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Basic  mathematical  and  electromagnetic  concepts of the 
biomagnetic  inverse  problem 

Jukka  Sarvas 
Low Temperature  Laboratory,  Helsinki  University of Technology,  SF-02150  Espoo,  Finland 

Abstract. In  this  paper  basic  mathematical  and  physical  concepts of the  biomagnetic  inverse 
problem  are  reviewed  with  some  new  approaches.  The  forward  problem is discussed for 
both  homogeneous  and  inhomogeneous  media.  Geselowitz’  formulae  and  a  surface  integral 
equation  are  presented  to  handle  a  piecewise  homogeneous  conductor.  The  special  cases 
of a  spherically  symmetric  conductor  and  a  horizontally  layered  medium  are  discussed in 
detail. 

The  non-uniqueness of the  solution of the  magnetic  inverse  problem is discussed  and 
the difficulty caused by the  contribution of the  electric  potential to the  magnetic field 
outside  the  conductor is studied. As practical  methods of solving  the  inverse  problem,  a 
weighted  least-squares  search  with  confidence  limits  and  the  method of minimum  norm 
estimate  are  discussed. 

1. Introduction 

Biomagnetic fields are  caused by electric  currents in conducting  body  tissues like the 
brain,  the  heart  and  the muscles or, by magnetised  material,  as  in  lung  contamination. 
The inverse  problem is the  search  for  the  unknown  sources by analysis of the  measured 
field data.  To  handle  this  task  one must first study  the  forward  problem, i.e. how the 
magnetic field and  the electric  potential  arise  from  a  known  source.  For  practical 
purposes,  one  also  has  to  choose  appropriate  models  for  the  source  and  the biological 
object  as a  conductor. In this  paper  basic  mathematical  and physical  concepts of the 
forward  and inverse  problems  are reviewed and  some new approaches  are  discussed. 

In 9 2 of this  paper  the  forward  problem is discussed.  Only fields due  to electric 
source  currents  are  considered. We describe  how the magnetic  induction B and  the 
electric  potential V are  computed using the  quasistatic  approximation of Maxwell’s 
equations.  The field B is obtained from  the  total  current  density J = J ‘  - a V  V by the 
Biot-Savart  law.  Here J ’  is the  impressed  source  current, - a V  V is the  Ohmic  current 
and a is the conductivity. The  potential V is obtained by solving  Poisson’s  equation 
A V  = V * J ‘ / a  with proper  boundary  conditions. 

In § 3 we show  how  the  above  approach easily  yields  formulae for  computing V 
and B in a  homogeneous  unbounded  medium  for  a  point,  line,  surface  or volume  source. 

In § 4 the more  involved  case of an inhomogeneous  conductor is discussed. 
Geselowitz’  formula is introduced which  explicitly  shows how the magnetic  induction 
is coupled with the electric  potential. A surface  integral  equation for V is derived, 
which  provides  means  for  computing V and B numerically in a  general  case.  However, 
in the  special cases of a spherically  symmetric conductor  or  a  horizontally layered 
conductor, B outside  the  conductor  can  be  computed in a direct and easy way, and 
these  cases are  treated in  detail. 

In § 5 the inverse  problem is discussed. In general, its solution is non-unique, 
owing  to the existence of so-called  ‘magnetically  silent’  current  sources; Some examples 
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12 J Sarvas 

of such  sources will be  presented.  The  magnetic  inverse  problem is also  complicated 
by the  coupling between V and B. However,  in  some  special  cases  this  coupling is 
not  present  and, accordingly,  the  inverse  problem  becomes  easier. If, in  addition,  the 
potential V is measured on the  surface of the  conductor,  the inverse  problem  again 
becomes  simpler,  and,  for  instance,  for  a  bounded  homogeneous  conductor  the  coupling 
between V and B can  be removed  from the  problem. 

In $0 6  and 7 practical  methods of solving the inverse  problem are  considered. If 
the  unknown  source  can  be  described  in  terms of a  limited  number of parameters,  the 
solution  often  becomes  unique  and  an  appropriate  least-squares  search  can  be  applied 
to  determine these  parameters. If the  measurements involve correlated  noise,  proper 
weights must  be  introduced in the  sum of squares  which is to be  minimised.  Statistical 
confidence limits of the  parameters  are  also discussed. If the  measured field depends 
linearly on the  source  parameters,  the  least-squares  solution is readily obtained. 
However, non-uniqueness  or numerical  instability may be  present.  Such  a  linear  case 
can  be  dealt with by the  Moore-Penrose  inverse  and  an  appropriate  regularisation. A 
linear  inverse  problem is also  obtained if we seek an  estimate  for  the  unknown  source 
as a linear  combination of the  lead fields. We describe how this  estimate is obtained 
as  the  minimum  norm  solution. 

Here are  some  remarks on the  notation.  The set of real numbers is denoted by R 
and  the  n-dimensional  Euclidean  space by R". For a  matrix or a  vector, T stands  for 
the  transpose.  For x = (x,, . . . , X , ) ~ E  R" the norm is IlxII = (x:+. . . +x ; )~ '~ .  If G is 
a region or  three-dimensional  body in R 3 ,  the  surface of G is denoted by dG. 

