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(Hardware: 4 worker nodes w/ 2× RTX 8000, low-end head node, 10-Gigabit Ethernet, screen size 2560 × 1080)
PBRT landscape Disney Moana island

30 K instances, 4.3 B instanced triangles 39 M instances, 41 B instanced triangles
370 unique meshes, 500 MB image textures 7 M unique meshes, 804 MB baked-PTex textures

GPU memory usage on most loaded rank: 3.7 GB GPU memory usage on most loaded rank: 25 GB
frame rate (averaged): 6.2 FPS (1 path/pixel) frame rate (averaged): 7.9 FPS (1 path/pixel)

Fig. 1. Two screenshots from a data-parallel path tracer built using the techniques described in this paper;
showing multi-bounce path tracing, textures, alpha textures, area- and environment lighting, etc., on two
non-trivial models each distributed across 4 nodes and 8 GPUs. Despite intentionally low-end network
infrastructure, at 2560 × 1080 pixels and one path per pixel these two examples run at 6.2 and 7.9 frames per
second, respectively (images shown are converged over multiple frames).

We propose a new approach to rendering production-style content with full path tracing in a data-distributed
fashion—that is, with multiple collaborating nodes and/or GPUs that each store only part of the model.
In particular, we propose a new approach to ray-forwarding based data-parallel ray tracing that improves
over traditional spatial partitioning, that can support both object-hierarchy and spatial partitioning (or any
combination thereof), and that employs multiple techniques for reducing the number of rays sent across the
network. We show that this approach can simultaneously achieve higher flexibility in model partitioning,
lower memory per node, lower bandwidth during rendering, and higher performance; and that it can ultimately
achieve interactive rendering performance for non-trivial models with full path tracing even on quite moderate
hardware resources with relatively low-end interconnect.
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2 Ingo Wald and Steven G Parker

1 INTRODUCTION
Data-parallel (or data-distributed) rendering is the process of rendering a model whose constituent
components are distributed across the memories of multiple different compute units such as HPC
compute nodes or GPUs (which, following MPI parlance, we will often call ranks). This is typically
done for one of two reasons: one is that a given model is too large to fit into the memory of a
single node, and the user chooses to distribute it across several different nodes (we call this explicit
distribution); the second is that for some reason or other the model’s data is already spread across
different nodes, and cannot easily be merged for rendering (i.e., it is natively distributed). Data-
parallel rendering did attract some attention in the past, but in practice today it is almost entirely
confined to scientific visualization (sci-vis), and even there is almost only performed with image
compositing-based approaches that are incompatible with effects like path tracing. For the kind of
images shown in Figure 1, data parallel rendering today is virtually non-existent. The list of possible
explanations for that is long, and a full discussion beyond the scope of this paper. However, we
argue that these reasons can be sorted into either one of two groups: one that argues that there is
neither need nor demand for data-parallel rendering in production rendering; and one that argues
that it is too hard.
For the first one, we argue that data is increasingly moving into the cloud (where parallel

resources are easily available), and that content is continuing to grow at a rate that far surpasses
the rate at which GPU or even host memories are growing. The second is more interesting, as the
data parallel rendering techniques we use in sci-vis today may indeed not be ideally suited for
this context: First, sci-vis rendering largely relies on image compositing, but for path tracing we
certainly can not. Path tracing requires the frequent forwarding of either rays or data between
nodes; and that is expensive. Second, the content used in production rendering is very different than
that encountered in visualization, including spatially large yet hard to split instances or meshes
with shading data, abundant spatial overlap, etc. As we show below this content does not always do
well with spatial subdivision, yet this is what virtually all data-parallel rendering today is built on.

In this paper, we take a closer look at data-parallel path tracing for production style content. In
particular, we borrow some of the last few years’ insights on ray tracing acceleration structures,
and use that to propose several new techniques that go beyond strictly spatial scene subdivisions.
We do this through a combination of two things: First, we describe distributed content through
what we call proxies–bounding boxes that describe which parts of the model can be found on
which rank(s), and which are allowed to arbitrarily overlap any other proxies. Second, we propose a
distributed ray forwarding operator that—using those proxies—enables each ray to easily determine
which node/GPU it should next be forwarded to, and that works for both object-hierarchy and
spatial partitioning. We describe several techniques that make this efficient, and demonstrate this
using a prototype data parallel path tracer built using these techniques (Figure 1).

