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Markov Random Field: Application Overview

Awate and Whitaker 2006
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Markov Random Field: Application Overview
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Markov Random Field: Application Overview

without spatial MRF prior with spatial MRF prior

gray matter? white matter?
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Bayesian Image Analysis
• Unknown ‘true’ image X

• observed data Y

• ModelM and parameter set θ

Goal: Estimate X from Y based on some objective funciton.
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Review: Markov Chains
Definition 1. A markov chain is a sequence of random variables
X1, X2, X3, . . . with the Markov property that given the present state,
the future and past states are conditionally indepedent.

P (Xn+1|X1, X2, . . . , Xn) = P (Xn+1|xn)

The joint probability of the sequence is given by

P (X) = P (X0)

N∏
n=1

P (Xn|Xn−1)
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Markov Random Fields: Some Definition
Define

• S = {1, . . . ,M} the set of lattice points.

• s ∈ S a site in S

• L = {1, . . . , L} the set of labels

• Xs the random variable at s. Xs = xs ∈ L

• Ns the set of sites neighboring s. Properties of neigh-
boring sites:

– s /∈ Ns

– s ∈ Nt ⇔ t ∈ Ns

• S and neighbor system N together defines a graph
(S,N ) = G.
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Markov Random Fields: Some Definition
Definition. X is called a random field if X = {X1, . . . , XN} is a collection
of random variables defined on the set S, where each Xs takes a value xs in
L. x = {x1, . . . , xN} is called a configuration of the field.

Definition. X is said to be a Markov random field on S with respect to a
neighborhood system N if for all s ∈ S

P (Xs|XS−s) = P (Xs|XNs)

Definition. X is homogeneous if P (Xs|XNs) is independent of the relative
location of site s in S.

Generalization of Markov chain:

• unilateral → bilateral

• 1D → 2D

• time domain → space domain. No natural ordering on image pixels.
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Markov Random Fields: Issues
Advantage of MRF’s

• Can be isotropic or anistropic depending on the definition of neigh-
bor system N .

• Local dependencies

Disadvantages of MRF’s

• difficult to compute P (X) from local dependency P (Xs|XNs)

• Parameter estimation is difficult

Hammersley-Clifford theorem build the relationship between local
properties P (Xs|XNs) and global properties P (X).
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Gibbs Random fields: Definition
Definition.A clique C is a set of points,
which are all neighbors of each other

C1 = {s|s ∈ S}
C2 = {(s, t)|s ∈ Nt, t ∈ Ns}
C3 = . . .



11

Gibbs Random Fields: Definition
Definition. A set of random variable X is said to be a Gibbs
random field (GRF) on S with respect to N if and only if its
configurations obey a Gibbs distribution

P (X) =
1

Z
exp{− 1

T
U(X)}

• U(X) – energy function. Configurations with lower energy are
more probable.

U(X) =
∑
c∈C

Vc(X)

• T – temperature. Sharpness of the distribution.

• Z – normalization constant. Z =
∑

X∈X exp{ 1TU(X)}, X = LN
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GibbsMarkov Equivalence

Theorem.X is an Markov random field on S if and only if X is
a Gibbs field on S with respect to N .

• Gives a method to specify joint probability by specifying the
clique potential Vc(X).

• Different clique potential gives different MRFs.

• Z is still difficult to compute.
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Ising Model

• Two state: L = {−1,+1}

• Clique potential V (Xr, Xs) = −βXrXs

•
U(X) =

∑
c∈C

Vc(X) = −β
∑

(r,s)∈C2

XrXs, P (X) =
1

Z
exp{−U(X)

kT
}

• Conditional distribution at site Xs:

P (Xs|XNs) =
exp{βXs

∑
r∈NsXr}

2 cosh(β
∑

r∈NsXr)

• Aplication: image matting (foreground/background)
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Ising Model

Beta = 0.8 Beta = 0.88 Beta = 1.0

Beta = 1.5 Beta = 2.0 Beta = 0.88. detailed view
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Potts Model
• Multiple state: Xs = xs ∈ L, L = {1, 2, . . . , L}

• 4-neighbor or 8-neighbor system

• V1(Xs = l) = αl, l ∈ L

• V2(Xr, Xs) =

{
β Xr 6= Xs

0 Xr = Xs
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Potts Model example

Beta = 0.88 Beta = 1.2 Beta = 2.0
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Potts Model
β can be different at different di-

rections ⇒ anistropic field.