2. Field equations 

In this section we consider  how  the  magnetic  and  electric fields arise  from  a  source 
current  density J ' .  This  current,  also  called  the  impressed  current, is due  to  the 
electromotive  force  impressed by biological  activity  in  conducting  tissue. Let J'  lie in 
a  conductor G which  has  conductivity a. For magnetic  permeability we assume  that 
p =p,, everywhere.  To compute  the electric field E and  the  magnetic  induction B 
caused by the bioelectric  source J' ,  the  use of the  quasistatic  approximation of the 
Maxwell's equations is justified  (Plonsey  1969) and this  approximation is stated by 
the  equations 

E = - V V  (1) 

V X B = pLgJ V * B = O  ( 2 )  

J =  J ' + U E  (3) 
where V is the  electric  potential, J is the  total  current density and c7E is the  Ohmic 
current.  Note  that V - J = 0 due  to  equation ( 2 )  and  the vector  identity V - V x B = 0. 
Because J is the total  current, B is given by the  Biot-Savart  law: 

B ( r )  =- J ( r ' )  x- du'. 
p0 I r -  r' 
4.ir G / r  - r'I3 

(4) 

In  fact, with some  vector  calculus we can  show  that  the  integral  in  equation (4) as  a 
function of r is the  solution of equation (2) with B( r )  + 0 as / r /  + W. 

To  obtain E and J, we still must find V. For practical  purposes we may assume 
that a is piecewise constant. Write J = J ' -  a V  V. Because V * J = 0, we obtain 
V - ( a V  V )  = V - J ' ,  which, in a region with constant a, yields 

A V =  V * J ' / a .  ( 5 )  
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The  potential V is the  unique  solution of equation (5) with the  requirement  that 
V (   r )  -$ 0 as Irl +CO and with the  boundary  conditions 

V‘=   V”  uta V’ /  a n = u“a V’la n (6) 

on an  interface between  regions of conductivities U’ and a”. In general,  computing V 
from  equation ( 5 )  is a  rather heavy numerical  procedure.  However, in a  suitable 
symmetry, the  solution of equation (5) becomes  much  easier.  Such  cases  are the 
homogeneous  unbounded  conductor,  a  horizontally layered conductor  and  a spherically 
symmetric  conductor. 

In  biomagnetism we are usually  limited  to  finding the  locations of the  current 
sources on a  macroscopic  length  scale.  Then it is convenient  to  replace J’  by an 
equivalent  current  density JP which  incorporates J ’  and  the effects of microscopic 
changes  in  conductivity  (Tripp 1983). Formally, J P  is defined by equation (3) where 
all quantities  must  now  be  considered  on  the  macroscopic  scale.  In  this  paper we 
always denote  the  source  current by J’  but all our results  remain  valid if J’  is replaced 
by J P .  

3. Fields in an unbounded homogeneous medium 

Suppose  that  the  conductor consists of the whole  space with constant  conductivity U. 

Then  equation (5) is Poisson’s  equation with the  solution 

V ( r )  = -- 
l I v;  * J ’ ( r ’ )  

dv‘ 
45-U G r-r‘j  ( 7 )  

where the  integration is over  a region G containing  the  source J ‘ .  Using the vector 
identity V ’ .   ( J ’ ( r ’ ) I r -  r’1-I) = Ir-r’l-’V’ - J i ( r ’ ) +   J i ( r ’ )  - V‘( l r -  r’1-I) with V’( l r -  
r’1-I) = Ir - r ’ ( -3 ( r  - r’)  and  the  Gauss  theorem we can  transform  equation ( 7 )  to  the form 

V ( r )  =- J’(   r ’ )  - - dv’ 
l I  

r - r ’  
45-U G ( r  - rrI3 (8) 

because  the  surface  integral jaGJ’(r’) lr  - r’1-I * d S  = 0 since J’  = 0 on the  boundary aG 
of G. Equation (8) is a  convenient  formula  for V because it is also  valid  for J ’  which 
is not  differentiable  everywhere. 

We can  also  transform  equation (4) for B. Using  the  identity V ‘  x ( J (  r’)lr - r’l”) = 
Ir - r’I-’V’ x J (   r ’ )  + V ’ (  ( r  - r‘1-I) x J (   r ’ )  and Stokes’ theorem we obtain 

B ( r )  =- 
F,, V ’  x J (   r ’ )  
45- I, / r  - r’/ 

dv’. (9) 

Now, J =   J ’ - u V V  by equation (3), and so V X J = V  X J ’ - (TV  xVV.  Also, since  the 
curl of a  gradient  vanishes, we have 

V ’ x  J ’  
B ( r )  =e I, j q  d v’ (10) 

and, carrying out  the  previous  transform  backwards, we obtain 

B ( r )  =e jG J ’ ( r ‘ )  x- r -  r’ 
Ir - r’I3 du’. (11) 

