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A common formalism for the integral formulations
of the forward EEG problem

Jan Kybic, Maureen Clerc∗, Toufic Abboud, Olivier Faugeras, Renaud Keriven, Théo Papadopoulo

Abstract— The forward electro-encephalography (EEG) prob-
lem involves finding a potential V from the Poisson equation
∇ · (σ∇V ) = f , in which f represents electrical sources in the
brain, and σ the conductivity of the head tissues. In the piecewise
constant conductivity head model, this can be accomplished
by the Boundary Element Method (BEM) using a suitable
integral formulation. Most previous work uses the same integral
formulation, corresponding to a double-layer potential. In this
article we present a conceptual framework based on a well-known
theorem (Theorem 1) that characterizes harmonic functions
defined on the complement of a bounded smooth surface. This
theorem says that such harmonic functions are completely defined
by their values and those of their normal derivatives on this
surface. It allows us to cast the previous BEM approaches in a
unified setting and to develop two new approaches corresponding
to different ways of exploiting the same theorem. Specifically,
we first present a dual approach which involves a single-layer
potential. Then, we propose a symmetric formulation, which
combines single and double-layer potentials, and which is new to
the field of EEG, although it has been applied to other problems
in electromagnetism. The three methods have been evaluated
numerically using a spherical geometry with known analytical
solution, and the symmetric formulation achieves a significantly
higher accuracy than the alternative methods. Additionally, we
present results with realistically shaped meshes. Beside providing
a better understanding of the foundations of BEM methods, our
approach appears to lead also to more efficient algorithms.

Index Terms— Boundary Element Method, Poisson equation,
integral method, EEG

I. INTRODUCTION

Electroencephalography (EEG) [1] is a non-invasive method
of measuring the electrical activity of the brain. To reconstruct
the sources in the brain (the inverse problem), an accurate
forward model of the head must be established first. The
so called forward problem addresses the calculation of the
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electric potential V on the scalp for a known configuration of
the sources, provided that the physical properties of the head
tissues (conductivities) are known. Note that the same forward
model can be used for magnetoencephalography (MEG) [2, 3],
since the magnetic field B can be calculated from the potential
V by simple integration [4].

A. Problem definition

The quasi-static approximation of Maxwell equations [2, 5]
in a conducting environment yields the fundamental Poisson
equation

∇ ·
(

σ∇V
)

= f = ∇ · Jp in R
3 (1)

where σ [(Ω · m)−1] is the conductivity and f is the divergence
of the current source density Jp [A/m2], both supposed known
in the forward problem; V (in Volts) is the unknown electric
potential.

We shall concentrate on a head model with piecewise-
constant conductivity, such as shown in Fig. 1, with connected
open sets Ωi, separated by surfaces Sj . Note that for the sake
of notational simplicity, in this article we only consider nested
regions with interfaces Si = ∂Ωi∩∂Ωi+1. However, extension
to other topologies is possible and straightforward.

The outermost volume ΩN+1 extends to infinity and in
the EEG problem treated here the corresponding conductivity
σN+1 (the conductivity of air) is considered to be 0. This
implies that there can be no source in ΩN+1. We also assume
that there are no charges there. The extension to σN+1 6= 0 is
trivial.

B. Notation

We use the notation ∂nV = n · ∇V to denote the partial
derivative of V in the direction of a unit vector n, normal to
an interface Sj , j = 1, . . . , N . A function f considered on
the interface Sj will be denoted fSj

. We define the jump of
a function f : R

3 → R at interface Sj as

[f ]j = f−Sj
− f+

Sj
,

the functions f− and f+ on Sj being respectively the interior
and exterior limits of f :

for r ∈ Sj , f±Sj
(r) = lim

α→0±
f(r + αn).

Note that these quantities depend on the orientation of n,
which is taken outward by default, as shown in Fig. 1.
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Fig. 1. The head is modeled as a set of nested regions Ω1, . . . ,ΩN+1 with
constant conductivities σ1, . . . , σN+1, separated by interfaces S1, . . . , SN .
Arrows indicate the normal directions (outward).

C. Connected Poisson problems

Since the conductivity is supposed to be piecewise constant,
we can factor out σ from (1) to yield a set of Poisson problems
coupled by boundary conditions

σi∆V = f in Ωi, for all i = 1, . . . , N (2)

∆V = 0 in ΩN+1 (3)
[

V
]

j
=
[

σ∂nV
]

j
= 0 on Sj , for all j = 1, . . . , N (4)

The equation (3) is a Laplace equation arising from the fact
that the conductivity is assumed to be zero and no charges
present outside the head. Physically, the boundary condition
[V ]j = 0 imposes the continuity of the potential across the
interfaces. The quasi-static assumption implies the continuity
of the current (charge) flow across the interfaces, which is
expressed by the second boundary condition [σ∂nV ]j = 0, as
σ∂nV = n·σE is precisely the density of current. Mathemati-
cally, both boundary conditions come from considering (1) on
the boundaries.

D. Boundary Element Method

The Boundary Element Method (BEM) [6, 7] is today a
classical way of solving the forward problem. The advantage
of the BEM with respect to the finite difference method
(FDM) or the finite element method (FEM) resides in the fact
that it only uses as unknowns the values on the interfaces
between regions with different conductivities, as opposed to
considering values everywhere in the volume. This reduces the
dimensionality of the problem and the number of unknowns,
and only requires the use of surface triangulation meshes,
avoiding the difficult construction of the volume discretization
needed for the FEM.

E. Inaccuracy of BEM implementations

So far the main disadvantage of using BEM in the EEG
forward problem has been that in all known implementations
the precision drops unacceptably when the distance d of the
source to one of the surfaces becomes comparable to the size
h of the triangles in the mesh (see also Section V-B.1). This
seriously hinders the usefulness of the BEM, as the sources

which are measured by EEG are often supposed to lie in
the cortex, which is only a few millimeters thick. Although
the problem is widely acknowledged [8–11], no satisfactory
solution has been found so far. Replacing the collocation by
the Galerkin method [8, 12] for the resolution of the integral
equations improves the precision only partially. The problem
has largely been disregarded, or sometimes avoided at the
expense of excessively simplifying the model: some authors
propose to omit either the outer cortex boundary, or the skull,
claiming that these simplifications are inconsequential for the
localization accuracy [13, 14]. Unfortunately, our experiments
do not support this claim and there is direct and indirect
evidence [15, 16] to show that accurate models are essential
for accurate reconstruction. Note, however, that the MEG
reconstruction is reportedly less affected by modeling errors
than the EEG.

F. Proposed new integral formulation

As far as we know, all variants of the BEM applied to the
EEG forward problem are based on the same integral formu-
lation, introduced by Geselowitz [17] in 1967. However, this
integral formulation is by no means the only one available. We
show that the classical formulation corresponds to a double-
layer potential approach. We propose a dual formulation using
a single-layer potential. Finally, we present a new formula-
tion, combining single and double-layer potentials. This new
approach leads to a symmetric system and turns out to be
numerically significantly more accurate than the other two
formulations.

G. Existing work

There is a large body of literature describing BEM imple-
mentations using the double-layer potential formulation for
forward and inverse EEG problems [8, 12, 18–22].

The symmetric formulation has existed in the BEM com-
munity for some time [7, 23–25], and the single-layer potential
formulation has been used for solving elasticity problems [6,
7]. However, to the best of our knowledge, neither the sym-
metric approach nor the single-layer formulation have so far
been applied to the EEG problem.

H. Organization of this article

We start in Section II by presenting the mathematical results
needed for the Boundary Element Method. Section III presents
the classical double-layer potential formulation together with
its dual formulation in terms of a single-layer potential, and the
new symmetric integral formulation, which combines single
and double-layer potentials. The discretization and implemen-
tation are described in Section IV, followed by experimental
results in Section V. Technical justifications and remarks
relative to Section II are detailed in Appendix A and can be
skipped at first reading.

II. REPRESENTATION THEOREM

The power of the Boundary Element Method is in its
conciseness, since it only requires to solve for values defined
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on surfaces instead of values defined in the volume. The
key to this dimension reduction resides in a fundamental
representation theorem [6, 7], which we recall in this section.

We define a Green function

G(r) =
1

4π‖r‖ satisfying − ∆G = δ0 . (5)

Given a regular boundary (surface) ∂Ω, we introduce four
integral operators D, S,N,D∗, which map a scalar function
f on ∂Ω to another scalar function on ∂Ω :

(

Df
)

(r) =

∫

∂Ω

∂n′G(r − r′)f(r′) ds(r′) ,

(

Sf
)

(r) =

∫

∂Ω

G(r − r′)f(r′) ds(r′) ,

(

Nf
)

(r) =

∫

∂Ω

∂n,n′G(r − r′)f(r′) ds(r′) ,

(

D
∗f
)

(r) =

∫

∂Ω

∂nG(r − r′)f(r′) ds(r′) .

(6)

where n, resp. n′, is the outward normal vector at position r,
resp. r′. Note that the operator D∗ is the transpose (adjoint)
of D with respect to the L2(∂Ω) scalar product

〈

f, g
〉

=
∫

∂Ω
f(r) g(r) ds(r′). With a slight abuse of notation, we will

also consider the values of the above-defined
(

Df
)

(r) and
(

Sf
)

(r) at any point in R
3, not necessarily on the boundary

∂Ω. The same generalization can also be applied to
(

D∗f
)

(r),
and to

(

Nf
)

(r), choosing an arbitrary smooth vector field
n(r).

To simplify the treatment and avoid ambiguity, we choose
to work with potential functions vanishing at infinity; more
precisely, we say that a function u satisfies condition H , if
simultaneously







lim
r→∞

r |u(r)| <∞
lim

r→∞
r ∂u
∂r

(r) = 0 ,

where r = ‖r‖, and ∂u
∂r

(r) denotes the partial derivative of u
in the radial direction. The Green function G in (5) satisfies
H . The condition H corresponds to the physical intuition
that a static field far away from all charges is zero. This goes
together with the hypothesis we need in order to make our
initial physical problem uniquely solvable, namely that we are
only interested in the field due to sources inside our bounded
volumes, i.e. inside the head.

