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Conditions under which & time varying electromagnetic field problem (such ag ariges in
electrophysiology, electrocardiography, ete.) can be reduced to the conventional quasi-
gtatic problem are summarized. These conditions are discussed for typical physiological
parameters.

1. Iniroduction. Bioeleotric sources originate in the electrochemical activity
of individual cells. A congequence of thig activity is an electric potential field
whioch ig established in the volume condusctor exterior to the cell. This field is,
in general, time varying. Studies which have been made in classical eleotiro-
physiology as well as in applications to electrocardiography, electromyography
and eleotroencephalography, eto. are based on a quasi-statical model. Thatbis,
it is assumed that at ench instant of time the potential field satisfies Laplace’s
equation, and that the boundary conditions are those which would exist if the
gource condition were stationary, The following is essentially a tutorial ex-
amination and summary of the bages for quasi-static assumptions in bioeleotrio
studies. | .

- 'We start with a general formulation for the electric field in an infinite volume
conduotor due to an impresged current density source J, whose temporal be-
havior is harmonie at an angular frequency @, The medium is assumed, initi-
ally, to be linear, homogeneous and. isotropic and characterized by physioal
parameters u, o and e. To the degree that the medium possesses linearity, the

results apply to a linear combination of harmonic frequencies and hence, to a
| 867
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periodic or to an aperiodic source through the uge of a Fourier geries or integral,

respectively.
The electric and magnetic fields are found by solution of the inhomogeneous

Helmholtz equations. The scalar potential ® and the vector potential A are
given by

— __&_ J;(m’! yfl z’ )e_'ﬂlcﬂ ! ’ r ! 1
Awye) = £ | TR gy, ), (1
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where
R=@—-2P+(y—y)P+ (-2 (3)

The unprimed variables refer to the field point and the primed variables to the
gource point. In this equation

k? = w?ue, = wipue(l + ofjws), (4)

and e is & complex dielectric constant that includes the effect of conductivity
and losses, that is, e, = (L + ofjwe). An alternate form for (4) is

b = —jopo, = —juus(l + jws/a), (6)

where o, = o(l + jwefs). This form is more appropriate for media that are
essentially resistive. We also have

Ve, = —p

- where J; is the applied current densitiy and p’is a current volume source density.
Finally, the electric field is found from the vector and scalar potentials A and
® by |

E = —jwA — VO. (6)

It should be noted that complex phasor notation is used. That is, the quanti-
ties A, E, @, p, 4, &, are complex and, in general, functions of w.

'The usual implications of quasi-stationarity involve assumptions to simplify
the above equations. These assumptions will be enumerated in the following
under four main headings: Propagation Effeots, Capacitative Effect, Inductive
Effects and Boundary Considerations. To evaluate the error involved in making
these gimplifications, it will be necessary to utilize representative date for the
parameters appearing in (1) through (6), and this will be considered first.

2 '*Electrical properties of biological materials. Typida,l values for the ocon-
ductivity of biological materials as reported by Rush et al. (1968) are given in
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TableI. Incomputationsinvolving conductivity, we shall choose ¢ = 0.2 mho [m
as representing a mean value,

TABLE I*
Conductivity of Biological Tissues
Tissue Mean Conductivity
(mho/m)

Blood 0.67

Lung 05

Liver Jd4

Fat 04

Human Trunk 0.21

* From Rush el al. (1068),

It is also required that the complex conduotivity o(1 + jwe/o) be considered.
This, in turn, involves utilization of typical ratios of displacement to conduction
current, that is, jwefo. Table II lists representative values as reported by
Schwan and Kay (1967). Further discussion is given in the following sections.

TABLE It

Averages of Ratio of Capacitive to Resistive Current for Various
Frequencies and Body Tissues

10 KC 100 KC 1000 KO 10,000 KC

Lung 0,16 0.026 0.05 0.14
Fatty Tissue .01 03 .15
Liver .20 .035 .06 20
Heart Muscle 0.10 0.04 0.15 0.32

f From Bohwan and Koy (1957).

The highest component frequency of significance in biocelectric systems is of
the order of 1 Ko. This probably relates to & maximum rise time for action
potentials of around 1 ms. We shall choose 1 Ko. in the following numerical
computations requiring a maximum value of frequency.

Finally, we note the absence of magnetic materials in biological systems so
that the permeability is the free space value of 47 x 10~7 henries/meter. The
maximum value of B corresponds to an overall dimengion of the human body:
for simplicity Rye, = 1 m.

3. Propagation effects. The time required for changes in the source to pi'o-
pagate to a field point is represented by the pha.se delay e~#*F in equations (1)

and (2). Sinoce
(kR)® (Ia.R)B

B TR A R (7)

e~ ¥R = } — jkR —
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propagation effects can be ignored if kR « 1 because e~/** ig then approximately
constant (i.e., unity). In this event, the integral in (2) is preocisely that for static
fields. Utilizing the data in Section 2 and setting the magnitude of (1 + jwe/o)

equal to the conservative value of V2 yields
kRpny = (1 — 5)V 20007 x 4m x 1077 x 0.2 = 0.0397 (1 — j).

