ract—In this paper, the computational and practical aspects of
ic ﬁuy-shaped multilayer model for the conductivity geometry
umﬁn head are discussed. A novel way to handle the numerical
caused by the presence of the poorly conducting skull is pre-
ing our method, both the potential on the surface of the head
iagnetic field outside the head can be computed accurately.
ure was tested with the multilayer sphere model, for which
a].féxpressions are available. The method is then applied to a
ally-shaped head model, and it is numerically shown that for
ion of B, produced by cerebral current sources, it is suf-
onsider a brain-shaped homogeneous conductor only since
ary currents on the outer interfaces give only a negligible
n to the magnetic field outside the head. Comparisons with
' model are also included to pinpoint areas where the homo-
nductor model provides essential improvements in the cal-
f the magnetic field outside the head.

I. INTRODUCTION

last few years, the magnetic fields arising from
cal currents in the human brain have been subject
sing interest [1], [2]. The proven ability of the
gnetic measurements to reveal new aspects of the
iction has caused a drive for better instruments
nore effective means of analyzing the data.
question in the analysis is the inverse problem:
‘'we say about the underlying electrical currents,
d with neural activity, on the basis of neuro-
‘measurements plus the extra knowledge one has
‘brain? Up to now, the study of the inverse prob-
esorted to crude simplifications. Especially, the
5"been modeled with a sphere approximating the
nner curvature of the skull. Considering the com-
pe of this surface, it is evident that the assumption
ricity is poor when temporal and frontal areas are
r when measurements cover a large area on the
or this reason, new efforts are in progress to ex-
¢ limitations of the sphere model and to find prac-
ys to refine the model where necessary [3], [4].
tarting point of this paper is the usual integral
0 method of calculating the magnetic field pro-
by electrical currents in an arbitrarily-shaped
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Realistic Conductivity Geometry Model of the

piecewise homogeneous conductor [5], [6]. However, in
the case of the brain, the poorly conducting skull causes
difficulties in obtaining accurate results numerically with-
out excessive amount of computation time. In this paper,
a new and numerically effective solution, arising from the
physical constraints involved, is presented. It is also
shown that the algorithm is accurate and computationally
practicable. Since our calculation involves the potential
on the surface of the head, a numerical solution for the
EEG forward problem is automatically included.

We have previously suggested [7] that, for the compu-‘

tation of neuromagnetic fields arising from cortical
sources, it is sufficient to replace the skull by a perfect
insulator and, therefore, to model the head as a bounded
brain-shaped homogeneous conductor. In this paper, we
directly verify this proposal by comparing the fields cal-
culated using the homogeneous and multilayer models.
Since the former model is applicable even to on-line anal-
ysis, this result provides a valuable tool to handle those
cases in which the sphere model is inadequate.

II. THE INTEGRAL EQUATIONS

A reasonable approximation for the conductivity ge-
ometry of the human head is a piecewise homogeneous
conductor. The interfaces between the regions of different
conductivity will be denoted by Sy, - - - , S,, with S, cir-
cumventing all the remaining surfaces, i.e., S, is the sur-
face of the scalp. It can be shown [5], [8] that the electric
potential V at 7 € S; obeys the integral equation

(o7 + " )V(7) =2V(7) + ﬁ é (o7 =)

i@y

where V,( 7 ) is the potential caused by the current source
in an infinite homogeneous medium with ¢ = 1. The con-
ductivities inside and outside S; are denoted by g; anc
of, respectively. The solid angle subtended at 7 by a sur-
face element dS at 7' is denoted by dQ;( 7') and it i
given by

s b e ~
dQF(r)=|?’—_?—|5'de(r). (2

0018-9294/89/0200-0165$01.00 © 1989 IEEE
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For the numerical solution of (1), the surfaces S; are
divided into suitable triangles A}, -+ - , Ay, resulting in a
set of linear equations [9]:

(3)

Vi = .Zl B,:]VJ +gi; i= 1’ ftt
o _

, m

where V' and gi are column vectors and BY are miatrices
whose elements are defined by