We are now ready to state the fundamental representation
theorem on which the Boundary Element Method is based.

Theorem 1 (Representation Theorem) Let Ω ⊆ R
3 be

a bounded open set with a regular boundary ∂Ω. Let u :
(R3\∂Ω) → R be a harmonic function (∆u = 0 in R

3\∂Ω),
satisfying the H condition, and let further p(r)

def
= ∂nu(r).

1

S2

Ω2 Ω3

S1

Ω1

Fig. 2. Two-dimensional slice through a volume Ω2 (delimited by surfaces
S1, S2) with a hollow ball topology. Arrows denote the normal orientation.

Then

−p = +N[u] −D
∗[p] for r 6∈ ∂Ω

u = −D[u] +S[p]

−p± = +N[u] +
(

± I

2
− D

∗
)

[p] for r ∈ ∂Ω

u± =
(

∓ I

2
− D

)

[u] +S[p]

(7)
where I denotes the identity operator.

The Theorem holds in particular for the hollow ball topol-
ogy depicted in Figure 2, i.e. for disjoint open sets Ω1,Ω2,Ω3

such that Ω1∪Ω2∪Ω3 = R
3, separated by regular boundaries

∂Ω1 ∩ ∂Ω2 = S1, ∂Ω2 ∩ ∂Ω3 = S2, and ∂Ω1 ∩ ∂Ω3 = ∅, if
we set ∂Ω = S1∪S2. This result will be used in Section III-G
to establish the symmetric formulation.

Theorem 1 shows that any harmonic function u in R
3\∂Ω

satisfying H is determined everywhere by its jump and the
jump of its derivative across the boundary ∂Ω, whether ∂Ω is
a single surface, or two surfaces as in the case of Fig. 2. This
is a very deep result, showing the strong constraints imposed
by the harmonicity. It helps us to understand why we can
solve a 3D problem by only considering quantities on a 2D
surface. For additional notes and a sketch of a proof, we refer
the reader to Appendix A.

A. Single and double-layer potentials

From the equations (7) in Theorem 1, we see that the
harmonic function u can be represented using two functions
µ = −[u] and ξ = [p] defined on ∂Ω. Historically, the Sξ
part of (7) is called a single-layer potential. The single-layer
potential is continuous when crossing ∂Ω, while its normal
derivative is not;

[

Sξ
]

∂Ω
= 0,

[

∂nSξ
]

∂Ω
= ξ. On the other

hand, the second part, Dµ, which is called a double-layer
potential, jumps over ∂Ω, while its normal derivative does
not;

[

Dµ
]

∂Ω
= −µ,

[

∂nDµ
]

∂Ω
= 0. More detail on single

and double-layer potentials is provided in Appendix A.
To apply the single/double-layer potentials to our nested-

region model in Fig. 1, we simply add up the contributions
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from all interfaces, us =
∑

i SξSi
resp. ud =

∑

i DµSi
. This

yields single, resp. double-layer potentials with the same jump
properties as in the single interface case (see Appendix B). In
particular, we shall need further on the following two relations,
easily obtainable from (7) by additivity:

∂nu
±
s (r) = ∓ξSj

2
+

N
∑

i=1

D
∗
jiξSi

for r ∈ Sj (8)

u±d (r) = ±µSj

2
+

N
∑

i=1

DjiµSi
for r ∈ Sj . (9)

The operators D∗
ji and Dji are restrictions of D∗ and D: they

act on a function defined on Si and yield a function defined
on Sj . This convention is used consistently in the rest of this
paper.

III. INTEGRAL FORMULATIONS

Let us use Theorem 1 to obtain integral formulations for
the original multiple interface problem (4). We now need to
cope with the presence of sources, which make the solution
non-harmonic. Our starting point is a homogeneous solution
v, which takes the source terms into account, but does not
necessarily respect all boundary conditions. Then we add to v
a harmonic function u to obtain a complete solution V which
simultaneously respects the Poisson equation σi∆V = f in all
Ωi, the boundary conditions (4), and the equation (3). Three
different ways of achieving this are described in this section.
We shall always assume that V satisfies condition H , which
amounts to imposing a zero potential infinitely far from all
sources.

A. Dipolar and surface sources

The source model most commonly used to represent electri-
cal activity in the brain is a “current dipole”1 [3]. It represents
an infinitely small oriented source of current positioned at r0,
with dipolar moment q, and is defined by Jdip(r) = q δr0

(r).
The corresponding source term in the Poisson equation is
fdip = ∇ · Jdip = q · ∇δr0

, which yields the homogeneous
domain potential

vdip(r) =
1

4π

q · (r − r0)

‖r − r0‖3
. (10)

The dipolar source is physiologically plausible in that it repre-
sents movement of charges, not their creation. At sufficiently
long time scale it approximates the neuronal pulse trains.

Sources on cortex surface and perpendicular to it can be
also modeled as Jsurf(r) = j(r)nP (r) δP (r) with scalar
surface current density j on a patch P . The corresponding
homogeneous potential vsurf is then calculated by integration
over P :

vsurf(r) =
1

4π

∫

r
′∈P

nP (r′) · (r − r′)

‖r − r′‖3
j(r′) dr′ (11)

Finally, we can consider a completely general volume current
density Jp, yielding a source term f = ∇ · Jp and a potential
v = −f ∗G. (See also next Section.)

1This is a traditional name, used because the quantity q has the units of
[A · m].

B. Homogeneous solution

We decompose the source f from (1) into f =
∑N

i=1 fΩi

such that fΩi
= f · 1Ωi

, where 1Ωi
is the indicator function

of Ωi (hence fΩi
= 0 outside Ωi), i = 1, · · · , N . Recall that

no source lies in ΩN+1; we also assume that no source lies
on any boundary Si.

For each partial source term fΩi
we calculate the homoge-

neous medium solution vΩi
(r) = −fΩi

∗ G (r). The convo-
lution theorem and the properties of the Green function (5)
show that ∆vΩi

= −fΩi
∗ ∆G = fΩi

. The vΩi
are harmonic

in R\Ωi, i = 1, · · · , N and, hence also in ΩN+1. Thanks to
the choice of G in (5), the functions vΩi

satisfy condition H ,
provided that the fΩi

are compactly supported. This is true by
construction for Ω1, . . . ,ΩN since each of these domains is
bounded.

C. Multiple domains

There are various ways of combining the individual ho-
mogeneous solutions vΩi

from domains Ωi into a global
homogeneous v. First we consider a function vs constructed
as:

vs =

N
∑

i=1

vΩi
/σi . (12)

We easily verify that it satisfies the Poisson equation σ∆vs =
f in each Ωi, i = 1, . . . , N :

σ∆vs = σ
N
∑

i=1

∆vΩi
/σi = σ

N
∑

i=1

fΩi

σi

=
N
∑

i=1

fΩi
= f

According to the previous section, all functions vΩi
, i =

1, . . . , N are harmonic in ΩN+1, hence so is vs.
The function vs and its derivative ∂nvs are continuous

across each Sj . In other words, vs satisfies the boundary
conditions

[

vs

]

j
= 0 and

[

∂nvs

]

j
= 0 for all j, but not the

boundary condition
[

σ∂nvs

]

j
= 0. The function vs will be

used in the single-layer approach, Section III-D, whence the
subscript s.

In a dual fashion, we would like to consider the function
ṽd(r) = σ−1(r)

∑N
i=1 vΩi

that satisfies σ∆ṽd = f and the
boundary condition

[

σ∂nṽd

]

j
= 0. Unfortunately, ṽd is not

properly defined in ΩN+1 where σ = 0. Instead, we introduce
a function

vd =

N
∑

i=1

vΩi
(13)

that satisfies the Poisson equation ∆vd = f and the boundary
conditions

[

vd

]

j
= 0 and

[

∂nvd

]

j
= 0 on each surface Sj . The

function vd is harmonic in ΩN+1 for the same reasons as vs.
This function is used in the double-layer approach, Section III-
E.

D. Single-layer approach

A natural approach for solving (1) consists in representing
the potential V in a way which automatically satisfies [V ]j = 0
and then adjusting the harmonic part so that the remaining
boundary conditions, [σ∂nV ]j = 0, are satisfied as well. We
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consider us = V −vs, with vs defined in (12). By construction,
us is harmonic in Ω = Ω1 ∪ . . . ∪ ΩN , since in each Ωi we
have σi∆us = σi∆V − σi∆vs = fΩi

− fΩi
= 0. It is also

harmonic in ΩN+1, as both V and vs are harmonic there.
Since [V ]j = 0 and [vs]j = 0 (Section III-C), we conclude
that [us]j = 0 across all surfaces Sj . This means that us is
a single-layer potential for Ω = Ω1 ∪ . . . ∪ ΩN+1 with the
corresponding boundary ∂Ω = S1 ∪ . . . ∪ SN ( cf Section II-
A).

We then use the second set of boundary conditions,
[σ∂nV ] = 0, implying that [σ∂nus] = −[σ∂nvs]. We express
[σ∂nus] as a function of known quantities:
[

σ∂nus

]

j
= −

[

σ∂nvs

]

j
= −(σj − σj+1)∂nvs on Sj (14)

since ∂nvs does not “jump” across Sj (Section III-C). Equa-
tion (8) provides the normal derivative of the single-layer
potential us. Writing ξSj

=
[

∂nus

]

j
,

[

σ∂nus

]

j
= σj∂nu

−
s − σj+1∂nu

+
s =

σj + σj+1

2
ξSj

+ (σj − σj+1)

N
∑

i=1

D
∗
jiξSi

on all S1, . . . , SN . Combining this result with (14) and divid-
ing by (σj − σj+1) we obtain2

∂nvs =
σj + σj+1

2(σj+1 − σj)
ξSj

−
N
∑

i=1

D
∗
jiξSi

on all Sj . (15)

This is a system of N integral equations in the unknown
functions ξSj

. Its solution is unique up to a constant [7] (see
also Appendix C). Once (15) is solved, the potential us is
determined for r ∈ Sj as

us(r) =

N
∑

i=1

SjiξSi
,

and the corresponding values of V follow from V = vs + us.
We observe that V is expressed as an exactly calculable

homogeneous medium potential vs plus a correction term us.
If the medium is close to homogeneous, the correction is small,
which helps to improve the accuracy of this method. This
method is to be favored if we are interested in calculating the
flow or the current. However, to obtain the potential V , an
additional computation is necessary.

