Filtering in the Fourier Domain

Ross Whitaker SCI Institute, School of Computing University of Utah

Fourier Filtering

- Low-pass filtering
- High-pass filtering
- Band-pass filtering
- Sampling and aliasing
- Tomography
- Optimal filtering and match filters

Some Identities to Remember

Fourier Spectrum

Fourier Spectrum-Rotation

Univ of Utah, CS6640 2009

Phase vs Spectrum

lmage

Reconstruction from phase map

Reconstruction from spectrum

Low-Pass Filter

- Reduce/eliminate high frequencies
- Applications
 - Noise reduction
 - uncorrelated noise is broad band
 - Images have sprectrum that focus on low frequencies

VIIIV UL VLAII, VOUUTU AVUŠ

Ideal LP Filter - Box, Rect

Extending Filters to 20 (or higher)

Two options

- Separable
 - · H(s) -> H(u)H(v)
 - · Easy, analysis

- $H(s) \rightarrow H((u^2 + v^2)^{1/2})$
- Rotationally invariant

Ideal LP Filter - Box, Rect

Ideal Low-Pass Rectangle With Cutoff of 2/3

Ideal LP - 1/3

Ideal LP - 2/3

Butterworth Filter

Lowpass filters. D_0 is the cutoff frequency and n is the order of the Butterworth filter.

Ideal	Butterworth	Gaussian
$H(u, v) = \begin{cases} 1 & \text{if } D(u, v) \le D_0 \\ 0 & \text{if } D(u, v) > D_0 \end{cases}$	$H(u,v) = \frac{1}{1 + [D(u,v)/D_0]^{2n}}$	$H(u, v) = e^{-D^2(u, v)/2D_0^2}$

Control of cutoff and slope Can control ringing

Butterworth - 1/3

Butterworth vs Ideal LP

Butterworth - 2/3

Gaussian LP Filtering

High Pass Filtering

- HP = 1 LP
 - All the same filters as HP apply
- Applications
 - Visualization of high-freq data (accentuate)
- High boost filtering
 - -HB = (1-a) + a(1-LP) = 1-a*LP

High-Pass Filters

FIGURE 4.52 Top row: Perspective plot, image representation, and cross section of a typical ideal highpass filter. Middle and bottom rows: The same sequence for typical Butterworth and Gaussian highpass filters.

High-Pass Filters in Spatial Domain

FIGURE 4.53 Spatial representation of typical (a) ideal, (b) Butterworth, and (c) Gaussian frequency domain highpass filters, and corresponding intensity profiles through their centers.

High-Pass Filtering with IHPF

a b c

FIGURE 4.54 Results of highpass filtering the image in Fig. 4.41(a) using an IHPF with $D_0 = 30, 60, \text{ and } 160.$

BHPF

a b c

FIGURE 4.55 Results of highpass filtering the image in Fig. 4.41(a) using a BHPF of order 2 with $D_0 = 30, 60$, and 160, corresponding to the circles in Fig. 4.41(b). These results are much smoother than those obtained with an IHPF.

GHPF

a b c

FIGURE 4.56 Results of highpass filtering the image in Fig. 4.41(a) using a GHPF with $D_0 = 30, 60$, and 160, corresponding to the circles in Fig. 4.41(b). Compare with Figs. 4.54 and 4.55.

HP, HB, HE

Univ of Utah, CS6640 2009

High Boost with GLPF

High-Boost Filtering

Band-Pass Filters

Shift LP filter in Fourier domain by convolution with delta

Typically 2-3 parameters

- -Width
- -Slope
- -Band value

Band Pass - Two Dimensions

- Two strategies
 - Rotate
 - · Radially symmetric
 - Translate in 20
 - · Oriented filters

- Note:
 - Convolution with delta-pair in FD is multiplication with cosine in spatial domain

Band Bass Filtering

Radial Band Pass/Reject

	Ideal	Butterworth	Gaussian
$H(u,v) = \begin{cases} 0\\ 1 \end{cases}$	if $D_0 - \frac{W}{2} \le D \le D_0 + \frac{W}{2}$ otherwise	$H(u, v) = \frac{1}{1 + \left[\frac{DW}{D^2 - D_0^2}\right]^{2n}}$	$H(u, v) = 1 - e^{-\left[\frac{D^2 - D_0^2}{DW}\right]^2}$

Band Reject Filtering

Band Reject Filtering

Band Reject Filtering

Discrete Sampling and Aliasing

- Digital signals and images are discrete representations of the real world
 - Which is continuous
- What happens to signals/images when we sample them?
 - Can we quantify the effects?
 - Can we understand the artifacts and can we limit them?
 - Can we reconstruct the original image from the discrete data?