• βu

• βr

• βd

• βl

βu = βd = 0, βl = βr = 2 βu = βd = 2, βl = βr = 0 βu = βd = 1, βl = 4, βr = 2
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Hierarchical MRF Model

• X ∈ LN is MRF – region configuration.

• P (Ys|Xs) depneds on YNs.

• Given Xs, {s,Ns} has same texture type.
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Simulation of MRFs
Why do we want draw a sample of MRFs (or Gibbs distribution)?

P (X) =
1

Z
exp{−U(X)}

• Compare simulatd image with real image ⇒ Model is good?

• Texture synthesis

• Model verification.

• Monte Carlo integration

Review of Monte Carlo integration. Consider the generic problem
of evaluating the integral

Ef(x) =

∫
X
h(x)f (x)dx

We can use a set of samples (x1, x2, . . . , xM) generated from density
f (x) to approximate above integral by the empirical average

h =
1

M

M∑
m=1

h(xm)
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Simulation of MRFs

• Metropolis sampler. Used when we know P (X) up to a constant

• Gibbs Sampler. Used when we know exactly P (X)
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Metropolis Sampling: Review
Goal: draw samples from some distribution P (X) where P (X) = f (X)/K.

• Start with any initial value X0 satisfying f (X0) > 0.

• Sample a candidate point X∗ from distribution g(X) (proposal distribution).

• Calculate the

α =
P (X∗)

P (Xt−1)
=

f (X∗)

f (Xt−1)

• If α > 1, accept cadidate point and set Xt = X∗. Otherwise accept X∗ with
probability α.

We don’t have to know the constant K!
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Metropolis Sampling of MRFs
Goal: draw samples from Gibbs distribution P (X) = 1

Z exp{−U(X)}.

1. Randomly init X0 satisfying f (X0) > 0 (X is the whole iamge)

2. For s ∈ S do step 3, 4, 5

3. Generate a univariate sample X∗s from proposal probability Q(X∗s |X t−1) (Q can
be uniform distribution), and replace Xs with X∗s to get candidate X∗. X t−1 and
X∗ differs only at Xs.

4. Calculate the

∆U(X∗) = U(X∗)− U(X t−1) = U(X∗s )− U(Xs)

5. If ∆U(X∗) < 0, accept cadidate point and set X t = X∗. Otherwise accept X∗

with probability exp{−∆U(X∗)}.

6. Repeat above steps M times.

The sequence of random fields X t (after burn-in period) is a Markov chain.



23

Gibbs Sampling of MRFs
Goal: draw samples from Gibbs distribution

P (X) = 1
Z exp{−U(X)}.

1. Randomly init X0 satisfying f (X0) > 0 (X
is the whole iamge)

2. For s ∈ S do step 3, 4

3. Compute P (Xs|X t−1) = P (Xs|X t−1
Ns

) and
draw sample X∗s from it.

4. Accept X∗s , i.e. replace Xs with X∗s and
obtain X t.

5. Repeat above steps M times.

The sequence of random fields X t (after burn-
in period) is a Markov chain.
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Gibbs v.s. Metropolis Sampling
Gibbs:

• Always accepted.

• Have to compute P (Xs = l|XNs) for all l ∈ L.

Metropolis:

• Expected acceptance rate is 1/L – low when L is large ⇒ more
burn-in time.

• No need to compute P (Xs = l|XNs) for all l ∈ L. Only compute
U(X∗s |XNs) for candidate X

∗.
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Bayesian Image Analysis
Image Segmentation:

• X ∈ LN : Image labels we’re interested

• Y ∈ RN : noise data (observed image)

Goal: Estimate X from Y .

Image Denoising:

• X ∈ RN : True image intensity.

• Y ∈ RN : noise data (observed image)

Goal: Recover X from Y .

P (X|Y ) ∝ P (X) + P (Y |X)

MRF prior
P (X) = 1

Z expU(X) Conditional likelihood
For Segmenttation:
P (Y |X) =

∑
s∈S P (Ys|Xs = l) = N (µl, σ

2
l )

For denoising:
P (Y |X) =

∑
s∈S P (Ys|Xs = xs) = N (xs, σ

2
l )
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Bayesian Image Segmentation
• Define a model.

P (X) =
1

Z
exp{U(X)}

P (Y |X) =
∑
s∈S

P (Ys|Xs = l) = N (µl, σ
2
l )

• Formulation of objective function. Optimal Criteria.

• Search solution in the admissible space.
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Bayesian Risk
• Bayesian Risk is defined as

R(X∗) =

∫
X∈X

C(X,X∗)P (X|Y )dX

• C(X,X∗): cost function. X : true value. X∗: estimated value.

