section).

Solving the forward problem is rarely the ultimate goal in calculating bioelectric fields
but rather a step towards solving the associated inverse problem. Thus the quest for
numerical accuracy and efficiency of the forward solution requires some anticipation of
the ultimate use in inverse solutions. The longtime state-of-the-art approach has been to
solve an FE equation system for each anatomically and physiologically meaningful dipo-
lar source (each source results in one FE right-hand side (RHS) vector) [3,1,33,4,15]. The
use of standard direct (banded LU factorization for a 2D source analysis scenario [1]) or
iterative (Conjugate Gradient (CG) without preconditioning [3] or Successive OverRelax-
ation (SOR) [26]) FE solver techniques limit the overall resolution of the geometric model
because of their computational cost. The preconditioned CG method was used with stan-
dard preconditioners like Jacobi (Jacobi-CG) [36] or incomplete Cholesky without fill-in,
IC(0)-CG [4].

One recent approach to achieve efficient computation of the FE-based forward problem
is to pre-compute transfer matrices that encapsulate the relationship between source
locations and sensor sites based only on the geometric and conductivity characteristics
of the volume conductor, i.e., they are independent of the source. Techniques exist to
construct transfer matrices for problem formulations based on EEG [36,11] or combined
EEG and MEG [8,39]. Using this principle, for each head model, one only has to solve one
large sparse FE system of equations for each of the possible sensor locations in order to
compute the full transfer matrix. Each forward solution is then reduced to multiplication
of the transfer matrix by an FE RHS vector containing the source load. Exploiting the
fact that the number of sensors (currently up to about 600) is much smaller than the
number of reasonable dipolar sources (tens of thousands), the transfer matrix approach
is substantially faster than the state-of-the-art forward approach (i.e., solving an FE
equation system for each source) and can be applied to inverse reconstruction algorithms
in both continuous and discrete source parameter space for EEG and MEG. Still, the
solution of hundreds of large linear FE equation systems for the construction of the
transfer matrices is a major time consuming part within FE-based source analysis.

The first goal of this study was therefore to compare the numerical accuracy of the full
subtraction approach [7] with the two direct approaches using partial integration [40,1,36]
and Venant [4] in specifically-tuned CDT meshes of an anisotropic four-compartment
sphere model for which quasi-analytical solutions exist [5]. We then examine the in-
terplay of the source model approaches with three FE solver methods: a Jacobi-CG,
an incomplete Cholesky CG (e.g., [27]), and an algebraic multigrid preconditioned CG
(AMG-CG), which has already shown to be especially suited for problems with discon-
tinuous and anisotropic coefficients [23,31,22,9,37].
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2. Theory

In the quasi-static approximation of the Maxwell equations, the distribution of electric
potentials Φ in the head domain Ω of conductivity σ, resulting from a primary current jp

is governed by the Poisson equation with homogeneous Neumann boundary conditions
on the head surface Γ = ∂Ω [21,25], which we can express as

∇ · (σ∇Φ) = ∇ · jp = Jp in Ω, 〈σ∇Φ,n〉 = 0 on Γ, (1)

with n the unit surface normal, and assuming a reference electrode with given potential,
i.e., Φ(xref) = 0. The primary currents are modeled by a mathematical dipole at position
x0 ∈ R

3 with moment M0 ∈ R
3 [25,6,18],

Jp = ∇ · jp (x) = ∇ · (M0δ(x− x0)) . (2)

2.1. Finite element modeling techniques for the potential singularity

One of the key questions for all three-dimensional EEG forward modeling techniques
is the appropriate treatment of the potential singularity introduced into the differential
equation by the formulation of the mathematical dipole (2). This study examined the
interplay of FE solver methods (see Section 2.2) with the solution accuracy in four-
layer sphere models applying three singularity treatment techniques: a full subtraction
approach, a partial integration direct method and a Venant direct method.

2.1.1. Full subtraction approach
The subtraction approach [3,1,38,7] splits the total potential Φ into two parts,

Φ = Φ0 + Φcorr, (3)

where the singularity potential, Φ0, is defined as the solution for a dipole in an unbounded
homogeneous conductor with constant conductivity σ0. σ0 ∈ R

3×3 is the conductivity
at the source position, which is assumed to be constant in a non-empty subdomain Ω0

around x0, in the following called the homogeneity condition. The solution of Poisson’s
equation under these conditions for the singularity potential

∇ · (σ0∇Φ0) = ∇ · jp (4)

can be formed analytically for the mathematical dipole (2) [7] as

Φ0(x) =
1

4π
√

det σ0

〈M0, (σ0)
−1(x− x0)〉

〈(σ0)−1(x− x0), (x− x0)〉3/2
. (5)

Subtracting (4) from (1) yields a Poisson equation for the correction potential

−∇ · (σ∇Φcorr) = −∇ · ((σ0 − σ)∇Φ0) in Ω, (6)

with inhomogeneous Neumann boundary conditions at the surface:

〈σ∇Φcorr,n〉 = −〈σ∇Φ0,n〉 on Γ. (7)

The advantage of (6) is that the right-hand side is free of any source singularity, because
of the homogeneity condition — the conductivity σ0 − σ is zero in Ω0. Existence and
uniqueness of the solution and FE convergence properties are shown for the correction
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potential in [38]. For the numerical approximation of the correction potential, we use
the FE method with piecewise linear basis functions ϕi. When projecting the correction

potential into the FE space, i.e., Φcorr(x) ≈ Φcorr,h(x) =
∑Nh

j=1 ϕj(x)u
[j]
corr,h, and applying

variational and FE techniques to (6) and (7), we finally arrive at a linear system [7]

Khucorr,h = j
corr,h

, (8)

with the stiffness matrix

K
[i,j]
h =

∫

Ω

〈σ∇ϕj ,∇ϕi〉dx, (9)

for Kh ∈ R
Nh×Nh , and the right-hand side vector j

corr,h
∈ R

Nh with entries

j[i]
corr,h

=

∫

Ω

〈(σ0 − σ)∇Φ0,∇ϕi(x)〉dx −
∫

∂Ω

ϕi(x)〈n(x), σ0∇Φ0(x)〉dx. (10)

We then seek for the coefficient vector ucorr,h = (u
[1]
corr,h, . . . , u

[Nh]
corr,h) ∈ R

Nh and, using
(3), compute the total potential. In [7], the theoretical reasoning and a validation in a
four-compartment sphere model with anisotropic skull is given for the fact that second
order integration is necessary and sufficient for the right-hand side integration in Equation
(10). Direct comparisons with the projected subtraction approach from [38] have shown
that the full subtraction approach is an order of magnitude more accurate for dipole
sources close to a conductivity discontinuity [7].