E. Double-layer approach

The double-layer approach is dual to the single-layer ap-
proach. We use a representation satisfying [σ∂nV ]j = 0 by
construction and then find conditions on the harmonic part to
impose [V ]j = 0 as well. Consider a function ud = σV − vd,
with vd given by (13). By construction, ud is harmonic in
Ω = Ω1 ∪ . . . ∪ ΩN , because in each Ωi we have ∆ud =
σi∆V −∆vd = fΩi

− fΩi
= 0. It is also harmonic in ΩN+1,

as both V and vd are harmonic there. Since [σ∂nV ]j = 0 and
[∂nvd]j = 0 (Section III-C), we conclude that [∂nud]j = 0

2The division by (σj − σj+1) has been done to simplify the formula.
It should not be performed for small values |σj − σj+1| in order to avoid
numerical difficulties.

on all surfaces Sj . This means that ud is a double-layer
potential for Ω = Ω1 ∪ . . . ∪ ΩN+1 with the corresponding
boundary ∂Ω = S1 ∪ . . . ∪ SN . Equation (9) expresses the
boundary values of a double-layer representation. We now use
the second set of boundary conditions, [V ]j = 0, implying
that σj+1(ud + vd)

− = σj(ud + vd)
+ for all Sj . (This is

equivalent to σ−1
j (ud + vd)

− = σ−1
j+1(ud + vd)

+ for σ 6= 0
and a natural extension thereof for σ = 0.) We can also express
µSi

= −[ud] = (σi+1 − σi)VSi
, where VSi

is the restriction
of V to Si. This yields

vd =
σj + σj+1

2
VSj

−
N
∑

i=1

(σi+1 − σi)DjiVSi
on each Sj .

(16)
The function vd defined in (13) is the solution of
∆vd = f , corresponding to a homogeneous medium
with conductivity equal to one. Remembering that
DjiVSi

(r) =
∫

Si
∂n′G(r − r′)V (r′) ds(r′) for r ∈ Sj ,

we recognize in (16) the classical integral formulation used
for EEG and MEG [2, 3, 17, 19, 20]. The advantage of this
approach is that it solves directly for V and requires no
additional post-processing. As in the single-layer approach,
the solution of the system (16) is unique up to a constant [7].

F. Isolated problem approach

In 1989, Hämäläinen and Sarvas [13] introduced a variation
on this double-layer formulation, to improve the precision of
the the classical formulation, caused by the low conductivity
of the skull compared to the other head tissues. This approach,
called Isolated Problem Approach (IPA) or Isolated Skull Ap-
proach, is based on the same idea that improves the accuracy
of the single-layer method — we express the potential V as
a sum of two parts calculated separately with hopefully more
precision than calculating the final result directly. In this case,
we calculate first the field of the sources considering only the
innermost volume and then the appropriate correction.

The IPA is not general in that it assumes the sources to
be only in the innermost layer, which is not the case for the
more realistic models of the head, where we want to consider
sources in the cortex. Also, while it improves the precision in
some cases, it reduces it in others [20]. Therefore, we shall
not consider IPA in the rest of this article.

G. Symmetric approach

The symmetric approach, uses both the single and double-
layer potentials. It is based on the classical theory of Newto-
nian potentials as described in chapter 2 of [26], the work of
Nédélec [7] and is also closely related to algorithms in [23,
24]. However, as far as we know, it has so far never been
described for the EEG problem. In this approach, we consider
in each Ω1, . . . ,ΩN the function

uΩi
=

{

V − vΩi
/σi in Ωi

−vΩi
/σi in R

3\Ωi .

Each uΩi
is harmonic in R

3\∂Ωi. Considering the nested
volume model (Fig. 1), the boundary of Ωi is ∂Ωi = Si−1∪Si.
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Ωi Ωi+1

Si Si+1Si−1

Fig. 3. A detail of the nested volume model. Normal vectors are oriented
globally outward, as shown. However, when considering for example the
surface Si as the boundary of Ωi+1, the orientation needs to be reversed.

With respect to the orientations of normals indicated in Fig. 3,
the jumps of uΩi

across Si satisfy the relations

[uΩi
]i = VSi

, [uΩi
]i−1 = −VSi−1

, (17a)

and the jumps of their derivatives

[∂nuΩi
]i = (∂nV )−Si

, [∂nuΩi
]i−1 = −(∂nV )+Si−1

. (17b)

We define pSi
= σi[∂nuΩi

]i = σi(∂nV )−Si
. Note that since

[σ∂nV ] = 0 from (4), we have pSi
= σi(∂nV )−Si

=

σi+1(∂nV )+Si
at the interface Si. As uΩi

is harmonic in
R

3\∂Ωi and satisfies the condition H , we can apply The-
orem 1 to obtain the internal limit of uΩi

on Si:

(

uΩi

)−

Si
=

[

uΩi

]

∂Ωi

2
− D∂Ωi

[

uΩi

]

∂Ωi
+ S∂Ωi

[

∂nuΩi

]

∂Ωi

If we break down the jump terms across ∂Ωi = Si−1 ∪ Si

into two parts, corresponding to Si−1 and Si, and if we take
into account identities (17a), we obtain

(

uΩi

)−

Si
=
(

V − vΩi
/σi

)−

Si
=
VSi

2
+ Di,i−1VSi−1

−
DiiVSi

− σ−1
i Si,i−1pSi−1

+ σ−1
i SiipSi

(18)

A similar analysis applies to uΩi+1
. Theorem 1 gives the

external limit of uΩi+1
on Si

(

uΩi+1

)+

Si
= −

[

uΩi+1

]

∂Ωi+1

2
− D∂Ωi+1

[

uΩi+1

]

∂Ωi+1
+

S∂Ωi+1

[

∂nuΩi+1

]

∂Ωi+1

We substitute from (17a) for the values of [uΩi+1
] and

[∂nuΩi+1
] and break down the terms on ∂Ωi+1 = Si ∪ Si+1,

to obtain
(

uΩi+1

)+

Si
=
(

V − vΩi+1
/σi+1

)+

Si
=

VSi

2
+DiiVSi

−Di,i+1VSi+1
−σ−1

i+1SiipSi
+σ−1

i+1Si,i+1pSi+1

(19)

We subtract (18) and (19); given that the functions V, vΩi+1

and vΩi
are continuous across Si and their internal and

external limits hence coincide, we get

σ−1
i+1(vΩi+1

)Si
− σ−1

i (vΩi
)Si

=

Di,i−1VSi−1
− 2DiiVSi

+ Di,i+1VSi+1
− σ−1

i Si,i−1pSi−1

+ (σ−1
i + σ−1

i+1)SiipSi
− σ−1

i+1Si,i+1pSi+1
, (20)

for i = 1, . . . , N . Using the same approach, we eval-
uate the quantities

(

σi∂nuΩi

)−

Si
=

(

p − ∂nvΩi

)−

Si
and

(

σi+1∂nuΩi+1

)+

Si
=

(

p − ∂nvΩi+1

)+

Si
using Theorem 1,

subtract the resulting expressions and obtain

(∂nvΩi+1
)Si

− (∂nvΩi
)Si

=

σiNi,i−1VSi−1
− (σi + σi+1)NiiVSi

+ σi+1Ni,i+1VSi+1
−

D
∗
i,i−1pSi−1

+ 2D∗
iipSi

− D
∗
i,i+1pSi+1

, (21)

for i = 1, . . . , N . Here (and in (20)) the terms corresponding
to non-existing surfaces S0, SN+1 are to be set to zero. Terms
involving pSN

must also be set to zero, since σN+1 = 0
implies pSN

= 0.
Observe that, unlike in the previous approaches, each sur-

face only interacts with its neighbors, at the cost of consid-
ering two sets of unknowns, VSi

and pSi
. Equations (20)

and (21) thus lead to a block-diagonal symmetric operator
matrix, which is displayed in Fig. 4. Note that the vanishing
conductivity σN+1 = 0 is taken into account by effectively
chopping off the last line and column of the matrix.

IV. DISCRETIZATION AND IMPLEMENTATION

The discretization of all the exposed integral methods can be
divided into three steps: discretization of the boundaries, dis-
cretization of the unknowns, and choice of the test functions,
corresponding to the choice of the error measure to discretize
the equations.

A. Discretization of the boundaries

The first step is to approximate the boundaries by surface
meshes. Triangulation is used in the vast majority of cases.
Higher-order surface elements [22] are rarely used for the
EEG problem, despite their potential to improve the modeling
accuracy, because of the lack of algorithms to generate curved
meshes from the available data (mostly volumes of anatom-
ical MRI [27, 28]). As a triangulated surface is not regular,
some caution is needed in the application of the continuous
equations derived above (cf Appendix D).

B. Discretization of the unknowns

The second step consists in approximating the continuous
unknowns V, p or ξ using a finite number of basis functions
ϕi, for example V =

∑

i viϕi. A classical choice is the space
P0, spanned by basis functions ψi equal to 1 on triangle Ti and
0 elsewhere. Another possibility is the space P1, whose basis
functions φi are equal to 1 on vertex i, 0 on all other vertices,
and linear on each triangle. If Nv (resp. Nt) represents the
number of vertices (resp. triangles) in the mesh, the number
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)S1

− (∂nvΩ2
)S1

σ−1
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)S1
− σ−1

1 (vΩ1
)S1

(∂nvΩ2
)S2

− (∂nvΩ3
)S2

σ−1
3 (vΩ3

)S2
− σ−1

2 (vΩ2
)S2

(∂nvΩ3
)S3
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)S3

σ−1
4 (vΩ4

)S3
− σ−1

3 (vΩ3
)S3

...
(∂nvΩN

)SN



























(22)

Fig. 4. System representing the continuous operator version of the symmetric method. Observe that the system is symmetric and block-diagonal. Special
care is needed in writing the last block because of the conductivity σN+1 = 0. We have noted σi,i+1 the sum σi + σi+1 and σ−1

i,i+1 the sum σ−1
i + σ−1

i+1.

of P1 (resp. P0) basis functions is Nv (resp. Nt). For closed
meshes, Nt = 2(Nv −2). Higher-order basis functions are not
useful with meshes composed of flat elements, the additional
precision being wasted since the total error of the method
becomes dominated by the geometrical error.