We see that in the homogeneous space the  total  current in  equation (4) can  be  replaced 
by the  impressed  current J ’ .  In  other  words  the volume  current UE does  not  contribute 
to B in this  case. 
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Next we consider V and B due  to  a  dipolar  point  source. A current  dipole with 
a moment Q is a  concentration of the  impressed  current  to  a  single  point ro: J ’ ( r )  = 
6(  r - ro) Q, where 6 (  r )  is the  Dirac  delta  function.  Equations (8) and (1  1) readily yield 
V and B for  a  dipole in the  homogeneous  space: 

1 r - ro 
4rra Ir - rOl3 

V ( r ) = -  Q-- (12) 

PO r - ro 
B ( r )  =- Q x -  

4rr Ir - rol3‘ (13) 

A current  dipole is a  good  approximation  for  a  small  source viewed from a  remote 
field point: if J ‘  is confined  to a small  region G with ro in G and r is far  from ro ,  
then  equation (11) yields 

B ( r ) = -   J ’ ( r ‘ ) x - d v ’ - -  
r - r ’  r - ro 

P0 Q x -  
Ir - r’I3 4rr Ir- rol3 Po I 4rr G 

(14) 

where Q = jG J ’ ( r ’ )  dv‘. So, B due  to J’  can  be  approximated by the field of the 
current  dipole Q at r, .  A similar  result is valid for V. It can  also  be  shown  that  a 
small  source  in  a  bounded  and  inhomogeneous  conductor can  be approximated by a 
dipole. 

If the  source  current is distributed on a line or  a curve or on a  surface,  equations 
(8) and (1  1) remain  valid if we replace  the volume  density J ’  by a line  or a  surface 
density and  the volume  integral by a line  or a  surface  integral,  respectively. 

4. Fields in an inhomogeneous medium 

Let G be a  bounded  conductor with a piecewise  constant  conductivity U and with 
U = 0 outside G. Further, let G be  divided by surfaces S,,  j = 1,. . . , n, into  subregions 
Gj, j = 1, . , . , n, so that U = uj in each G,. We will derive  useful  representations  for 
B and V in  terms of J ‘  and  the values of V on Si, j = 1,. . . , n, caused by J ‘  in G,. 

First we consider  the  magnetic field. From equations (3) and ( l l ) ,  

B( r )  = - [ J ’ (  r ’ )  - U( r’)V V (   r ‘ ) ]  X - r - r ’  r; I,; Ir - r’I3 dv’ 

= B o ( r ) - -  c U, V V ( r ’ ) x -  dv‘ (15) Po Il r - r ’  
4rr ,=, Ir - rtI3 I,; 

where 

Bo( r )  = - J‘(  r ‘ )  x - d v’ 
Po I r -  r’ 
477 G Ir - r’I3 

(16) 

is the  magnetic  induction  due  to J ‘  in a  homogeneous  space. Using the  identity 
V X ( V V g )  = V V X V g  with V g  = Ir - r’Ip3(r  - r ’ )  and Stokes’  theorem, we obtain 

L V V ( r ’ ) x - d o ’ =   V ( r ’ ) n ( r ’ ) x -  dS, 
Ir - r’I3 

r - r ’   r - r ’  
Ir - rrI3 IaGl 

where n is the  outer  unit  normal of the  surface aG,. This  result,  with  equation (15), 
implies  Geselowitz’  formula  (Geselowitz 1970) 

B ( r ) = B o ( r ) - -  2 (U;-U;’) V ( r ’ ) n ( r ‘ ) x -  dS, (17) Po t7 r - r ’  
4rr j = ,  ( r  - r’I3 I,; 
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for all r not on any  surface S,. Here U,! and U:’ are  the  conductivities on the  inner 
and  outer sides of S,, respectively.  This  result  shows how the volume  currents -uV V 
affect B. Their  contribution is equal  to  the field arising  from  surface  current  distributions 
-(U: - U,!’) V ( r ’ ) n ( r ’ ) ,   r ’  E S, ,  j = 1, . . . , n, in  a  homogeneous  space.  These fictitious 
sources on the  surfaces  are  often called secondary currents. 

Using  Green’s  identity and  boundary  conditions from  equation  (6) it is not difficult 
to  obtain  a  representation  similar  to  equation  (17)  for V (Geselowitz  1967): 

a ( r ) V ( r ) = u , V , ( r ) -  C -1 v ( r ’ ) n ( r ’ ) * -  
n u ! -u ! t  r - r ’  

d SJ (18) 
, = I  4~ S ,  Ir - rtI3 

with r in G but  not on any of the  surfaces S,. Here V, is the  potential given by (8) 
with U = un. 