A Mathematical Model of Discrete Samples

Pelta functional

A Mathematical Model of Discrete Samples

Goal

 To be able to do a continuous Fourier transform on a signal before and after sampling

Discrete signal

$$f_k$$
 $k = 0, \pm 1, \dots$

Samples from continuous function

$$f_k = f(k\Delta T)$$

Representation as a function of t
• Multiplication of f(t) with Shah

$$\tilde{f}(t) = f(t)s_{\Delta T}(t) = \sum_{k=-\infty}^{\infty} f_k \delta(t - k\Delta T)$$

Fourier Series of A Shah Functional

$$s(t) = \sum_{k=-\infty}^{\infty} \delta(t - k\Delta T)$$

$$S(u) = \frac{1}{\Delta T} \sum_{k=-\infty}^{\infty} \delta(t - \frac{k}{\Delta T})$$

Fourier Transform of A Discrete Sampling

$$\tilde{f}(t) = f(t)s(t)$$
 \leftarrow $\tilde{F}(u) = F(u) * S(u)$

Fourier Transform of A Discrete Sampling

Frequencies get mixed. The original signal is not recoverable.

$$\tilde{F}(u) = F(u) * S(u)$$

What if F(u) is Narrower in the Fourier Domain?

- No aliasing!
- How could we recover the original signal?

What Comes Out of This Model

- Sampling criterion for complete recovery
- · An understanding of the effects of sampling
 - Aliasing and how to avoid it
- Reconstruction of signals from discrete samples

Shannon Sampling Theorem

Assuming a signal that is band limited:

$$f(t) \longleftarrow F(u)$$
 $|F(u)| = 0 \ \forall \ |u| > B$

· Given set of samples from that signal

$$f_k = f(k\Delta T) \qquad \Delta T \le \frac{1}{2B}$$

- Samples can be used to generate the original signal
 - Samples and continuous signal are equivalent

Sampling Theorem

- Quantifies the amount of information in a signal
 - Discrete signal contains limited frequencies
 - Band-limited signals contain no more information then their discrete equivalents
- Reconstruction by cutting away the repeated signals in the Fourier domain
 - Convolution with sinc function in space/time

Reconstruction

Convolution with sinc function

$$f(t) = \tilde{f}(t) * \mathbb{F}^{-1} \left[\operatorname{rect} \left(\frac{\mathbf{u}}{\Delta \mathbf{T}} \right) \right]$$
$$= \left(\sum_{k} f_{k} \delta(t - k\Delta T) \right) * \operatorname{sinc} \left(\frac{\mathbf{t}}{\Delta \mathbf{T}} \right) = \sum_{k} f_{k} \operatorname{sinc} \left(\frac{\mathbf{t} - k\Delta \mathbf{T}}{\Delta \mathbf{T}} \right)$$

Sinc Interpolation Issues

- Must functions are not band limited
- Forcing functions to be band-limited can cause artifacts (ringing)

Sinc Interpolation Issues

Ringing - Gibbs phenomenon Other issues:

Sinc is infinite - must be truncated

Aliasing

• High frequencies appear as low frequencies when undersampled

Aliasing

Overcoming Aliasing

- Filter data prior to sampling
 - Ideally band limit the data (conv with sinc function)
 - In practice limit effects with fuzzy/soft low pass

Antialiasing in Graphics

 Screen resolution produces aliasing on underlying geometry

Multiple high-res samples get averaged to create one screen sample

Antialiasing

Interpolation as Convolution

 Any discrete set of samples can be considered as a functional

$$\tilde{f}(t) = \sum_{k} f_k \delta(t - k\Delta T)$$

- Any linear interpolant can be considered as a convolution
 - Nearest neighbor rect(t)
 - Linear tri(t)

$$tri(t) = \begin{cases} t+1 & -1 \le t \le 0\\ 1-t & 0 \le t \le t\\ 0 & \text{otherwise} \end{cases}$$

Convolution-Based Interpolation

- Can be studied in terms of Fourier Pomain
- Issues
 - Pass energy (=1) in band
 - Low energy out of band
 - Reduce hard cut off (Gibbs, ringing)

Tomography

Tomography Formulation

Attenuation

$$I = I_0 \exp\left(-\int \mu(x, y) \, ds\right)$$

Log gives line integral

$$p(r,\theta) = \ln(I/I_0) = -\int \mu(x,y) \, ds$$

Line with angle theta

$$x\cos\theta + y\sin\theta = r$$

Volume integral

$$p(r, \theta) =$$

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) \delta(x \cos \theta + y \sin \theta - r) dx dy$$

Fourier Slice Theorem