2 RELATEDWORK
Parallel rendering refers to a family of methods where multiple nodes and/or GPUs work together
to render one model; data-parallel rendering to where every node has only part of the model.
Throughout this paper we adopt the parlance of the Message Passing Interface (MPI) [Gropp et al.
1999; Walker and Dongarra 1996], referring to ranks in groups that can communicate with each
other through the passing of messages. MPI can also run multiple ranks on the same node, but we
will typically use one rank per GPU.

Today, data parallel rendering is almost entirely confined to scientific visualization, with packages
like ParaView [Ahrens et al. 2005] and VisIt [Childs et al. 2012] handling the data distribution, and
communication-optimized libraries such as Ice-T [Moreland 2011] handling the compositing. This
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Data Parallel Path Tracing with Object Hierarchies 3

is used for both volumetric and polygonal data, but is generally restricted to simple shading where
alpha- or Z-compositing can be used. Sci-vis also uses path tracing, but in this case usually relies
on data replicated rendering.

In a ray tracing context, parallel rendering is easiest to realize when using replicated rendering,
where every rank has access to the entire scene [Wald et al. 2020; Xie et al. 2021]—which obviously
works only if every rank (or GPU, in the context of GPU-accelerated rendering) has enough
memory to store that scene. Approaches to dealing with models larger than available memory can
be classified into three categories: out of core ray tracing, where data is paged in on demand, usually
including some form of batching, sorting, scheduling, and caching [Pharr et al. 1997; Burley et al.
2018]; data forwarding, where data is sent to / fetched by whatever node needs it [Wald et al. 2001;
DeMarle et al. 2004; Ize et al. 2011; Jaros et al. 2021]; and ray forwarding where rays get scheduled
on, and sent to, other node(s) [Salmon and Goldsmith 1989; Reinhard 1995; Kato and Saito 2002;
Park et al. 2018; Abram et al. 2018].
An interesting exception to this classification is the concept of hardware-assisted distributed

shared memory as recently used by Jaros et al.’s [2021], in their case using CUDA unified memory
and NVLink on an NVidia DGX: on the hardware level this uses data fetching over high-bandwidth
NVLink, with unified memory giving the appearance of a single replicated address space; on the
software side, the authors show that best performance is achieved if the application is aware of
which data lives on which physical GPU, and ideally even replicates some of that data.

Looking at the literature on data parallel ray tracing we make two observation: First, that the ray
forwarding approach has received but scant attention: some early work has looked at the scheduling
part of the problem (see, e.g., [Reinhard 1995] for an overview), but at the time of writing this paper
we could only find three recent approaches that forwarded rays: The Kilauea renderer [Kato and
Saito 2002] (which forwarded every ray to every node), Park’s SpRay system [2018] (which focuses
on scheduling and speculative execution), and TACC’s Galaxy [Abram et al. 2018] (which uses
techniques similar to those in SpRay). More recently (and in parallel to this paper) a forwarding
based approach has also been Proposed by Fouladi et al. [Fouladi et al. 2022], which targets data-
parallel path tracing of large models on many small cloud instances—though without considering
either instances or GPUs, and only in an offline context.

A second observation is that across all the different approaches to data parallel rendering taken
over the last four decades researchers seem to have taken it for granted that data would necessarily
get spatially partitioned using various forms of grids, octrees, kd-trees, etc. The latter is particularly
striking given the last decade’s lively discussion around spatial vs object hierarchies in ray tracing.
In this field, the community has largely switched from spatial techniques to object hierarchy-
based techniques like BVHes [Parker et al. 2010; Wald et al. 2014; Burgess 2020]. These BVHes
are often built using spatially influenced techniques like top-down partitioning and the Surface
Area Heuristic (SAH) [Karras and Aila 2013]), and do best when augmented with optimizations
like spatial splits [Stich et al. 2009; Ganestam and Doggett 2016; Ernst and Greiner 2007] and
braiding [Benthin et al. 2017]—but they are nevertheless object-space techniques. Since we cannot
cover all these techniques in detail in this paper, we also refer the reader to an excellent recent
survey on the user of BVHes in ray tracing, by Meister et al. [Meister et al. 2021].
Issues with spatial partitioning (in particular in the context of content with instances and/or

attached shading data) have also been pointed out by Zellmann et al. [2020]. Their paper proposed
techniques that produce better spatial partitions for heavily instances scenes—but never went
beyond spatial partitioning, nor did it look at the kind of algorithms that rendering such non-spatial
partitioning would require.
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4 Ingo Wald and Steven G Parker

3 DATA PARALLEL RAY TRAVERSAL
In this section, we give a high-level overview of the general concepts and techniques for what we
call data-parallel ray traversal in object space. The core idea is to combine two things: first, a more
general representation of data-distributed scene content where different pieces of content across
different nodes are allowed to spatially overlap other such content, both on the same and/or other
nodes; or even to be replicated across multiple nodes if and where desired. Second, the concept
of what we call a data-distributed forwarding operator that, in the presence of such object-space
distributed content can always tell which other node a given ray needs to be forwarded to next, in
a guaranteed correct yet efficient manner that explicitly aims to minimize the number of times that
such forwarding needs to happen.