Thus, the magnitude of e~ is unity to within a four percent error, while the
phase angle error of 0.0397 rad. (2.3°) is clearly negligible, The numerioal result
is roughly the same as that reported by Geselowitz (1963) in a similar analysis.

4. Capacitive effecis. The nature of the sconductive medium i described by
its conductivity and dielectric permittivity. The mathematiocal expression is
given by equation (2) where the coefficient (¢ 4 jwe) can be written as
o(1 + jwefo) and the conductivity viewed as a complex phasor quantity. In the
quasi-static approximation, a purely resistive medium is required. This is
necessary in order to justify the assumption that with complex time variations,
the field quantities at all points are in synchrony. (Such an assumption is not
striotly necessary under harmonic conditions as is clear from equation (2) since
the formulation includes the appropriate phase relationships.) The quantity
o(1 + jws/o) will be real so long as jwefc « 1. A congultation of Table I re-
veals that the inequality is satisfied fairly well. The values of this ratio at
10 eps which do not appear too small are reported to be conservative and
Schwan and Kay (1957) conclude that the medium can be considered to be
registive.

6. Inductive effects. The component of electrio field that arises from mag-
netic induction is given in (8) by the term jwA. We wish to compare the im-
portance of this term relative to that expressed by V®. We ghall do this by
oconsidering the specific case of a differential current source element and assume
that if |wA| « |V®| under these conditions then distributed sources, such as
arise in electrophysiology, which are the superposition of such elements, would
also satisfy the inequality.

Thus, for a source element J, dV we have, from (1),

p I:dV’

4 Special electrical devices, such as inductors, are capable of setting up quasi-statio electrio
fields related to magnetic effects alone, i.e., capactive and propagation effeots are negligible. In
the analysis of the magnetocardiograph, for example, quasi-static inductive effects are the sole
source of electrio field. Bioelectrio sources may be characterized by current double layers located
at cellular membranes; special geometry whioch would enhance magnetio effects, such as those
prosent in & solenocid, does not arise, Consequently, the ratio |wA/V®| for a current element should
be a satisfactory measure for typical electrophysiological distributed sources,
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Now @ and A must satisfy the Lorentz condition, namely,

VA = —jus,u® = —jwe(l + ofjwe)n®. | (9)
Consequently,
I I o L
® = = Farwng ¥ ( R )
M av’ yo5 (_l) 0 av’ Js'a'R (10)
Jdmrwe, ° R j4mrwe, R?

If we let the z-axis coincide with the direction of J,, then

J, cos 6§
» = Jj4mwe, R? (11)
and
J,
VOl = e (12)
The ratio of interest is then |
% = |w?ue,R?|? = |kR|2. (13)

Thus, for the inductive effect to be negligible |LR|? « 1 must be satisfied. So
" long as propagation effects can be ignored (|4R| « 1), this condition will auto-
matioally be met. For the numerical values used in Section 3, we obtain

|k Bmax|? = 0.0022. (14)

6. Boundary considerations, Sinoce the total current (conduotion plus dis-
placement) is solencidal, the normal component at the interface between two
media must be continuous. At the boundary between different tissues, since the
displacement current can be ignored (see Table IT), the rigorous condition that

oy (1 -+ .7‘”81/“1)E1n = og(l + jwsgfoq)H,, (16)
Glﬂln = OzEzm ' (16)

where o; and o, are the condustivities of regions 1 and 2 respectively and E,,
and X, the respective normal electric fields. The boundary condition ex-
pressed by (18) is the same ag that for stationary (d.c.) conditions,

In many problems, however, one of the regions has zero conduectivity, as for
example, the space whioch surrounds the human body in the consideration of the
eleotrocardiographio system. Thus, o, = Oresultsin F,, = 0 according to (16);
however, the rigorous formulation of (15) results in

0'1(1 +jw81/0'1)E1n = j(USgEQn, (0’2 = 0). (17)

reduoces to
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Tt seems reasonable to suppose that Z,, = 0, provided that (wey/oy) « 1. Since
e 18 actually a free-space dieleotrio constant, we utilize &, = 9 x 10~*2 farads/m.
and, with w = 20007 and o; = 0.2 mhos/m., weyfo; = 3 x 1078, which is
clearly negligible.