Equation  (18)  can be  used  to derive  a  surface  integral  equation  for V, which then 
can  be  employed  as  the  starting  point  for  the  numerical  calculation of V. With this  in 
mind, let r approach  a  point S on S, from  inside. It is known  that  the integral  over 
S, in equation  (18) is not  continuous in r as r tends  to S. However, we have the 
following  result  (Vladimirov  1971): if the  integral over S, is denoted by F j ( r ) ,  then 

lim F J ( r )  = - 2 ~ V ( s ) +  F,(s) 
I-S 

with r inside  the  surface S,. This  result, with equation  (18), yields the integral  equation 
for V :  for  each r on S, ,  k = 1, .  . . , n, we have 

ai, + U: 
V ( r ) = o , V , ( r ) -  1 a V ( r ’ ) n ( r ’ ) . -  dS,. (19) 

n U!“ ! ‘  r - r ‘  
2 / = l  4.rr Is, / r  - r’I3 

Equations  (17)  and  (19)  provide  the  means  for  computing V and B for given G and 
J’ .  First, we numerically  solve  equation (19)  for V (Barnard et a1 1967).  Next, we 
obtain V in G from  equation  (18)  and B from  equation  (17).  This  method works well 
for  bounded  homogeneous  conductors.  It is also  applicable in bounded  inhomogeneous 
conductors  provided  that  the  conductivity  steps on the  surfaces Si are not too high. 
The  method  has  been  used in  cardiac  studies with the  body  modelled  to consist of 
homogeneous  parts:  the  lungs  and  the rest of the  body  (Barnard er a1 1967, Cuffin 
and Geselowitz  1977).  It  has  also  been  applied in neuromagnetism with the  head 
modelled  as  a  homogeneous  conductor  (Hamalainen  and Sarvas  1987). 

Next we consider  two  special  cases  where B is much  easier  to  compute:  a spherically 
symmetric conductor and  a horizontally layered  conductor. Suppose now  that G is 
bounded  and spherically  symmetric with respect to some  origin.  Surfaces S, are  then 
concentric  spheres. First we show  that  for  any J’ in G the  radial  compoment E ,  of B 
coincides with that of Bo in  equation  (16)  outside G. From  equation  (17) we have 

E r ( r ) = B o ( r ) - e r - -  C (uj-uj ‘ )  V ( r ’ ) n ( r ‘ ) x - - e r d v t .  F0 Il r - r ’  
4 T j - l  l,, Ir - r‘I3 

(20) 

In the  above integrals the  scalar  triple  product vanishes  because n( r ’ )  = r’/ lr’)  and 
e, = r/lrl .  Therefore  the  integrals in equation (20) vanish,  and  for all r outside G 

E r ( r ) = E o r ( r ) = -   J ’ x - - e r d v ‘ .  :i I, Ir - 43 
r - r ‘  

(21) 

Although  the  other  components of B receive a  contribution  from  the  volume  currents 
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even in the spherically  symmetric  case,  this  contribution is independent of the  conduc- 
tivity profile U = u( r ) ;  below we show  this for  a  dipolar  source  and  the general  case 
follows by superposition. 

Next we derive  a  formula  for B outside  a  spherically  symmetric  conductor  assuming 
that J' is a  current  dipole Q at ro inside G. Outside G the  total  current J = O  and, 
according  to  equation (2),  V x B = O .  The  magnetic field outside G can  then  be 
expressed in terms of a  magnetic  scalar  potential U :  

B ( r )  = - p o V U ( r ) .  (22) 

To find an expression  for U, we  fix r outside G and  consider  a line  integral of V U  
along  the  radius r + re,, 0 s t s CO. Because U vanishes  at infinity, we obtain 

U ( r )  = -loE V U ( r +  te,) * e, dt  

X =Ll B , ( r + t e , ) d t = -  B , ( r + t e , ) . e , d t  
Po 0 Po 1 lX 0 

1 lo x dt  
= - Q x ( r - r o ) ~ e ,  
47r 1 r + re, - pol3 

(23) 

where we have  used equation (13). The last  integral is easy to  compute  and we obtain 

U ( r )  = -- 
l Q x r o . r  
47r F (24) 

where F = a(  ra + r2 - ro * r ) ,  a = r - rO,  a = 141 and r = Irl. Note  that U ( r )  in  equation 
(24), and  hence B outside G, does  not  depend on u = u ( r ) .  Applying  equation (22) 
we obtain  an  expression  for B outside G: 

B ( r ) = - ( F Q x r , - Q x r , . r V F )  PO 
47rF2 (25) 

w i t h V F = ( r " a 2 + a " a . r + 2 a + 2 r ) r - ( a + 2 r + a " a . r ) r o .  Analternativederivation 
of formulae  for U and B outside G was performed by Grynszpan  and Geselowitz 
(1973) and  Ilmoniemi et al (1985). 

Equations (24) and (25) show another  important  property of a  spherical  conductor: 
if the  source  dipole is radial,  then B outside G vanishes. Note  also  that  for  a general 
J' we obtain B outside G by superposing  the fields of single  dipoles given by equation 

Next we consider  a  horizontally  layered  conductor G in the half  space z < 0. 
Because  this is a  limiting  case of a  spherically  symmetric  conductor with the  radius 
tending  to infinity, the  above results and  methods  apply. In particular, B, = Bo, for 
any  impressed  current J ' .  For  a  dipolar  source, only the  horizontal  component of the 
dipole  contributes  to l? outside G, and  the  scalar  potential U for  a  dipole Q at ro is 
equal  to ~ C L g ~ ~ ~ B ~ ~ ( r + t e , ) d t = ( 4 7 r ) " K " Q x a ~ e ,  with K = a ( a + a . e , ) ,  a = r - r o  
and a = 1 0 ) .  Taking  the  gradient yields the  magnetic field 

(25). 