3.1 Goals, Non-Goals, and Key Issues
Our goal is to render—with full path tracing—models that are larger than the memory of any one
of our ranks (and in general, larger than the host memory of the nodes that contain these GPUs).
We explicitly target assets similar to the island model that—at least with a good partitioner—may
today need only on the order of four or eight GPUs; not the “at scale” type visualizations of up to
thousands of nodes that are so common in visualization. While we do believe our method will also
work in larger scenarios these are not currently our focus; nor is the concept of strong vs weak
scaling that is so important in sci-vis. We also observe that such content is very different from that
encountered in sci-vis. For example, spatial overlap of different logical objects and instances for
our content is quite common.
While we do aim for interactive performance, we do not (yet) aim for fully real-time photo-

realistic rendering. We do believe our method to be a first step towards this goal, but this will
ultimately require more systems work than entertained in this paper. We expect network bandwidth
to be the ultimate bottleneck, but we still need to perform a fair amount of shading and texturing.
Thus, though our framework can also be recompiled to a CPU-only back-end using Embree [Wald
et al. 2014] for this paper we only consider GPUs.
With the growing gap between compute and bandwidth our main concern is to reduce the

amount of network bandwidth required for a given frame. This can lead to un-intuitive situations:
in data replicated rendering one can expect that adding more resources will improve performance,
but in a data-parallel context the opposite is often the case—adding more ranks also increases the
chance that rays need to get forwarded, which is counter-productive.

3.2 Core Idea
With these goals in mind, let us take a look at how state of the art data-parallel ray tracing would
work for the kind of content we are targeting: Let us consider a simplified example of a 2D "island"
model shown in Figure 2a: a model made of two base meshes, with two types of trees that each
have several instances.

Let us now first consider the state of the art, and let us create an imaginary spatial partitioning
of this model into three disjoint regions (Figure 2b): no matter where the splits are placed, almost
every spatial domain will be overlapped by almost every base mesh, and will contain at least one
copy of each type of tree. The number of instances in each region has decreased, but memory per
node barely has. Let us now also look at two hypothetical rays as shown in Figure 2b: traversing
these across spatial domains is obvious and trivial, but each of them touches two ranks, despite not
even being close to any of the geometry in the first or last rank (this only gets worse in 3D).

Let us now consider that same model with a purely object-space partitioning, and simply assign
the first mesh to one rank, the second to another, and all instances of all trees to the third (Figure 2c).
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Data Parallel Path Tracing with Object Hierarchies 5

Replication is now gone completely, but overlapping boxes mean that rays are now touching even
more ranks’ data; and traversal order is no longer obvious. Now let us take this general idea, but
apply some ideas from the last decade’s discussion on BVHes vs kd-trees; in particular, concepts
such as spatial splits [Stich et al. 2009; Ganestam and Doggett 2016] and braiding [Benthin et al.
2017] to reach “into” large instances, and instead represent themwith several individual, tight-fitting
bounding boxes. If we do this (Figure 2d) an ideal algorithm could now—if it existed—trace both of
these rays on the same rank, without any ray forwards at all.

A(1X) B(1X) C(3X) D(4X)

A1

C1 C2
C3

D1
D2

D3

D4

B1

A BC D C D B C D

Rank 0 Rank 1 Rank 2

(a) island-like scene w/ instances (b) traditional spatial partitioning
Rank 0: Rank 1: Rank 2:A B CD Rank 0: Rank 1: Rank 2:A B CD

(c) naïve object hierarchy partitioning (d) object partitioning w/ “proxies”
Fig. 2. The core ideas behind our method, illustrated on a 2D sketch of a model very like the island model. a)
Our model consists of two base meshes (A and B), and three respectively four instances of two types of tree
(C and D). b) spatial partitioning on this model runs into two issues: it struggles to properly partition it with
spatial splits, and it can end up with large boxes that incur ray forwarding between ranks. c) Object space
partitioning allow for non-spatial scene partitions, but if done naïvely ends up with even worse ray traffic.
d) we represent objects by more than one—possibly overlapping, but tight-fitting—”proxies”: these are more
flexible and general than either spatial or object space techniques, and also require less forwarding.

