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1. Introduction

In living subjects electromagnetic signals are generated which can be measured electri-
cally with electrodes and normal amplifiers or magnetically, by means of sQuiD-
magnetometers. The former technique is cailed EeG (electro-encephalography), the
latter MEG (magneto-encephalography). Since the electromagnetic field patterns are
dependent on physiological processes inside the body, a study of the electromagnetic
field can help to understand these physiological processes. In this note some theoretical
problems which are posed by such a study are considered. The theoretical problems
imply questions such as ‘How does the measured electromagnetic field depend on the
underlying generators and on the medium in which these generators are embedded?’,
‘Are there sources which produce no magnetic field and under which conditions does
this happen?’, ‘Are there advantages of magnetic rather than electric measurements?’.

Before answering these questions the way in which the electromagnetic field is
generated should be considered. At a microscopic level, there are different physical
mechanisms responsible for the generation of the electromagnetic field. Inside the
brain, there are the synaptic interactions of neurons which produce the EEG and MEG.
Cardiac potentials and cardiac magnetic induction are generated by the synchronous
polarization of cardiac muscle cells. A third example is the electromagnetic field
observed at the limbs. This field is caused by compound action potentials, which travel
through the peripheral nerves by axonal transport. The main assumption of volume
conductor theory is that, at a macroscopic level, all these electromagnetic effects can
be described by current sources, embedded in a conducting (and possibly polarizable)
medium. With this assumption the relationship between the current source density
function and the resulting potential and magnetic induction can be made explicit.
Another consequence is that the physical mechanisms underlying EEG and MEG are
identical.

In section 2 of this note we will briefly review the mathematical physical theory of
biological volume conduction. The relationship between current sources, medium
properties and the electric and magnetic induction is derived from Maxwell’s equations,
together with some material equations. How the resulting equations can be solved will
not be considered. Instead, some useful properties of the solutions will be derived in
section 3.
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2. Derivation of the volume conductor equations from Maxwell’s equations

Although the equations governing the electromagnetic fields in living tissue have been
derived previously, (e.g. Barnard et al 1967, Geselowitz 1967), it is meaningful to look
at them again. It appears, for instance, to be possible to derive from Maxwell’s equations
an equation for the magnetic induction, which is independent of the electric field,
without assuming that the quasi-stationary approximation is valid. Moreover, it is not
necessary to assume that the polarization of the medium vanishes to make the equations
for the electromagnetic field solvable.

2.1, Maxwell’s equations

The macroscopic Maxwell equations are an {incomplete) system of partial differential
equations, which describes the electromagnetic fields in a conducting, polarizable and
magnetizable medium. These equations are given by, for example, Jackson (1962):

divD=p (1)
curl H-aD/st=J (2)
divB=0 (3)
curl E+9B/ot=0. (4)

Here, D is the dielectric displacement, p is the charge density, H is the magnetic field,
J is the total current density, B is the magnetic induction and E is the electric field.
Maxwell’s equations are incomplete without the material equations, which specify the
relationship between, on the one hand, the dielectric displacement and the electric
field, and, on the other hand, the magnetic field and the magnetic induction. For
biclogical tissues it is assumed that I} and H depend linearly on the local electric
field and magnetic induction respectively. This dependence may, however, be
anisotropic, so that the directions of the corresponding fields are not necessarily equal:
D=¢E=¢,1+x,)E (5)
H=p""B=(1/po)(1+ xa)"™"'B (6)
Here, | is the identity tensor, and &, and u, are the permittivity and magnetic permeabil -
ity of free space respectively. Equation (5) expresses how strongly the neutra] particles,
which constitute the medium, polarize when an electric field is applied. Equation (6}
gives the effect of the magnetic field on the magnetic dipole moment of the medium.
This effect is neglected, generally, so that y,=0. This assumption is, however, not
essential for deriving the basic equations of a volume conductor, as will be shown.
In order to obtain a complete system of equations, one extra equation is necessary
which describes the relationship between J, E and the impressed current, J;. The latter
represents the actual generators of the electromagnetic fields. The total current density,
J, equals the sum of the impressed current and the volume current, which is caused
by the electromagnetic forces acting on the free charges (electrons as well as ions) in
the medium. This volume current is again assumed to be linearly dependent on the
local electric field. In a formula, we have

J=aE+.1J,. (7)
In equation (7) the conductivity o tensor is used to express anisotropic conduction.