C. Test functions

Third, to convert the continuous equations of discrete vari-
ables into a set of discrete equations, we integrate each of
them against a set of test functions ϕ̃j . The simplest choice of
test functions is a Dirac mass, ϕ̃i = δxi

. This method, called
“collocation”, is comparatively simple and fast, but often not
very accurate. One normally chooses as many collocation
points as unknowns. Special care is needed to evaluate the
functions at non-regular points of the surface, such as vertices
(see Appendix D).

Galerkin-type methods replace the pointwise equality by an
equality in the mean sense. The test functions ϕ̃i are often
chosen equal to the basis functions ϕi; this leads to square
system matrices. There is an extra integration involved which
most of the time needs to be performed numerically. Many
times the integrand is singular which augments the difficulty.
Galerkin methods are hence more difficult to implement and
slower than collocation, but usually more accurate [8, 12,
20]. We shall therefore concentrate on Galerkin methods in
the detailed treatment of the three integral formulations that
follows, even though we report the results for the collocation
methods as well.

D. Single-layer formulation

The continuous equation (15) obtained in the single-layer
approach (III-D) is discretized using a Galerkin method,
described above. The single-layer density ξSk

on Sk is repre-
sented as ξSk

(r) =
∑

i x
(k)
i ϕ

(k)
i (r), where ϕi can be either

a P0 or a P1 basis function. Taking the scalar product of
equation (15) (in which ξSk

has been discretized) with the
same functions ϕ(k)

i yields the following set of equations:

〈

∂nvs, ϕ
(k)
i

〉

=
σk + σk+1

2(σk+1 − σk)

(

∑

j

x
(k)
j

〈

ϕ
(k)
i , ϕ

(k)
j

〉

)

−

N
∑

l=1

∑

j

x
(l)
j

〈

D
∗
lkϕ

(l)
j , ϕ

(k)
i

〉

. (23)

The explicit matrix form is
2

6
6
6
6
4

J1+D
∗
11 D

∗
12 D

∗
13 . . . D

∗
1,N

D
∗
21 J2+D

∗
22 D

∗
23 . . . D

∗
2,N

D
∗
31 D

∗
32 J3 + D

∗
33 . . . D

∗
3,N

...
...

...
. . .

...
D

∗
N,1 D

∗
N,2 D

∗
N,3 . . . JN+D

∗
N,N

3

7
7
7
7
5

| {z }

A

2

6
6
6
6
4

x1

x2

x3

...
xN

3

7
7
7
7
5

=

2

6
6
6
6
4

b1

b2

b3

...
bN

3

7
7
7
7
5

(24)
where the matrices J (which are almost diagonal) are given
by

(

Jk

)

ij
=

σk + σk+1

2(σk+1 − σk)

〈

ϕ
(k)
i , ϕ

(k)
j

〉

,

the matrices D∗ by

(

D
∗
kl

)

ij
= −〈D∗

klϕ
(l)
j , ϕ

(k)
i

〉

,

and the vectors b and x by

(

bk

)

i
=
〈

∂nvs, ϕ
(k)
i

〉

,
(

xk

)

i
= x

(k)
i .

Care is needed in calculating the elements
(

D∗
kk

)

ii
because

of the singularity of the operator D∗ (see (6)). Some authors
adjust the diagonal values to compensate the numerical errors
of the rest of the elements using the fact that the sum of
the columns of D∗

kk is known (see [10] for the double-layer
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approach). This arises from the fact that the total solid angle
ω = 4π

(

Di1
)

(r) must be equal to 4π for all interior points,
and from the physical necessity of obtaining a singular matrix
(see Appendix C). The notation Di indicates that the operator
D is restricted to the ith interface. However, we prefer to set
(

D∗
kk

)

ii
to 0, which is exact at regular points of flat surfaces

(triangles), trivial to compute, and unlike the former approach
does not obscure potential accuracy problems. We did not
observe a significant difference in accuracy between the two
choices.

The system matrix A is full and non-symmetric. The
elements of the matrices D∗ involve double integrals over
triangles of the meshes. The inner integrals can be calculated
analytically for both P0 and P1 basis functions [19, 29, 30];
the outer integrals must be calculated numerically, which is
most efficiently done using a Gaussian quadrature adapted to
triangles [6, 31].

Once x is known, the potential V is calculated directly
from (III-D) as

V (r) = vs(r) +

N−1
∑

l=1

∑

j

x
(l)
j

(

Slkϕ
(l)
j

)

(r) for r ∈ Sk .

(25)
Note that no approximation is involved here; if x is known
exactly, V can be calculated exactly too.

E. Deflation

An important point to note is that the matrix A presented
in (24) is singular (see Appendix C). We “deflate” it [32]
using the condition 〈ξ, 1〉 = 0 (see Appendix C). For the
commonly used basis functions satisfying the partition of unity
property3, this is equivalent to

∑

i x
(k)
i = 0 on each Sk,

and thus
∑

ik x
(k)
i = 0. To impose this, we replace A with

A′ = A + ω11T , where ω is chosen such that A′ is well
conditioned. The optimal choice of ω is too costly to calculate
but the value is not very critical and can be approximated [12,
33]. We use the fact that A is approximately diagonal dominant
and we assume that the very first element is representative,
which leads to ω =

(

A
)

11
/M , where M is the total number

of unknowns. This was found to perform acceptably well. The
deflated matrix A′ is regular and square and can be inverted
by the usual methods.

Note that deflation is not equivalent to regularization that
looks for a smooth solution only approximately satisfying the
Maxwell equations. Instead, deflation chooses one solution
from a family of equivalent ones, all satisfying the equations
exactly, according to our preferences based on the physics of
the problem.

F. Double-layer formulation

The double-layer formulation (16) is discretized using the
same approach as the single-layer one, with VSk

on Sk

represented as VSk
(r) =

∑

i x
(k)
i ϕ

(k)
i (r), where ϕi is either

3Their sum is equal to 1 everywhere.

P0 or P1. Taking the scalar product of (16) with ϕ(k)
i yields

〈

vd, ϕ
(k)
i

〉

=
σk + σk+1

2

(

∑

j

x
(k)
j

〈

ϕ
(k)
i , ϕ

(k)
j

〉

)

−

N
∑

l=1

(σl+1 − σl)
∑

j

x
(l)
j

〈

Dklϕ
(l)
j , ϕ

(k)
i

〉

(26)

or, in a matrix form

2

6
6
6
6
4

J1+D11 D12 D13 . . . D1,N

D21 J2+D22 D23 . . . D2,N

D31 D32 J3+D33 . . . D3,N

...
...

...
. . .

...
DN,1 DN,2 DN,3 . . . JN+DN,N

3

7
7
7
7
5

| {z }

A











x1

x2

x3

...
xN











=









b1

b2

b3

. . .
bN









(27)

where

(

Jk

)

ij
=
σk + σk+1

2

〈

ϕ
(k)
i , ϕ

(l)
j

〉

(

Dkl

)

ij
= −(σl+1 − σl)〈Dklϕ

(l)
j , ϕ

(k)
i

〉

(

bk

)

i
=
〈

vd, ϕ
(l)
i

〉

,
(

xk

)

i
= x

(k)
i

As in the single-layer case, and thanks to the duality between
D and D∗, the inner integrals needed to calculate elements
of matrices Dlk have an analytical solution for both P0 and
P1 basis functions [19, 29], while the outer integrals are
calculated numerically [8]. The matrix is again full, non-
symmetric, and needs to be deflated, this time because the
potential V is only defined up to a constant (see Appendix C).
Imposing the condition H is impractical, and we instead
impose either the mean of the potential over all surfaces to
be zero,

∑N
k=1

∑

i x
(k)
i = 0, or else the mean of the potential

over the external surface to be zero,
∑

i x
(N)
i = 0. In the

latter case we propose to modify (deflate) only the bottom-
right block of A, namely JN + DN,N . The basis functions are
assumed to satisfy the partition of unity property.

The continuous V is directly accessible from the discretiza-
tion equation V (r) =

∑

i x
(k)
i ϕ

(k)
i for r ∈ Sk.

G. Symmetric approach

The specificity of the discretization of the symmetric ap-
proach (20,21) is that both V and its derivative p are simul-
taneously involved as unknowns. The approximation errors
for the two quantities should be asymptotically equivalent,
so that the overall error is not dominated by either one.
For this reason, we choose to approximate V using P1 basis
functions as VSk

(r) =
∑

i x
(k)
i φ

(k)
i (r), while its derivative p

is represented using the space P0, pSk
(r) =

∑

i y
(k)
i ψ

(k)
i (r).