2.1.2. The partial integration direct approach
Multiplying both sides of Equation (1) by a linear FE basis function ϕi and integrat-

ing over the head domain leads to a partial integration direct approach for the total
potential [1,35,17] expressed as

∫

Ω

∇ · (σ∇Φ) ϕidx =

∫

Ω

∇ · jpϕidx.

Integration by parts, applied to both sides of the above equation, yields

−
∫

Ω

〈σ∇Φ,∇ϕi〉dx +

∫

Γ

〈σ∇Φ,n〉ϕidΓ = −
∫

Ω

〈jp,∇ϕi〉dx +

∫

Γ

〈jp,n〉ϕidΓ.

Using the homogeneous Neumann boundary condition from Equation (1) and the fact
that the current density vanishes on the head surface, we arrive at

∫

Ω

〈σ∇Φ,∇ϕi〉dx =

∫

Ω

〈jp,∇ϕi〉dx
(2)
= 〈M0,∇ϕi (x0)〉.

Setting Φ(x) ≈ Φh(x) =
∑Nh

j=1 ϕj(x)u
[j]
h , leads to the linear system

Khuh = j
PI,h

, (11)

with the same stiffness matrix as in (9) and the right-hand side vector j
PI,h
∈ R

Nh with

entries

j[i]
PI,h

=







〈M0,∇ϕi (x0)〉 if i ∈ NodesOfEle(x0),

0 otherwise.
(12)

The function NodesOfEle(x0) determines the set of nodes of the element which con-
tains the dipole at position x0. Note that while the right-hand side vector (10) is fully
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populated, j
PI,h

has only |NodesOfEle| non-zero entries. Here, | · | denotes the number

of elements in the set NodesOfEle. For the linear basis functions ϕi considered here,
the right-hand side (12) and thus the computed solution for the total potential in (11)
will be constant for all x0 within a finite element.

2.1.3. The Venant direct approach
To derive the Venant direct potential approach, we follow the ideas of [4] and start

from the basic relation for a dipole moment T0 ∈ R
3 at position x0 ∈ R

3, T0 =
∫

Ω
(x − x0)J

p(x)dx (see, e.g., [19, formula (2.92)]). Assuming discrete sources and sinks
on only the C neighboring FE mesh nodes to the FE node which is closest to x0, T0 =
∑C

c=1 ∆xc0j
[c]
0

with ∆xc0 denoting the vector from FE node c to source position x0.

When using higher moments T̄
r
0 ∈ R

n0+1 with n0 = 1, 2 and the Cartesian direction r
(r = x, y, z), this expression becomes

(

T̄
r
0

)[n]
=
(

T̄
r
0

)[n]
(j

0
) =

C
∑

c=1

(∆x̄r
c0)

n
j[c]
0

∀n ∈ 0, . . . , n0 (13)

(for a motivation of higher moments see [4]). The bar indicates a scaling with a reference
length aref, so that

∆x̄r
c0 = ∆xr

c0/aref

!
< 1 (14)

is dimensionless and the physical dimension of the resultant scaled nth order moment,
(

T̄
r
0

)[n]
, is that of a current (i.e., Amps). The reference length aref has to be chosen so that

∆x̄r
c0 is less than 1. The equation is well known from the Saint Venant law in mechanical

engineering — small forces in combination with long lever arms have the same effect on
the system as large forces in combination with short lever arms.

If we now define the matrix X̄r
0 ∈ R

(n0+1)×C , the moment vector M̄
r
0 ∈ R

n0+1, com-
puted from a given dipole moment vector M0, and the diagonal source weighting matrix
W̄ r

0 ∈ R
C×C by

(

X̄r
0

)[n,c]
= (∆x̄r

c0)
n

(

M̄
r
0

)[n]
= Mr

0

(

1

2aref

)n

(1− (−1)n)

W̄ r
0 = DIAG ((∆x̄r

10)
s
, . . . , (∆x̄r

C0)
s
) (15)

with s = 0 or s = 1, then we can compute the monopole load vector j
0
∈ R

C for the
Venant direct approach on the C neighboring FE nodes from a given dipole moment
vector M0 at position x0 by means of minimizing the following functional

Fλ(j
0
) = ‖M̄r

0 − T̄
r
0(j0

)‖22 + λ‖W̄ r
0 j

0
‖22 = ||M̄r

0 − X̄r
0j

0
||22 + λ‖W̄ r

0 j
0
‖22

!
= min.

The first part of the functional Fλ ensures a minimal difference between the moments of
the Venant approach T̄

r
0 and the target moments M̄

r
0, while the second part smoothes

the monopole distribution in a weighted sense and enables a unique minimum for Fλ.
The solution of the minimization problem is given by

(

(X̄r
0 )trX̄r

0 + λ(W̄ r
0 )trW̄ r

0

)

j
0

= (X̄r
0 )trM̄

r
0
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(see, e.g., [14, Theorem 4.2.1]), so that the final solution for the monopole source vector
j
0

of the Venant approach is given by

j
0

=

(

3
∑

r=1

{

(X̄r
0 )trX̄r

0 + λ(W̄ r
0 )trW̄ r

0

}

)−1 3
∑

r=1

{

(X̄r
0 )trM̄

r
0

}

. (16)

The order n0 is generally chosen as n0 = 1 or n0 = 2, where the latter imposes a
spatial concentration of loads in the dipole axis. Furthermore, s = 1 stresses the spatial

concentration of loads around the dipole. With Φ(x) ≈ Φh(x) =
∑Nh

j=1 ϕj(x)u
[j]
h , we can

derive the linear system
Khuh = j

Venant,h
(17)

with the same stiffness matrix as in (9). The right-hand side vector j
Venant,h

∈ R
N
h has

only C non-zero entries and is determined by

j[i]
Venant,h

=







j[c]
0

if ∃c ∈ {1, . . . , C} : i = glob(c),

0 otherwise
(18)

for a source at location x0. The function glob determines the global index i to each of
the local indices c.

2.2. FE solver methods

The solution of hundreds of large scale systems of equations (8), (11) or (17) with the
same symmetric positive definite (SPD) stiffness matrix (9) is the major time consuming
task of the inverse source localization process. The spectral condition of the SPD matrix
Kh is equal to

κ2(Kh) =
λmax

λmin

with λmax the largest and λmin the smallest eigenvalues, respectively, of Kh [10, §2.10].
The condition number behaves asymptotically as O(h−2) and condition numbers of more
than 107 have been computed for FE problems in EEG source analysis [37]. Large con-
dition numbers are the reason for slow convergence of common iterative solvers [10,24]
and any effective solution approach has to minimize the effects of this poor conditioning.