Vk:‘rS_V(?)dSi, (@)
Pk oy
gl nhg uh S i) V > -
. phor + o Jal o( 7)dS;, and (5)
D L N S 0,(7) 5 ”
. UIL;: 2w Al 1 is

respectively. Here iy is the area of the kth triangle Al on
the surface S; and Q) ( 7) is the solid angle subtended by
A at 7, For k = [ and i = j we must set Q,(7) = 0.
The number of triangles on each surface S is denoted by
n;and Lj-; n; = N. The multipliers T';; are given by

- +
O'j = O'j
Iy = m. (7)

In practice, the elements B, are computed by replacing
Qu( ) on Ay by its value at the centroid ¢} of the tri-
angle. Using this approximation we get By =
T Qi ( ¢})/2w. The solid angle subtended by a triangle
at a point can be calculated from the analytical formula
given by Barnard et al. [10]. Even with this simplifica-
tion, the calculation of the matrix elements Bj, is the most
time consuming part of the numerical solution for the po-
tentials. However, the solid angles depend only on the
conductor geometry, allowing Q4 ( ¢}) to be precalcu-
lated if the geometry is kept fixed and only the conductiv-
ities and the source structure are changed.

Since the potential is defined only up to an additive con-
stant, (3) has no unique solution. This ambiguity can be
removed by deflation [10], which means that BY must be
replaced by

T L

C'=B N %€ (8)

where ¢; is a vector with all its n; components equal to one
and T denotes the transpose. The deflated equations

vi= 2 Civi + g,
j=1

(9)

e, m

possess a unique solution which is also a solution for the

original (3). Equation (9) is most conveniently solved by’

iterative algorithms; we have employed the Gauss-Seidel
iteration. The speed of convergence can be increased by
applying a multiple deflation [9]. In our case the rate of
convergence is improved at best by a factor of two by this
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method. For the subsequent treatment it is sufficienty
consider the single deflation only.

Once the solution for the potential is known, the mgy
netic field at a given point can be obtained from the G|
selowitz’ formula [6]:

B(7)=Bo(F) + 2 Z (g — )

-LVﬁq————

which gives the magnetic field for all 7 not on any
surfaces ;. Here By( 7) is the magnetic field produ
by the primary current sources in an infinite homogenei
medium and the second term is the contribution of
volume currents which is seen to be equal to the magn
field of a surface current distribution on S;s, often ref§'
to as the secondary currents. Having the potential val
at the centroids of the triangles A, we approxima
integral in the second term of (10) by

F—F =
v(r X dS;
& H?-?P :
gjg FaB =
= Pl -

In the case of the head it is sufficient to consider t
layers: the brain, the skull, and the scalp. Thus, in
following m = 3, and Sy, S, and S, are the scalp
skull-scalp, and brain-skull interfaces, respectively:
scalp and the brain have almost equal conductivities W
the conductivity of the skull is about a hundred ¢
smaller. The ratio of the conductivity of the skull t
conductivity of the brain will be denoted by 8 and it
be assumed that Gpmin = Oscalp = 0Oo- From these asst
tions it follows that only the source terms g' will de]
on g, and we have g’ o 1/go and, consequently, |
1/ad,. It is also readily seen that B(7) in (10) is'
pendent of ag. !

III. TuE MobDIFIED EQUATIONS

It has been previously shown [4] that an accurat
merical solution of (1) via (3), or its deflated versio!
difficult to obtain if 8 is small, say B < 0.1. The re:
for this difficulty are now explained and a method ¢
move them is presented. ‘

As B tends to zero, the solution of the integral equa
corresponding to (3) approaches the solution of the
tion for the bounded homogeneous conductor on S
vanishes on the remaining surfaces. The behavior O
8 — 0 is not, however, accurately reproduced by th
cretized equations. If 8 << 1, V' and V2 are much sm&
in magnitude than V3. Accordingly, in the third equd

of (9)
%J C3ij}

j=1

V3=C33V3 +g3+{



he terms in braces involving V' and ¥ are small and the

.uracy of V° is not greatly affected by the small \l/alue
of B. HOWEVer, the situation is quite different for V' and
2. Since V? is almost independent of ¥' and V2, we may
onsider it as a part of the source term