Similar concerns guide our choice of test functions. We notice
that the operator S behaves as a smoother: it increases the
regularity of its argument [7] by one. The operators D, D∗ do
not change it, while N has a derivative character: it decreases
the regularity by one. The regularity is closely tied to an
approximation order [34]. To balance the errors, all the scalar
products should have the same approximation order. To ensure
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this, we multiply (20) concerning the potential (a P1 function)
by P0 test functions ψi

〈

σ−1
k+1vΩk+1

− σ−1
k vΩk

, ψ
(k)
i

〉

=
∑

j

x
(k−1)
j

〈

Dk,k−1φ
(k−1)
j , ψ

(k)
i

〉

+

∑

j

x
(k+1)
j

〈

Dk,k+1φ
(k+1)
j , ψ

(k)
i

〉

+ (σ−1
k + σ−1

k+1)
∑

j

y
(k)
j

〈

Skkψ
(k)
j , ψ

(k)
i

〉

− σ−1
k

∑

j

y
(k−1)
j

〈

Sk,k−1ψ
(k−1)
j , ψ

(k)
i

〉

− σ−1
k+1

∑

j

y
(k+1)
j

〈

Sk,k+1ψ
(k+1)
j , ψ

(k)
i

〉

− 2
∑

j

x
(k)
j

〈

Dkkφ
(k)
j , ψ

(k)
i

〉

,

and (21) concerning the flow (a P0 function) by P1 test
functions φi

〈

∂nvΩk+1
− ∂nvΩk

, φ
(k)
i

〉

=

σk

∑

j

x
(k−1)
j

〈

Nk,k−1φ
(k−1)
j , φ

(k)
i

〉

+ σk+1

∑

j

x
(k+1)
j

〈

Nk,k+1φ
(k+1)
j , φ

(k)
i

〉

− (σk + σk+1)
∑

j

x
(k)
j

〈

Nkkφ
(k)
j , φ

(k)
i

〉

−
∑

j

y
(k−1)
j

〈

D
∗
k,k−1ψ

(k−1)
j , φ

(k)
i

〉

−
∑

j

y
(k+1)
j

〈

D
∗
k,k+1ψ

(k+1)
j , φ

(k)
i

〉

+ 2
∑

j

y
(k)
j

〈

D
∗
kkψ

(k)
j , φ

(k)
i

〉

,

both to hold on all interfaces k = 1, . . . , N . This set of
equations can be expressed more concisely in matrix form
The matrix A should be truncated4 like in (22), to account for
the zero conductivity σN+1 = 0.

Note that A is larger than in the single or double-layer cases.
However, it is symmetric and block-diagonal, which means
that the actual number of elements to be stored is comparable
or even smaller, depending on the number of interfaces. More-
over, matrices Nkl can be calculated at negligible costs from
the intermediate results needed for calculating matrices Skl,
thanks to an interesting relation coming from Theorem 3.3.2
in [7]:
〈

Nklϕ
′
i, ϕ

′
j

〉

= −(qi × ni)(qj × nj)
〈

Sklψ
(l)
j , ψ

(k)
i

〉

(29)

where ϕ′
i(x) =

(

qi · x + αi

)

ψi(x) and ϕ′
j(x) =

(

qj ·
x + αj

)

ψj(x) are the P1 basis functions ϕ restricted to one
triangle.

Deflation is needed to avoid the indetermination of V .
To impose a zero mean of the potential on the outermost
surface, only the bottom-right block with NN,N is modified

4The bottom-right corner of A is not shown here for space reasons.

TABLE I

THE DIFFERENT METHODS IMPLEMENTED AND THEIR ASSOCIATED

LABELS.

Label Formulation ϕ ψ

1a Single-Layer P0 Dirac
1b P0 P0
1c P1 P1
2a Double-Layer P0 Dirac
2b P0 P0
2c P1 P1
3 Symmetric P0 P1

to NN,N + ω11T , using the heuristic ω =
(

NN,N

)

11
/MN , as

in Section IV-E.

H. Acceleration

As the number of mesh elements M grows, the matrix
assembly time O(M2) becomes dominated by the time needed
to solve the resulting linear system O(M 3), e.g. by the
LU decomposition. Iterative solvers [8, 9, 35] can be used
instead, reducing the computation time and only accessing the
matrix by matrix-vector multiplications Az. This brings other
optimization opportunities such as calculating these products
approximately using a fast multipole method (FMM) [11],
precorrected-FFT [14, 36] or SVD-based methods. Multires-
olution techniques permit to reduce the number of expensive
iterations on the finest level by solving first a reduced size
problem and using its solution as the starting guess. Multigrid
algorithms combine iterations on fine and coarse levels for
even faster convergence.

Parallelizing the assembly phase is straightforward as the
matrix elements can be calculated independently, even though
for optimum performance the expensive calculations needed
to calculate S should be reused for the calculation of N,
as mentioned above. Parallel techniques also exist for linear
system solver non-iterative algorithms (SCALAPACK library).

V. EXPERIMENTS

We have implemented the single-layer, double-layer, and
symmetric approaches described in this article in both serial
and parallel versions. The single and double-layer approaches
exist in three discretization variants: with the collocation
method (ϕ̃j = δxj

) using the P0 basis functions ϕ, and with
the Galerkin method (ϕ̃j = ϕj) using both P0 and P1 bases.
The symmetric method is discretized using P1 basis functions
for V and P0 basis functions for p. We have implemented
only this choice, since with other discretizations we lose the
principal advantages of the method, symmetry and accuracy.
We have applied these methods first to synthetic cases where
an analytical solution is known, as well as to realistically
shaped head models.

Table I summarizes the different discretization choices, and
indicates the labels by which they are referenced in the text
and figures.
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2

6
6
6
6
6
6
6
6
4

(σ1+σ2)N11 −2D∗
11 −σ2N12 D

∗
12

−2D11 (σ−1
1

+σ
−1
2

)S11 D12 −σ
−1
2

S12

−σ2N21 D
∗
21 (σ2+σ3)N22 −2D∗

22 −σ3N23 D
∗
23

D21 −σ
−1
2

S21 −2D22 (σ−1
2

+σ
−1
3

)S22 D23 −σ
−1
3

S23

−σ3N32 D
∗
32 (σ3+σ4)N33 −2D∗

33 . . .
D32 −σ

−1
3

S32 −2D33 (σ−1
3

+σ
−1
4

)S33 . . .
...

...
. . .

3

7
7
7
7
7
7
7
7
5

| {z }

A

2

6
6
6
6
6
6
6
6
4

x1

y1

x2

y2

x3

y3

...

3

7
7
7
7
7
7
7
7
5

| {z }

w

=

2

6
6
6
6
6
6
6
6
4

b1

c1

b2

c2

b3

c3

...

3

7
7
7
7
7
7
7
7
5

| {z }

z

(28)

with
(

Nkl)ij =
〈

Nklφ
(l)
j , φ

(k)
i

〉 (

Skl)ij =
〈

Sklψ
(l)
j , ψ

(k)
i

〉

(

Dkl)ij =
(

D
∗
lk)ji =

〈

Dklφ
(l)
j , ψ

(k)
i

〉
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A. Speed

The speed depends strongly on the desired precision, on
the optimization and acceleration techniques applied and on
the specific task.5 In our experiments, the time needed for
the direct assembly of the matrix was of the order of 1 to
5 s for our smallest head mesh of 3 × 42 vertices, to several
minutes to assemble the matrices of 4486 × 4486 elements,
corresponding to the meshes of 3 × 642 vertices, up to about
2 h for the matrices of 17926×17926, corresponding to meshes
of 3 × 2562 vertices. Using a parallel code on a cluster
of workstations speeds the assembling proportionally to the
number of processors with a high efficiency. The time needed
to solve the linear system of equations varied between 10 ms
and 2 h for the same cases. Generally, the assembly time grows
quadratically with the number of degrees of freedom, and the
solution time as a third power. Collocation methods can be
10 or more times faster than the Galerkin method, depending
on the numerical integration method used and the number of
integration points needed to get the required accuracy. The
single-layer method is more costly than the corresponding
double-layer method6, as two matrices need to be assembled,
the matrix A in (24) in order to solve for the single-layer
density, and an additional matrix in order to integrate the
potential from equation (25).

B. Spherical head models

The first part of our tests was performed on triangulated
spherical surfaces. The choice of a spherical geometry has
the advantage that an analytical solution is available [20, 37,
38], thus making it possible to evaluate the accuracy of the
different methods. The spherical surfaces were triangulated
with progressively finer meshes of 42, 162, and 642 vertices
per layer7. We used three concentric spheres with radii 0.87,

5For example, one may consider that the system matrix, once assembled,
can be used to solve many problems involving the same geometry. This makes
the actual assembly time irrelevant.

6The precise ratio depends on the discretization used.
7Finer meshes were avoided in this set of experiments because of memory

and time limitations so that a serial direct solver could be used for most
reproducible results.

0.92, and 1.0, delimiting volumes with conductivities 1.0,
0.0125, 1.0 and 0.0, from inside towards outside. The sources
were unitary current dipoles oriented as [1 0 1]/

√
2 and placed

at distances r = 0.425, 0.68, 0.765, 0.8075, and 0.8415 from
the center on the x axis.

We chose to evaluate the analytical solution at triangle
centers for the P0 methods and at vertex points for the
others. This disadvantages Galerkin methods but it is close
to actual use. We then calculated the relative `2 error ‖vanal −
vnum‖`2/‖vanal‖`2 , making sure that both vanal and vnum had
zero means prior to comparison. Note that some authors
linearly scale vnum to obtain the best fit [10]. This obviously
significantly reduces the reported error but is difficult to justify
in the context of evaluating the accuracy of a method.

We have also made some experiments using a single sphere
model, not shown here because of lack of space and because
it does not correspond to a plausible head model. Note that in
this case the symmetric model is disadvantaged by using only
the operator N.

1) Error versus dipole position: The first set of experiments
(Fig. 5) shows how the accuracy decreases when the current
dipole source approaches the surface of discontinuity. We
observe that the symmetric approach is much less affected
than the other methods.

2) Error versus mesh density: For a fixed source position
(r = 0.765), the error decreases as the mesh is refined
(Fig. 6). We observe that while both collocation variants
produce the largest errors (results are completely unreliable),
Galerkin methods based on P0 approximations are better, and
the best results are provided by the P1 methods, namely by the
symmetric formulation. Moreover, the slope of the decrease
of the error with mesh size is steeper for P1-based methods,
a benefit of their higher approximation order.

