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Abstract

Kernel trick is a powerful tool being used for solving complex pattern classifica-
tion problem. As long as a linear feature extraction algorithm can be expressed
exclusively by dot-products, it can be extended to non-linear version by combining
kernel method. In this paper, we present such an improved iterative algorithm used
for linear discriminant analysis. By mapping data onto high dimensional feature
space suing kernel function, we make data linearly separable and run iterative LDA
there. Experiments with minimum distance classifier and nearest neighbor classifier
show that our improved algorithm has a better performance than traditional Fisher
discriminant and standard iterative LDA.
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1 Introduction

Subspace methods, such as principal component analysis (PCA) and linear
discriminant analysis (LDA), have been widely employed for dimension re-
duction and feature extraction (Moghaddam , 2002; Yang , 2002; Belhumeur
, 1997). PCA aims to find a subspace which maximize covariance and mini-
mize reconstruction errors (Moghaddam and Pentland, 1997). Since it treats
all samples as belonging to one class, PCA does not exploit the class infor-
mation of samples. As a result, some unwanted variance(for example, some
changes in lighting, facial expressions and viewing points) may be retained.
LDA finds a subspace that has a minimal within-class scatter and maximal
between-class scatter. One of the differences between PCA and LDA is the
former gets orthogonal discriminant vectors while the latter does not. To get
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orthogonal discriminant vectors, Guo et al. (2003) proposed an iterative al-
gorithm that finds optimal linear discriminant vectors in global sense. All
the vectors obtained by this algorithm are subject to orthogonal constraint:
Q/JZTQ/Jj =0Viz#j 4,7 =1,..r. However, due to its linear transformation
characteristic, LDA fails to deal with nonlinear problems, which may be more
often confronted in real world. In this paper, we generalize Guo’s iterative
algorithm to nonlinear situations and present kernel-based optimal iterative
discrminant analysis (KOIDA) This is achieved by firstly mapping the sam-
ples non-linearly to high dimensional feature space F, and computing Guo’s
linear discriminant there, thus implicitly yielding a non-linear projection in
input space.

The basic idea behind the kernel trick is that a non-linear decision surface can
be exactly the same as a linear decision surface in a high dimensional space.
For example, we can get a quadratic discriminant in coordinates(xy, z3) by
constructing a linear discriminant in a 5-dimentional space with coordinates
(71, T2, 23, 1179, v3). Theoretically speaking, any non-linear decision surface
can be transformed into a linear one in another feature space. In practice,
however, the extremely large, possibly infinite dimensionality of the feature
space often makes this explicit mapping impossible. The kernel trick was ini-
tially proposed in Support Vector Machines to address the above “dimension
curve” problem (see Burges , 1998; Osuna , 1997). Instead of mapping the
data explicitly, it seek a formulation of the original algorithm using only dot-
products (¢(x)-¢(y)) of the data. The kernel trick then computes dot-products
of samples in feature space by using kernel function in input space. As long as
any feature extraction algorithm can be expressed in terms of dot-products,
the kernel method enable us to construct its non-linear variant without ever
mapping explicitly to feature space. Scholkopf (1998) extended the classical
PCA to Kernel Principal Component Analysis (KPCA). Mika et al. (1999),
Baudat et al. (2000), Roth and Steinhage (2000) show that the same proce-
dure can be applied to Fisher discriminant analysis, This article shows that
it is possible to formulate Guo’s optimal iterative linear discriminant analysis
exclusively in terms of dot-products. Thus, a nonlinear version of this iterative
algorithm can be constructed using kernel method. We call our version of the
algorithm Kernel Optimal Iterative Discriminant Analysis (KOIDA).

The following section will firstly give a short review of optimal iterative dis-
criminant algorithm, then formulate its main steps in a way that uses only
dot-products. This section forms the basis for section 3, which presents the
proposed kernel-based KOIDA algorithm. Section 4 gives experimental results.
Conclusions are drawn in Section 5.



2 OIDA AND ITS VARIANT IN FEATURE SPACE

In order to get more than one linear discriminant vectors, Foley and Sammon
compute each vectors step by step based on generalized Fisher criterion in
the orthogonal complementary space of the subspace spanned by the discrim-
inant vectors calculated before(Guo et al., 2003). Yet the discriminant sets
obtained in this way only maximize generalized Fisher criterion in local sense.
Guo’s iterative algorithm is able to get discriminant sets in the sense of global
optimality.

