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Figure 1: Four very different data-parallel, ray-based renderers. a) Sort-last absorption + emission volume renderer. b) Ray-
forwarding production path tracer realized using OptiX and hardware ray tracing. c) Volumetric path tracer optimized for scientific
visualization (sci-vis). d) Large unstructured element-marcher with simulation-provided bounding geometry. All four renderers
operate on huge data, but have largely different scaling properties; we show how hybrid image-/data-parallel rendering with
islands can benefit these renderers to scale far beyond either image or data-parallel rendering applied in isolation.

ABSTRACT

In parallel ray tracing, techniques fall into one of two camps: image-
parallel techniques aim at increasing frame rate by replicating scene
data across nodes and splitting the rendering work across different
ranks, and data-parallel techniques aim at increasing the size of the
model that can be rendered by splitting the model across multiple
ranks, but typically cannot scale much in frame rate. We propose
and evaluate a hybrid approach that combines the advantages of
both by splitting a set of N ×M ranks into M islands of N ranks
each and using data-parallel rendering within each island and image
parallelism across islands. We discuss the integration of this concept
into four wildly different parallel renderers and evaluate the efficacy
of this approach based on multiple different data sets.

1 INTRODUCTION

Parallel rendering refers to using multiple CPUs or GPUs to work
on the same rendering task simultaneously. It is motivated by either
a desire for higher rendering performance or to accommodate exten-
sive data that would not fit into a single device’s memory. Generally
speaking, this can be done by either replicating the model across ev-
ery rank1, and having different ranks render different pixels (image
parallelism, or sort-first rendering); or conversely, by partitioning
the image data across different ranks, having each rank render an
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1Throughout this paper, we adopt the MPI terminology of having multiple
ranks, where a rank can be a process, a node, or a GPU, depending on context.

image of its assigned data, and compositing the results at the end
(data-parallel rendering, or sort-last rendering).

In some cases, (data-)parallel rendering can simultaneously
achieve both of these goals. In the earlier days of graphics (and
especially in scientific visualization, where graphics was often done
without powerful GPUs), rendering performance was often domi-
nated by how many triangles any given node had to render. Splitting
a large polygonal data set across multiple nodes would reduce the
data per rank and rendering time. This idea was somewhat coun-
teracted by the cost of compositing the partial results of different
nodes, but for large enough models, it was still worth it. Similarly,
for volume rendering, at least for the more straightforward kind of
ray marching-based volume rendering techniques, the render cost
is often somewhat related to the number of voxels, AMR blocks, or
unstructured elements that a given node contains, so distributing the
data set across multiple nodes would simultaneously reduce memory
pressure and render cost.

The link between model size and render cost has weakened with
ever more advanced rendering techniques. For example, when using
acceleration techniques such as empty space skipping or macro cells,
volume rendering is sublinear in the number of voxels; and with
modern GPUs and methods such as display lists, geometry shaders,
hierarchical depth culling, deferred shading, the triangle count of
a model has significantly less impact on render performance than
other factors.

Today, more and more rendering is achieved via ray tracing and
path tracing, and with that, this link between model size and render-
ing performance has weakened even further. Thanks to acceleration
structures like bounding volume hierarchies (BVH)—on both CPUs
and GPUs—the cost for tracing a ray is only about logarithmic in
model size, and render performance is almost entirely dominated
by how many rays a renderer requires to trace. This is obviously
the case for surface rendering, but at least when adopting advanced
volume rendering techniques like Woodcock tracking is similar for
volumes, too.

For parallel rendering, this means that the “simultaneous” ben-



efit of distributing the model data across multiple nodes no longer
exists, particularly for ray- or path-based renderers. Distributing
the model can still make sense if it was otherwise too large to
fit onto a single node, but doing so would likely lead to only
marginal performance gains (if at all). It could easily result in
significantly lower performance than single-node rendering once
compositing/communication cost is considered. Consequently, such
renderers today have two options: either use image-parallel render-
ing and benefit from a relatively easy way of increasing performance
by adding more ranks—but only as long as the model can be repli-
cated across every node; or use data-parallel rendering to render
virtually any size of model—but render barely faster (and often,
significantly slower) than a single node could have done if only it
could have fitted the data.

In this paper, we explore the idea of what we call island par-
allelism, which aims to combine the strengths of both in a hybrid
image- and data-parallel manner: given R = N ×M ranks, we split
these ranks into M islands of N ranks each; and perform data-parallel
rendering within each island, but image-parallel rendering across
the islands. In other words, each island would collectively render a
different set of pixels just like any rank in traditional image-parallel
rendering would, but N ranks within each island and perform data-
parallel rendering for only the pixels assigned to this island. In this
setup, island-parallel rendering covers a spectrum in which classi-
cal data-parallel and image-parallel rendering are the two extremes
(M = 1 and N = 1, respectively). Unlike classical image-parallel
rendering, it is not limited by any given model size because N can
always be increased until the model fits. And unlike classical data-
parallel rendering, this method does not have an obvious diminished
return when adding more ranks than are required to fit the model (as
long as these come in multiples of how many ranks are required to
fit the model).

The core idea behind this data-replicated model is simple enough
and also not entirely new. How exactly this would, however, perform
in practice, and mainly when applied to ray tracing-based pipelines
that are ubiquitous nowadays in both photorealistic rendering and
scientific visualization—so far has not been explored rigorously and
for different types of rendering techniques (e.g., Monte Carlo surface
rendering, volume ray marching vs. Woodcock tracking)—in any
research that we are aware of. We first sketch how we integrated
this idea into several very different renderers, then evaluate these
renderers on various data sets and configurations. As this evaluation
shows, our hybrid model offers the flexibility to be implemented
over a diverse set of rendering frameworks and computing resources
while allowing for decent scalability.

2 RELATED WORK

In this section, we review prior works on distributed rendering al-
gorithms, which broadly fall into data-parallel sort-last techniques
and their corresponding image compositing algorithms, as well
as data-replicated techniques, which are—in the context of high-
performance and large-scale visualization—usually realized using
sort-first.

2.1 Data-Parallel Rendering
In compliance with Molnar’s taxonomy [20], sort-last parallel ren-
dering algorithms initially distribute the data to N ranks that use task
parallelism to generate intermediate images. After all ranks have
finished rendering, these are assembled using compositing.