3) Error versus conductivity: The accuracy of all im-
plemented methods depends on the ratio of conductivities
between the second layer (representing the skull) and the
neighboring volumes (representing brain and scalp). To display
this behavior, we have created additional head models with
conductivities of the three volumes 1.0, σ, 1.0, with σ ranging
between 1/2 and 1/1000. Figure 7 shows that when the con-



11

 0.001

 0.01

 0.1

 1

 10

 100

 0.4  0.5  0.6  0.7  0.8  0.9

R
el

at
iv

e 
er

ro
r

Dipole position

Head 3 

1a
1b
1c
2a
2b
2c
3

Fig. 5. The relative error versus the dipole position r for meshes with
642 vertices per sphere. The label 1 (resp. 2) refers to single-layer (resp.
double-layer) potential, and the label 3 refers to the symmetric formulation,
as explained in Table I.
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Fig. 6. The relative error versus the number of the degrees of freedom of
the solution for the dipole source at r = 0.765. Refer to Table I for the
meaning of the labels. Both P0 collocation methods in the three-sphere case
are outside their area of applicability and do not provide meaningful results.

ductivity ratio σ becomes small, the precision of the single and
double-layer methods drops. The symmetric method displays
a clear advantage over the others since, on the contrary, its
accuracy increases as σ → 0. This is a valuable result in the
context of human head modelling where σ ≈ 0.01.

C. Realistic meshes

We generated a realistic four-layer model of the head with
about 13000 points and 26000 faces8. Figure 8 shows the
potential field created by a dipole close to a cortex surface
using a parallel implementation of our algorithm. This gives an
indication of the complexity of the model we are currently able
to process. The cortex surface contains 4960 points and the
average size of the triangles’ edges is 5mm. The simulations
have been performed with a dipole located inside at roughly
10mm from this surface. The total computation took close to

8We thank Geoffray Adde and Florent Segonne for preparing the hierar-
chical meshes from the MRI data.
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Fig. 7. The relative error versus the ratio of conductivities between
neighboring layers, for dipole at r = 0.8075 and mesh of 642 vertices.
Refer to Table I for the meaning of the labels.

6 hours on a cluster of 30 PCs. It required of the order of
1000 iterations.

We used decimated versions of the same head model to
compare the time and memory requirements of the different
methods in this realistic setting. We had to make several
simplifications in order to make this comparison possible. We
only included P1 discretizations of the single and double-
layer methods because they are the most comparable with
the symmetric variant in terms of representation. The superior
accuracy of the Galerkin method for a majority of applications
is widely recognized [8, 12, 20]. In order to obtain reliable
timing results, we chose to use the sequential9 direct10 solver,
which consequently limits the maximum mesh sizes we could
process. Even so, the timing results fluctuate widely11 and
should only be regarded as indicative. Regarding accuracy
comparisons, as we had no way of knowing the ground truth
solution, we arbitrarily picked one of the three methods (the
double-layer) and used its results at the finest mesh as a
reference. Results at other resolutions were interpolated on
the finest mesh, and the relative `2 norm ‖x − xref‖/‖xref‖
was used to measure accuracy (see Table II) .

In order for the comparison to be meaningful, given that the
reference solution was picked as one of the three solutions for
the finest discretization, we had to ensure that the other two
solutions were very close to that reference, otherwise there
would be no reason to believe that the so-called reference
should have any relationship with the true solution. The mesh
size had to be increased until this requirement was met, and
this proved to be difficult because of the mesh size restriction
imposed by the sequential direct solver. We had to reduce
the number of layers in the model, from four down to two,
to increase the separation between layers, and to use a deep

9The timings on the cluster of PCs vary widely because we have no control
over the assignment of our task to different processors and over the load
imposed by other users.

10The number of iterations of the iterative method varies strongly with the
stopping threshold, conditioning of the matrix, and other similar effects.

11Most likely because of the virtual memory effect. We have used the total
elapsed time (“wall time”) as opposed to the “CPU time” as the later seemed
to be less relevant.
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dipole. At convergence, the results obtained by the three
methods differed in relative `2 norm by roughly 0.05 (5%)
for the two-layer model.

We also ran computations on a three-layer model, but in
that case, the relative errors between results at the finest
discretization were as high as 20%. It would have required
even finer meshes to achieve the same relative accuracy as
in the two-layer case and it was not possible for the reasons
indicated above. This is the reason why the accuracy results
in Table II (bottom) compare each method to its own result at
the finest discretization.

D. Discussion

A meaningful comparison of the various techniques is
difficult. First, one must bear in mind that they use different
number of degrees of freedom to perform the calculations,
which moreover is not necessarily identical to the number
of degrees of freedom used to express the solution. More
specifically, for a (closed) mesh with Nv vertices, P1 methods
involve Nv unknowns, P0 based methods use about 2Nv of
them, while the symmetric method with P0/P1 discretization
uses about 3Nv unknowns, but only Nv degrees of freedom
to express the solution V .

In the case of the spherical models with three layers where
the ground truth is known analytically, Fig. 5 shows that
for a dipole far from an interface, the single-layer method
performs best. This probably comes from the fact that it
represents the solution as an exact term plus a correction.
When the dipole moves closer to the interface, the symmetric
method yields the best results. Fig. 6 shows that the symmetric
method is less sensitive than the single-layer and the double-
layer method to a decrease in the quality of the description
of the geometry. Finally, Fig. 7 indicates that when the
ratio of conductivities between neighboring layers is between
roughly 2 and 10 the single-layer method performs best,
followed by the symmetric and the traditional double-layer
methods, while when this ratio grows larger than 15, the new
symmetric method is clearly ahead of the single- and double-
layer methods.

As stated above, in the case of the much more realistic
model of Fig. 8 the comparison between the methods is more
difficult since the ground-truth data is unavailable. Neverthe-
less, all three methods were implemented within the same
programming framework, using the same basic functional
blocks, and we can learn a number of things from the results
shown in Table II (top). It is interesting to note that the
symmetric method is less computationally demanding than
the alternatives. As already mentioned, this comes from the
fact that many of the computations to assemble the system
matrix of the symmetric method can be reused, which does not
happen for the other methods. Also, integrating the D elements
in the symmetric method with P0 and P1 basis functions is
easier (the integrand is easier to evaluate) than integrating with
respect to two P1 functions, as it happens in the D elements for
the single and double-layer P1 implementations. The matrix
factorization is slower for the symmetric method due to its
larger matrix size. However, for the number of unknowns
considered this is compensated by the fast assembly.

As far as accuracy is concerned, we see from the last
three columns of Table II (top) that when the number of
vertices decreases from 2000 to 200, the performances of
all three methods degrade similarly. The symmetric method
outperforms the others for coarse meshes, despite of being
disadvantaged because the double-layer method was chosen
as a reference. The accuracy results for three-layer realistic
meshes (Table II (bottom)) indicate a good convergence trend
of each method, even though, as we have seen, still higher
resolution meshes would be needed to make all of them
converge to a common solution. This only highlights the
difficulties with solving the EEG forward problem on rough
(realistic) surfaces and supports our claim that much finer
meshes will have to be used.

VI. CONCLUSION

We have presented a conceptual framework for Boundary
Element Methods in EEG which is based on a theorem
(Theorem 1) that characterizes harmonic functions defined on
the complement of a bounded smooth surface. This theorem
has allowed us to cast the previous approaches in a unified
setting and to develop two new approaches corresponding to
different ways of looking at the same theorem. Specifically, we
have shown that the classical integral formulation that has been
used during the last thirty years for EEG and MEG calculations
by the BEM and is based on a double-layer potential is not the
only one possible. We have developed a dual approach which
involves a single-layer potential and proposed a symmetric for-
mulation, which combines single- and double-layer potentials,
and is new to the field of EEG, although it has been applied
to other problems in electromagnetism [23, 24]. The three
methods have been evaluated numerically using a spherical
geometry with known analytical solution, and the symmet-
ric formulation achieves a significantly higher accuracy than
the alternative methods. Interestingly enough, the next best
method does not seem to be the “traditional” double-layer
method but rather the dual single-layer approach. Additionally,
we have presented results with realistically shaped meshes.
Beside providing a better understanding of the theoretical
foundations of BEM, our approach appears to lead also to
more efficient algorithms.

It is appealing by its symmetry and its superior accuracy
in semi-realistic geometry. The precise theoretical analysis of
the accuracy performance of the different methods is difficult
because of the number of factors involved and remains to be
done, although some partial results can be found in [7, 25, 39].

The main benefit of using the proposed approach is that
the error increases much less dramatically when the current
sources approach a surface where the conductivity is discon-
tinuous. This implies that we are able to reduce the number
of mesh elements in a usable model of the human cortex with
a realistic geometry [40]. This has the effect of bringing the
idea of accurate electromagnetic simulation of the human brain
much closer to what can be achieved with today’s technology.
Nevertheless, advanced acceleration techniques will still have
to be used both at the algorithm and implementation levels
before this idea can be really instantiated [11, 41].



131

−0.7µV 15µV −60µV 250µV

Fig. 8. Top: We have used a realistic four-layer model of the head with about 13000 points and 26000 faces. We show the surfaces corresponding to the
skin (left) and to the cortex (right). Bottom: We have calculated the potential field of a dipole close to a cortex surface using a parallel implementation of our
algorithm. We show the electric potential on the skin (left) and on the cortex (right).

Future work includes a better understanding of the accuracy
improvements and extensions of the method.

APPENDIX

We recall some basic identities between surface and volume
integrals involving vector fields, leading to the Representation
Theorem 1. Note that in this appendix we use an explicit
integral notation for didactic purposes, while in the body of
the article we have privileged the conciseness of the operator
notation (6).

A. Representation Theorems

Consider a simplified version of Problem (1): the Poisson
problem ∆u = f . It is well-known that the so-called Green
function (5) is its fundamental solution, i.e. −∆G = δ0 in R

3

in the distributional sense, where δ0 is the Dirac mass at the
origin. By translation invariance, we have

−∆rG(r − r′) = δ0(r − r′) = δr′ , (30)

where the notation ∆r signifies that partial derivatives are
taken with respect to the variable r, and δr′ is a Dirac mass
centered at r′.

There are many fundamental solutions to the Poisson prob-
lem, but the Green function (5) is the only one with radial

symmetry (a function of the radius r = ‖r‖) and vanishing at
infinity (r → ∞).

Given a bounded and compact open set Ω ⊆ R
3 with

a regular boundary ∂Ω which may not be connected, the
divergence theorem

∫

Ω
∇·g(r′) dr′ =

∫

∂Ω
g(r′)·ds(r′), where

ds(r′) = n′(r′)ds(r′), relates the integral over a volume
Ω with a surface integral over its boundary ∂Ω. For scalar
distributions u, v, substituting g = u∇v yields the first
Green identity

∫

∂Ω
u∇v · ds(r′) =

∫

Ω
∇u · ∇v + u∆v dr′.