This type of conduction has been demonstrated for some tissues {Rush and Driscoll
1968, Nicholson and Freeman 1975).
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Now, we face the problem of expressing the electromagnetic fields in terms of the
generator, J;. With equations (1) to (7) a partial differential equation can be derived
for the magnetic induction, in which the other fields do not appear. To this end we
note that all equations are linear and time invariant, so that it makes sense to consider
only time functions of the type e’ The symbols B, E, H, etc, then represent the local
complex amplitude of the corresponding fields, at the circle frequency, w. Other
functions can be obtained from the superposition of sources with different frequencies.

With equations (2) and (5)-(7) we find for the magnetic field

curl[ " (curl ™ B}]+ joB = curl(y"*J). (8)
For the electric field there are two equations:

div(yE) = —div J; (9

curl E = —joB (10)
where y is defined as

y(w} =0+ jwe. (11)

In principle, the magnetic induction can be calculated from equation (8) and the
result can be used to find the electric field, equations (9) and (10). These equations
neither depend on the conductivity nor on the polarizability separately, but only on
the combination (equation (11}). Therefore, both these material properties can be
expressed by one function, ¥, which depends on the circle frequency, w, and on the
position, x, If this function is expanded in a Taylor series with respect to w, the constant
term represents the (DC) conductivity and the linear coefficient corresponds to the
polarizability. Although the physical interpretation of higher-order terms in w is less
obvious, there are no theoretical objections against including them. Furthermore, it is
clear that previous results, where the polarizability of the medium has not been taken
into account, remain valid if all fields are considered as a complex amplitude dependent
on w. In the following, v will be referred to as the conductivity.

2.2. The quasi-static approximation

If all terms of the order jwB can be neglected, the system of differential equations
becomes much simpler, since, in that case curl E =0, and hence

E =—grad ¢ (12)
where i is the electric potential. Equation (9) becomes the impedance equation

div(y grad ) =div J, (13)
and equation (8} becomes

curl[y™(curl ™™ B)] = curl(y™J,). (14)

In this way the electric and the magnetic field have been completely separated and
the resulting equations are much easier to solve. Another consequence is that in this
(quasi-static) approximation the electric field, and hence the potential, are independent
of the permittivity tensor, u. Without the approximation, this dependence exists through
equations (&) and (10).
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We will now consider under which circumstances the time-varying magnetic induc-
tion may be neglected. Assume that y and p are constant scalars. Then equation (8)
becomes (using equation (3} and curl curl B = grad div B—AB)

AB = juyuB — u curl J;, (15)
The solution of this equation is
+oo
m curl(Ji(x'y) e'kte)x==
B(x)=—"— '
(0=-3_ ”J = dx (16)

in which the square of the amplitude of the wave vector, k, equals kP =|wyu|=
wp(a*+ w’e?)"%. The physiologically interesting range of frequencies is below 100 Hz,
and so w <620rads™'. Furthermore, it has been found that for most living tissue
£ < 10%, { Pethig and Kell 1987), 0 < 0.7 Q™' m ' (Geddes and Baker 1967) and u = u,,.
With these values it can be calculated that (ouw)/*<5x1072m™" and (spe)'’’<
10°w/c<2%x107*m™". Since the distances involved are much smaller than 20 m, we
have k|x—x'|< 1. The exponential function in equation (16) therefore approaches
unity, and hence this solution tends to the solution of the simplified equation (14),
The same conclusion has been reached by Plonsey and Heppner (1967} following a
slightly different reasoning. They analyzed propagation, capacitance and induction
effects separately and therefore their derivation is more complicated.