B = -  P O  ( Q x a . e , V K - K e , x Q )  (26) 
4 r K 2  

where V K = ( 2 + a " a . e z ) a + a e z .  
We finish this  section by noting  that  computing V on the  surface of a  spherical or 

a  layered conductor is more  complicated  than  the  calculation of B discussed  above. 
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Furthermore,  radial  sources usually produce  a  non-constant V on the  surface of such 
a  conductor. 

5. The inverse problem 

The  magnetic inverse  problem is to find J’  from  measurements of B outside G. As is 
well known,  the  problem  has no unique  solution.  This is due  to  the  fact  that  there  are 
so-called  magnetically  silent  sources,  which produce no B outside G. Such  a  current 
source  can  always  be  added  to  a  solution of the inverse  problem  without affecting the 
field outside G. 

An example of a  magnetically  silent  source is a  radial  current  dipole in  a  spherically 
symmetric  conductor. From  equation (17) it is not difficult to see  that  an axially 
symmetric  impressed current in  a  cylindrical conductor is silent  as well. If S is a  closed 
surface  in G and J ’  is a  uniform  surface  current  normal  to S, then J ’  is silent. To see 
this,  use equation (17) ,  Stokes’  theorem and  note  that V = 0 because V, in equation 
(18) vanishes  due  to  equation (8) and  Gauss’  theorem. If G is a  bounded  homogeneous 
conductor,  an  impressed  current of the  form J’ = V q ,  with J’  * n = 0 on the  boundary 
of G, is magnetically  silent.  Namely, V =  cp/u is the  potential  for  this  source  because 
it satisfies Poisson’s equation ( 5 )  and  the  boundary  conditions (6). It  follows that 
J = 0 and,  consequently, B = 0. 

The  magnetic  inverse  problem is also  complicated by the  fact that V affects B 
according  to  equation (17). However, if V * J ‘ =  0, then V =  0 and B is given by 
equation (16). In particular,  this is the  case if J’  is a  closed  current loop. For such  a 
loop  the inverse  problem  has  a  unique  solution. 

If G is spherically  symmetric,  then B, does  not  depend on V and  the  magnetic 
inverse  problem  becomes  easier. For  instance,  consider  a vertical  rectangular  plate P 
in a  spherically  symmetric  conductor  and a perpendicular  current  dipole  distribution 
on P. It is not difficult to  show  that this  source is uniquely  determined by B outside 
G. Applied  to  neuromagnetism,  this  model  could  describe  the  sources on the wall of 
a fissure when  the  head is modelled  as  a  spherical  conductor. 

If, in addition  to B, we also  measure V on the  surface of the  conductor,  the inverse 
problem is made easier-at least in principle. For example,  consider  a  bounded 
homogeneous  conductor.  Then  equation (17) yields 

B , ( r ) = B ( r ) + -  V ( r ’ ) n ( r ’ ) x -  
r - r ’  

Ir - r‘l3 
d S  (27) POU 

4 n  I,, 

for all r outside G. So, if we know V on aG and B outside G, we obtain B,, outside 
G, and  can try to find J’ from  equation (16), which  does  not  involve V any  more. On 
the  other  hand,  the  knowledge of V on aG can  be utilised to get additional knowledge 
about J’ .  With Green’s  identity we can  show  that 

1 - V(r’)- - d S  =- J’(r ’ )  . - dv’ = V,( r ) .  (28) 
r - r ’  ‘ 1  477 I,, lr - rq3 

r - r ‘  
( r  - r’I3 477g G 

If V is known on aG, the  above result  yields V, outside G, and  from  equation (28) 
we possibly get additional  information  concerning J‘ .  However,  even  equations (16) 
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and  (28)  together usually do not  determine J' uniquely.  To make  the  solution  unique 
we must add  some  extra  information  to restrict the possible  source  configurations.  For 
a general review of the  inverse  problems  see, for  instance,  Sabatier (1977, 1983) and 
Parker  (1977). 

6. Non-linear inverse  problem  and  the least-squares  search 

If in the  inverse  problem the  unknown  source  can  be  described in terms of a limited 
number of unknown  parameters P I , .  . . , pm E R and  the  solution is unique,  an  appropri- 
ate  least-squares  search is a practical way of solving the respective  inverse  problem. 
The  method  requires,  however,  that we can  solve the  corresponding  forward  problem 
in the given conductor geometry. 

Let us consider  a  typical  situation.  Suppose  that f i i  is the  measured  component of 
B at  point Pi of the  measurement  grid, i = 1, . . . , n, and let B,@) be the  corresponding 
computed field value at P, for given parameters p = (p1,. . . , R". 

We assume  that B ( P )  = ( B , ( P ) ,  . . . , is a  non-linear  function of p ;  the 
linear  case is treated  in  the  next  section. A typical  non-linear  example is an inverse 
problem  where the  unknown  source is a  tangential  current  dipole  in  a  spherical 
conductor  and where B, is measured  outside  the  conductor  (see, e.g., Okada et a1 
1984, Ricci et a1 1985, Sams et a1 1985).  In  this  case the  source is determined by  five 
parameters ( p , , .  . . , p. I 

We also  assume  that every B, contains  some  noise so that B, = b, + v i ,  i = 1, .  . . , n, 
where b, is the correct field value and v i  is a  normally  distributed  error with zero 
mean.  The  errors 7, are possibly  correlated with a  covariance  matrix Q = E[7vT] 
where v = ( vl, . . . , E is the  operator of taking  the  mean  value. 