– C(X,X∗) = ||X −X∗||2 ⇒ X∗ =
∫
X∈X P (X|Y )dX (Posterior mean)

– C(X,X∗) =

{
0 ||X −X∗|| ≤ δ
1 otherwise

⇒ X∗ = argmaxX∈XP (X|Y ) =

argmaxX∈X (P (X) + P (Y |X)). This is mode of posterior.
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MRFMAP: Case Study

Image Segmentation. Two classes L = {−1, 1}

• Prior is Ising model

– P (X) = 1
Z exp{U(X)}, U(X) = −β

∑
(r,s)∈C2XrXs. Assume T and K is

1.

– P (Xs|XNs) =
exp{βXs

∑
r∈NsXr}

2 cosh(β
∑
r∈NsXr)

• Conditional likelihood P (Y |X) =
∏

s∈S P (Ys|Xs), P (Ys|Xs = l) = N (µl, σ
2
l )

• objective function:

logP (X|Y ) ∝ logP (X) + logP (Y |X)

= −β
∑

(r,s)∈C2

XrXs − log(Z) +
∑
s∈S

(Ys − µl)2

2σ2l
− log(σl) + const

• Combinatorial optimization problem. NP hard.
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Posterior Optimization
(Approximation) Optimization method:

• Iterated Conditional Modes

• Simulated Annealing

• Graph-cuts

Strategy:

• constrained minimization⇒ unconstrained minimization (Lagrange
multiplier).

• discrete labels ⇒ continuous labels (Relaxation labeling).
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ICM
1. Init X by maximum likelihood X0 = argmaxX∈XP (Y |X)

2. For s ∈ S, update Xs by

X t+1
s = argmaxXs∈L logP (Xs|X t

Ns, Ys).

For the Ising-Gaussian case, this is

X t+1
s = argmaxXs∈L logP (Xs|XNs) + logP (Ys|Xs)

= argminXs∈L

−βXs

∑
r∈Ns

X t
r +

(Ys − µl)2

2σ2
+ log(σl)

 .

Note µl and σl is function ofXs, and log(Zs) = log(2 cosh(β
∑

r∈NsX
t
r)) is not a function

of Xs.

3. Do above step for all s ∈ S.

4. Repeat 2 and 3 until converge.
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ICM cont.

• Greddy algorithm ⇒ local minimum.

• Sensitive to initialization.

• Quick convergence.



32

Simulated Annealing

local min

global min

P(downhill)
P(uphill)

• Not always downhill moving.

• Global minimum with enough
scan.
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Simulated Annealing
• Assuming Ising+Gaussian model

P (X|Y ) ∝ P (X) · P (Y |X)

=
1

Z
exp{β

∑
(r,s)∈C2

XrXs} ·
∏
s∈S

exp

{
−(Xs − µl(Xs))

2

2σ2l (Xs)
− log(

√
2πσl(Xs))

}
=

1

ZP
exp{−UP (X|Y )}

UP (X|Y ) = −β
∑

(r,s)∈C2

XrXs +
(Xs − µl(Xs))

2

2σ2l (Xs)
+
√
2πσl(Xs)

Posterior distribution P (X|Y ) is also Gibbs.
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Simulated Annealing cont.
Goal: Find argmaxX∈XP (X|Y )

• Introduce temperature T :

P (X|Y ) =
1

ZP
exp {UP (X|Y )} ⇒ P (X|Y ) =

1

ZP
exp

{
UP (X|Y )

T

}
1. Init with X0 and a high temperature T .

2. Draw samples form P (X|Y ) by Gibbs Sampling or Metropolis Sampling (by
sample from P (Xs|Ys),∀s ∈ S.

3. Decrease T and repeat step 2.

4. Repeat step 2 and 3 until T is low enough.

Why this works?
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Energy minimization for Segmentation

Boykov et. al. 2006
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Graph Cuts for Ising Model
• Different with Normalized Cuts.

• For two class labeling problem, find the global minimum of

logP (X|Y ) =
∑
s∈S

λsXs +
∑

(r,s)∈C2

β(r,s)(XsXr + (1−Xs)(1−Xr)),

where λs = logP (Ys|Xs = 1)/P (YS|Ys = 0)).

• Define a graph G = (V , E). V = {S, u, t}

cws =

{
λs λs > 0
−λs λs < 0

, csr = β(s,r)

• Define partition B = {u}
⋃
{s : Xs = 1}, W = {t}

⋃
{s : Xs = 0} and cut

C(X) =
∑

s∈B
∑

r∈W crs.