The Preconditioned Conjugate Gradient (PCG) iterative solver shown in Algorithm
1 (see, e.g.,[27,10,24]) can provide efficient procedures for such problems. Note that, in
theory, the convergence speed of the PCG is independent of the right-hand side j

h
of

the linear equation system [10, §3.4]. The goal of a preconditioner, Ch ∈ R
Nh×Nh , is the

reduction of κ2(C
−1
h Kh) for the preconditioned equation system C−1

h Khuh = C−1
h j

h
.

Further requirements are that it is cheap with regard to arithmetic and memory costs to
solve linear systems Chwh = rh with wh the residual for the preconditioned system.
Theorem 2.1 (Error estimate for PCG method) Let Kh and Ch be positive defi-
nite. If u∗

h denotes the exact solution of the equation system, then the k’s iterate of the
PCG method uk

h fulfills the following energy norm estimate

‖uk
h − u∗

h‖Kh
≤ ck 2

1 + c2k
‖u0

h − u∗
h‖Kh

, c :=

√

κ2(C
−1
h Kh)− 1

√

κ2(C
−1
h Kh) + 1

.
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Algorithm 1 PCG : (Kh, uh, j
h
, Ch,accuracy)→ (uh)

rh = r0

h
= j

h
−Khuh

Solve Chwh = rh

sh = wh

γ0 = γ = γold =< wh, rh >

while

(

γ/γ0 =

(

||r
h
||

C
−1

h

||r0

h
||

C
−1

h

)2

=

(

||Khe
h
||

C
−1

h

||Khe0

h
||

C
−1

h

)2

=

(

||ei

h
||

KhC
−1

h
Kh

||e0

h
||

KhC
−1

h
Kh

)2

> accuracy2

)

do

vh = Khsh

α = γ/ < sh, vh >

uh = uh + αsh

rh = rh − αvh

Solve Chwh = rh

γ =< wh, rh >

β = γ/γold , γold = γ

sh = wh + βsh

end while

Proof: Hackbusch [10, Theorem 9.4.14].

As indicated in Algorithm 1, the PCG method is stopped after the kth iteration if the
relative error, i.e., ek

h = uk
h − u∗

h in the controllable KhC−1
h Kh-energy norm is below a

given accuracy. In the following, the three different preconditioners for the CG method
are presented and their relative performances evaluated in Section 4.

2.2.1. Jacobi preconditioning or scaling
It can be shown, that the smallest (largest) eigenvalue of a symmetric matrix is at

most (at least) as large as the smallest (largest) diagonal element, so that the condition
number is at least as large as the quotient of maximal and minimal diagonal element [27,
p.258]. Diagonal entries in Kh of FE nodes from inside the skull are much smaller than
from outside (because of a jump in conductivity at each internal and external boundary).
The simplest preconditioner is thus the scaling or Jacobi-preconditioning ([24, pp.265f],
[27, pp.257f]), where

Ch := D2
h, Dh := DIAG(

√

K
[11]
h , . . . ,

√

K
[NhNh]
h ).

When splitting the Jacobi-preconditioner between left and right (row and column scal-
ing), one has to solve K̃hvh = D−1

h j
h

with K̃h = D−1
h KhD−tr

h and uh = D−tr
h vh. Row

and column scaling preserves symmetry, so that the scaled matrix K̃h is again SPD
with unit diagonal entries. The scaling may therefore lead to a first substantial condition
improvement.
Theorem 2.2 Let Kh be SPD and Ch := D2

h the Jacobi-preconditioner. Assume that
each row of Kh does not contain more than d nonzero entries. Then, for all diagonal
matrices D̃−1

h , it is
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κ2(C
−1
h Kh) ≤ d κ2(D̃

−1
h Kh),

i.e., the chosen diagonal preconditioner is close to the optimal one.
Proof: Hackbusch [10, Theorem 8.3.3].

2.2.2. Incomplete Cholesky preconditioning
The SPD stiffness matrix Kh can be decomposed into a left triangular matrix Lh and

its transpose using the Cholesky-decomposition, Kh = LhLtr
h [27, pp.209f]. Nevertheless,

because of a large fill-in, Ch := LhLtr
h would not be appropriate as a preconditioner.

The Incomplete Cholesky (IC) preconditioner without fill-in, IC0, is defined as Ch :=
L0L

tr
0 where L0 is the Cholesky-decomposition of the scaled stiffness matrix K̃h which is

restricted to the same non-zero-pattern as the lower triangular part of K̃h. For incomplete
factorizations, the preconditioning operation Chwh = rh in Algorithm 1 is solved by a
forward-back sweep. The existence of IC0 is not necessarily guaranteed for general SPD
matrices. Therefore, a reduction of non-diagonal stiffness matrix entries has to be carried
out in certain applications before IC0 computation is possible [27, p.266]. If the scaled
stiffness matrix is decomposed by means of K̃h = Eh + Idh +Etr

h , with Eh ∈ R
Nh×Nh its

strict lower triangular part, the reduction can be formulated as

K̆h = Idh +
1

1 + ς
(Eh + Etr

h ). (19)

For sufficiently large ς ∈ R
+
0 , the existence of IC0 is guaranteed, but with increasing ς ,

the preconditioning effect decreases. Note that for certain special cases, a condition im-
provement to O(h−1) can be proven as, e.g., when using a modified ILUω-preconditioning
with ω = −1 (in the symmetric case, the ILU0 is equal to the IC0) for diagonally dominant
symmetric matrices arising from a 5-point discretization of a two-dimensional Poisson
equation (Hackbusch [10, Theorem 8.5.15 and Remarks 8.5.16,17]).

2.2.3. Algebraic multigrid preconditioning
The above preconditioning methods have the disadvantage that the convergence rate,

i.e., the factor by which the error is reduced in each iteration, is still dependent on
the mesh size h. With decreasing mesh size and thus increasing order of the equation
system, the convergence rate tends to 1 from below, so that the number of iterations
needed to achieve a given accuracy increases. For the Geometric Multi-Grid (GMG), an
h-independent convergence rate ρ < 1 and an h-independent condition number has been
proven in [10, Lemma 10.7.1,Theorem 10.7.15] as

κ2(C
−1
h Kh) ≤ 1

1− ρm
, (20)

with Ch the preconditioner resulting from m steps of the GMG method. As shown
in [12,10,31], a robust method which provides a small convergence rate for a wide class
of real-life problems is given by exploiting the MG-method as a preconditioner for the
CG method. With MG(m)-CG, we denote the MG-preconditioned CG method with m
the number of MG iterations for the CG preconditioning step. The GMG(m)-CG can
improve the convergence rate to ρ/4, if ρ is assumed to be small, as shown in [10, §10.8.3].