3. Symmetry properties in the quasi-static approximation

A vanishing magnetic induction ottside a conductor may be considered as the result
of symmetry, as shown in this section. The quasi-static approximation will be assumed
to be valid and the magnetic permeability to be constant and isotropic. 1If R is an
orthogonal matrix, then symmetries of scalars, vectors and tensors can be defined as
follows.

A scalar, s(x), is called symmetric under R if

s{x}=s(Rx) for all xeR”. an
A vector field, B(x) is called symmetric under R if

RB{x)= B{(Rx) for all xeR* (18)
and a tensor field, y(x), is symmetric if

Ry(x)R™' = y(Rx) for all xeR>. (19)

These definitions are trivial for scalar functions and vector fields. The meaning of
equation (19) can be understood easily if ¥ represents a conductivity tensor (i.e. if
y(x) is a positive matrix for every x. In that case y has three orthogonal eigenvectors
and equation (19) states that if e is an eigenvector at the position x (i.e. y(x)e=Ae),
then Re will be an eigenvector at the point Rx, with the same eigenvalue (so, y(Rx)Re =
Ry(x)e=ARe). Since y is uniquely defined by its eigenvectors and eigenvalues,
equation (19) completely describes the symmetry.

The term cylinder symmetry will be used if a function is symmetric for every rotation
about a given axis (commonly the z axis). A spherically symmetric function is symmetric
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for every rotation about a given point (commonly the origin). Functions evaluated at
a transformed point will be denoted by a prime (e.g. ¢'(x) = ¥ (Rx)).

Given these definitions it can be proven that the potential, (x), will be symmetric
if the impressed current, J;, and the conductivity, y, are symmetric. First, it will be
assumed that the impedance equation (equation (13)) has only one unique solution
(up to a constant). Then we only have to prove that if ¢ is a solution, so is .

We find

div(y grad ¢") =div(yR™' grad’ ")
=div(R™' ¥’ grad’ ¢')
=div'(y’ grad ") = div’ J|
=div'(RR™'J) = div J, (20)

which shows that ¢ and ¢ are solutions of the same equations, and hence they must
be identical. In the derivation the following have been used: grad’(-)=R"" grad(-),
and div'(-)=div{R-). The result has been obtained before (de Munck et al 1988), and
corresponds to Bloch’s theorem used in solid-states physics {Ashcroft and Mermin
1976).

To generalize the conditions for which the magnetic induction is independent of
the conductivity function, it is not sufficient to claim that y and J; have cylinder
symmetry. Sufficient conditions can be specified if it is noted that y defines (since it
is a positive symmetric tensor) for every x € R® three orthonormal vectors (the principal
directions), and three corresponding positive numbers (the principal conductivities).
We will prove that if the volume conductor meets the foliowing conditions:

(1) ¥ has cylinder symmetry;

(2} one of the principle directions of ¥ parallels the @-direction; and

(3} J; has cylinder symmetry;
then B outside V is independent of the conductivity. Note that if the conductor is
isotropic, it automatically meets condition (2). The & direction is the direction of
increasing ¢, if cylinder coordinates are used (see figure 1).

If the impressed current satisfies conditions (3) and (4):

(4) the ¢ component of J; vanishes;
then the magnetic induction is zero outside a conductor satisfying conditions (1) and
(2).

With the conditions given in § 2 it follows that

curl B=—pu,y grad ¢ + g J; (21)

X

Figure 1. Coordinates. Left: cylindrical coordinates (¢, p. 2); right spherical coordinates (r, 9, ¢).
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and div B =0. The solution of equation (21) is then (Morse and Feshbach 1953)

+@

B(x) =£2r IJJ curl J;— curl(y grad ¢) dx’ (22)

x—x

-0

We can see that in a homogeneous and isotropic medium the second term in equation
(22) vanishes, because curl(grad - ) = 0. Therefore this term represents the contribution
of the so-called ‘secondary’ sources, B,., which are induced by the medium
inhomogeneities. The contribution of the ‘primary’ sources, B, are represented by
the first term of equation (22) and are independent of the conductivity.