• It can be proved C(x) = logP (X|Y )+const. In words, finding a min-cut is equivalent
to find the minimum of posterior P (X|Y ).

• Ford-Fulkerson algorithm and Push-Relabeling method can be used to find such a cut
quickly.

Boykov ICCV, 2005
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Graph Cuts for MultiLabeling

• Convert the multi-labeling problem to 2-labeling problem by α − β swap
and α expansion.

• Approximation method, but with strong sense of local minima.

• Answer questions like: if results is not good, is that due to bad modeling
or bad optimization algorithm?

From Left 1. Initial image. 2. standard move (ICM), 3. strong moves of alphabeta swap. 4. strong moves of alpha expansion. (Boykov 2002).
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Graph Cuts for MultiLabeling

• For label {α, β} ∈ L

– Find X̂ = argminE(X ′) among X ′ within one α− β swap of X.

– If E(X̂ < E(X), accept X̂

• Repeat above step for all pair of labels {α, β}.
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Graph Cuts Pros and Cons
Pros:

• Break the multi-cut problem to a sequence
of binary s− t cuts by α− β swap and α
expansion.

• Approximation method, but with strong
sense of local minima.

• Easy to add hard constraints.

• Answer questions like: if results is not
good, is that due to bad modeling or bad
optimization algorithm?

• Parallel algorithm⇒ Push-Relabeling al-
gorithm.

Cons:

• minimize boundary ⇒ tends to fail for
structures that are not blob shape, like
vessels,

Vessels and aneurism. (kolmogorov, ICCV 2006)
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MRF Parameter EstimationMRF Parameter Estimation
• Correct model and correct parameters ⇒ good result.

• Correct model, and incorrect parameters ⇒ bad result.
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MRF Parameter Estimation
Problem 1:

Given data X ∼MRF , we assume modelM with unknown param-
eter set θ.

Goal: Estimate θ.

Problem 2:

Given noised data Y , we assume modelM with unknown parameter
set θ.

Goal: Estimate θ and hidden MRF X simultaneously.
Problem 2 is significantly harder and for now we focus on problem 1.

Given an image shown on the right and suppose we
know it is generated from Ising model

P (X) =
1

Z
exp{−β

∑
(r,s)∈C2

XrXs}.

Question: what is the is best estimation of β?
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MRF Parameter Estimation

• Least square estimation

• Pseudo-likelihood

• Coding method
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Least Square Estimation
For Ising model,

• U(X) = −β
∑

(r,s)∈C2XrXs, P (X) = 1
Z exp{−U(X)}, P (Xs|XNs) =

exp{βXs
∑
r∈NsXr}

2 cosh(β
∑
r∈NsXr)

• The ratio of observed states

log

(
P (Xs = 1|XNs)
P (Xs = 0|XNs)

)
= 2β

∑
r∈Ns

Xr

• For each set of neighboring pixel value Ns, we compute

– The observed rate of log
(
P (Xs=1|XNs)
P (Xs=0|XNs)

)
– The value of

∑
r∈NsXr.

• We have a est of over-determined linear equations and β can be solved with standard least
square method.

• Easy implementation.
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Pseudolikelihood

• Review ML estimation.

• ML estimation of θ: θ = argmaxP (X ; θ) = argmax 1
Z(θ) exp{U(X ; θ)}. Intractable

Z(θ)

• Pseudo-likelihood:
PL(X) =

∏
s∈S

P (Xs|XNs)

does not have Z(θ) anymore.

• Solve θ by standard method, ∂ lnPL(X;θ)
∂θ = 0

• For full Bayesian, if we know P (θ), the estimation is

θ̂ = arg maxP (θ|X) ∝ P (θ) · P (X|θ)
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Least Square Estimation
For Ising model,

• U(X) = −β
∑

(r,s)∈C2XrXs, P (X) = 1
Z exp{−U(X)}, P (Xs|XNs) =

exp{βXs
∑
r∈NsXr}

2 cosh(β
∑
r∈NsXr)

• The ratio of observed states

log

(
P (Xs = 1|XNs)
P (Xs = 0|XNs)

)
= 2β

∑
r∈Ns

Xr

• For each set of neighboring pixel value Ns, we compute

– The observed rate of log
(
P (Xs=1|XNs)
P (Xs=0|XNs)

)
– The value of

∑
r∈NsXr.

• We have a est of over-determined linear equations and β can be solved with standard least
square method.

• Easy implementation.