2
iz X CW +{g +C*3}, i=1,2.
j=1
numerical difficulty is that the effective source term
¢*V? is composed of two comparatively large parts
h should cancel as 8 — 0, as (19) of the Appendix
s. Since V? is calculated numerically, we can expect
gh relative error in the sum g' + C**V* for small g.
However, the numerical problem is removed if the so-

(14)

¢ Wo = W§ = 0and W} is the potential on the surface
homogeneous conductor bounded by S;. It turns out,
he Appendix, that the discretized equations for the
own functions W' are

W= Z‘ Ciw! + of 1! / (15)
iz

e h' is a new source term defined by »

h' =g'/o3, W =g*/o3,

_ 2
h3=g3/o_3 ol

— W3,
(o5 +07) °

(16)
studying the modified equations we found that the
tials V', V%, and ¥ can now be computed accurately
values of 8. Note that (15) is not exactly equivalent

original discretized (9) since .the physical con-
ts described by

2V(7F) 1 S o -
i LI SPNEIY W R
= +27l' Sg 0(7‘) r(r)
I W(F)  ifTes (1;7)
0 if7es, s,

‘used to derive (15), see the Appendixj From the
putational point of view the addition of“these con-
avi'.nts means that an extra matrix inversion to find W3 is
tred. This is not, however, a serious drawback since
Xtra time involved is short compared with the time
h would be needed if the number of triangles on the
taces §; is increased in order to reach a reasonable ac-
Cy with (9). Meijs et al. [4] have previously estimated
in order to obtain 5 percent accuracy for the solution
), the number of triangles must be of the order of
- The time complexity of the Gauss-Seidel algorithm
at least O(N?) since each iteration loop requires N
Multiplications. So for the case of 10* triangles this num-
! Will be of the order of 10°. On the other hand, it will
¢ Shown that with (15) one-percent accuracy on the outer

(13)
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layers can be reached with only 300 triangles/surface.
With this number of triangles the time complexity of our
algorithm is O((3 - 300)* + 300%) which is about two
orders of magnitude smaller than the time required for the
direct solution with (9).

IV. RESULTs

A. Spherically Symmetric Conductor

The accuracy of the multilayer model was tested with a
spherically symmetric conductor. The numerical solution
of (1), with m = 3, was compared with the values given
by analytical expressions available for the layered sphere
model [11].

The radii of the spherical interfaces were chosen to be
90, 95, and 100 mm. The two outer spheres were divided
into 280 triangles, and 280 or 360 triangles were used on
the innermost sphere. The current source was a dipole (Q
= 10 nA) parallel to the xy plane on the z axis. The depth
of the dipole was varied between 20 and 40 mm from the
scalp. Since the source was near the surface, the potential
changes more rapidly as a function of location near the
dipole than on the opposite side of the sphere. Therefore,
the triangles were -distributed unevenly with 2 /3 of the
triangles on the hemisphere containing the dipole.

To demonstrate the inaccuracy of (9) and the improve-
ment provided by the modification described in (14)-(16),
we compared the two numerical solutions with the ana-
lytical calculation when 8 was gradually decreased from
0.5 to 0.01. It was observed that both the direct and mod-
ified numerical solution methods gave correctly shaped
potential patterns. However, the peak values given by the
direct method were too large on the outer surfaces (the
error being 10 percent at 8 = 0.1 and 35-40 percent at 8
= 0.01). On the innermost surface the relative error at
the potential peak was 5-6 percent for 280 triangles on
the surface and 2-4 percent for 360 triangles. The error
on the innermost surface did not show significant depen-
dence on 3. The values quoted here are for a dipole at 30
mm depth from the surface of the outermost sphere.

Applying the modified method, the relative error on the
outer surfaces dropped below 7 percent at 8 = 0.1 and
below 4 percent at 3 = 0.01. A summary of the relative
errors for the modified method at the potential peaks for
various source depths and conductivities is given in Table
L. '