The meaning of the above oriterion may be olarified by considering how
boundary conditions are utilized. The field in the conductive medium can be
thought of as arising from the primary sources E, and gecondary sources K
while the total field in the external medium is E,, Application of (15) then gives

03(1 + jweyfoy)H oy + oy(1 + jweyfoy)ly, = jwegliyy, (18)
Now E,,, B,, and E,, are in the same order of magnitude so that if [ jwesfoy| « 1
o1l + jwsfor)Hsy = —oy(L + jwe[oy )l (19)

that is, the total normal current due to the applied field is equal and opposite
that due to the secondary field. Depending on the method used equation (198)
leads either to an integral equation. formulation for the sources of the secondary
field or a condition for the determination of series coefficients in a separable co-
ordinate system. Bub equation (19) is equivalent to the requirement that

(Ea + Es)n = 0, (20)

which corresponds to the stationary condition.

Summary. We summarize below the oriteria for making the associated
simplification:

Condition Criteria
Neglect Propagation Effects ERpex < 1 (21)
 Negleot Capacitance Effects wefo K 1 (22)
Neglect Inductive Effects (kR « 1 (28)
Set H,, =0 wegloy < 1 (24)
A consequence of (21) through (23) is that
| 1 PE YR

cb—..mfw-_R av, (26)
 E= -V0. (26)
The total current J is the sum of the source current J, and the conduction ourrent

o _ | ,
J =J, + oE. (27)

Since J is solenoidal,
Vid =0=V.d, + V:(cE); (28)
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and for homogeneous media we have, utilizing (26) and (28),
VJ, = o V20, (29)
Taking the Laplacian of (25), we get

VeD = — L, (30)

g io

Equations (29) and (30) are the conventional expressions used in the solution of
electrophysiological problems subject to the boundary conditions of (16) or (24).

If all conditions (21) through (24) are satisfied, as is expeoted under normal
conditions, then all field components will have the same temporal behavior, i.e.,
will be in synchrony. This can be shown formally by taking the Fourier trans-
form of any field quantity (at any point) to obtain its temporal behavior. In all
cases, it will be observed that the frequency dependent term is the same, namely
p'(2, y, 2, w); consequently, the temporal dependence is always the same. This
means that one can view the problem at any instant of time as if steady state
conditions were in effect corresponding to a stationary source p'(2, , 2, &) or
J'(x, y, 2, 1g).

The weakest condition in the set of equations (21) through (24) is that
wafo « 1. If the remaining oriteria are satisfied, one can still proceed by
formally solving Laplace’s equation, but ¢ is everywhere replaced by the com-
plex phagor o, where

0, = ol + jwefo).

As noted, the boundary condition (18) continues to be satisfied as well as (20) at
an outer boundary. In this cage, the temporal behavior of the field does not
necessarily coinocide with that of the source. The actual Fourier transforms
must be taken if this approach is followed since both p’ and o, are frequency
dependent. If (24)is not satisfied, then the outer region must be included in the
specification of the problem, and condition (18) utilized at the interface. If,
however, (21) is not satisfied, then the quasi-static approach breaks down and
the general field equations (1), (2) and (8) must be utilized.

It is more reasonable to assume that electrophysiological media are inhomo-
geneous. We assume that the region under consideration is composed of a
finite number of subregions each of which is homogeneous. The problem, then,
is to find solutions to the vector or scalar Helmholtz equations

VIA + KA = —pd, (31)
V'Je —P |

2 2 —1 — ¢ ]
VIO 4 D m ot m — (32)
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where k is defined by (4) and o and e (and hence k) are constant within each sub-
region. One can integrate (31) and (32) by the standard Green’s theorsm
technique applied to the inhomogeneous region (Smythe, 1950, p. 63; Stratton,
1941, p. 424). The result for (32) [a similar expression is obtained for com-
ponents of (31)] is

3 1 pf e—ij , 1 J‘ {e—ﬂclﬂ 3(1):“
(I)(P) - .4; v’ (O‘ +- jwe) .R dV L ":I:'JT z’: S .R 3’”-“

o [e—7kB e~ k3R 9, 9 e—jkgn]
~ g (7)) [ e~ o (57) s 09

where S, is a component surface separating subseripted region 1 from region 2;
1y and ny; are the gurface normals drawn outward from regions 1 and 2 re-
spectively. Assuming that (22) and (21) are satisfied in all regions and noting
that ®,; = @, at each interface, we get

el Pl 1 9[Dy — Oy]
O(p) = el oy A 2 fs - ong s, (84)
Comparing (34) with (25) shows that the difference is in the creation of equi-
valent sources at the phase boundaries. But the existence of these additional
sources do not affect arguments leading to criteria (23) and (24); here quasi-
static conditions prevail if equations (21) through (24) are satisfied for all regions

of an inhomogeneous body. In this event & = — V®, and (34) becomes
— _l_ _ft_ ’ 1 Enl - Enz
O(p) = i |, oRdV ) 4772 S;_“Tds“ (35)

which corresponds to the result given by Geselowitz (1963),
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