Traditional works that implement data-parallel surface [7] or vol-
ume rendering [24, 27] follow this pattern exactly and require only
little extra communication prior to compositing. With incoherent
workloads (both in terms of data distribution and rays being traced),
the need for advanced scheduling [25], caching [6], or distributed
shared memory approaches [11] arises, resulting in ever more com-
plex communication patterns.

More recent work, e.g., by Abram et al. [1], by Jaroš et al. [12],
or by Wald and Parker [35], concentrated on incoherent workloads
typical for production rendering with path tracing. Advancements
in this field have however also led to path tracing becoming more
relevant for scientific visualization [13]. Another layer of complexity
is introduced by 3D models using instancing. The works by Zell-
mann et al. [39] and by Wald and Parker [35] have recently focused
on spatial and object partitioning for the distributed rendering of
instanced models.

With incoherent ray tracing and Monte Carlo path tracing work-
loads becoming ever more relevant for the scientific and high-
performance computing communities, renderers have to concentrate
even more on ray queuing and forwarding techniques, or on instanc-
ing, and by doing so, introduce potential diminishing returns from
adding extra ranks due to increased communication overhead.

2.2 Parallel Compositing
While assembling final images is trivial with image-order
techniques—threads that render a set of pixels at the end save their
result to exclusive memory addresses—compositing intermediate
images with data-parallel rendering is a challenge in itself and can
exhibit undesirable scalability when not implemented carefully.

Even the simplest of techniques, such as direct-send composit-
ing [8], subdivide image space into disjoint regions, and assign
individual ranks that are responsible for compositing those regions.
With direct-send, scalability issues arise because processors send
their intermediate image portions to the ranks responsible for com-
positing at the same time. Traditional round-based techniques (e.g.,
binary swap [17]) resolve this issue by dividing the communication
into consecutive rounds; within each round, the number of proces-
sors halves, while the number of image fragments sent per processor
pair doubles, resulting in a binary tree communication pattern that
can only accommodate power-of-two rank counts. To overcome
this issue, round-based algorithms factorizing the number of ranks
into, e.g., pairs and triplets [38], or more generally into ki workers
per i ∈ M rounds (radix-k [26]) have become the de facto standard
implemented by compositing libraries such as IceT nowadays [23].

There is an interesting parallel between radix-k [26] and our hy-
brid image-/data-parallel islands concept in that both techniques
solve the issue of accommodating non-power-of-two rank counts;
while radix-k achieves this by subdividing the communication task
into rounds that execute sequentially (and within each communica-
tion group perform direct-send), island parallelism subdivides image
space among communication groups (where each group can poten-
tially use any compositing algorithm suitable, including direct-send).
As each communication group/island holds a full copy of the data,
our equivalent of the rounds in radix-k can now run in parallel, thus
allowing for improved scalability but at the expense of using more
memory.

2.3 Hybrid and Data-Replicated Rendering
Although the traditional sort-first formulation by Molnar [20] was
data-parallel, sort-first is nowadays most often realized using data
replication [3]. Moloney et al. [21] propose caching schemes repli-
cating only parts of the data in each GPU’s memory. Cambazoglu
and Aykanat [4] reformulate the screen-space load-balancing prob-
lem as a hypergraph partitioning problem to achieve equal load
distribution while minimizing data replication.

There also exist hybrid approaches, e.g., the distributed frame
buffer method by Usher et al. [33], where the data is distributed, but
the parallelization and task assignment are driven by image tiles.
Another straightforward, hybrid approach proposed by Larsen et
al. [14] assumes that the sequence of images rendered is known a
priori and then parallelizes over the number images.

The approach by Samanta et al. [31] is closely related to ours
and presents what can be considered an early implementation of our
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Figure 2: Left: Control flow and communication patterns of an example data-parallel renderer whose inner workings are not further specified
but represent the kind of renderer we consider in this paper. At the top we show how the data and work are distributed to ranks (A)-(D). At the
bottom, we present the communication patterns resulting from that. The left side presents a version of the renderer without island parallelism;
the right side shows the same renderer with island parallelism. This renderer generates primary rays on reach rank, traces them into the data,
and eventually writes a color to a local frame buffer. At the bottom, curved arrows represent inter-process communication, and vertical lines
indicate synchronization barriers. One can see that inter-process communication only occurs between the local ranks of an island; even the final
image compositing step requires only little synchronization since the islands write their results to exclusive addresses in the global frame buffer.

islands concept. Samanta et al. focus on rasterization and primary
visibility only. Realizing that even with their coherent workloads,
there are diminishing returns from adding more compute nodes
than needed to fit the model, the authors propose to organize the
participating ranks into K groups, each group holding a full copy of
the data set. The authors complement that with a view-dependent
work scheduling scheme that changes from frame to frame.

However, the workloads tackled by Samanta et al. [31] are funda-
mentally different from ours. With a shift to hardware-accelerated
ray tracing, today’s workloads are increasingly incoherent. With
ray-tracing methods, we observe a log(n) or 3

√
(n) complexity per

pixel rendered where n is the number of primitives/voxels, which
is different from what one expects in the context of rasterization.
Methods such as the one by Reinhard et al. [29] have accounted for
this in terms of load balancing, but to our knowledge, data replica-
tion has not been proposed as a degree of freedom to improve the
scalability of incoherent rendering workloads.

To our knowledge, Samanta et al.’s work from 2001 is the most
recent one to propose k-way data replication to improve scalability;
we believe this type of scheduling to become more important in the
presence of the aforementioned incoherent workloads and complex
communication patterns. Yet, we observe that concrete realizations
of our islands concept cannot be found “out in the wild”, as the
state-of-the-art packages for large-scale distributed rendering, such
as Paraview [2] or VisIT [5] do not implement anything similar. This
motivated our desire to (re-) evaluate this concept/technique in the
context of modern rendering algorithms.