Exchanging u, v and subtracting the resulting equations gives
the second12 Green identity [42]

∫

Ω

u∆v − v∆udr′ =

∫

∂Ω

(

u∇v − v∇u
)

· ds(r′)

=

∫

∂Ω

u∂n′v − v∂n′uds(r′) ,

where n is normal to ∂Ω, pointing outward (from Ω to its
complement Ωc ≡ R

3\Ω), and is denoted n′ when considered
at position r′. We now choose u to be a harmonic function
(∆u = 0) in Ω, and v(r) = −G(r−r′). Using (30) we obtain
the third Green identity [6] below, in which (∂nu)

− and u−

denote boundary values taken on the inner side of the boundary

12Sometimes called the third. The numbering of Green identities varies
among authors.
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Two-layer head model

Degrees of freedom Assembly time [s] Factorization time [s] Estimated accuracy (rel.)
vertices faces 1c 2c 3 1c 2c 3 1c 2c 3 1c 2c 3

200 196 200 200 396 47 47 10 0 0 0 0.152 0.153 0.132
400 792 400 400 796 201 194 50 0 0 4 0.109 0.106 0.092
600 1192 600 600 1196 461 656 155 1 1 10 0.090 0.088 0.078
800 1592 800 800 1596 833 951 426 1 2 24 0.080 0.081 0.072
1000 1992 1000 1000 1996 2014 1968 543 2 2 52 0.070 0.070 0.064
1200 2392 1200 1200 2396 2904 2839 1374 2 3 70 0.067 0.060 0.062
1400 2792 1400 1400 2796 3959 3582 1807 3 4 92 0.062 0.065 0.059
1600 3192 1600 1600 3196 4045 4081 3688 4 5 108 0.057 0.041 0.053
1800 3592 1800 1800 3596 8101 7915 4222 5 5 150 0.055 0.029 0.051
2000 3992 2000 3000 3996 9395 10462 4828 12 12 333 0.051 N/A 0.049

Three-layer head model

Degrees of freedom Assembly time [s] Factorization time [s] Estimated accuracy (rel.)
vertices faces 1c 2c 3 1c 2c 3 1c 2c 3 1c 2c 3

300 588 300 300 692 106 107 24 1 1 3 5.094 2.527 0.911
600 1188 600 600 1392 437 438 122 5 5 11 2.433 2.243 0.796
900 1788 900 900 2092 1015 1027 335 7 7 28 1.392 1.278 0.669

1200 2388 1200 1200 2792 1800 1835 578 10 9 53 1.178 0.712 0.600
1500 2988 1500 1500 3492 2853 2881 1153 15 16 91 1.907 1.579 0.513
1800 3588 1800 1800 4192 6385 4282 1727 17 17 136 0.555 0.285 0.368
2100 4188 2100 2100 4892 6191 7524 2615 26 29 188 0.282 0.258 0.260
2400 4788 2400 2400 5592 9647 11644 3694 35 33 262 0.153 0.227 0.188
2700 5388 2700 2700 6292 14416 14752 6842 48 49 1033 0.064 0.116 0.096
3000 5988 3000 3000 6992 13389 14618 8477 57 56 1346 N/A N/A N/A

TABLE II

The comparison of the single-layer (1c), double-layer (2c) and symmetric (3) methods applied on a set of progressively finer realistically shaped head

models with varying number of vertices and faces. The tables show the total number of unknowns, the assembly time for system matrices, the time needed

for their (LU) factorization and the estimation of the achieved relative accuracy (see text). In the two-layer model (top) we used the double-layer method as

a reference as all the methods converge close to a common solution. In the three-layer model (bottom) we compared each method with its own result on the

finest mesh because their results, even at the higher resolution of 1000 points per layer, were still too different. N/A (not applicable) indicates that this

solution is chosen as the ground-truth.

with respect to the normal field n

∫

∂Ω

G(r−r′) (∂n′u)−(r′)−∂n′G(r−r′) u−(r′) ds(r′) =











u(r) if r ∈ Ω

u−(r)/2 if r ∈ ∂Ω

0 otherwise .

(31)

This important result shows that a harmonic function u
inside a volume Ω is completely determined by its internal
boundary values and those of its normal derivative. To make
the notation more compact, we define

P
±

S,n(u) =

Z

S

G(r−r
′) (∂

n
′u)±(r′)−∂

n
′G(r−r

′)u±(r′) ds(r′)

and

χΩ u(r) =















u(r) if r ∈ Ω

lim
r
′→r,r′∈Ω

u(r′)/2 if r ∈ ∂Ω

0 if r ∈ Ωc .

Then (31) can be written as

P
−

∂Ω,n(u) = χΩ u (32)

Note that if r ∈ ∂Ω, lim
r
′→r,r′∈Ω

u(r′) = u−(r) with respect

to a normal field n on ∂Ω pointing outside Ω. This is the
orientation assumed on the left-hand sides of (31) and (32).
Considering a normal vector field n− = −n which now points

inside the domain Ω, then partial derivatives change signs, and
the third Green identity (31) becomes

−
∫

∂Ω

G(r−r′) (∂
n

′
−
u)+(r′)−∂

n
′
−
G(r−r′) u+(r′) ds(r′) =











u(r) if r ∈ Ω

u+(r)/2 if r ∈ ∂Ω

0 otherwise ,

the ′+′ superscript indicating that the values of u and its
normal derivative must this time be considered on the side
towards which the normal n− is pointing. Therefore, for an
inward-pointing normal field,

−P
+
∂Ω,n−

(u) = χΩ u .

Note that χΩ is intrinsic to Ω, in the sense that it is independent
of any normal orientation on ∂Ω.

Interestingly, the third Green identity (31) is also valid for
a hollow ball topology such as depicted in Fig. 2 as Ω = Ω2

with a boundary consisting of two non connected parts, S1

and S2.
The relation (32) supposes that the normal field n points

outside the domain Ω. This is not the case in Figure 2, where
the normal field on S1 (which we call n1) points inwards,
whereas the normal field on S2 (which we call n2) points
outwards. Decomposing ∂Ω = S1 ∪ S2, and using the above
considerations on the sign of the normal, one can write

χΩu = −P
+
S1,n1

(u) + P
−

S2,n2
(u) . (33)
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Ωc ∩ BR

BR

∂Ω

Ω

Fig. 9. Two-dimensional slice through a volume Ω enclosed within a growing
ball BR, yielding a bounded volume Ωc ∩BR with a hollow ball topology.

Let us now consider a bounded volume Ω with the topology
of a sphere. We take its connected unbounded complement
Ωc = R

3\Ω and derive the third Green formula for a function
u harmonic in Ωc and satisfying H . To do this, we consider
the (bounded) intersection of Ωc with a ball BR of radius R
surrounding Ω, as shown in Figure 9. The volume Ωc ∩ BR

has a hollow ball topology and the Green identities hold. As R
tends to infinity, the contribution on ∂BR becomes negligible
thanks to the fact that both G and u satisfy condition H .
This shows that the third Green identity (31) is also valid in
an unbounded space Ωc, for harmonic functions u satisfying
H . It can be written in the compact form:

χΩc u = −P
+
∂Ω,n(u) . (34)

Combining the third Green identities for Ω and Ωc yields the
following well-known classical representation theorem, see [6,
7] for a complete proof.

Theorem 2 (Representation Theorem for u) Let Ω ⊆ R
3 be

a bounded open set with a regular boundary ∂Ω and a connected
complement space. Let u : (Ω ∪ Ωc) → R be a function
harmonic (∆u = 0) in both Ω and Ωc, satisfying the H

condition, and let further p(r′)
def
= pn′(r′) = ∂n′u(r′), where n′

is the outward unit normal of ∂Ω at point r′. Then for r /∈ ∂Ω
the following representation holds:

u(r) =

∫

∂Ω

−∂n′G(r − r′)
[

u
]

∂Ω
(r′)+

G(r − r′)
[

p
]

∂Ω
(r′) ds(r′)

(35a)

and for r ∈ ∂Ω

u±(r) = ∓ [u]∂Ω

2
+

∫

∂Ω

−∂n′G(r − r′)
[

u
]

∂Ω
(r′)+

G(r − r′)
[

p
]

∂Ω
(r′) ds(r′) .

(35b)

The theorem shows that a function u harmonic in Ω∪Ωc and
satisfying H is completely determined by the jumps of [u]

and [∂nu] on the interface ∂Ω. Observe that u from (35a)
converges to (u+ + u−)/2 on ∂Ω, while the value of u
jumps when crossing the boundary. This is shown by the term

∓ [u]∂Ω
2 in (35b).

The single-layer potential (the second part of (35a)) is given
explicitly as

us(r) =

∫

∂Ω

G(r − r′)ξ(r′) ds(r′) (36)

while the double-layer potential (the first part of (35a)) is
written as

ud(r) =

∫

∂Ω

∂n′G(r − r′)µ(r′) ds(r′). (37)

The function ξ corresponds to a charge density distribution
on ∂Ω, while µ may be viewed as a dipole density. Both
potentials (36), (37) satisfy the Laplace equation ∆u = 0 in
Ω ∪ Ωc and also satisfy the condition H . Remarkably, with
arbitrary functions ξ, µ from C0(∂Ω), both (36) and (37) yield
a harmonic function in C2(Ω ∪ Ωc).

The single-layer potential is continuous with respect to r, in
particular when crossing the boundary ∂Ω. On the other hand
its normal derivative is discontinuous when crossing ∂Ω. As
proved in [7], the limit values on both sides are

p±
n

(r) = ∂nu
±(r)

= ∓ξ(r)
2

+

∫

∂Ω

∂nG(r − r′)ξ(r′) ds(r′) for r ∈ ∂Ω

The double-layer potential enjoys the opposite properties. It
has a discontinuity when crossing ∂Ω and the corresponding
limit values on both sides of ∂Ω are

u±(r) = ±µ(r)

2
+

∫

∂Ω

∂n′G(r−r′)µ(r′) ds(r′) for r ∈ ∂Ω

(38)
The normal derivative of a double-layer potential is continuous
when crossing ∂Ω. Taking the derivative of (37) in the
direction n at r, we write

p(r) = pn(r) = ∂nu(r) =

∫

∂Ω

∂2
n,n′G(r − r′)µ(r′) ds(r′) .

