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equate short term stability, we have observed long term instability
during previous chronic studies. A blood pressure simulator was

designed and calibrated against aortic pressure (for systolic LV

pressure estimate) and left atrial pressure (for end-diastolic LV
pressure estimate). Recalibration of the pressure simulator was per-
formed once a week. Calibration of the dimension channels (Sonol
and 2) was performed by a dimension-vs-demodulator output re-
lationship that was obtained for each channel.

Small size and low weight are important design criteria since
miniswine carry the biotelemetry device in a pouch which is se-
cured to their back. The entire biotelemetry system, including 6
AA battcries, is enclosed ina 4 X 6 X 12 cm plastic container,
and weighs approximately 200 g. We observed that the animals
quickly adapted to the backpack containing the biotelemetry sys-
tem and that it did not cause any noticeable discomfort.

To summarize, we have developed a biotelemetry system that
has proven useful in chronically recording regional left-ventricular
wall thickness dimensions and left ventricular blood pressure from
unrestrained conscious miniswine. Our design features a high-volt-
age de-de converter for improved ultrasonic signal strength, a time-
to-voltage converter that is highly immune to synchronization fre-
quency variations, and low-power consumption. Moreover, the
small size and low weight of the system enhances its suitability for
application using unrestrained conscious animals. Using surface
mounted components the biotelemetry system could be miniatur-
ized further, thus becoming suitable for application using smaller
animals such as rabbits and rats.
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A Linear Discretization of the Volume Conductor
Boundary Integral Equation Using Analytically
Integrated Elements

J. C. de Munck

Abstract—A method is presented to compute the potential distribu-
tion on the surface of a h isolated ductor of arbitrary
shape. The method is based on an approximation of a boundary inte-
gral equation as a set linear algebraic equations. The potential is de-
scribed as a piecewise linear or quadratic function. The matrix ele-
ments of the discretized equation are expressed as analytical formulas.

I. INTRODUCTION

For analysis of electrophysiologic data and for simulation studies
it is required to compute the potential distribution on the surface
of an isolated conductor of arbitrary shape. An example is the com-
putation of the potential caused by a current dipole embedded in a
head shaped conductor, simulating the spatial distribution of the
electroencephalogram [1]-[3], [8], [9]. Another biophysical ex-
ample is the potential distribution at the torso, generated by cardiac
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activity [4]. [5]. Similar computational problems arise in electrical
and mechanical engineering. If the medium is isotropic and con-
sists of compartments having different physical properties, the
boundary element method (BEM) is often appropriate to compute
the fields. Although the different applications of the BEM have
many theoretical aspects in common (modeling the surfaces, for-
mulations in terms of integral equations, computing the matrix ele-
ments of the discretized system [6]), there are also important dif-
ferences in the practical implementations (boundary conditions,
source term, physical parameters), giving rise to a rapidly growing
field of applied mathematical research. It seems. however, that the
application of the BEM in biophysics has been developed in a
somewhat isolated way.

In this paper we consider the computation of the potential ¢
caused by a current source inside a conductor with a constant and
isotropic conductivity and outer surface §. Within biophysics the
corresponding boundary integral equation has been solved through
a description of the surface in terms of flat triangles on which the
potential is assumed to be constant. This leads to a linear system
of equations, of which the matrix elements represent the solid an-
gles of the triangles. The matrix elements can therefore be com-
puted with a simple analytical formula [10]. It will be shown that
more general choices can be made to discretize the boundary in-
tegral equation, without destroying the analytical computation of
the matrix elements.

The potential {/(X) is given by a solution of the following bound-
ary integral equation:

;e 1

$xX) . 1 o
9 y(3@) = 207 - = <§><§> YEW —— -
™ 27 [ X" = X

) ds’.

$h30x)
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Here, ™(X) is the potential generated in a medium of infinite ex-
tent and Q(S; ¥) is the solid angle of the surface S. viewed from
the point X. If X is at a regular point of S the solid angle equals
27. The symbol S\ 3(X) denotes that the integral is taken over the
surface S within which an environment of X is excluded, and that
subsequently the limit for £(X) — {¥} is taken. When it is taken
into account that the conductor consists of different compartments
having different conductivities. (1) has to be modified accordingly
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Here y*(X) is the potential in an infinite medium with unit con-
ductivity, ¢; and ¢;" are the conductivities just inside and outside
the interface S; and @~ and % are the solid angles of the surface
S viewed from inside and outside S, respectively (thus @~ + Q*
= 47). However, in the present paper we shall restrict ourselves
to (1) because the generalization to (2) is rather straight forward.