3 HYBRID IMAGE/DATA PARALLELISM VIA Islands
The main observation that motivated this paper is that, at least for
mainly ray- and path-based renderers, data-parallel rendering and
image-parallel rendering operate on two completely different ends
of the spectrum of parallel rendering: On one hand, data-parallel
rendering can be used to scale to almost arbitrary model sizes by
simply adding more work, but when scaling to node counts be-
yond what a given model requires, there is usually a very quickly
diminishing—and possibly even negative—return of adding more
nodes. Conversely, image-parallel rendering has been shown to en-
able almost trivial scaling of such renderers in frame rate and image
quality (as in samples/paths per pixel).

The obvious alternative is to combine these two techniques: we
take a set of R = M ×N parallel resources and split them into M
what we call islands of N ranks each. Within each island, the N
ranks perform data-parallel rendering such that in its entirety, these
N ranks could render every pixel on the screen. Suppose we now

create M different such islands that are exact copies of each other. In
that case, each such island could render every pixel—which means
we can now use image-parallel rendering across these M islands
(i.e., each renders only approximately one M’th of the pixels).

One way of viewing image- and data-parallel rendering is as
opposite ends of a spectrum; another is as two orthogonal axes that
together form a 2D plane. In the latter case, the R = N axis for
M = 1 is purely data-parallel rendering where the model is split into
N = R parts, and each rank works for potentially every pixel. The
R = M axis for N = 1 is purely image-parallel rendering where the
model is not split at all, but the image is split into M = R different
regions that get assigned to different nodes. In that view, hybrid
parallelism is the super-set that spans the entire plane between these
two axes: the model is split into N parts for data-parallel rendering,
and the image into M regions for image-parallel rendering. This
formalism also generalizes prior works, such as that by Samanta et
al. [31], which concentrated on a particular, view-dependent work
distribution.

Island parallelism is a powerful concept as described above, but
not actually an algorithm that can quickly and obviously be thrown
into any given renderer: how to integrate it depends on how exactly
the renderer works. Similarly, the benefits of applying it will depend
on how exactly the renderer works, as a renderer whose dominant
cost is pixel count or paths per pixel will be affected differently than
one for which this is not the case.

To introduce some notation used throughout the paper, let us
consider the imaginary renderer in Fig. 2. The renderer presents a
template for the type of renderers we focus on in this paper: it works
off an a priori data distribution into N = 4 parts (how these parts
were derived, for this imaginary renderer, remains unspecified). The
renderer generates a set of camera rays on each rank and renders its
portion of the data in parallel. During rendering, the ranks participat-
ing in the rendering process may or may not communicate with each
other, and if they do communicate, it may or may not be necessary
to use barriers or other blocking operations to synchronize the ranks.
Finally, all ranks are synchronized, composite the intermediate im-
ages present in their local frame buffers, and send the result to the
display rank. Again, how exactly this compositing operation works
is unspecified and depends on the concrete implementation.

On the right, Fig. 2 shows how the same workload gets distributed
across M = 2 islands; inter-process communication and synchro-
nization now only occur among ranks within an island; the islands
finally assemble the final image using sort-first compositing.

In the remainder of this paper, we will look into four very dif-
ferent data-parallel renderers that present concrete realizations of
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Figure 3: Control flow and communication patterns of a simple
absorption plus emission ray marcher for structured volumes as pre-
sented in Section 4. Top: the data set is distributed spatially among
processors (A)-(F). Rays are marched with equidistant steps, and
when the ray terminates—either because opacity reached a threshold
or the ray left the node’s bounds—the result is written to the local
frame buffer. Bottom: the corresponding communication pattern.
All rays are marched in parallel. Potential divergence occurs due
to different step counts through the density. When all rays finished
marching, results are combined using sort last compositing (bottom
right). Barrier synchronization is only needed for compositing.

the imaginary template renderer introduced in Fig. 2. The renderers
were implemented as part of various projects over the last few years
and differ wildly in how they realize the data-parallel rendering and
compositing operations. We describe how we added the islands
paradigm for these four renderers. We then perform scalability stud-
ies and discuss why some renderers are affected differently than
others.

4 RENDERER 1: SORT-LAST STRUCTURED VOLUME RAY
MARCHING

The first renderer we focus on can be viewed as the equivalent of
a traditional, MPI-parallel, sci-vis direct volume renderer and is
representative of the implementations found in, e.g., ParaView [2]
or VisIT [5]. The renderer supports absorption plus emission with
on-the-fly gradient shading, all of which can be realized by marching
coherent camera rays through the volume in equidistant steps.

To this end, the renderer can be viewed as a baseline, which
is later—at least conceptually, the other renderers derive from en-
tirely different projects and are also maintained by different teams—
extended to support complex 3D models and shading modes.

4.1 Implementation
The renderer’s control flow and communication patterns are pre-
sented in Fig. 3. The implementation is based on the framework
used by Wald et al. [36]. However, we deliberately deactivate the
space skipping component, leaving us with a renderer that marches
camera rays generated in a CUDA kernel through a volumetric den-
sity stored in a 3D GPU texture. We terminate rays early if they
leave the scene bounding box or accumulate up to 99% opacity.

To realize data-parallelism, we split the volume and correspond-
ing 3D texture into one brick per rank using a kd-tree builder and
the split-middle heuristic. The bricks include ghost cell layers to
support trilinear interpolation and gradient shading. The ranks com-
pute intermediate images in parallel and use IceT [22] for sort-last
compositing. To determine the correct order to composite the local
frame buffers required by IceT, we use the kd-tree from before.

4.2 Extension to Island Parallelism
Implementing island parallelism within this framework is straight-
forward. To distribute the data among ranks, we first perform an
MPI Comm split of the global world communicator into as many com-
municators as we have islands; each island has as many ranks as
there are bricks.

Each rank first generates primary rays for the whole viewport
to distribute the work, including those regions that we might po-
tentially know are never overlapped by the brick assigned to this
rank. Inside the CUDA kernel, we group the threads into tiles and
directly terminate those whose tiles are inactive. Tiles are, however,
just one possible way to distribute the work, and the other renderers
use different work distribution schemes. As each rank renders full-
size images, the images composited with IceT will span the whole
viewport.