(39)
A subtle point here is that the kernel ∂2

n,n′G(r− r′) is not an
integrable function for r′ → r. We therefore need to treat p
as a distribution, defined through scalar products with suitable
test functions. This is unlike [p] which is continuous on ∂Ω.

Given these definitions, we can reinterpret (35a) as showing
that a function u harmonic in Ω∪Ωc is represented as the sum
of a single-layer potential [6, 7] corresponding to ξ = [p] and
a double-layer potential corresponding to µ = −[u].

The equations concerning p are summarized in Theorem 3
below, which extends Theorem 2 to the directional and normal
derivatives of u.

Theorem 3 (Representation Theorem for p) Let Ω ⊆ R
3 be

a bounded open set with a regular boundary ∂Ω. Let u : (Ω ∪
Ωc) → R be a function harmonic (∆u = 0) in both Ω and Ωc ,



16

satisfying condition H . Let also n (resp. n′) be the unit normal
to ∂Ω at point r (resp. r′) and m an arbitrary unit vector at r.
Then for r /∈ ∂Ω the following representation holds:

pm(r) =

∫

∂Ω

−∂2
m,n′G(r − r′)

[

u
]

∂Ω
(r′)+

∂mG(r − r′)
[

p
]

∂Ω
(r′) ds(r′)

(40a)

and for r ∈ ∂Ω

p±(r)
def
= p±

n
(r) = ∓ [p]∂Ω

2
+

∫

∂Ω

−∂2
n,n′G(r − r′)

[

u
]

∂Ω
(r′)+

∂nG(r − r′)
[

p
]

∂Ω
(r′) ds(r′) .

(40b)

Analogously to u, the derivative p = pn given by (40a)
for m = n converges to p = (p+ + p−)/2 on ∂Ω in the
distributional sense.

B. Multiple interfaces

Having in view the layered model depicted in Fig. 1, we
extend Theorem 2 to a nested domain topology. As we have
seen in Section III-G, it suffices to consider the case of three
nested domains as in Fig. 2.

Proposition 1 Let Ω1,Ω2,Ω3 be disjoint open sets such that
Ω1 ∪ Ω2 ∪ Ω3 = R

3, separated by regular boundaries ∂Ω1 ∩
∂Ω2 = S1, ∂Ω2 ∩ ∂Ω3 = S2, and ∂Ω1 ∩ ∂Ω3 = ∅. Let u :
(

Ω1 ∪Ω2 ∪Ω3

)

→ R be harmonic and satisfy H . Then (35a)
and (35b) hold with ∂Ω = S1 ∪ S2.

Proof: To prove this proposition, we use the third Green
identities (32) in Ω1 and (34) in Ω3, and the variant (33) in
Ω2. We assume that the normal vector fields n1 on S1 and n2

on S2 point globally outward (as in Fig. 2). We have

χΩ1
u = P

−

S1,n1
(u) ,

χΩ2
u = −P

+
S1,n1

(u) + P
−

S2,n2
(u) ,

χΩ3
u = −P

+
S2,n2

(u) .

Summing up the three contributions gives

χΩ1
u+ χΩ2

u+ χΩ3
u =

(

P
−

S1,n1
(u) − P

+
S1,n1

(u)
)

+
(

P
−

S2,n2
(u) − P

+
S2,n2

(u)
)

.

For r ∈ Ω1∪Ω2∪Ω3, χΩ1
u(r)+χΩ2

u(r)+χΩ3
u(r) = u(r),

and we obtain (35a). For r ∈ S1 ∪ S2, χΩ1
u(r) + χΩ2

u(r) +

χΩ3
u(r) =

u+(r) + u−(r)
2 . Since u+ = −1

2 [u]∂Ω +

u+ + u−
2 and u− = 1

2[u]∂Ω + u+ + u−
2 , we obtain (35b).

Theorem 3 also holds in the case of a nested volume
topology, but we do not provide the detailed proof here.

The single and double potentials can also easily be applied
in the case of our layered model from Fig.1. For the single-
layer potential, we write:

us(r) =

N
∑

i=1

∫

Si

G(r − r′)ξSi
(r′) ds(r′) (41)

where each ξSi
is defined on the corresponding surface Si. The

properties from the single interface case are trivially satisfied
thanks to additivity, namely [us]i = 0 and [∂nus]i = ξi. More
specifically,

p±
n

(r) = ∂nu
±
s (r)

= ∓ξSj
(r)

2
+

N
∑

i=1

∫

Si

∂nG(r − r′)ξSi
(r′) ds(r′) ,

for r ∈ Sj . Similarly, for the double-layer potential, we have

ud(r) =

N−1
∑

i=1

∫

Si

∂n′G(r − r′)µSi
(r′) ds(r′) , (42)

with [ud]i = −µSi
, [∂nud] = 0 and

u±d (r) = ±µSj
(r)

2
+

N
∑

i=1

∫

Si

∂n′G(r−r′)µSi
(r′) ds(r′) , (43)

for r ∈ Sj .

C. Uniqueness

The integral representation in terms of µ = −[u] and ξ = [p]
is unique, if u and p are considered as a pair [7]. In other
words, there is only one pair of (µ, ξ) generating a given set
of pairs (u−, p−), (u+, p+), or ([u], [p]). However, this is no
longer true if only p− is given (interior Neumann problem),
as any constant function can be added to u. Physically, this
means that the potential is only known up to a constant. To
get rid of this indetermination, we can for example choose to
impose

〈

u, 1
〉

= 0; other options are possible [33]. In the same
spirit, note that for harmonic u, Stokes’ theorem necessarily
imposes

〈

p, 1
〉

= 0 on any closed surface.

D. Weak regularity

We need to extend Theorems 2 and 3 to non-regular
surfaces13, such as for example a triangulated surface which is
not regular on the edges and at the vertices. We find that the
equations in Theorems 2 and 3 hold, provided that there are not
“too many” singular points (their set is of zero measure) and
that we only evaluate the integrals in (35b), (40b) at the regular
points. If needed, the values/limits on the surface can still
be calculated even at the singular points by a more complex
expression involving inner and outer spherical angles [10, 43].
We will avoid this complication here by concentrating on the
Galerkin method that gives better results and does not require
pointwise values.

In a similar vein, we can relax the continuity requirements
on µ = −[u], ξ = [p], in order to approximate them by some µ̃,
ξ̃. Only piecewise continuity is necessary for the convergence
of the integrals in Theorems 2 and 3 (again with a zero
measure set of discontinuity points) if we do not evaluate (35b)
and (40b) at the points of discontinuity.

13A surface is regular if it can be locally approximated by a linear function
everywhere.
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[13] M. S. Hämäläinen and J. Sarvas, “Realistic conductivity geometry model
of the human head for interpretation of neuromagnetic data,” IEEE
Trans. Biomed. Eng., vol. 36, no. 2, pp. 165–171, Feb. 1989.

[14] S. Tissari and J. Rahola, “A precorrected-FFT method to accelerate
the solution of the forward problem in magnetoencephalography,” Phys.
Med. Biol., no. 48, pp. 523–541, 2003.

[15] Z. Zhang and D. L. Jewett, “Insidious errors in dipole localization pa-
rameters at a single time-point due to model misspecification of number
of shells,” Electroencephalography and clinical Neurophysiology, no. 88,
pp. 1–11, 1993.

[16] R. Leahy, J. Mosher, M. Spencer, M. Huang, and J. Lewine, “A study
of dipole localization accuracy for MEG and EEG using a human
skull phantom,” Los Alamos National Laboratory, Los Alamos Technical
Report LA-UR-98-1442, Mar. 1998, revision of LA-UR-97-4804.

[17] D. B. Geselowitz, “On bioelectric potentials in an homogeneous volume
conductor,” Biophysics Journal, vol. 7, pp. 1–11, 1967.

[18] F. Babiloni, C. Del Gratta, F. Carducci, C. Babiloni, G. M. Roberti,
V. Pizzella, P. M. Rossini, G. L. Romani, and A. Urbano, “Combined
high resolution EEG and MEG data for linear inverse estimate of human
event-related cortical activity,” in Proceedings of the 20th annual int.
conf. of the IEEE Eng. Med. Biol. Society, no. 4, 1998, pp. 2151–2154.

[19] J. C. de Munck, “A linear discretization of the volume conductor
boundary integral equation using analytically integrated elements,” IEEE
Trans. Biomed. Eng., vol. 39, no. 9, pp. 986–990, Sept. 1992.

[20] J. C. Mosher, R. B. Leahy, and P. S. Lewis, “EEG and MEG: Forward
solutions for inverse methods,” IEEE Transactions on Biomedical Engi-
neering, vol. 46, no. 3, pp. 245–259, Mar. 1999.

[21] J. C. Mosher, R. M. Leahy, and P. S. Lewis, “Matrix kernels for the
forward problem in EEG and MEG,” Los Alamos, Tech. Rep. LA-UR-
97-3812, 1997.

[22] N. G. Gencer and I. O. Tanzer, “Forward problem solution of electro-
magnetic source imaging using a new BEM formulation with high-order
elements,” Phys. Med. Biol., vol. 44, no. 9, pp. 2275–2287, 1999.

[23] L. J. Gray and G. H. Paulino, “Symmetric Galerkin boundary integral
formulation for interface and multi-zone problems,” Internat. J. Numer.
Methods Eng., vol. 40, no. 16, pp. 3085–3103, 1997.

[24] J. B. Layton, S. Ganguly, C. Balakrishna, and J. H. Kane, “A symmetric
Galerkin multi-zone boundary element formulation,” Internat. J. Numer.
Methods Eng., vol. 40, no. 16, pp. 2913–2931, 1997.

[25] S. H. Christiansen, “R ésolution des équations intégrales pour la diffrac-
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