In contrast to GMG, in which a grid hierarchy is required explicitly, Algebraic MG
(AMG) is able to construct a matrix hierarchy and corresponding transfer operators based
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only on the entries in Kh (see, e.g., [23,31,22,9]). It is well known that the classical AMG
method is robust for M-matrices and, with regard to our application, that small positive
off-diagonal entries are admissible [23,31,22]. The method is especially well suited for our
problem with discontinuous and anisotropic coefficients, in which an optimal tuning of
the GMG is difficult ([23, §4.1,4.6.4],[31, §4.1]). Stand-alone AMG is hardly ever optimal
as there may be some very specific error components which are reduced with significantly
less efficiency, causing a few eigenvalues of the AMG iteration matrix to be much closer to
1 than the remaining ones [31, §3.3]. In such a case, acceleration by means of using AMG
as a basis for the CG method eliminates these particular frequencies very efficiently.

As in GMG, the basic idea in AMG is to reduce high and low frequency components of
the error by the efficient interplay of smoothing and coarse grid correction, respectively.
In analogy to GMG, the denotation coarse grids will be used, although these are purely
virtual and do not have to be constructed explicitly as FE meshes. The diagonal entry
of the ith row of Kh is considered as being related to a grid point in ωh (the index set
of nodes), and an off-diagonal entry is related to an edge in an FE grid. A description of
AMG is now given for a symmetric two grid method, where h is related to the fine grid
and H to the coarse grid. Each AMG algorithm consists of the following components:

(a) Coarsening: define the splitting ωh = ωC ∪ ωF of ωh into sets of coarse and fine
grid nodes ωC and ωF , respectively.

(b) Transfer operators: prolongation Ph,H : R
NH 7→ R

Nh and its adjoint as the restric-
tion

RH,h := P tr
h,H . (21)

(c) Definition of the coarse matrix by Galerkin’s method, i.e.,

KH := RH,hKhPh,H . (22)

Because of (b), KH ∈ R
NH×NH is again SPD.

(d) Appropriate smoother for the considered problem class: In order to achieve a sym-
metric method, e.g., a forward Gauss-Seidel method for pre-smoothing and the ad-
joint, a backward Gauss-Seidel method for post-smoothing ([10, §4.8.3,§10.7.1,2],[23,
§4.4]).

[(a)—] Coarsening: The coarsening process has the task of reducing the number of
nodes such that NH = |ωC | < Nh = |ωh|. The grid points ωh can be split into two
disjoint subsets ωC (coarse grid nodes) and ωF (fine grid nodes), i.e., ωh = ωC ∪ ωF

and ωC ∩ ωF = ∅ such that there are (almost) no direct connections between any two
coarse grid nodes and such that the resulting number of coarse grid nodes is as large as
possible [31, p.12]. Instead of considering all connections between nodes as being of the
same rank, the following sets are introduced

N i
h =

{

j | |K [ij]
h | ≥ ζ|K [i,i]

h |, i 6= j
}

, (23)

Si
h =

{

j ∈ N i
h | |K [ij]

h | > coarse(i, j, Kh)
}

,

Si,T
h =

{

j ∈ N i
h | i ∈ Sj

h)
}

, (24)

where N i
h is the index set of neighbors (a pre-selection is carried out by the threshold-

parameter ζ ∈ R
+
0 ), Si

h denotes the index set of nodes with a strong connection from
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node i and Si,T
h is related to the index set of nodes with a strong connection to node i.

In addition, coarse(i, j, Kh) is an appropriate cut-off (coarsening) function, e.g.,

coarse(i, j, Kh) := α ·max
j,j 6=i
{|K [ij]

h |} , (25)

with α ∈ [0, 1] (see, e.g., [23, §4.6.1]).

Algorithm 2 COARSE : ({Si,T

h
}, ωh)→ (ωC , ωF )

ωC ← ∅, ωF ← ∅

while ωC ∪ ωF 6= ωh do

i← Pick(ωh \ (ωC ∪ ωF ))

if |Si,T

h
|+ |Si,T

h
∩ ωF | = 0 then

ωF ← ωh \ ωC

else

ωC ← ωC ∪ {i}

ωF ← ωF ∪ (Si,T

h
\ ωC)

end if

end while

With those definitions a splitting into coarse and fine grid nodes can be achieved. For
our application, a modified splitting algorithm is used [23, §4.6] as shown in Algorithm
2. Therein, the function

i← Pick(ωh \ (ωC ∪ ωF ))

returns a node i for which the number |Si,T
h |+ |S

i,T
h ∩ ωF | is maximal. Note that tissue

conductivity inhomogeneity and anisotropy are taken into account within the coarsening
algorithm.
(b) Prolongation: To achieve prolongation, the operator Ph,H : VH 7→ Vh has to be
defined correctly. The form that turned out to be the most efficient for the presented
application was proposed in [13] and is given by

P
[ij]
h,H =











1 i = j ∈ ωC ,

1/|Si,T
h ∩ ωC | i ∈ ωF , j ∈ Si,T

h ∩ ωC ,

0 else .

(26)

After the proper definition of the prolongation and coarse grid operators, it is possible
to create in a recursive way a matrix hierarchy and an associated multigrid cycle, shown in
Algorithm 3. Therein, the variable CoarseGrid denotes the level at which a direct solver
is applied. For an m-V (νF , νB)-cycle AMG preconditioned CG method, the operation
Solve Chwh = rh in Algorithm 1 is realized by m calls of MG(Kh, wh, rh, νF , νB).

3. Methods

3.1. Validation platform

The numerical examinations of the theory presented above were carried out in a four-
layer sphere model with anisotropic skull compartment whose parameterization is shown

11



Algorithm 3 V-cycle MG : (Kh, uh, j
h
, νF , νB)→ (uh)

if CoarseGrid then

uh ← DirectSolve(Khuh = j
h
)

else

uh ← νF times smooth Forward(Kh, uh, j
h
)

dh = Khuh − j
h

dH = P tr
h,H

dh

wH = 0

wH = MG(KH , wH , dH)

wh = Ph,HwH

uh = uh −wh

uh ← νB times smooth Backward(Kh, uh, j
h
)

end if

Table 1
Parameterization of the anisotropic four-layer sphere model.

Medium Scalp Skull CSF Brain

Outer shell radius 92mm 86mm 80mm 78mm

Tangential conductivity 0.33S/m 0.042S/m 1.79S/m 0.33S/m

Radial conductivity 0.33S/m 0.0042S/m 1.79S/m 0.33S/m

in Table 1. For the choice of these parameters, we closely followed [11,15]. Forward
solutions were computed for dipoles of 1 nAm amplitude located on the y axis at depths
of 0% to 98.7% (in 1 mm steps) of the brain compartment (78 mm radius) using both
radial (directed away from the center of the model) and tangential (directed parallel to
the scalp surface) dipole orientations. Eccentricity is defined here as the percent ratio of
the distance between the source location and the model midpoint divided by the radius
of the inner sphere (78 mm). The most eccentric source position considered was thus only
1 mm below the CSF compartment. To achieve error measures which were independent of
the specific choice of the sensor configuration, we distributed 748 electrodes in a regular
fashion over the outer sphere surface. All simulations ran on a Linux-PC with an Intel
Pentium 4 processor (3.2GHz) using the SimBio software environment [30].