4.3 Experimental Setup
To evaluate this renderer, we use the turbulent channel flow simula-
tion direct numerical simulation (DNS) data set from [15], which is
10240×7680×1536 voxels in size, and with four bytes per voxel
amounts to 450 GB total. As this data set, including ghost layers,
saturates a significant portion of the available memory on a typical
GPU cluster, we also run benchmarks with a downsampled version
of 5120×3840×768 floating point voxels.

Since the form of the data set resembles that of a sheet, we test
with two different viewpoints (cf. Fig. 6); one that zooms in on the
data but will result in culling a significant portion of the bricks to
the left and right, and another one that is zoomed out but contains
significant amounts of white space.

5 RENDERER 2: HARDWARE-ACCELERATED PRODUCTION
PATH TRACING

Our second renderer deviates mainly from the traditional high-
throughput, coherent workload pattern and is a data-parallel path
tracer for production-style content; i.e., for content that is primar-
ily triangle-based, but with instantiation, with materials, textures,
light sources, with reflection, refraction, and multi-bounce indirect
illumination. This is the same renderer used in [35].

5.1 Original Renderer without Island-Parallelism
A complete discussion of this data-parallel path tracer is beyond this
paper’s scope, so we will limit ourselves to only a brief, high-level
description (also cf. Fig. 4). At its highest level, this renderer builds
on ray forwarding (i.e., it sends rays to the node(s) that have the data
that these rays need to interact with), and it operates in two distinct
phases. In the first phase, this renderer generates primary rays that
will eventually become paths and traces these into the scene in a
wavefront manner. Ranks maintain a set of ray queues containing
rays that need processing on this rank. Primary rays get generated
by the ranks that own the closest spatial region for that ray and get
put into the ray queue.

5.1.1 Stage 1: Path Tracing with Ray Forwarding
In each step, the renderer traces its rays into its local rank’s geometry
using CUDA [18] and OptiX [19]. After that, it determines whether a
ray needs forwarding to another rank for further processing. It either
shelves the ray for later shading (if no forwarding is required) or puts
it into an output queue from where it can be forwarded. After all of
the rays are locally processed, the ranks collaboratively exchange
rays based on where each ray wants to get forwarded to until all
rays are ready for shading. A shading stage then shades all rays,
generates secondary and shadow rays as required, and iterates back
to the tracing stage until all paths have been traced to completion.

This first stage does all the tracing, shading, and ray forwarding.
During this stage, rays can make image contributions. For example,
a ray gets shaded when a shadow ray realizes that it is not occluded.
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Figure 4: Control flow and communication patterns of a typical ray-forwarding path tracer as the ones described in Section 5 and Section 6.
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As illustrated in Fig. 4, irrespective of which rank started tracing a
ray through a particular pixel, any other rank can potentially con-
tribute to this pixel, depending on where this ray (or its descendants)
gets forwarded to. This renderer combines image contributions
from different ranks by having each rank keep a full-sized frame
buffer that the first stage’s operations can atomically add their image
contributions to. The final image then is the sum of what we call
partial frame buffers. The renderer’s second phase then adds these
partial frame buffers, which this implementation does via a parallel
direct-send as, e.g., described by Grosset et al. [9].

5.1.2 Stage 2: Adding the Per-Rank Images

Assuming the scene was split into N parts, the renderer would use
R = 1+N MPI ranks: one for a master that runs the viewer and
controls the worker, and N ranks to perform data-parallel rendering.
Upon startup, the renderer executes an MPI Comm split that splits
the initial ranks into two groups—one for the master and one for
the N workers—with an intercommunicator between them. In the
path tracing stage, the workers operate exclusively on the worker
group, realizing ray exchange using one call to MPI Allgather to tell
each rank how many rays it can expect to get sent, followed by an
MPI Alltoall to move the rays to other workers.

In the image adding stage, the workers first horizontally split the
frame buffer into N parts; i.e., each part comprises a range of consec-
utive, entire scan lines, with N parts total. Using an MPI Allgather
on the worker communicator, each rank performs direct-send by
moving its N −1 regions to the other ranks and receiving the N −1
other ranks’ pixel contents for its regions. After adding its pixel
content, the worker is also responsible for tone mapping. Finally,
each rank sends its composited scan lines to the display rank using
an MPI Isend on the master/workers intercommunicator, using the
scan line’s y coordinate as the MPI tag. The display rank sets up a
matching MPI Irecv for the scan lines using the same tags and then
uses MPI Waitall until all scan lines are received.

5.2 Extension to Island Parallelism
To extend this framework to island parallelism, we chose to inter-
leave the final frame buffer’s scan lines among the M distinct and
interleaved sets of scan lines (where M is the desired number of
islands) so that scan lines 0, M, and 2M go to Island 0, scan lines 1,

M+1, and 2M+1 go to Island 1, and so on. As a result, each island
operates on what is essentially a frame buffer of one M’th the height
of the real frame buffer, but within this frame buffer, it can behave
almost as if there were no island parallelism.

Operations like frame buffer resizing have to be modified to
compute the right size of the island frame buffer, but ray queue
management can then operate on that (smaller) frame buffer in the
same way as before. Ray generation has to know that each pixel
(x,y) in the island frame buffer corresponds to pixel (x, I + yM) in
the final frame buffer (where I is the index of the island that this
rank is in); but other than that can again operate as before. Ray
traversal and shading operate just as earlier (they only operate on ray
queues), and even the entire ray exchange step can remain as is as
long as each island gets its own communicator. To do this, we run a
second MPI Comm split on the worker’s communicator that splits that
into M groups (one per island) and then have the workers operate
on that communicator rather than the parent worker’s communicator.
This way, islands can operate entirely autonomously, with the com-
munication code not even needing to know that other islands even
exist.

For the image-adding stage, too, changes are minimal: we again
use the island communicator for the parallel direct send stage, mean-
ing each island can run its image-adding stage completely orthogo-
nally. In the final step, the master can perform its MPI Irecv opera-
tions as it did before. The only thing that changes is that the workers
need to translate each sent scan line’s tag back to the y coordinate of
the final image (i.e., replacing tag y with tag I + yM).