2.1 Optimal Iterative Discriminant Analysis

In a C-class problem, let wy, . .., wc be C known patterns classes, and x4, ..., zn
be the set of n-dimensional samples. The sample number of the [th class is NV,
, thus Zlczl N; =N . Let Sy, S,,, S; be the between-class scatter, the within-
class scatter and the population scatter. Then Fisher’s linear discriminant is
given by the vector ¢ which maximizes

_PTSy

TP = 78,

(1)

When more than one discriminant vector are desired, we can use generalized
Fisher criterion
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where W = (11,9, ...,1,), and 1 is the number of discriminant vectors.
Instead of trying to maximize J(W) directly, Guo shows it is equivalent to
solving the eigenvalue problem of S, — A\¢S,, in an iterative way.

Theorem 1 Suppose A is a real symmetric matriz of n order, B is a positive-
definite matrix of n order, then
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if and only if
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where ;= 0,0 # j,i,j = 1,..,7

Theorem 2 Under the assumption of Theorem 1, it holds that

(1) X < )Xo if and only if

s (> 0 (A=XB)y) >0
Y, ;=0

||7¢’z|| =1
(2) A > Ao if and only if

max (> v (A=XB)iy) < 0
Y =0

[l = 1

Thus, we can make the first r eigenvalues of (S, — AS;) be zero (here S, is
replaced by S;) by adjusting the value of A at each iteration. Since it has been
proved that the algorithm converges to theoretical solution, the errors of the
iterative procedure would go below a given threshold after finite steps. Then,
the first r eigenvectors of (S, — AS;) can maximize J(¥). One can refer to Guo
et al. (2003) for the proof procedure of the above theorems.



2.2 Optimal Iterative Discriminant Analysis In Feature Space

For most real-world data such as face images, a linear discriminant is not
complex enough. Neither Fisher discriminant nor OIDA is able to deal with
data that cannot be linearly separated. Here we extend OIDA to non-linear
problems by implicitly mapping the data non-linearly into feature space F'.

Let ¢ be a non-linear mapping to some F and S/, SE. SF be the between-
class scatter, within-class scatter and population scatter in feature space F'. To
generalize OIDA to non-linear case we need to formulate it in a way that uses
exclusively dot-product. Therefore, consider an expression of dot-products in
feature space F' given by the following kernel function

kij = k(xi,%5) = ¢ (x:)p(x;) (3)

For known classes p and ¢, this kernel function can be expressed as

(Kij)pg = ¢T(Xpi)¢(xqj)

where x,,; is the element ¢ of the class p. Then defining a N x N matrix K by

For computation simplicity, we also define the N x N block diagonal matrix

W=(W,) I=1..,C

where W, is V; X N; with elements all equal to 1/N.

Now in feature space F', the main step of OIDA is to solve the eigenvalue
problem

(ST~ ASP)v = Av (4)

According to the theory of reproducing kernels we know that any solution



v € F'lies in the span of all training samples in F'. So we can find an expansion
for v in the form

V= Zp 1 Z O‘pq¢ Xpq) (5)
where a,, is the coeflicients of ¢(x,,).

Then in appendix, eq.(4) can be formulated to the following quotient:

o’ (y KWK — 2KK)a ©)
aTKa

A=
a is an coefficient vector with elements oy, p=1,...,C, ¢=1,...,N,.

Note eq.(6) uses only dot-products of samples in F' space, which can be com-
puted by the samples in input space without having to carry out the map ¢.
To solve the eigenvalue problem of eq.(6), we decompose K in the following
form

K=PAP'

where A is the diagonal matrix of non-zero eigenvalues of K and P is the
matrix of normalized eigenvectors associated to A, then we get

L(AP"a)"PTWP(AP ') — 2(AP'a)" (AP «)
oTPAP o

A:

Let 3 = AP a, we get

_ NB'PTWPB - R8T
BTATS

This equation is equivalent to

1, Ao
FAPTWP — )5 (7)

A= (%

Thus the solution of eq.(6) can be found by solving the eigenvalue problem of
eq.(7). For a given (3 there exists at least one « satisfying eq.(6) in the form

a=PA '3 (8)



Because discriminant vectors v must be normalized in F', their corresponding

« are divided by vVaTKa, as derived by Baudat et al. (2000).