Suppose first that vl,. . . , 7, are  independent  random variables with zero  mean 
and unit standard  deviation, i.e. each 7, is N ( 0 ,  1)-distributed  or, in other  words, 
Q = I ,  the  identity matrix. We want  to find>he  source p* which  best  explains the 
measurements  in  the  sense  that p = (p1, , . , , Pm)T minimises  the  sum of squares 

- 

A A  

i = l  

Because the  errors in f i ,  are  independent  and have  the  same  noise level, no weight 
factors  are  needed in S ( p ) .  

If Q # 1, we must  replace  equation  (29) by a new weighted  sum.  Decompose Q 
so  that Q = VA2 VT where V is an  orthogonal matrix, A = diag(A, , . . . , A,)  is a  diagonal 
matrix with each A ,  > 0 and A' = AA. The new sum of squares is given by 

where " F ( @ )  = ( F , ( P ) ,  . . . , Fn(p))T= P B ( p ) ,  y = ( y l , .  . . , Y , , ) ~ =  PE, P = VA"VT and 
B = (B, ,  . . , , f i n ) T .  We may  consider y = c +  E as new data with the noiseless field 
values c = (c , ,  . . . , c , ) ~  = P ( b l , .  . . , b,)T and with new noise E = ( E ~ ,  . . . , E , ) ~  = 
P ( v , , .  . . , v,)T. The new errors E ~ , .  . . , E,  are  independent  and N ( 0 ,  1)-distributed, 
because the  covariance matrix of E is the identity  matrix: = E ( P ~ T ~ P )  = 
PE( vvT)P = PQP = I.  Therefore,  the  situation is reduced  back  to  equation  (29)  for 
F ( P )  and y ,  and this  justifies  the  choice of equation (30). 
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So, we must find p^ E R"' which  minimises  the  sum of squares  (30). As assumed, 
F ( p )  is a non-linear  function of p, and we must apply  some numTrica1 minimising 
algorithm,  for  example,  Marquardt's  method  (Nash 1979),  to find p. 

After  finding  the  solution p* we need to know  how  reliable it is, i.e. what is the 
resolution  of our inverse  method.  This  information is given by a  confidence  region 
for y,  or confidence  limits  for  y,,Awhere y = ( yl , . . . , ym)T is the  correct  parameter 
vector  which is only  estimated by p. Next it is shown  how  the  confidence region and 
confidence  limits are  found by linearisation. 

Assume  that p^ is close to y so that  the  linear  approximatjon  can be appliep: 
F ( p )  = F ( y ) + A ( p  - y )  where A is the  Jacobian matrix of F at p :  A ,  = ( a F , / a p , ) ( p ) ,  
i = l , .  . . , n ;  j = 1 , .  . . , m. We assume  that ATA is  a  non-singular  matrix.  Inserting  this 
linear  approximation  into  equation  (30) yields  a quadratic minimising  problem with 
the well known  solution  (Golub  and Van Loan 1983) 

p*= r + ( ~ T ~ ) - ' ~ T ( y - ~ ( y ) ) .  (31) 

Here y - F (  y )  = y - c = E .  We see tha; p* is nymally distributed with mean y and  co- 
variance  matrix (ATA)" because E ( ( @  - ? ) ( p  - y ) = )  = ( A T A ) " A T E ( ~ ~ T ) A ( A T A ) "  = 
(ATA)" since = I.  Therefore,  for  a  solution p*, the  confidence  ellipsoid  for y 
(Silvey 1978) is G ,  = { p :  ( p  - p )  A A(P - p * )  r 2 } .  Here r2 is the  p-percentage  point 
of the xi distribution: P { x i  r2 }  = p % .  This  means  that y is in G, with probability 
p % .  Let ATA = A?v,vT be the  spectral  decomposition of ATA with eigenvalues 
A f  and eigenvectors U,  E R". Then 

" T  T 

and we see that G, is an ellipsoid  in R"' with the  centre p* and  the  half-axes rA L' U , ,  

i = l ,  . . . ,  m. 
Next we consider  the p% copidence  limip  for a  parameter yi, i = 1, .  . . , m. These 

limits are simply the  intervals pi - 6, yi p, +Si, where c S i  > 0 is the maximal  value 
of - y,I attained in G,. The  numbers 6, are easily found by observing  that  they are 
just  half of the edges of the  rectangular  box  containing GP and having  its  faces  parallel 
to  the  coordinate plates, and we obtain 6, = ( u , / A ~ ) ~ ] ~ " ,  where v, = ( u i l ,  . . . , 
These  confidence limits are  used,  for  instance, in Kaukoranta et al (1986). 