5.3 Experimental Setup

To evaluate this renderer, we focus on traditional ray tracing/produc-
tion content, in the form of the PBRT landscape scene. The scene
comprises 23 K different plant models that are spread out across
a base mesh using instancing; the total triangle count is 24 M, but
due to instancing has a geometric complexity of 3.1 B triangles [28].
The scene contains surfaces with several different physical materials
and exhibits complex lighting from an HDRI environment map. We
split the scene into up to 44 parts (further splitting the model results
in the surface area heuristic (SAH) based splitter generating empty
parts) that we distribute across ranks and islands.



6 RENDERER 3: VOLUME PATH TRACING

The next renderer we will look at is targeted toward data-parallel
volume path tracing rather than surface rendering. It explicitly aims
for high-quality volume path tracing with shadows and scattering
but is primarily designed for scientific visualization data.

While this renderer is different from the one in the previous sec-
tion in many core routines, it still shares many similarities regarding
high-level structure. The communication patterns are fundamentally
the same as shown in Fig. 4: the renderer uses the same commu-
nicators for MPI display master and workers, uses ray forwarding
and queuing, and accumulates arbitrary pixel contributions in par-
tial frame buffers on the rendering stage; similarly, compositing is
realized using parallel direct-send, like with the surface path tracer.
However, the renderer’s approach to managing and integrating its
data is fundamentally different. Unlike the surface renderer, this
renderer does not support next event estimation or any form of path
splitting. However, paths can still have multiple bounces and/or
stochastically turn into shadow rays if and when desired. Instead of
surface data with instances, similar to the one from Section 4, this
renderer operates on bricks of structured volume data with ghost
layers.

The renderer implements Woodcock tracking [37] with an
isotropic phase function. For that, instead of tracing rays into an
OptiX acceleration structure, it uses a macro cell hierarchy as pro-
posed by Günther et al. [10], using Digital Differential Analyzer
(DDA) traversal over macro cells to reduce the number of rejection
samples taken to account for null collisions. Each time a sample
gets rejected, we simply go on. Otherwise, we schedule this sample
for shading, at which point the ray stochastically samples how the
ray will interact with the volume at the position where the collision
occurred (e.g., it can become a shadow ray to a sampled light source).
In addition to Woodcock tracking, this renderer supports implicit
iso-surface ray tracing integrated into the same macro cell DDA
traversal.

6.1 Extension to Island Parallelism
As discussed in the previous sections, we did the same to integrate
hybrid parallelism into this renderer. Though the code bases are
different due to different ray types and operations on top of those
rays, the basic technique of interleaving scan lines across islands,
particularly the per-island compositing and merging at the master, is
conceptually identical.

6.2 Experimental Setup
This renderer targets scientific visualization rendering as the main
application. To evaluate this, we chose two very different models
(of also different sizes), as shown in Fig. 6: the chameleon data
set consisting of 1024×1024×1080 voxels represented with 32 bit
floating point precision, which, in this example, is rendered with both
Woodcock tracking (using a relatively “spiky” transfer function) and
implicit iso-surfaces; at these settings, the model contains a lot of
(post-transfer function) “empty” space where rays can travel across
multiple ranks. As a second example, we chose the same turbulent
flow DNS data from Section 4 with the same viewpoints and sizes
of 10240×7680×1536 and 5120×3840×768.

7 RENDERER 4: ELEMENT-MARCHER WITH SORT-LAST
“DEEP” COMPOSITING

The fourth and final renderer we are looking at is an element-marcher
with a sort-last “deep compositor” designed to render the two ver-
sions of the Fun3D Mars Lander Retropropulsion study data set,
which is also used by Wald et al. [34]. The “Small” version of this
data set is pre-partitioned into 72 non-convex, unstructured meshes
with a total of 798 million unstructured elements. The “Huge” one
comprises 552 meshes with 6.38 billion elements total. This renderer
can be seen as a modern, interactive, and GPU-targeted re-design
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Figure 5: Control flow and communication patterns of an unstruc-
tured element ray marcher with non-convex bounding geometry as
described in Section 7. Top: each processor (A)-(F) is assigned one
cluster containing unstructured elements; primary rays are marched
through the density and intersected with their cluster, resulting in
segments, and fragments that represent the integrated color and depth
of the segment. Bottom: each segment is integrated, in parallel per
ray and sequentially in visibility order; each fragment is then written
to a sequential slot in the “deep” frame buffer. Bottom right: at the
end, fragments are composited using deep frame buffer compositing.

of the basic ideas already described by Ma et al. [16]. A high-level
overview is given in Fig. 5. The implementation extends the one by
Sahistan et al. [30] to support data-parallel rendering using MPI. It
uses a combination of three techniques. First, it utilizes hardware-
accelerated triangle ray tracing using OptiX to determine where
a given ray will enter and exit (i.e., ray segment) the non-convex
mesh(es) that each rank stores, including the boundary face mesh
that the ray enters. Then, it employs element marching to step
through the unstructured mesh and take (at least) one sample per
element. Every time the marcher retires a segment (i.e., when the
ray leaves the mesh on a boundary face), the renderer registers a
fragment comprised of an RGBA color and a depth Z, which gets
stored in a CUDA buffer during rendering. Fully transparent frag-
ments get rejected. The fragments get stored in a list that we call the
deep frame buffer, which contains a variable number of fragments
per pixel.

After the rendering stage, the fragments assigned to one pixel are
generally scattered across multiple ranks; these ranks now exchange
their fragments in a way that is essentially a generalization of direct-
send. Instead of sending one fragment per rank per pixel, the variable
list of fragments is sent using a MPI Alltoall. Since the fragment
count is not known at the receiving ranks, the ranks first exchange
a list with a prefix sum computed over the fragment counts, also
using MPI Alltoall, to determine which slots the later exchanged
fragments will go to. After that exchange, each rank merges and
sorts its per-pixel fragment lists, composites them in front-to-back
order, and performs tone mapping. Each rank then sends its final
pixel to the master for final display.

We chose to include this renderer because it operates very dif-
ferently from the others. In particular, unlike the surface- and
Woodcock-based renderers, it does not have some automatic built-
in “early ray termination” that aims at quickly finding a surface or
volume interaction at which the ray can terminate traversal. Instead,
each segment gets integrated separately and cannot know whether
other ranks might generate closer fragments that will occlude this
segment. Also, the number of samples taken per ray depends much
more on how much of the total model a given rank has. Partitioning



the model across more ranks will automatically mean that each rank
has fewer elements in total and, on average, fewer fragments it will
generate for a typical ray.