3.2. Analytical solution in an anisotropic multilayer sphere model

De Munck and Peters [5] derived series expansion formulas for a mathematical dipole
in a multi-layer sphere model, denoted here as the analytical solution. The model consists
of S shells with radii rS < rS−1 < . . . < r1 and constant radial, σrad(r) = σrad

j ∈ R
+, and

constant tangential conductivity, σtang(r) = σtang
j ∈ R

+, within each layer rj+1 < r < rj .
It is assumed that the source at position x0 with radial coordinate r0 ∈ R is in a more
interior layer than the measurement electrode at position xe ∈ R

3 with radial coordinate
re = r1 ∈ R. The spherical harmonics expansion for the mathematical dipole (2) is
expressed in terms of the gradient of the monopole potential to the source point. Using
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an asymptotic approximation and an addition-subtraction method to speed up the series
convergence yields

φana(x0, xe) =
1

4π
〈M, S0

xe

re
+ (S1 − cosω0eS0)

x0

r0
〉

with ω0e the angular distance between source and electrode, and with

S0 =
F0

r0

Λ

(1− 2Λ cosω0e + Λ2)
3/2

+
1

r0

∞
∑

n=1

{(2n + 1)Rn(r0, re)− F0Λ
n}P ′

n(cosω0e)

(27)
and

S1 = F1
Λ cosω0e − Λ2

(1− 2Λ cosω0e + Λ2)
3/2

+

∞
∑

n=1

{(2n + 1)R′
n(r0, re)− F1nΛn}Pn(cos ω0e). (28)

The coefficients Rn and their derivatives, R′
n, are computed analytically and the deriva-

tive of the Legendre polynomials, Pn, are determined by means of a recursion formula.
We refer to [5] for the derivation of the above series of differences and for the definition
of F0, F1 and Λ. Here, it is only important that the latter terms are independent of n
and that they can be computed from the given radii and conductivities of layers between
source and electrode and of the radial coordinate of the source. The computations of the
series (27) and (28) are stopped after the k-th term if the following criterion is fulfilled

tk/t0 ≤ υ, tk := (2k + 1)R′
k − F1kΛk. (29)

In the following simulations, a value of 10−6 was chosen for υ in (29). Using the asymp-
totic expansion, no more than 30 terms were needed for the series computation at each
electrode.

3.3. Tetrahedral mesh generation.

The FE meshes of the four-layer sphere model were generated by the software Tet-
Gen [28] which used a Constrained Delaunay Tetrahedralization (CDT) approach [29].
This meshing procedure starts with the preparation of a suitable boundary discretiza-
tion of the model in which for each of the layers and for a given triangle edge length,
nodes are distributed in a regular fashion and connected through triangles. This yields
a valid triangular surface mesh for each of the layers. Meshes of different layers are not
intersecting each other. The CDT approach is then used to construct a tetrahedralization
conforming to the surface meshes. It first builds a Delaunay tetrahedralization starting
with the vertices of the surface meshes. The CDT then uses a local degeneracy removal
algorithm combining vertex perturbation and vertex insertion to construct a new set
of vertices which includes the input set of surface vertices. In a last step, a fast facet
recovery algorithm is used to construct the CDT [29].

This approach is combined with two further constraints to the size and shape of the
tetrahedra. The first constraint is important for the generation of quality tetrahedra. If
R denotes the radius of the unique circumsphere of a tetrahedron and L its shortest edge
length, the so-called radius-edge ratio of the tetrahedron can be defined as

radius− edge− ratio = R/L. (30)
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Table 2
The six tetrahedra models used for the solver time comparison and accuracy tests. The table shows

the number of nodes and elements of each mesh and factor indicates the ratio of the number of
nodes of the most highly resolved to both other models within each group. Additionally, the chosen
radius-edge-ratio (see Equation (30)), the average edge length of the four triangular surface meshes, the
corresponding volume constraint (see Equation (31)) and the compartments where the volume constraint
was not applied are indicated.

Group 1 Group 2

Model tet503K tet125K tet33K tet508K tet128K tet32K

nodes 503,180 124,624 32,509 508,435 127,847 31,627

elements 3,068,958 733,022 187,307 3,175,737 781,361 190,060

factor 1 4.04 15.48 1 3.98 16.08

radius-edge-ratio 1.0 1.0 1.1 1.0 1.0 1.1

edge (in mm) 1.75 2.7 5.2 2.42 3.9 6.87

volume (in mm3) 0.63 2.32 16.57 1.67 6.99 38.21

no volume constraint in brain brain brain / / /

The radius-edge ratio can distinguish almost all badly-shaped tetrahedra except one type
of tetrahedra, so-called slivers. A sliver is a very flat tetrahedron which has no small edges,
but can have arbitrarily large dihedral angles (close to π). For this reason, an additional
mesh smoothing and optimization step is required to remove the slivers and improve the
overall mesh quality.

A second constraint can be used to restrict the volume of the generated tetrahedra in
a certain compartment. We follow the formula for regular tetrahedra:

volume =
√

2/12 · edge3 (31)

Table 2 shows the number of nodes and elements of the six tetrahedra models used
for the solver run-time comparison and accuracy tests. factor indicates the ratio of
the number of nodes of the most highly resolved to both other models within each
group. Additionally, the table contains the chosen radius-edge-ratio (see Equation
(30)), the average edge length of the four triangular surface meshes, the corresponding
volume constraints (see Equation (31)) for the tetrahedra and the compartments where
the volume constraint is not applied. The most highly resolved meshes tet503K and
tet508K of both groups had approximately the same resolution, while the others were
chosen to have a factor of 4 coarser resolution with regard to the number of nodes. The
meshes of group 1 concentrated the nodes in the outer three compartments because no
volume constraint was applied for the inner brain compartment, while the nodes in the
meshes of group 2 were distributed in a regular way throughout all four compartments.
The meshes of group 1 were thus preferentially beneficial to the full subtraction approach,
since the entries of the volume integral in Equation (10) are zero ((σ(x)−σ0) = 0 for all x
in the brain compartment) so that a coarse resolution can be expected to have no impact
on the overall numerical accuracy, but will reduce the computational cost. In contrast,
the meshes of group 2 were beneficial to both direct potential approaches. Figure 1 shows
samples from the six tetrahedra models that were generated using the parametrizations
from Table 2.
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Group 1

tet503K tet125K tet33K

Group 2

tet508K tet128K tet32K

Fig. 1. Cross-sections of the six tetrahedral meshes of the four compartment sphere model. The corre-
sponding parametrizations of the models are shown in Table 2. Visualization was done using the software
TetView [28].