7. Linear inverse problem 

We first consider  the  same inverse  problem  as in the  previous  section,  but now the 
function F ( P )  in equation  (30) is linear  in p and we denote F by the matrix A. To 
find p^ we have  to minimise the  quadratic  expression S ( p )  = llAP -y1I2, p E R"', y E R". 

For example, we obtain a linear  inverse  problem, if the  source is  described by a 
few leading  terms of its  multipole  expansion with a fixed origin (see e.g. Karp er a1 
1980), or the  source consists of a  limited number of current  dipoles  with fixed locations. 

First assume  that ATA is non-singular.  Then  the  least-squares  solution,  which 
minimises S ( p ) ,  is given by 

p* = ( A ~ A ) - ' A ~ ~  (33) 

with the  same confidence  region,  equation (32),  and  confidence limits as in the 
non-linear case. 
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If ATA is singular or  almost  singular,  the  solution  to  the minimising  problem is 
not  unique  or very small  changes  in  the  data y may  cause  large  variances in the  solution 
given by equation (33), i.e. the inverse  problem is ill-posed. To analyse  this  situation 
we form  the  singular  value  decomposition  of  A by writing  A = UA VT where U and 
V are  orthogonal n X n and m X m matrices and A is an n X m diagonal  matrix with 
AV = Ais i j ,  A ,  3 h2 3. . .3 A, 3 0. Then  ATA is non-singular if and only if A ,  > 0. 

Suppose  that A ~ A  is singular and A ,  3 . .  .a hk > & + l =  . . . = A ,  = o with 1 S k < m. 
Then  there  are infinitely  many  solutions P which  minimise IIAP -yll ,  and we choose 
p* to be the  one with  minimum  norm.  This p* is the  Moore-Penrose  solution (Golub 
and Van Loan 1983)  given  by 

p*= Val A A  =(a,,. . . , a * k ,  0, .  . . , 0) (34) 

where 6,  = z , /A i ,  i = 1, . . . , k, and z = ( z I ,  . . . , z , ) ~ =  UTy. This  result is easily obtained 
by noting  that U is an  orthogonal  matrix,  and so, for all P E R", we obtain llAP -yj12 = 

If in the  above hk =z 0 or ATA is almost  singular,  i.e. h,  = 0, the  solution p* becomes 
numerically  unstable. To  obtain  a  stable  solution we must  regularise the  problem.  For 
instance, first choose an  appropriate  tolerance S > 0. Then  define  the  regularised 
solution by equation  (34)  where & = ( L , , .  . . , &,) with a l i  = z i / h i  if A i  3 S and 6 ,  = 0 
otherwise.  In  other  words,  this is the  Moore-Penrose  solution if we replace A by the 
truncated  matrix A with A,j = S,hj if hi 3 S, and A,  = 0 otherwise. We easily  see that 
(Y,, with hi 3 S, is normally  distributed  with  variance A T 2 ,  and  therefore,  the  variance 
of the  regularised  solution 6 decreases if S increases. In practice, S should  be  chosen 
so that  the  regularisation  only  causes  a  small  increment  to  the  minimal S(p^) .  

Next we briefly discuss an inverse method  based on a minimum norm estimate of 
J' (Parker 1977, Ilmoniemi and  Hamalainen 1984). Let 9 be  the  linear  function  space 
of  all  impressed  currents. Let these  currents  be  defined  in  a  known set S in G; S is 
a  curve,  a surface  or S = G depending on the  source  in  the  problem.  For  convenience, 
assume  that S is a  surface. We define  a  scalar product  for  any L , ,  L2 E 9 by ( L , ,  L2)  = s s  L , ( r )   L 2 ( r )  dS,  and let IlLll = ( L ,  L),'* be  the  norm of L E  9. 

A measurement g j  at  a  point r j  is a  linear  functional of J ' ,  and therefore,  there is 
a  function L j  E 9 so that 

IIUAVTp-yl12=llAVTP-UTyy)(2~IIAal-~I12. 

g j = / s L j ( r ) . J ' ( r ) d S = ( L J , J ' )  j = l ,  . . . ,  n. (35) 

Often L , ,  . . . , L,  are called  lead  fields. We obtain  them easily if we can- solve the 
forward  problem  for  dipolar  sources.  For  instance, if G is a  sphere  and B j  = BAr,), 
then g j  = p 0 ( 4 ~ ) " j s   J ' ( r )  X ( r ,  - r )  e / \ r J  - , l 3  dS,  with e = rj / \r j l ,   and therefore, 
L j ( r )  = p0(457-'(r j  - r )  X e / l r j  - r13. 

Because equations (35) are all we know  about J ' ,  we estimate J i  by a  solution 
J* E 9 of equations  (35).  The  idea of the  method is to  look  for J* in the  form: 
J* = E;=, wjLj .  Inserting  this  into  equations (35) yields the  linear  equations 

where r j k  = ( L ~ ,  L k ) ,  or  in  matrix  form: E = rW; and  the  solution is W = (W,, . . . , w,lT= 
r-lg. Here r-' exists if  we assume  that L , ,  . . . , L,  are linearly  independent. It is not 
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difficult to  show  that J* is the  orthogonal  projection of J‘ to  the  subspace of .?F spanned 
by L , ,  . . . , L, and,  therefore, J* has  the  minimum  norm  among all  solutions J’  E 9 
of  equations (35). 