7.1 Extension to Island Parallelism
Despite being different in nature from the other three renderers,
applying the concept of hybrid parallelism is strikingly similar. In
the first phase, each rank renders fragments by tracing one ray
per pixel. As before, we interleave scan lines and adjust the pixel
coordinate during ray generation; each rank now renders M× fewer
scan lines (into a correspondingly smaller frame buffer), but other
than that, this stage will work exactly as before: rays get generated,
traced, and integrated, and fragments will get stored just as before.
For the compositing stage, the steps performed inside each island
are exactly as before. As such, we again MPI Comm split the workers
into M separate island communicators and then perform the same
compositing operations as before.

7.2 Experimental Setup
We will exercise this renderer on two differently sized data sets to
be able to scale up the number of islands and ranks flexibly. Similar
to the DNS data set, the huge lander occupies a significant portion
of the memory available on our test system and allows us to add just
one additional island. Therefore, we also test with the small lander,
which will enable us to scale our benchmarks up in both the number
of islands and the number of GPUs per island. Since both models
already come pre-partitioned based on how Fun3D partitioned the
models for its simulation, we cannot easily repartition them. Instead,
to test scalability, we have each rank pick a number of bounding
meshes/clusters in a round-robin fashion, where rank 0 is assigned
the 0th, Nth, 2Nth boundary mesh, rank 1 is assigned boundary
meshes 1, N +1, 2N +1, and so on.

8 EVALUATION

This section evaluates our hybrid image-/data-parallel island render-
ers using the experimental setups described above. For the evalua-
tion, we migrated the renderers to run on the RTX partition of the
Frontera supercomputer at the Texas Advanced Computing Center
(TACC) [32]. In the following, we provide a brief overview of the
hardware and software infrastructure provided by this system.

8.1 Frontera RTX System Overview
On the hardware side, Frontera’s RTX partition comprises 90 GPU
nodes, each of which is equipped with four NVIDIA Quadro
RTX 5000 GPUs. A compute job can allocate a maximum of 22
nodes, amounting to 88 GPUs. Each GPU is equipped with 16 GB
GDDR6 memory. The interconnect uses Mellanox’s HDR technol-
ogy with 100 Gb/s bandwidth for inter-node communication.

On the software side, Frontera’s RTX partition supports a regular
CUDA 11 plus OptiX 7 workflow, which allows us to run all our
renderers on this system. The mvapich2-gdrMPI suite installed on
the system is CUDA-aware and GPUDirect-enabled [40].

A CUDA-aware MPI implementation will recognize when CUDA
device pointers are being passed to MPI functions. When an MPI
implementation is also GPUDirect-enabled, and processes from two
different nodes connected via Mellanox communicate with each
other, the communication will go directly through the fabric without
a detour through the host memory.

This architecture allows the path tracers to implement ray for-
warding with direct memory access from GPU to GPU; the deep
compositing algorithm from Section 7 can also make use of this
by directly exchanging the fragments between devices using DMA-
enabled MPI Alltoall calls. Only the simple structured volume base-
line renderer from Section 4 cannot use any such optimization, as
IceT does not support local frame buffers stored in CUDA device
memory.

8.2 Scalability Study
Based on the experimental setups outlined in Sections 4.3, 5.3, 6.2
and 7.2, we evaluate scalability by splitting the respective models
into bricks/parts, or use the clusters present in the data to distribute
the data across nodes; when running the benchmarks, we manipulate
two degrees of freedom: the number of overall GPUs used (we in-
crease this number in at least multiples of four, as a node on Frontera
contains four GPUs), and the number of islands; as we are restricted
to 88 GPUs total, and as some of the parts or bricks/clusters cannot
be split beyond a certain point/exceed certain size limits, not all our
benchmarks can be run in all theoretically possible combinations.

The exemplary scalability plots in Fig. 7 contain two types of
curves that are of significance to us: one that is drawn explicitly
and another that can be observed when following the contours of
the data points. For that, let us consider an idealized renderer—
representative, e.g., of how a surface raycaster with a bounding
volume hierarchy accelerator and no inter-process communication
overhead at all would perform in the limit and that, per pixel, per-
forms log(n) work in the number of primitives n. A scalability plot
for that idealized renderer is presented in Fig. 7. We can interpret
these plots in two ways: in Fig. 7a, each of the colored curves repre-
sents weak scalability, where the model/data set is split into smaller
pieces and more GPUs are devoted per island, resulting in the typical
diminished return mentioned before. For a renderer with more com-
plicated communication and dependent on certain implementation
constants, we expect the scalability to be different, if not negative,
within one island.

An alternative way to read the plots is indicated in Fig. 7b, where
we show the same plot as in Fig. 7a, but with contour lines added
that illustrate island scalability. Whenever we decide to double
the number of GPUs devoted to the rendering task, we can either
increase the number of GPUs per island or add another island; while
the former decision is reflected by following the colored lines, the
latter is reflected by going to the right on the contour lines.

We hypothesize that for the workloads we take under considera-
tion, we will observe similar behavior as with this idealized renderer,
where scalability from adding more GPUs to existing islands results
in diminishing or even negative returns. In contrast, the performance
from adding more islands ideally increases systematically and at a
higher monotonic rate. In the following, we will test this hypothesis
with our four renderers.

8.3 Results
We present the results of our scalability study in Fig. 8. Fig. 6
provides an overview of the data sets used and Sections 4.3, 5.3,
6.2 and 7.2 discuss the choice of data set size and composition. We
deliberately choose data sets of different sizes, such as the huge
DNS or NASA Mars Lander data sets that saturate almost half of
the available GPU memory. Smaller versions of the data sets, or
data sets that draw their complexity from instancing, allow us to
scale up higher in the number of GPUs and the number of islands.
While some of the data sets allow us to collect data points at a fine
granularity, others can only be run on certain configurations with
a fixed number of GPUs, e.g., the lander data sets with their fixed
number of clusters or data sets where the partitioners cannot create
splits with finer granularity. We render 1K × 1K images, as we
consider this to represent the rendering configuration one would
usually use in a typical in-situ/in-transit or remote rendering session.