3.4. Error criteria

We compared numerical solutions with analytical solutions using three common error
criteria [16,3,33,15,26]. The relative (Euclidean) error (RE) is defined as

RE :=
||φ

num
− φ

ana
||2

||φ
ana
||2

,

where φ
ana

, φ
num
∈ R

m denote the analytical and the numerical solution vectors, respec-
tively, at the m = 748 measurement electrodes. We furthermore defined

RE(%) := 100 · RE, maxRE(%) := max
j

(RE(%)j) (32)

where j is the source eccentricity. In order to better distinguish between the topography
(driven primarily by changes in dipole location and orientation) and the magnitude error
(indicating changes in source strength), Meijs et al. [16] introduced the relative difference
measure (RDM) and the magnification factor (MAG), respectively. For the RDM, we can
show that
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RDM := || 1

||φ
ana
||2

φ
ana
− 1

||φ
num
||2

φ
num
||2 =

√

2
(

1− cos∠(φ
ana

, φ
num

)
)

. (33)

It therefore holds that 0 ≤ RDM ≤ 2, so that we can furthermore define

RDM(%) := 100 · RDM/2, maxRDM(%) := max
j

(RDM(%)j) . (34)

The MAG is defined as
MAG := ||φ

num
||2/||φ

ana
||2

so that error minimum is at MAG = 1 and we therefore defined

MAG(%) = |1−MAG| · 100, maxMAG(%) := max
j

(MAG(%)j) . (35)

With maxRE(%)k we denote the maximal relative error in percent over all source
eccentricities for an accuracy level of accuracy = 10−k. The so-called plateau-entry for
an iterative solver is then defined as the first k at which the condition

∣

∣maxRE(%)k −maxRE(%)k+1
∣

∣ /maxRE(%)k+1 < 0.05 (36)

is true.

3.5. FEM and solver parameter settings

The parameters of the Venant approach were chosen as proposed in [4]: The maximal
dipole order n0 (13) and the scaling reference length aref (14) were set to n0 = 2 and
aref = 20.0 mm, respectively. Since the chosen mesh size was a large factor smaller than
the reference length, the second order term (∆x̄r

cl)
2 was small and the model focused

on fulfilling the dipole moments of the zeros and first order. The exponent of the source
weighting matrix in (15) was fixed to s = 1 and the regularization parameter in (16) was
chosen as λ = 10−6. These settings effect a spatial concentration of the monopole loads
in the dipole axis around the dipole location.

The initial solution guess for all solvers was a zero potential vector. For the IC0,
ς = 0 was chosen for (19). For the AMG-CG, the 1-V (1, 1)-cycle AMG-preconditioner
was used with α = 0.01 for (25). The factorization in Algorithm 3 was carried out
whenever the size of the coarsest grid (coarsegrid) in the preconditioner-setup was
below 1000 and the coarse system was solved using a Cholesky-factorization. The setup
times for the preconditioners were neglected in all calculations of computational cost
because this step must be performed only once per head model. The evaluation with
regard to relative solver accuracy in Algorithm 1 was limited to the discrete set of accuracy
levels accuracy = 10−k with k ∈ {0, . . . , 9}.

4. Results

4.1. Numerical error versus potential approach

In a first study, we compared the numerical accuracy of the full subtraction approach
(Section 2.1.1) with the two direct methods: Venant (Section 2.1.3) and partial integration
(Section 2.1.2). Figure 2 shows the RE(%) for the different source eccentricities for the
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Fig. 2. RE(%) versus source eccentricity for the two most highly resolved models tet503K of group 1
(left) and tet508K of group 2 (right) using the full subtraction (top row), the Venant (middle row) and
the partial integration (bottom row) potential approaches. The necessary accuracy in Algorithm 1 for
the plateau-entry (36) of the AMG-CG is indicated for both source orientation scenarios.

two finest models tet503K of group 1 (left) and tet508K of group 2 (right) (see Figure 1
and Table 2) with regard to the full subtraction (top row), the Venant (middle row)
and the partial integration approach (bottom row). The results were computed with
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Table 3
Values of maxRE(%), maxRDM(%) and maxMAG(%) accuracies for the full subtraction (Sub), the

Venant (Ven) and the partial integration (PI) approach for all six tetrahedra models (see Figure 1 and
Table 2) and both source orientation scenarios at the AMG-CG plateau-entry (36).

Group 1

tangential source

model tet503K tet125K tet33K

potential approach Sub Ven PI Sub Ven PI Sub Ven PI

maxRE(%) 0.403 2.719 7.195 4.192 2.722 6.603 12.543 10.246 10.367

maxRDM(%) 0.202 1.311 3.450 1.322 1.296 3.304 6.020 4.920 4.674

maxMAG(%) 0.149 1.840 1.810 3.217 1.395 2.142 2.863 3.307 4.066

radial source

model tet503K tet125K tet33K

potential approach Sub Ven PI Sub Ven PI Sub Ven PI

maxRE(%) 1.791 5.077 6.200 2.522 16.867 5.517 33.860 22.810 19.898

maxRDM(%) 0.820 1.408 2.846 1.066 1.662 2.727 17.184 6.730 9.958

maxMAG(%) 0.708 5.035 3.426 1.372 16.804 1.827 6.338 19.344 7.729

Group 2

tangential source

model tet508K tet128K tet32K

potential approach Sub Ven PI Sub Ven PI Sub Ven PI

maxRE(%) 2.760 1.414 2.235 6.206 3.457 3.654 17.000 17.977 11.113

maxRDM(%) 0.874 0.599 0.965 2.202 1.665 1.814 6.721 8.715 5.031

maxMAG(%) 2.121 0.753 1.110 4.277 1.011 1.243 9.542 4.474 4.296

radial source

model tet508K tet128K tet32K

potential approach Sub Ven PI Sub Ven PI Sub Ven PI

maxRE(%) 1.890 6.738 2.157 7.660 19.413 5.054 21.111 20.232 21.000

maxRDM(%) 0.804 1.131 1.051 1.212 1.893 2.141 10.616 9.120 9.188

maxMAG(%) 1.183 6.608 1.101 7.404 19.329 2.836 8.831 10.577 8.617

the AMG-CG and the necessary accuracy in Algorithm 1 for the plateau-entry (36)
is indicated for both source orientation scenarios. In Table 3, the maximal errors over
all source eccentricities at the AMG-CG plateau-entry (36) are shown for all tetrahedra
models, both source orientation scenarios and the three dipole modeling approaches.