3 KERNEL-BASED OIDA ALGORITHM

After the main step of OIDA in feature space are expressed by dot-products,
we present kernel-based KOIDA algorithm as follows:

(1) Since m‘Iff;LxJ(\IJ) € [0,1], let L=0, R=1 and A = (L+ R)/2 = 0.5. By
solving eq.(7) we get the first r eigenvalues of (Sf" — \S") and vectors 3, ...53,.
Let ¢ = )\1 + ...+ )\r-

If e > 0, then A < Ag holds according to theorem 2. Thus let L=\, R=R,; if
e < 0, then A > )y, holds according to theorem 2, let L=L, R=\. After each
iteration finishes, it holds that |A — Ag| < |a — b|/2.

(2) Repeat step (1) until |a — b|] < ¢, where § is a given small positive tolerance.
At last, |\ — Ag| < 6, then the iteration procedure finishes. The coefficient
vectors oy, ...« can be derived from f,...0, by eq.(8).

For any test samples z , the projections of ¢(z) on r optimal discriminant in
feature space F' are derived by

T N Np 1

Vi p=1 Zqﬁl Oéqu‘(qu, Z)
T N N,

v p=1 Zqil O‘;qk(quv Z)

where v; denotes the ith projection vector, and if we let o be the ith coefficient
vector, then afoq denotes its element associated with the gth sample in class p.

Eigenvalue=0.608 Eigenvalue=0.520 Eigenvalue=0.331

Fig. 1. 2D toy examples. Gray level denotes feature values and contour lines depict
constant features. Note the three major eigenvectors are enough to classify four
clusters.



4 EXPERIMENTS

We firstly use a simple toy example to illustrate how KOIDA works, In fig-
ure 1, it is shown that an artificial 2D-problem of 4 classes was solved using
KOIDA with a Gaussian kernel and ¢ = 0.7. From left to right are the fea-
tures obtained by the first three discriminant vectors in order of decreasing
eigenvalue size. The features are indicated by gray level and identical feature
values are expressed by contour lines. Because discriminant vectors lie in a
high dimensional space, they cannot be drawn on the figure. We see although
kernel trick can yield more than C non-zero eigenvalues, in this example, how-
ever, (C' — 1) eigenvectors are sufficient for solving the problem.

To draw a comparison between our KOIDA and other algorithms, we adopted
some of the datasets that were used in Mika et al. (1999). These datasets come
from UCI, DELVE and STATLOG benchmark repositories(except for banana),
and include both artificial and real world data, Mika et al. (1999) evaluate his
two-class Kernel Fisher Discriminant on these datasets, while without loss of
generality, multi-class feature extraction algorithms combined with a minimum
distance classifier can be evaluated on them. In the experiment we chose 200
training samples and 200 test samples. three feature algorithms were selected
and tested. They were traditional Fisher discriminant analysis (FDA), Guo’s
optimal iterative discriminant analysis (OIDA), and our kernel-based optimal
iterative discriminant analysis (KOIDA). Their recognition rates are listed
in table 1, where the data in the last column (KFD) come from Mika et al.
(1999) experimental results and demonstrate the performance of Kernel Fisher
Discriminant.

Table 1

Comparison between KOIDA and other algorithms on artificial and real world
datasets

Fisher ~OIDA KOIDA KFD
banana 47.00% 14.00% 10.75% 10.8%
thyroid 12.00% 7.33%  4.27%  4.2%
titanic  22.55% 22.15% 21.80% 23.2%

In the last experiment we test these methods on a widely used pattern recog-
nition benchmark database. As face recognition is an active area in pattern
recognition and also a tough problem, the ORL face dataset was adopted in
our experiments. This dataset include forty distinct subjects and each sub-
ject has ten images with resolution of 112 x 92. All the images were taken
against a dark homogeneous background with the subjects in an upright,
frontal position. The variation in scale is up to 10%. The dataset are available
at http://www.uk.research.att.com/facedatabase.html. From all the ten sam-



Table 2
Comparison of several feature extraction algorithms on face patterns

KOIDA
Fisher OIDA . . Polynomial Polynomial Polynomial .
Sigmoid d—2 d=3 dei Gaussian
MD&7x6  10/95.0% 20/90.0% 19/90.5% 8/96.0% 7/96.5% 7/96.5% 6/97.0%
NN&Tx6 7/96.5% 14/93.0% 11/94.5% 8/96.0% 6/97.0% 7/96.5% 6/97.0%
MD&14x12 56/72.0% 21/89.5% 14/93.0% 11/94.5% 11/94.5% 11/94.5%  10/95.0%
NN&14x12  54/73.0% 19/90.5% 12/94.0% 11/94.5% 11/94.5% 11/94.5%  9/95.5%

ples in each class, we extracted five of them as training samples and the left as
test samples, so there are 200 training patterns and test patterns respectively.