Equation (1) can be solved approximately by choosing a set of
functions {h,(¥)}¥_, and a set of discretization points {¥,}N_,
such that

h(X,) = 8, (3)

The unknown potential (%) is expanded in terms of /,(X):
N
YE) = Xk (). @

With these definitions (1) is approximately equivalent to the fol-
lowing set of linear equations with N unknowns Y,

N
2 B, = 207(X,) (5)

n=1

where the matrix elements B,,, are given by
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The simplest choice for the functions /,(X) is obtained from a trian-
gularization of the surface S and taking h,(X) equal to 1 on the nth
triangle and zero elsewhere. The discretization points X, are given
by the centers of the triangles. In this approach the potential is
described as piecewise constant function and therefore many tri-
angles are required to represent the potential accurately. Here we
propose to interpolate the potential linearly and demonstrate how
the corresponding matrix elements can be calculated analytically.

1I. CALCULATION OF THE MATRIX ELEMENTS FOR THE LINEAR
INTERPOLATION APPROACH

In the linear interpolation approach the surface S is also subdi-
vided in small triangles, but contrary to the constant potential ap-
proach, the discretization points are given by the vertices of the
grid. The interpolation functions are given by

det (X, X X =

h(i) = GRS ifxeay,
det (X1, X). X)) )
0 otherwise

where ¥, ¥,. and ¥, are the corner points of the triangle A,. Ob-
viously, h,(¥) is a piecewise linear function of X and it satisfies
condition (3).

To compute the matrix elements the integration area will be par-
titioned into triangles adjacent to X,. On each triangle, the normal
7 is independent of ¥. Furthermore, the diagonal elements will be
treated separately, so that we may assume that n # m. It is found
that

B, — “is det (¥, — X X = Xpn X = %)
27\ akin Agin
hy(X")
: ————ds’
) s ®
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where the summation is over all triangles adjacent to X, and where
Ay, is the area of triangle A,y,. Note that in the evaluation of (8)
the order of ¥X,, X,, and X, has to be such that the permutation
X, = ¥, = X, = X\ corresponds by the right-hand rule to the out-
ward normal of the surface.

We will next consider the integral over each triangle in (8). For
convenience we assume that the triangle is given by the corner
points ¥,, ¥,, and ¥; and the view point X, will be shifted to the
origin. In the constant potential approach the off-diagonal matrix
elements are given by Q/(27). with
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d
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where d = det (¥, ¥5. ¥3) = ¥+ (¥, X Vy).
In the linear potential approach, the off-diagonal matrix elements
consist of the following integrals:
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In (11) the triangular points ¥, are defined such that ¥, = ¥, and
¥o = ¥3:. To find an analytical cxpression for (10) we will first
consider
Py 1 —
nggv",ﬂ‘de’. (12)
X
A

Here. € can be interpreted as the magnetic field generated at the
origin, caused by a constant distribution of current dipoles on tri-
angle A,;. Equation (12) will be evaluated in two different ways.
One way is to apply Stokes’ theorem, and the other way is to apply
the V’-operator. Both options yield a lincar combination of ¥,, ¥,
and ¥5 of which the coefficients depend on @, ©,, and Q+. By com-
paring the coeflicients of both evaluations, a system of three linear
equations is obtained with the integrals as unknowns.
The first way of evaluating (12) yields:
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The symbol 4! can be interpreted as the potential at the origin.
caused by a homogeneous distribution of charge on the line seg-
ment from ¥, t0 ¥, .

Since for any X we have

3
¥=d" E] (Zi - DV

(15)
the second way of evaluating (12) yields
8= g X (@F) + ¥ + DY) (16)
where 7 is a normal vector of the triangle,
n=7 +Z+ Zs a7

A direct comparison of the coefficients of (13) and (16) yields a
system of three linear equations in the unknown integrals. How-
ever, since L(y]_| — 4}) = 0, this sytem is singular. Any point
in the plane through ¥,, ¥, and ¥; satisfies the equation n - ¥
d, and therefore the following identity can be obtained from

=4

- S , 9
¥+ LY

(10):
Q +Q + Q= Q.
Finally, using this identity, we arrive at

(18)

3
Q= A<z<3, S HQ A+ AV — Vo)) - Ag] (¥ — ykﬂ)’Y?)

(19)
where 4 is twice the area of the triangle, A = | i |.
To find the diagonal matrix elements it is noted that since
E.h(X) = 1 (7) the vector (1, 1, - - - , 1) is an eigenvector of B,
with eigenvalue zero:

N a
. 1 o
S B8, = — M? v 4§ sy =0
n=1 27 R [ X" = Xl
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(20)
This property of B has been demonstrated before for the discret-
ization of smooth surfaces by the constant potential approximation
[11]. It is a related to the fact that ¢ in (1) and (5) is determined
only up to an additive constant. Similar to the constant potential
approach, this ambiguity in the potential can be removed by using
the deflation technique.
A useful consequence of (20) is that the diagonal elements of B
can be expressed in terms of the other matrix elements:

N
v
B, = — 2 B,,.

n#FEm

@n

Note that (20) is only true when the matrix elements are expressed
as analytical formulas and that numerical approximations might
spoil its application in (21). Also the use of the multiple deflation
technique is restricted to the case that (20) holds exactly.

III. QUADRATIC EXPANSION FUNCTIONS

The integration technique presented here can similarly be ap-
plied to compute the matrix elements for quadratic interpolation on
flat triangles. The integrals that need to be computed are of the

form:
1 (Zl :
Q, =—
dA

A

¥ %)
— ds’. 22)
| ¥

Instead of (16) we evaluate the following in two different ways:

G, =da! Sg (7, - WIR|™ x dS". (23)

A

Stokes’ theorem cannot directly be applied on (23); the gradient
has to be moved in front first. So we obtain,

Zi X i (24)
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This formula has been derived in [12], [13].
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Equation (23) can alternatively be expressed as a linear combi- TABLE ]
nation of the unknown integrals in (22). Using (15) we find ERROR %
3
. R : R d 10 1
€ =- x E, Q¥ (26) a 1 3 0.33 1 3 0.33
When (24) and (26) are both expressed as a linear combination of 6‘P°i,“'5 0.003 g%l 8(1)§6 833 21.0 3‘;3
¥1. ¥» and ¥ and the coefficients are compared, we find, using the 16-points 0.001 21 ) ) - i
identity @; = Q;; + 0 + Q; the following explicit expression for
@
—d(¥i — V0 <%: Bu¥y + AT /T Viey — y;71)> + 7, A
@y = pE 27
where 83, can be found from
v+ Y- i % -4 (X) can be approximated by a piecewise constant, a piecewise
8 pP y ap
By = - i+ - S (28)  linear or a piecewise quadratic function. Next the formulas derived
o 1 ! Do) in the previous sections can be applied to approximate the integral
LENRE RE REIRRE RN A in (30). In this way R™'-singularity is dealt with by an analytical
and formula, whereas the regular part g(¥) is approximated by spline
| interpolation.
v = S s ds In [12], [13] an alternative way of calculating the higher-order
o VI ¥+ (Vi — ¥ integrals is presented. This alternative method is based on a geo-
metrical reduction of the general case to the case of rectangular
_ el = I - Bie = ¥) - ¥ 20 triangles. The integrals for the rcctangular triangles can be per-
[¥i1 = %I : 29 formed by a simple parameterization of the triangle. Since this

V. RESULTS AND DISCUSSION

The main topic of this paper is the computation of the matrix
elements using analytical formulas. To find out the computational
advantage of using analytical formulas we considered a triangle
Ay in the y-z-plane: Xy = (0, —1/a, —a), ¥, = (0, —1/a. a).
and X3 = (0, 1/a, 0), and the viewpoint X on the x-axis ¥ = (d,
0, 0). The parameter a determines the shape of the triangle and d
is the distance of the viewpoint from the origin. We compared the
speed and accuracy of the analytic formula for Q; with two numer-
ical methods: a six-point formula and a 16-point formula [17].

From Table [ it follows that for distances much larger than the
size of the triangle, numerical integration performs well for rect-
angular triangles (a = 1) and slightly worse for others. For dis-
tances comparable to the size of the triangle however, the numer-
ical accuracy is not acceptable. It also followed from the simulation
that analytical integration is more than two times as fast than the
16-points method, and slightly faster than the 6-points method. Al-
though methods have been developed to increase the accuracy of
numerical R"-imegrations [14]-[16], these methods will reduce
the computation speed. Therefore analytical formulas are advan-
tageous, when dealing with flat surface elements.