After having shown that the electric potential can be
accurately computed, we proceeded to integrate the mag-
netic field according to (10) and (11). Again, analytical
expressions for all components of B are available [12],
[13]. Comparison of the numerically calculated field val-
ues with those given by the exact analytical expressions
showed that the shape of the field pattern is almost cor-
rect. The fields at the extrema differed more from the cor-
rect values for the tangential field components (By, B,)
than for the radial component (B,). This is due to the fact
that B, receives no contribution from the (radial) second-
ary currents and thus the errors in potential values con-
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TABLE 1
COMPARISON OF THE NUMERICALLY CALCULATED POTENTIALS WITH THE
ANALYTICAL VALUES FOR A SPHERICAL CONDUCTOR. THE RELATIVE
ERRORS AT THE POTENTIAL MAXIMA ON SURFACES S, S,, AND S5 ARE
GIVEN IN COLUMNS LABELED WITH r,, ry, AND r3, RESPECTIVELY

Depth/mm | g | r/% | 2/% | 7a/%

20 0.1 G4 6.7 -2.0

005] 7.5 7.5 -2.5

0.01] 29 35 | -2

30 0.1 | -25 | -1.8 2.5
0.05| -1.5 | -1.0 2.5
0.01] 1.8 2.8 2.3
40 0.1 | -0.6 | -0.2 | 0.1
0.05( 0.2 1.3 0.2
0.01 | 0.2 -04 | -1.1

tribute only through the small deviation of the triangle
normals from the radial direction. Since secondary cur-
rents contribute to By and By, these components will be
affected by both the geometrical inaccuracies and by the
errors in potential values. The results summarized in Ta-
ble II show that the magnetic field is computed with better
than 7 percent accuracy for all source depths and 8 values
shown.

B. Construction of the Realistically-Shaped Model

An essential goal of this work is to apply the methods
described in the two previous sections to a conductor
which closely approximates the actual shape of the head.
The surfaces S;, S;, and S5 should take the form of the
scalp-air, the skull-scalp, and the skull-brain interfaces,
respectively. Here we have to tackle two problems which
are not present in the analytically solvable sphere model:
1) the shape of the surfaces is not readily available and 2)
the accuracy of the results is more difficult to verify.

We approached the first problem by measuring the shape
of the skull’s inner surface from an anatomically accurate
model (manufactured by Somso, FRG). The surface was
manually divided into triangles whose area was approxi-
mately 2 cm®. Smaller triangles were used on the bottom
of the skull where the surface is more convoluted. The
distances to the vertices of the triangles were measured
from three fixed points with a pair of compasses. From
these measurements the rectangular coordinates of the

vertices were computed. The horizontal plane about 5 cm.

above the eyes where the skull had been cut into two
halves was used as the xy plane. The origin of the coor-
dinate system was the approximate center of gravity of
this cross section with the y axis in the sagittal plane. The
resulting net of 406 triangles is shown in perspective view
in Fig. 1.

We approximated the shapes of S, and S, from the shape
of S; using a 5 mm thickness for the skull and the scalp.
This is justified since the potentials on S, and S, are much
smaller than those on S; and yield only minor contribu-
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TABLE 1I 3

COMPARISON OF THE NUMERICALLY CALCULATED MAGNETIC FieLp w,
THE ANALYTICAL VALUES FOR A SPHERICAL CONDUCTOR. THE RELAR,
ERRORS AT THE PEAKS OF THE THREE-FIELD COMPONENTS GIVEN Ty
COLUMNS. LABELED r (B,), r (B;), AND r (B,), RESPECTIVELY

Depth/mm 1] r(B) )% | r(Be)/% r(B4)%

20 0.1 2.0 1.8 -0.9
0.05 1.9 1.3 0.03
0.01 1.6 1,0 1.3

30 0.1 0.9 6.1 4.9
0.05 0.8 5.9 1.8
0.01 0.6 5.9 5.0

40 0.1 0.02 6.5 5.9
0.05 -0.03 5.9 5.7
0.01 -0.05 5.3 5.7

A
{

B

Fig. 1. A perspective view of the triangle net on the inner surfac
skull (S3). The encircled capital letters indicate the location of t
tal lobe (A), the temporal lobes (B), and the occipital lobe (;
spectively. Notice the irregular shape of the bottom of the skul
frontal areas.