For J* to  be  a  reasonable  estimate of J’ ,  it is necessary that  the inverse  problem 
has  a  unique  solution, i.e. B outside G uniquely  determines J’ .  Even in this  situation 
the limited number of measurements  and noise  may  greatly  disturb J*.  

Furthermore,  the  solution W = r-lg may  be  numerically  unstable  and it needs 
regularisation.  The  regularisation  method  proposed  above  works  here  as well. 
However, we add  to it a  statistical  criterion (Parker 1977), which tells us how  much 
regularising is sufficient. 

Let Q = VA2 V’ be  the  covariance matrix of the  errors in g j  as in 0 6 .  We multiply 
the  equation g = I‘w by P = VA” V’ and  obtain  an  equivalent  equation: y = MW with 
y = P 6  and M = P T .  Again, the  covariance matrix of y is the  identity matrix.  Decom- 
pose M so that M = UDUT where D=diag(A,,  . . . , A n ) ,  A , Z . .  . Z A n  > O  and U is 
orthogonal. We write the  solution W in the  form W = Ua with a = D” U’y = 
(a1,. . . , a,)’. The  regularised  solution W *  is defined by W *  = Ua* with a? = a j ,  
j = 1, . . . , k, and af = 0 for j = k +  1, . . . , n. Now we must  decide  how k < n is chosen; 
the  smaller k is, the  more  regularisation we get.  Because W *  no longer solves the 
equation y = MW* exactly, we may consider  the difference y -y* = M (  W - W * )  due  to 
random  errors in yi, i = 1, . . . , n. Therefore,  the misfit Sk = (yi -yT)) ’  = Ily -y*ll* 
can be thought  to be  distributed like ,&k, because  there  are k ‘model  parameters’ 
a t , .  . . , a;. We obtain  the  required  criterion by choosing k so that S, = ro ,5 ,  where 
P { ~ ~ - k ~ r ~ . ~ } = O . 5 .  Note  that s k = I I M ( W - W * ) 1 1 2 = ~ ~ D ( a - n * ) ~ ~ 2 = ~ ~ = k + l  Z; with Z =  

( z l , .  . . , z,)T= u’y. 
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Resume 

Concepts  mathimatiques  et  ilectromagnitiques  de  base  du  probltme  biomagnitique  inverse. 

Les auteurs  prisentent  dans ce travail  une  revue  et  une  nouvelle  approche  des  concepts  mathimatiques  et 
physiques  de  base  du p r o b l h e  biomagnetique  inverse. 11s discutent le problkme  direct a propos  des  milieux 
homogenes  et  htterogenes. 11s prisentent la formule  de  Geselowitz  et  une  equation  de  I’intigrale  de  surface 
pour  traiter le cas  d’un  conducteur  homogene  ilimentaire. 11s discutent  igalement  en  detail les cas  particuliers 
d’un  conducteur B symitrie  sphirique et  d’un  milieu  en  couches  horizontales. La non  uniciti  de la solution 
du  probleme  magnitique  inverse  fait I’objet d’une  discussion,  et les auteurs  itudient les difficultis entraintes 
par la contribution  du  potentiel  electrique  au  champ  magnitique  en  dehors  du  conducteur. Les auteurs 
discutent  egalement  des  methodes  utilisies  en  pratique  pour  risoudre le probleme  inverse,  c’est-a-dire  une 
mithode  de  recherche  par les moindres  carris  pondiris,  avec  limites  de  confiance, et la mithode  de 
I’estimation de  norme  minimale. 

Zusammenfassung 

Grundlegende  mathematische  und  elektromagnetische  Konzepte  des  biomagnetischen  inversen  Problems. 

In  dieser  Arbeit wird ein  Uberblick  gegeben  iiber  die  grundlegenden  mathematischen  und  physikalischen 
Konzepte  des  biomagnetischen  inversen  Problems  und  gleichzeitig  auf  einige  neue  Verfahren  hingewiesen. 
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Das  'Forward'-Problem wird sowohl  fur  homogene  wie  auch  fur  inhomogene  Medien  diskutiert.  Die  Formeln 
von Geselowitz  und  eine Oberflachen-Integralgleichung werden  vorgestellt,  um  eine  stiickweise  homogene 
Leitung  theoretisch zu behandeln.  Die  Spezielfalle  einer  kugelsymmetrischen  Leitung  und  eines  horizontal 
geschichteten  Mediums  werden  ausfiihrlich  diskutiert.  Die  Nicht-Eindeutigkeit  der  Losung  des  magnetischen 
inversen  Problems wird diskutiert  und  die  Schwierigkeit  durch  den Beitrag des  elektrischen  Potentials  zum 
Magnetfeld  auaerhalb  der  Leitung wird untersucht. AIS praktische  Methode zur Losung  des  inversen 
Problems  werden  eine  gewichtete  Fehlerquadratmethode mit Konfidenzintervallen  und  die  Methode  des 
minimalen  Normschatzwertes  diskutiert. 
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