Figure 2 clearly presents the advantages of the full subtraction approach whose error
curves are smooth, while Venant and partial integration show an oscillating behavior.
With RDM and MAG errors below 1% over all source eccentricities and for both orien-
tation scenarios (see Table 3), the full subtraction approach performs best for all source
eccentricities for model tet503K (its mesh resolution was sufficiently high and the FE
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nodes were concentrated in the compartments CSF, skull and skin), where both direct ap-
proaches showed oscillations with a relatively high magnitude. As the results for model
tet508K show, the oscillation magnitudes for the direct approaches could be strongly
reduced by means of distributing the FE nodes in a regular way over all four compart-
ments, hence decreasing the mesh size in the brain compartment. Nevertheless, even for
model tet508K, the full subtraction approach was the most accurate method for nearly
all source eccentricities. It was only outperformed by partial integration for the source
which was only 1 mm below the CSF compartment. As both Figure 2 and Table 3 show,
the partial integration approach performed well if the mesh was sufficiently fine in the
brain compartment. The oscillation magnitudes of the Venant approach were generally
even slightly smaller than for the partial integration approach, with only one exception
(the result for the radial source 1 mm below the CSF compartment, shown in the middle
row of Figure 2). The main reason for the outlier was that for the source 1 mm below
the CSF, monopoles were positioned in the CSF compartment, which had a strong effect
on the MAG for the radially oriented source.

4.2. Numerical error versus PCG accuracy

Figure 3 shows the numerical error maxRE(%) versus the PCG solver accuracy from
Algorithm 1 for the discrete set of accuracy levels from 100 to 10−9. Results for the high-
resolution model tet503K of group 1 are shown in the left and from the high-resolution
model tet508K of group 2 in the right column for the AMG-CG (top row), the IC(0)-CG
(middle row) and the Jacobi-CG (bottom row).

Table 4
Maximally needed k ∈ {0, . . . , 9} for a PCG accuracy = 10−k for the plateau-entry (36) over all three
potential approaches.

Group 1

tangential source radial source

solver AMG-CG IC(0)-CG Jacobi-CG AMG-CG IC(0)-CG Jacobi-CG

tet503K 5 6 7 6 5 6

tet125K 5 5 6 5 5 6

tete33K 4 5 6 3 3 5

Group 2

tangential source radial source

solver AMG-CG IC(0)-CG Jacobi-CG AMG-CG IC(0)-CG Jacobi-CG

tet508K 6 6 7 6 7 8

tet128K 4 5 6 4 4 6

tete32K 3 5 6 3 4 5

The PCG accuracy measures the error in the solution vector of the FE linear equation
system (8) (correction potential), (11) and (17) (total potential). For the full subtraction
approach, maxRE(%) was thus not equal to 100 for accuracy = 100 because φ

num
is

equal to the analytically computed singularity potential Φ0 from Equation (5). Because
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Fig. 3. maxRE(%) versus PCG solver accuracy (see Algorithm 1 and Section 3.5) for models tet503K of
group 1 (left column) and tet508K of group 2 (right column) for the AMG-CG (top row), the IC(0)-CG
(middle row) and the Jacobi-CG (bottom row). Source orientations and potential approaches can be
distinguished by their specific labels. The plot is in log-log scale.

the PCG accuracy is measured in the KhC−1
h Kh-energy norm, the plateau-entry (36)

differs for different preconditioners Ch. As shown in Figure 3 for the high-resolution
models and as collected in Table 4 for all six tetrahedra models, the maximally needed k
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(for a PCG accuracy of accuracy = 10−k) decreased when the preconditioning quality
increased (except for the radial source orientation in model tet503K, see Fig. 3). Fur-
thermore, as Table 4 shows, a higher PCG accuracy was needed for the plateau-entry
when the mesh resolution increased.

4.3. Numerical error versus solver time

In a last study, we compared solver wall-clock time versus numerical accuracy for the
three different CG preconditioners AMG, IC(0) and Jacobi. The time for the setup of the
preconditioner was not included, because this step was carried out only once per head
model.

In Figure 4, the solver time is shown versus the maxRE(%) for different levels of
PCG accuracy for models tet503K and tet33K of group 1. The largest examined PCG
accuracy level 10−k is indicated in the figure. Please note that this level does not
necessarily correspond to the plateau-entry level. In most cases results are presented up
to one level higher.

Table 5
Average solver time (sec.) and iteration count (iter) over all source eccentricities, source orientations

and potential approaches for plateau-entry (36). For all tetrahedra models of groups 1 and 2, results are
presented for the three different CG preconditioners AMG, IC(0) and Jacobi. The gain factor indicates
the performance gain of the AMG-CG relative to the Jakobi-CG.

group 1 group 2

tet503K tet125K tet33K tet508K tet128K tet32K

solver time iter time iter time iter time iter time iter time iter

AMG-CG 12.25 11.20 1.87 9.04 0.18 5.89 9.18 10.40 1.36 7.27 0.15 5.81

IC(0)-CG 112.03 233.43 8.40 128.39 0.45 72.63 72.41 215.05 5.20 98.96 0.31 52.84

Jacobi-CG 167.82 679.43 16.98 414.00 0.76 229.52 99.60 578.04 9.62 331.15 0.47 161.68

gain factor 13.70 60.66 9.08 45.8 4.22 38.97 10.85 55.58 7.07 45.55 3.13 27.83

For all tetrahedra models of groups 1 and 2, average solver times and iteration counts
over all source eccentricities, source orientations and potential approaches for a plateau-
entry (36) are collected in Table 5. Both Figure 4 and Table 5 clearly show the superiority
of the AMG preconditioner. In all cases, even for the low-resolution grids tet33K and
tet32K, the AMG-CG was the fastest solver, followed by the IC(0)-CG and the Jacobi-
CG. The main result of Table 5 is the so-called gain factor, which is defined here as
the result (solver time or iteration count) for the Jacobi-CG divided by the result for
the AMG-CG. The gain factors clearly showed that the higher the mesh-resolution, i.e.,
the higher the condition number of the corresponding FE stiffness matrix, the larger the
difference in performance between AMG-CG, IC(0)-CG, and Jacobi-CG. An increasing
mesh-resolution led to a strong increase in the number of iterations of IC(0)-CG (factor of
3.2 between tet503K and tet33K and 4.1 between tet508K and tet32K) and Jacobi-CG
(factor of 3.0 between tet503K and tet33K and 3.6 between tet508K and tet32K), while
the number of AMG-CG iterations was only slightly increasing (factor of 1.9 between
tet503K and tet33K and 1.8 between tet508K and tet32K). This clearly shows the
stronger h-dependence of the IC(0) and Jacobi preconditioners.
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Fig. 4. Solver time versus maxRE(%) for models tet503K and tet33K of group 1 for tangentially and
radially oriented sources for the potential approaches full subtraction (left), Venant (middle), and par-
tial integration (right). Results are presented for the three different CG preconditioners AMG, IC(0)
and Jacobi. Each marker represents a PCG accuracy = 10−k level and the largest examined level is
indicated. The x-axis is in log scale.