tions to the magnetic field which is in practice mea
at least 15 mm above the head.
The same information, here found by studying a p
model, could also have been obtained from high q
CT or NMR scans. However, since the results show
were not used for interpretation of measurements
actual subject, the use of the plastic model was ct
nient. ,
The accuracy of the electric potential and magne
calculations cannot be easily verified in the cas
arbitrarily shaped conductor. An obvious way to p
would be to increase the density of the triangles grad
and show that the results approach some limiting
Then an appropriate number of triangles could be ch
to reach a given accuracy. This method needs, ho
a lot of computing time and one can, indeed, make
sonable estimates of accuracy without having to rep¢
calculations with a very large number of triangles. A
per limit for the discretization error when the elect
tential is computed is Kp” ~'/3 [14] where K is some.
stant, p is the maximum of the diameters of the tria
Af,and 0 < vy =< 1 is a constant depending on th
vature of ;. Since the sphere model dimensions were:
sen close to those of the head, we expect that even f0
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i sﬁaped conductor the magnetic field is obtained with
oui 5 percent accuracy.

ébrr1parisons Between Various Models

this section the multilayer head model is compared
impler models: the homogeneous model and the
re model. The homogeneous model sets 8 = 0, leav-
nly (17) to be solved while the sphere model assumes
the conductor is spherically symmetric with the cen-
hosen to give a good fit between a sphere at the origin
he skull’s inner surface above the source. In practice,
rigin was determined by drawing two perpendicular
sections of the triangulation representing the inner
ace of the skull and by manually fitting circles to these
£ tions. The average location of these two circle
as then used as the center of symmetry for the
odel.
1 of four different areas for the source location
hosen (Fig. 2). Qualitative differences of the skull’s
tween these regions can be summarized as fol-

ith two §

occipital area. Here the shape of the head is
pherical and no significant differences should be
unless the sources are in deep locations.

he posterotemporal area. The assumption of spher-
lightly violated since the radius of curvature is
on-the z = 0 cross section than in the perpendicular
A compromize must be made between these two
stinct values.

he frontotemporal area. The bottom of the skull
omplicated nonspherical shape in front of the tem-
obe. It is difficult to find any sphere which even
 approximates, the real shape.

he frontal area. The upper part of the skull is
pherical while the bottom of the skull is essen-
. Again, fitting a sphere to this shape is ambig-

ch area (see Fig. 2) at least five different source
were studied. The 10 nA dipoles were perpendic-
the normal of the brain surface and parallel to the
- As shown, two source levels were chosen in the
area in order to see the effects of the proximity of
bottom of the skull. The depth d of the sources,
ed from the surface of the brain, ranged between
60 mm.

hree components of the magnetic field were com-
r each source on spherical surfaces at 15 mm dis-
from the scalp using all the three conductor model
dates: the multilayer model, the homogeneous
€1, and the sphere model. Usually 8 = 0.01 for the
tilayer model, but some tests were made with 8 =
-1, and 0.05. The three models agreed for all sources
t0 the brain surface (d < 20 mm).

‘ ,"th_‘§ occipital area the results are still quite similar up
0 mm depth. For deeper sources the homogeneous
and the multilayer model agree but the distance be-
-}.the extrema of B, is smaller than the sphere model
Predict. The B, and B, patterns are also of similar
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Occipital

Frontotempdrul

\ Eé

Frontal

Fig. 2. Cross sections of the brain showing the locations of the test di-
poles. Left: cross section z = 0. The viewing direction is indicated by
the arrows. Right: cross sections parallel to the z axis through the lines
drawn in the left column. )

shape but the sphere model gives from 10 to 30 percent
too small amplitudes when the source depth was larger
than 20 mm. For temporal sources, the distance between
the B, extrema in the sphere model was about 10 percent
too large at d = 40 mm and 20 percent too large at d =
60 mm. It must be pointed out, however, that the ampli-
tude of B, produced by a 60 mm deep 10 nA dipole is
about 10 ft, which is quite small compared to the corre-
sponding value of 330 ft given by a 10 mm deep dipole.
Clear differences between the conductor models were
found in the frontotemporal and frontal regions where d
> 20 mm, and with sources in the lower position close
to the irregularly-shaped bottom of the skull. In addition
to changes in field amplitudes and distances between ex-
trema, distortions of the shape of the field patterns were
found. As an illustrative example of the choice of the con-
ductor model, a comparison for a 25 mm deep frontotem-
poral dipole (see Fig. 2) is shown in Figs. 3-5. It is seen