Since eqpow is very small, we conclude from equations (21} and (11) that

curl B=90 for all x outside V. (23)
Hence for x outside the conductor a magnetic potential, U{x), can be so defined that
B=pgrad U (24)

Then, because B satisfies div B =0 and because of equation {23), U is a solution of
the following boundary value problem.

+o0 +oo
1J; | d
{grad U)-n=£—°-n(x)-(j[ cut dx'fjj.jwdx’)
47 jx—x'| |x—x'|
forallxeagV (25)
U->0 for x>
AU=0 for x outside V.

Here, 3V is the boundary of the conductor and a is the outward normal to this surface.

We see that the magnetic induction outside the volume conductor depends on the
curl of the primary and the secondary sources. At the end of this section it will be
demonstrated that under conditions (1)-(3) the contribution of the secondary sources
to the magnetic potential, U, vanishes, and under (3) and (4), the contribution of the
primary sources vanishes. The main argument is that under these conditions, the
magnetic induction only has a ¢ component, and hence the inner product with n in
equation (26) vanishes. Then, from conditions (1}-(3) it follows that

B.(x) n{x)=0 forall xeaV. (26)

Since the solution, U(x), of equation (25) is unique, it is independent of y. Therefore,
the magnetic induction is also independent of 1.

This result seems to imply great advantages in using magnetic induction recordings
instead of electric potentials in inverse algorithms. The drawback is, however, that in
a volume conductor satisfying conditiond (1) and (2), there are many sources which
are undetectable with magnetic measurements. This can be seen from equation (25).
If a source satisfies conditions (3) and (4) then the contribution of the primary sources
only has a ¢ component. In that case the boundary condition on 8 VbecomesaU /on =0,
and hence U and B are identically zero, outside the conductor. An example of a
situation for which conditions (1) and (4) are met is a radial dipole in a spherically
symmetric volume conductor.
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To complete the proof we have to demonstrate that under conditions (1)-(3), and
(3} and (4), the magnetic induction caused by respectively the secondary and the
primary sources vanishes. For every vector field, K(x), the curl can be written in
cylinder coordinates as

13K, 9K\ . 13K, 8K\ . 16K\ .
curlK=(~ ——“’)p+(— £ ):p-!—(i(pK,,)——a ")z (27)
p dp oz p éz dp ap p op

If J; is substituted for K, it can be concluded from the assumed cylinder symmetry,
condition (3}, that the derivatives with respect to ¢ vanish, and from condition (4) it
follows that all components of curl J;, except the ¢ component, are zero. Therefore,
conditions (3) and (4} imply that n- B, =0, and hence the primary sources do not
contribute to the magnetic induction outside the conductor.

Next, it will be shown that y - grad 4 has cylinder symmetry and has a vanishing
@ component. Then, by the same argument as was used for the primary sources, it can
be shown that the magnetic induction caused by the secondary sources only has a @
component. From condition (3) and equation (20) it follows that the potential has
cylinder symmetry. Hence we have

y grad ¢ = R™y(Rx)RR™ grad’ y+(Rx) =R™y' grad’ ¢ (28)

which demonstrates the required symmetry.

Finally, it will be shown that condition (2) results in a vanishing ¢ component for
secondary sources. As was stated earlier, the fact that y(x) is positive means that the
conductivity tensor has three orthogonal eigenvectors with positive eigenvalues, at
every point in space. Condition (2) states that one of these vectors equals &. It follows
that a *multiplication’ of y by any vector which is a linear combination of p and £,
will result in another linear combination of these two unit vectors, Since i has cylinder
symmetry, grad ¢ will be a linear combination of p and % and hence it follows that

é-(ygrady)=0 (29)

and hence from equation (27) we have that n - curl(y grad ) = 0. In this way the proof
is completed, formally. In figure 2 a more intuitive representation of this result is given.