5. Discussion

The goals of this technical study of finite element (FE) based solution techniques for
the electroencephalographic forward problem were twofold. The first aim was to compare
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three efficient iterative FE solver techniques under realistic conditions that still allowed
quasi-analytical solutions. The second aim was to evaluate three different numerical for-
mulations of the current dipole, which is the bioelectric source most commonly used to
represent neural electrical activity. A major motivation of such studies is the special need
to achieve high accuracy and efficiency with FE based approaches for this problem. The
many advantages of this approach are often hindered by the unacceptable computation
costs of implementing it so that improved efficiency will provide substantial progress to
the field.

When using the KhC−1
h Kh-energy norm stopping criterion for the PCG algorithm

applied on meshes with up to 500K nodes, a relative solver accuracy of 10−6 for AMG-CG,
10−7 for IC(0)-CG and 10−8 for Jacobi-CG was necessary and sufficient to fall below the
discretization error. The AMG-CG achieved an order of magnitude higher computational
speed than the CG with the standard preconditioners with an increasing gain factor with
decreasing mesh size. However, the AMG-CG was not optimal in our application with a
slight h-dependence shown by a slightly increasing iteration count with increasing mesh
resolution. Such a result had to be expected because the source analysis stiffness matrix
was not an M-matrix and the prolongation operator of the presented AMG-CG was tuned
for speed and not for an optimal behavior with regard to the iteration count. A discrete
harmonic extension as proposed in [23] improved the interpolation properties, but the
application of this prolongation operator is more expensive, which decreased the overall
run-time performance in our application.

We generated two groups of Constrained Delaunay tetrahedralization (CDT) FE meshes,
tuned for the specific needs of the different potential approaches. In group 1, for the full
subtraction approach [7], FE nodes were concentrated in the CSF, skull and skin, while
the brain compartment was meshed as coarsely as possible. Group 2 was tuned for the
needs of both direct potential approaches [40,4,1,36], which profit more from a regular
distribution of FE nodes over all four compartments and especially a higher resolution
at the source positions.

With regard to the numerical error, in the tuned FE meshes with about 500K nodes we
achieved high accuracies—in the range of a few percent maximal relative error (maxRE)—
over all source eccentricities for both the full subtraction and the two direct potential
approaches. With a maximal relative difference measure (maxRDM) and a maximal mag-
nification factor (maxMAG) of less than 1% over all source eccentricities for sources up
to 1 mm below the CSF compartment (model tet503K, maximal examined eccentricity
of 98.7%), the full subtraction approach performed consistently better than both direct
approaches. Our results clearly illustrate the advantages of the full subtraction approach
as long as the homogeneity condition is fulfilled, i.e., as long as the distance of the source
to the next conductivity inhomogeneity is large enough or the resolution of the FE mesh
at the nearest conductivity inhomogeneity to the source is fine enough. A theoretical
reasoning for this finding is given in [38]. While error curves oscillated for both direct
approaches, they were smooth for the full subtraction approach.

Schimpf et al. [26] investigated different FE potential approaches in a four-layer sphere
model with isotropic skull and sources up to 1 mm below the CSF compartment. In their
report, a regular 1 mm cube model was used (thus a much higher FE resolution) and a
maxRDM of 7% and a maxMAG of 25% was achieved with a subtraction approach, which
performed best in their comparison. Awada et al. [1] implemented a two-dimensional
subtraction approach and compared its numerical accuracy with a partial integration
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method in a two-dimensional multi-layer sphere model. A direct comparison with our
results is therefore difficult, but the authors concluded that the subtraction method was
more accurate than the direct approach. In a locally refined (around the source singu-
larity) tetrahedral mesh with 12,500 nodes of a four-layer sphere model with anisotropic
skull and first order FE basis functions in a subtraction approach, Bertrand et al. [3] re-
ported a maxRDM of above 20% and a maxMAG up to 70% for a maximal eccentricity
of 97.6%. Van den Broek [33] used a subtraction approach in a locally refined (around
the source singularity) tetrahedral mesh with 3,073 nodes of a three-layer sphere model
with anisotropic skull. For the maximal examined eccentricity of 94.2%, they reported a
maxRDM of up to 50%.

However, the right-hand side (RHS) vector is expensive to compute and is densely
populated (i.e., Nh non-zeros) for the full subtraction approach (10) and sparse with just
some few (|NodesOfEle| for partial integration (12), and C for Venant (18)) non-zero
vector entries for the direct approaches, which has implications for the computational
effort when using the fast FE transfer matrix approach for EEG and MEG [39] (addi-
tionally, see [36,8,11]), which limits the total number of FE linear equation systems to
be solved for any inverse method to the number of sensors m. After solving m FE linear
equation systems to compute the transfer matrix, each forward problem can be solved
by a single multiplication of the RHS vector with the transfer matrix [39], resulting in
a computational effort of 2 ∗ m ∗ P operations with P = Nh for the full subtraction,
P = |NodesOfEle| for partial integration and P = C for the Venant approach. Note
that the transfer matrix approach can not be used if the mesh is adapted according to
varying source positions within the inverse problem. We therefore attempted to avoid
local mesh refinement techniques as used in [3,33].

6. Conclusion

The AMG-CG turned out to achieve an order of magnitude higher computational
speed than Jacobi-CG or incomplete Cholesky-CG for the FEM based EEG forward
and inverse problem. Our results corroborate the theoretical results that the higher the
FE resolution, the greater the advantage of using MG preconditioning. The AMG-CG
together with the fast transfer matrix approach now enable resolutions which seemed
to be impracticable before. In the comparison of dipole modeling approaches, highest
accuracies were achieved with the full subtraction approach in CDT meshes where nodes
were concentrated in the compartments CSF, skull and skin.
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properties of source localization of epileptiform activity using advanced headmodelling and source
reconstruction, Brain Top. 10 (4) (1998) 283–290.

[35] D. Weinstein, L. Zhukov, C. Johnson, Lead-field bases for EEG source imaging, Annals of Biomed.
Eng. 28 (9) (2000) 1059–66.

[36] D. Weinstein, L. Zhukov, C. Johnson, Lead-field bases for electroencephalography source imaging,
Annals of Biomed.Eng. 28 (9) (2000) 1059–1066.

[37] C. Wolters, Influence of Tissue Conductivity Inhomogeneity and Anisotropy on EEG/MEG based
Source Localization in the Human Brain, No. 39 in MPI Series in Cognitive Neuroscience,
MPI of Cognitive Neuroscience Leipzig, 2003, iSBN 3-936816-11-5 (also: Leipzig, Univ., Diss.,
http://lips.informatik.uni-leipzig.de/pub/2003-33/en).
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