We observe several effects. Firstly, our tests generally confirm
that, for the kind of workload under consideration, island scalabil-
ity is higher than scalability from adding extra GPUs to existing
islands. We also observe that the renderers with little communi-
cation overhead during rendering—i.e., the structured ray marcher
and the unstructured element-marcher—show diminishing returns
or plateaus, while the path tracing renderers, particularly when exer-
cised on larger data sets, exhibit negative returns. This is likely at-



DNS View 1 DNS View 2 PBRT Landscape Chameleon Small Lander Huge Lander
Huge: 10240 × 7680 × 1536 23 K Instances 1024 × 1024 × 1080 Huge: 6.13 B tets, 284 K pyramids, 255 M wedges
Small: 5120 × 3840 × 768 24 M Triangles Small: 766 M tets, 47 K pyramids, 31 M wedges

Figure 6: Data sets used for our evaluation. From left to right, top to bottom: two views of the DNS turbulent flow data set; the PBRT
landscape data set, with a geometric complexity through instancing of 3.1 B triangles; the Chameleon CT data set, with direct volume
rendering and implicit ISO surface for the bone structure; the Small and Huge NASA Mars Lander, two unstructured data sets with complex,
simulation-provided bounding geometries.
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Figure 7: Two ways to read our scalability plots for a hypothetical
renderer performing log(n) work per pixel and n primitives. Left:
the colored curves represent scalability within M islands. Right: we
add contour lines to that plot that represent island scalability: the
gain in performance when, instead of doubling the number of GPUs
per island, we create another island with the same number of GPUs.

tributable to the communication overhead for ray forwarding, which
imposes barrier synchronization before and after compositing and
for each reflective or shadow ray bounce. Here, islands help relax
this scalability issue inherent to these renderers significantly.

Another effect we observed during our study, confirmed by the
island scalability curves eventually flattening out, is reduced GPU
utilization. For the structured ray marcher, e.g., we found that
image sizes below 800 × 800 pixels cause the GPUs to become
underutilized, as the latency incurred by threads performing memory
accesses cannot be effectively hidden behind compute. With islands,
the number of pixels that a single GPU renders decreases, and so
does GPU utilization. With 22 islands/88 GPUs and 1K × 1K
images, e.g., each GPU is responsible for rendering roughly 110 ×
110 pixels. We expect each renderer to be susceptible to this issue.
We believe this to be another reason for island scalability to diminish
eventually.

In Fig. 8, we have aimed at plotting the performance for all
kinds of possible combinations of M islands and N ranks per island,
and as predicted, have seen that adding more islands will generally
increase performance more than adding more ranks for the same
number of islands. Ultimately (and as an indirect continuation of the
arguments we made in Section 3 and Fig. 7) this suggests that the
“ideal” performance for any number of available ranks should always
be where the user chooses the smallest possible number of ranks per
island that can still represent the model, and invest any additional
resources into adding more islands—we will call this configuration
the “ideal” island configuration for a given number of ranks. For
any renderer and number of ranks, we can then also compare the
performance of this ideal island configuration to the performance
that a pure data-parallel configuration (i.e., the same renderer with a
single island) would have achieved.

We present the result of this experiment in Fig. 9: as can be

seen, even with island parallelism these scalability graphs are not
perfectly linear; this is the result of multiple factors, including tail
end effects (some pixels being much more expensive than others),
impact of compositing cost, starvation due to increasingly fewer
pixels per island, and many others (a full discussion for each ren-
derer is beyond the scope of this paper). However, this still starkly
contrasts with today’s state of the art (pure data parallelism): the
island-parallel configuration is always significantly faster than the
purely data parallel configuration, often by several multiples.

9 DISCUSSION

Concepts like our island parallelism, though compellingly simple
and scalable from medium-sized to large data sets have not seen
much attention from the scientific visualization community in recent
years—nor is this concept implemented by major visualization pack-
ages. We have shown that the paradigm behind this is all the more
relevant, the less scalable the underlying renderer is. For example, an
idealized renderer like that in Fig. 7 with log(n) work complexity in
the number of primitives will only see a performance improvement
of log(n/2) from doubling the number ranks without adding more
islands. A theoretical rasterizer whose computational complexity is
linear in the number of primitives would instead see a performance
improvement proportional to n/2.

We expect this effect to become more pronounced in the future,
as we assume that log(n) work complexity for a parallel ray tracer is
still overly enthusiastic. We have shown that in reality, path tracing
or ray forwarding renderers exhibit much worse scalability. We
expect these effects to become more critical due to the gap between
compute and memory performance. The larger our data sets get,
the more critical become optimizations comprising adaptive mesh
refinement, space skipping, acceleration structures, or early ray
termination. A typical slicing volume renderer using 3D textures
and rasterization hardware, for example, cannot easily support early
ray termination because the partially accumulated transmittance is
not available in the fragment shader that samples the volume texture.
For a renderer like that, the worst-case and average runtime would
not only theoretically, but also in practice, be approximately the
same, because no rays terminate early; a typical ray marcher, which
is the de factor for absorption + emission nowadays, would still have
the same upper bound proportional to the number of voxels, but in
practice, many rays will on average terminate much earlier.

We thus expect typical modern renderers to exhibit average scal-
ability in the number of primitives much worse than what was ob-
served in the past with typical rasterizers. We expect this trend to
continue in the future. All the more important become concepts that
allow for better scalability beyond the number of primitives adopted
by the scientific visualization and rendering communities. We see
our paper as a first, overdue step in this direction.
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(a) Renderer 1 (structured)
DNS View 1 (small)
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(b) Renderer 1 (structured)
DNS View 2 (small)
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(c) Renderer 1 (structured)
DNS View 1 (huge)
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(d) Renderer 1 (structured)
DNS View 2 (huge)
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(e) Renderer 2 (path tracer)
PBRT Landscape
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(f) Renderer 3 (Woodcock)
Chameleon
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(g) Renderer 3 (Woodcock)
DNS View 1 (small)
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(h) Renderer 3 (Woodcock)
DNS View 2 (small)
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(i) Renderer 3 (Woodcock)
DNS View 1 (huge)
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(j) Renderer 3 (Woodcock)
DNS View 2 (huge)
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(k) Renderer 4 (element marcher)
Small Lander
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(l) Renderer 4 (element marcher)
Huge Lander