“that, although the shape of the field pattern is distorted

when the sphere model is replaced by one of the realisti-
cally shaped models, the homogeneous model still agrees
with the multilayer model indicating that-the former is
capable of predicting accurately all components of the
magnetic field.
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Fig. 3. The radial component of the magnetic field (B,), produced by a
25 mm deep dipole in the frontotemporal area (marked with an asterisk
in Fig. 2) at 15 mm distance from the scalp. Left: The multilayer model.
Middle: The homogeneous model. Right: The sphere model. Difference

betweca the Contons toe s e C Q.@
A0

Fig. 4. As Fig. 3, but for the B, component. Difference between the con-
tour line is 5 ft.

\

{ / l |

Fig. 5. As Fig. 3, but for the B, component. Difference between the con-
tour lines is 10 ft.

V. CoNCLUSIONS

The present work introduces a method to avoid the nu-
merical inaccuracies found in applying the discretized in-
tegral equation method for computation of the electric po-
tentials and the magnetic fields produced by cerebral
current sources. The method was tested with a spherically
symmetric conductor. Its application to a realistic head-
shaped conductor showed that the sphere model is not ac-
curate enough for computing the magnetic fields of deep
Sources or sources near the bottom of the skull in fronto-
temporal and frontal areas. However, even in these cases
the agreement of the homogeneous conductor model and
the multilayer model is good. This suggests that, for ac-
curate computation of magnetic fields produced by sources
in the frontal and frontotemporal areas, the brain shaped
homogeneous conductor model should be applied. For the
study of other cortical areas the use of the sphere model,
when correctly applied, is sufficient.

APPENDIX

This Appendix describes a method to remove the nu-
merical inaccuracy caused by the low conductivity of the
skull, in the solution of the discretized integral (9).

Let Wy( 7) be a solution of the integral equation for
the homogeneous conductor G (conductivity ¢ = o,,)
bounded by §,,: ¥,

Wo(7) , 1
O 2

Fes,.

Wil 7) = |, w7y aos (7,

(18)
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If 7 ¢ G we can take Wy( 7) = 0. With help o
Green’s second indentity, it is then easy to show tha
2V0(_ 7) n 1

O 2T

S Wo(7') dQ:(F') =0, if 7 go
S”l et

Next, we decompose V(7) as V(7) = W(?
Wo( 7). That is, V( 7) is the solution for the homg
neous conductor plus a correction term W( 7). Inser
this decomposition and (18) and (19) into (1) we obt

(o + N IW(F) = X(7) + 5= 3 (o 6

. Ss W(F')da; (7) J

which is identical to (1), except for the source
om X( 7), which is given by

W(7) /o5 — 2Wy(7) /

ifFes,
v

2Vo(7) /0y
if?ESI, mamE ’Sm—l'

X(7) =

Since (1) and (20) are ase identical, except fo
source term, we readily obtain the deflated discre
sion of (20):

W= 2 C'W + ¢} h:
i=1
Here, the kth element of W' is an average of W( 7
the kth triangle on S;:
. 1 .

W;c'_'_ig»W(r)dSi

Hi Ja;
and /4’ is the modified source vector on S;, related to
original source vector g' by '

K =g/, L, =+ e~ 1,
2

N m
(0, + o)

h" = g%, — 0-

Note that, to be able to compute h™, it is necess )
know W which is the solution of the discretized boun
homogeneous conductor (18):

we = g° + ByWy.

The source term g° and the matrix B, are related t0
and B™ in the multilayer model by

g’ = (o + a})g"/ o
BO = Bmm/Pmm'

Before solving this equation we must, again, apply def
tion: replace By by Cy = By — e, el /n,,.
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In the three-layer head model (m = 3), which has a

orly conducting layer between two equally good con-

2 tors, We notice immediately that when the conductiv-

('jucof t};e skull ¢ = o, — 0, the solution of (22) must

IF { to zero since the source term vanishes. Note also that

‘ rt;‘; qumerical inaccuracy, inherent to (9) for small 3, has

‘teen removed and (22) yields the potentials numerically

pout as effectively as the equation for the bounded ho-
 mogeneous conductor.
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