To summarize, two propositions have been proven: (i) under conditions (1), {2)
and (3) the contribution of secondary sources to the magnetic induction outside a
conductor vanishes; and (ii) under conditions (3) and (4) the primary sources do not
contribute to this field. These propositions have implications for the existence of
magnetically silent sources and the dependence on the conductivity of the magnetic
induction outside the conductor,

The first proposition is based on condition (3), that the impressed current has
cylinder symmetry. This assumption is not needed if the volume conductor is spherically
symmetric. It has already been proven that in such a conductor the secondary sources
are magnetically silent outside the conductor {Baule and McFee 1965, Grynszpan and
Geselowitz 1973, Sarvas 1987), but these authors did also assume that the conduction
was isotropic. These results will be generalized by including a specific class of
anisotropy.

Note that a spherically symmetric volume conductor is completely specified by its
radial and tangential conductivity functions, ¢(r} and 5(r}. To show that the secondary
scurces are silent, it has to be demonstrated that the radial component of curl(y grad )
vanishes. For this purpose the radial component of the curl and the gradient will be
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Figure 2. An intuitive explanation of silent primary and secondary sources. The “stretched bottles’ represent
cylindrically symmetric volume conductors. The upper arrows in beth figures give the principal directions
of the conductivity tensor, y(x). For all x, one of these directions parallels the @ direction, and the other
directions are arbitrary. If the conductor is isotropic, this condition is automatically satisfied. The middle
set of arrows represent a circularly symmetric impressed current, J;. In the left figure the ¢ component of
the current is arbitrary and therefore the resulting magnetic induction, B(x), is non-zero. However, the
contribution of the secondary sources to this field is zero, and hence B(x) is independent of y{(x). In the
right figure the & component of the current vanishes and therefore B only has a ¢ component. Since
curl B =0 for x outside V, it follows that the magnetic induction vanishes for x outside V.

expressed in spherical coordinates:

A 1 0, . K,
~curl K = — oK, ) —— 0
r- curl rsinﬁ(aﬁ(sm o) aqo) (30)
and
a 1/ ¢ a 1 d
={—|F+-{ <]+ —)é 31
grad( ) (ar)r r(aﬂ) rsin ﬁ(aqo)'P B3y

If ¥ - grad ¢ is substituted for K then we get, using equations (30) and (31)

- curl K =— [i(sm‘? (r)%)—i(—*—n(r)%)]
rsin 4o rsinﬂn 3o/ de\ r ot

n(r) ( Iy 62!!1)
rPsin 3\ad de dpad

=0. (32)

Therefore, the magnetic induction outside a spherically symmetric conductor is
independent of the conductivity, no matter what current sources are present inside.

4. Discussion

It has become common knowledge that the magnetic field outside a spherical isotropic
volume conductor generated by a radial current dipole is zero. For other sources it
can be shown that the magnetic induction outside this kind of conductor is independent
of the conductivity function. In this paper these results are generalized, by including
anisotropy and cylinder symmetry (contrary to spherical symmetry).

The problem of finding the potential in a spherically symmetric volume conductor
was solved analytically by de Munck (1988). This solutions was used by van Dijk et
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al (1990) to show that anisotropy of the skull and the cortex causes large systematic
errots in dipole parameter estimates based on electric data. The results of the present
paper imply that even in the case of anisotropic spherical shells, the magnetic induction
is unaffected by the conductivity parameters. This seems to imply great advantages of
using MEG instead of EEG. However, in this kind of volume conductor there are many
sources which do not generate a magnetic field. A well-known example is a radial
dipole, or a layer of radial dipoles. However, from the symmetry considerations of
this paper, it follows that a circular array of tangential dipoles with a vanishing ¢
component does not produce a magnetic field either.

The generalization to cylinder symmetry might be useful to study compound action
potentials in limbs {Trahms et af 1989), or to calculate the magnetic field outside a
single fibre (Plonsey 1981). {t implies that a compound action potential, which travels
precisely through the symmetry axis of a (cylindrical) limb, produces no magnetic field
outside the limb. Another implication concerns the effect of inhomogeneities in the
brain on the magnetic induction generated outside the head. If the inhomogeneities
together with the head are approximately circular symmetric, and if the sources also
obey this symmetry, then the magnetic field is unaffected by the inhomogeneities.
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