Figure 8: Scalability of the four renderers when increasing the number of GPUs and/or number of islands. (a-d) Renderer 1: sort-last structured
volume ray marcher from Section 4. (e) Renderer 2: hardware-accelerated production path tracer from Section 5. (f-j) Renderer 3: volume path
tracer from Section 6. (k-l) Renderer 4: element-marcher with sort-last deep compositor from Section 7.
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Renderer 2, PBRT Landscape
Renderer 3, DNS View 1 (small)
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Figure 9: Comparison of purely data parallel rendering vs “ideal”
islands-parallelism, across different renderers and renderer configu-
rations, over increasing number of compute resources. Left: pure
data parallelism over R ranks (normalized to the performance of the
smallest number of ranks that can render the given model). Right:
Performance for the same number of ranks, always split into as many
islands as is possible for the given size of model (normalized by the
same factor). Even perfect island-parallelism does not always scale
perfectly, but always significantly better than pure data parallelism.

10 CONCLUSION

We have presented island parallelism, a concept to scale rendering
workloads beyond the typical mere data- or image-parallel paradigms
omnipresent in the scientific visualization community. Distributing
the workload in a hybrid fashion among compute nodes by adding
data replication as an additional degree of freedom has recently seen
little to no attention in the community. At the same time, returns
from data-parallel scaling diminish—are potentially even negative—
in the presence of modern-day ray-tracing renderers. Hence, the

pressure imposed by scalability issues becoming more pronounced
is a trend that will continue in the foreseeable future. At the same
time, mere image parallelism does not allow for data distribution
and only scales for small or medium-sized data. We have thoroughly
evaluated island parallelism in the context of several MPI-based
GPU ray tracing renderers that are representative of what is nowa-
days used by the scientific and rendering communities. Our results
confirm our hypothesis that scalability in the number of primitives is
diminishing and hybrid data/image parallelism with data replication
allows scaling far beyond what is possible with either of the two
parallelization paradigms when used in isolation. We argue that
when more scientific visualization pipelines switch to ray tracing-
based rendering, due to the different scalability and communication
patterns, concepts like our islands will become more relevant in the
future.
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and U. Güdükbay. Ray-traced shell traversal of tetrahedral meshes for
direct volume visualization. In Proceedings of the IEEE Visualization
Conference-Short Papers, VIS ’21, 2021.

[31] R. Samanta, T. Funkhouser, and K. Li. Parallel rendering with k-
way replication. In Proceedings IEEE Symposium on Parallel and
Large-Data Visualization and Graphics, 2001.

[32] TACC. Frontera System Architecture - GPU Nodes.
https://frontera-portal.tacc.utexas.edu/user-guide/

system/#gpu-nodes, Accessed: 23 June 2022.
[33] W. Usher, I. Wald, J. Amstutz, J. Günther, C. Brownlee, and V. Pas-

cucci. Scalable ray tracing using the distributed framebuffer. Computer
Graphics Forum, 38(3), 2019.

[34] I. Wald, N. Morrical, and S. Zellmann. A memory efficient encoding for
ray tracing large unstructured data. IEEE Transactions on Visualization
and Computer Graphics, 28(1):583–592, 2022.

[35] I. Wald and S. G. Parker. Data parallel path tracing with object hierar-
chies. In Proceedings of High Performance Graphics, HPG ’22, 2022.
(to appear, preprint available under arXiv:2204.10170).

[36] I. Wald, S. Zellmann, and N. Morrical. Faster RTX-accelerated empty
space skipping using triangulated active region boundary geometry. In
M. Larsen and F. Sadlo, eds., Eurographics Symposium on Parallel
Graphics and Visualization, 2021.

[37] E. R. Woodcock, T. Murphy, P. J. Hemmings, and T. C. Longworth.
Techniques used in the GEM code for Monte Carlo neutronics calcu-
lations in reactors and other systems of complex geometry. In Pro-
ceedings of the Conference on Applications of Computing Methods to
Reactor Problems. Argonne National Laboratory, 1965.

[38] H. Yu, C. Wang, and K.-L. Ma. Massively parallel volume rendering
using 2–3 swap image compositing. In Proceedings of the ACM/IEEE
Conference on Supercomputing, SC ’08, 2008.

[39] S. Zellmann, N. Morrical, I. Wald, and V. Pascucci. Finding effi-
cient spatial distributions for massively instanced 3-D models. In
Proceedings of the Eurographics Symposium on Parallel Graphics and
Visualization, EGPGV ’20, 2020.

[40] J. Zhang, X. Lu, C.-H. Chu, and D. K. Panda. C-GDR: High-
performance container-aware GPUDirect MPI communication schemes
on RDMA networks. In Proceedings of the IEEE International Parallel
and Distributed Processing Symposium, IPDPS ’19. IEEE, 2019.

https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/optix
https://developer.nvidia.com/optix
https://pbrt.org/scenes-v3
https://pbrt.org/scenes-v3
https://frontera-portal.tacc.utexas.edu/user-guide/system/#gpu-nodes
https://frontera-portal.tacc.utexas.edu/user-guide/system/#gpu-nodes

	Introduction
	Related Work
	Data-Parallel Rendering
	Parallel Compositing
	Hybrid and Data-Replicated Rendering

	Hybrid Image/Data Parallelism via Islands
	Renderer 1: Sort-last Structured Volume Ray Marching
	Implementation
	Extension to Island Parallelism
	Experimental Setup

	Renderer 2: Hardware-accelerated Production Path Tracing
	Original Renderer without Island-Parallelism
	Stage 1: Path Tracing with Ray Forwarding
	Stage 2: Adding the Per-Rank Images

	Extension to Island Parallelism
	Experimental Setup

	Renderer 3: Volume Path Tracing
	Extension to Island Parallelism
	Experimental Setup

	Renderer 4: Element-marcher with Sort-last ``Deep'' Compositing
	Extension to Island Parallelism
	Experimental Setup

	Evaluation
	Frontera RTX System Overview
	Scalability Study
	Results

	Discussion
	Conclusion