One might object that the analytical formulas developed in this
paper only work when the surfaces are described with flat triangles.
However, we believe that the analytical formulas are also helpful
to the case when curved elements are used. In that case the integrals
are of the following form [compare with (6)]:

o o 1 -
I(x,) = (§>§> XNV’ B ds’
N m

(30)

where A is a curved (triangular) surface element, and g(X) is a
weight function. If A is partitioned into a set of small flat triangles

method requires some intermediate steps, relatively many auxiliary
variables are needed to obtain the result. With the method pre-
sented here the use of local parameterizations of the boundary ele-
ments is circumvented, yielding more compact formulas which ex-
press the integrals directly in the corner points of the triangles.
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A PC-Based Imaging System for Automated Platelet
Identification

J.-S. Lin, C.-C. Tai, C.-W. Mao, C.-]. Jen, and K.-S. Cheng

Abstract—In this communication, a PC-based imaging system was
developed for automatically identifying fluroscence-labeled individual
platelets adherent to protein-coated surface under flow conditions. It
is to eliminate the laberious and time-consuming task, and the subjec-
tive error of manual measurements. Based upon the features of adher-
ent platelets, three passes of the image processing were developed for
platelet identification. From the results, 90-95% accuracy could be
routinely obtained. The platelet distribution and other related param-
eters could be easily extracted and investigated.

INTRODUCTION

With the advance of the digital imaging microscopic technique,
the studies of complex cellular functions and higher order structure
analysis become easier, more objective, and more accurate [1]. A
good survey of the objectives of microscopic image analysis ap-
peared previously [2]. Most systems in the past were implemented
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with the minicomputers. Nowadays. with the rapid developments
in VLSI and computer technologies. the PC-based imaging systems
are available with low cost.

The microscopic visual inspection process using digital image
processing plays an important role in hematological investigations,
such as the tracking. counting, classification, and analysis of the
white blood cells [3]-[5]. Other applications include the template
matching for analyzing the intramembraneous particle distribution
[6). and the interactive tracking of the platelets and polymorpho-
nuclear leukocytes on biomaterial surfaces [5]. [7]. Epifluores-
cence video microscopy, in particular, is a necessary tool for in-
vestigating the characteristics of adherent platelets in mural thrombo-
genesis [8]-[10}. In the study of the aggregation of platelets [9].
the off-line digital image processing technique was developed for
local measurements of the multiplatelet thrombi growth and distri-
bution. However. due to the lack of the morphological informa-
tion, there is only very limited success in automated identification
of the fluorescence image of individual platelets. For all the anal-
ysis of platelet images, the identification is inevitably the first and
most important step in digital image processing.

In this communication, a PC-based imaging system is employed
for automated platelet identification using the image processing and
pattern recognition techniques. The platelets adhered to the pro-
tein-coated surface under flow conditions could be identified and
tracked dynamically. The interesting parameters, such as number
of platelets per unit area, accumulation rate, adhesion status, and
sustaining period, could also be extracted automatically.

SYSTEM DESCRIPTION

An imaging system with a 80286-based personal computer (ARC
Turbo-12) is used for automated platelet identification. The block-
diagram of the whole experimental setup is shown in Fig. 1, which
is similar to the one described by Hubble and MclIntire {9]. A typ-
ical image grabbed from the tape of this imaging system is shown
in Fig. 2. The flow direction is from right to left. The imaging card
used for grabbing the image from either the video camera or video
cassette recorder has the resolution of 512 x 512 with 256 gray
levels (VFG-512, Visionetics, Taiwan, ROC). Other instruments
included in the system are an epi-fluorescence microscope of
Olympus (BH-2RFL). a video camera of Hamamatsu (C-2400-08).
a flow chamber, a syringe pump, a dynamic image tracing system
of Sony (BNU-820). and a time base corrector of Sony (BVT-800).

In this study. all the identification algorithms and subsequent
analysis programs were implemented using the C language, and
easily run on an IBM compatible microcomputer.

The whole blood drawn from a nonsmoking, nonmedicatcd
healthy subject was used as the sample. In which, the fluorescent
dye of acridine red (2 uM) and the anticoagulant of sodium cirate
(0.32%) were added for specifically labeling the platelets and pre-
venting it from clotting. The flow rate controlled by the syringe
pump was set at 0.9 ML /min, with a corresponding surface shear
rate of 445 s~ to simulate arterial blood flow conditions.

AUTOMATED PLATELET IDENTIFICATION

From the grabbed fluorescence image of platelets, most platelets
identifiable by human eyes had their gray-level values higher than
the neighborhood background by at least 20. As flow time in-
creased, more and more platelets adhered to the protein-coated re-
gion but not to the uncoated portion of the glass. Therefore, the
coating boundary became more and more distinguishable.

0018-9294/92$03.00 © 1992 IEEE