All the sample images were firstly sub-sampled to the resolution of 7 x 6 and
14 x 12. Then the features were obtained by lexicographic ordering of the
pixel elements, yielding input vectors in R*? or R'®® space. In general, class
separability relies not only on the distribution of samples but also on the
classifier to be used. Here two simple but persuasive distance-based classifiers
were adopted: MD is the minimum distance classifier, and NN is the nearest
neighbor classifier. Another factor that has influence on recognition rate is the
number of projection vectors. In each combination of feature extraction algo-
rithm and classifier, all possible numbers of projection vectors were considered
before we chose the best as final performance of that combination.

Since the selection of optimal kernel and its associated parameters remains an
“engineering problem”, we tried different kernels available, including Gaussian
RBF, k(x,y) = exp(—||(z—y)?||/20?), polynomial kernel, k(x,y) = (1+x- y),
d = 2,3,4, and sigmoid kernel, k(x,y) = tanh(ax- y —b). All the kernel func-
tions fulfill the Mercer’s theorem, and their parameters were fine-tuned for
best performance. Both the training samples and test samples were projected
onto the eigenvector bases (using eq.(9)) to obtain the non-linear discriminant
features, which were used in MD and NN classifier respectively. Table 2 sum-
marizes our findings. To each combination of feature extraction algorithm and
classifier we give error classification numbers and recognition rates.

Form the experiment results we have the following conclusions:
(1) When the dimension of input space is relatively low (7 x 6 = 42), the

performance of OIDA is not better in comparison with traditional Fisher cri-
terion, while its kernel-based variant KOIDA has a slightly higher recognition



rate than Fisher criterion, except for sigmoid kernel and polynomials of degree
two.

(2) When the dimension of input space is high (14 x 12 = 168), the perfor-
mance of Fisher criterion decreases dramatically, OIDA is better than Fisher,
and KIODA are the best among the three method, whether the classifier is
MD or NN.

(3) Among all the classical kernel functions we have used, Gaussian kernel is
the best for classification. The second is polynomial kernel.

(4) All the algorithms work better in 7 x 6 than in 14 x 12. This is probably
because the dimensionality of 7 x 6 is 42, which is close to 39, the optimal
dimensionality of 40-class problem.

5 Conclusions

A kernel based optimal iterative linear discriminant analysis was given. This
is done by formulating the linear transformation in dot-products and then ex-
pressing them in kernel functions. Experiments were conducted on our method
and several other algorithms and indicated its good performance.

6 Appendix

In order to formulate eq.(4) with only dot-products, we multiply eq.(4) by
¢ (xij)

¢ (xi;)Sp v — Ao (xi5)S{ v = Ao (x55)v (10)
Because
1 c - -
S, = N > N, (11)

Where ¢; is the mean of samples in class [

From eq.(5) and eq.(11) we get

o' (xi5)Spv = % Zg?:l Zflvzpl Qpg X
S 2R 0T (xi)o (k)] [:] [ AL 67 (xu) ()]

10



For all samples j in all class i, we obtain

o' (x11) .
Siv = NKWKa (12)
¢T(XCNC)
Because

Zl 1 Zk 1 (xik)e" (xuk) (13)

From eq.(5) and eq.(13) we can get
Moo (xi)SFv = 2 55| 507 agex
PRI {QbT(Xij)gb(Xlk‘)] [ﬁbT(XZk)Cb(qu)]

Thus

¢T(X11) N
Ao | ... Sfv = NOKK(M (14)

¢T(XCNC)

According to eq.(12) and eq.(14), it holds that

¢ (xone) ¢ (xone) (15)
= +KWKo — 2KKa
Ao (xi)v = )‘Z p=1 Z O‘pqq5 (i) (%pq)
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therefore

o' (x11)

AMoT(xiy,) | v=AKa (16)

¢T (XCNC>

From eq.(15) and eq.(16) there exits

1 A
KWKo - NOKKa = \Ka
That is . \
Vo @ (KWK — 2 KK)a
oaKa
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