3.3 Proxies and Data-Distributed Traversal
Our initial plan to realize the ideas sketched in the previous section was to assign each instance to
exactly one rank, to create exactly one proxy per instance, and to have each rank build exactly the
same BVH over those proxies. This suggests an obvious BVH-style traversal through those proxies,
sending rays to the nodes that owned the proxies they traversed. To have the next node continue
traversal where the previous one left off we had planned on using a stack-free BVH traversal such
as described by Hapala [2011] or Vaidyanathan [Vaidyanathan et al. 2019]. This is indeed a useful
mental picture of how our method works; however, we can significantly improve upon this as
described in the rest of this section.

3.3.1 Traversing nodes, not instances. Once a ray hitting a given proxy is sent to the node owning
that proxy there is no reason to limit intersection to that one instance that generated that proxy.
Local geometry intersection is inexpensive compared to sending a ray over the network, so we
should always intersect all geometry on that node. We want to ensure that rays are never sent to
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6 Ingo Wald and Steven G Parker

the same node twice, no matter which proxies it encounters. This requires tracking the nodes that
a ray has already visited; we present two options for that below.

3.3.2 Front to back traversal. A stack-free BVH-style traversal of the proxies sounds easy, but in a
distributed context it isn’t, as even minute differences in the ranks’ BVHes can lead to issues1; nor
would it guarantee front-to-back traversal. If, however, rays keep track of which nodes they have
already visited, then we can do something that is even simpler: we simply trace the ray into those
proxies, and find the closest proxy that belongs to a node that we have not yet traversed.

3.3.3 Intersect local geometry first. For a newly spawned secondary ray, front-to-back traversal
does not guarantee that the spawning rank will get picked first; yet that ray would certainly later
get sent to that node. We always first trace each ray on the rank that generated that ray, then tag it
as having already visited this rank. In particular for shadow rays there is a good chance that this
these can find an occluder on that same node, and never have to leave that rank at all.

3.3.4 Generalized proxies. Creating exactly one proxy per instance can lead to very large proxies
for some objects, which in turn would require many rays to be sent to that node. We observe that
this is very similar to problems that have recently been investigated for BVH traversals, and in
particular point to techniques like spatial splits and braiding. Both of these work by representing
spatially large objects in a BVH through more than one box, with the entirety of these boxes
covering the object more tightly than one single box. We use this to conservatively, but tightly,
represent spatially large instances with multiple smaller boxes (see Figure 2d). This allows rays to
pass around some geometry whose proxies they would otherwise have hit. Rays can now encounter
multiple proxies of the same object, but the previous paragraphs’ techniques skip these, so this
is OK. Ultimately this means that proxies no longer represent any particular instance, but just a
region of space that a given node has content for. I.e., we can have one proxy represent more than
one instance, or use multiple proxies for the same instance, etc. We observe that this use of proxies
to represent different (and possibly overlapping) parts of the model is similar to the way that in the
times of triangle rasterization some techniques represented scene content for efficient occlusion
culling (see, e.g., the paper by Mattausch et al [Mattausch et al. 2008]).

3.3.5 Replicating certain geometry. Just like proxies are not tied to any particular instance, we can
generalize the concept of who owns the content behind one proxy. Though we did initially assign
exactly one rank to every instance, for some spatially large (and thus, likely to get traversed) yet
not memory intensive object(s) we might also want to replicate this object to more than one node,
such that rays already on that node would have it available without needing to travel to the node
owning it. With our proxies, we can easily do that, by allowing proxies to specify that whatever it
may represent, it can be found on more than one node. The traversal logic above does not change
at all: trace a ray to find the next proxy and reject all proxies for which the ray has been to any of
the nodes listed in that proxy.

3.3.6 Proxy-guided primary ray generation. Above we have described that secondary rays should
always be traced on the node that spawned them, but for primary rays we can actually choose
where to spawn them. In particular, we can use our proxies to generate each path on exactly the
node that owns the closest proxy for the given pixel, thus maximizing the chance that this ray will
find its first intersection on exactly the node it was generated on.

1Stack-free traversal techniques assume that any attempt to "resume" a ray would operate on exactly the same BVH on both
nodes, including exactly the same ordering of all nodes—but if these ranks each use any sort of parallel builder—where node
order may depend on the order that threads pick work—this may not be the case.
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Data Parallel Path Tracing with Object Hierarchies 7

3.3.7 Tracking which nodes a ray has already been on. In all of the previous techniques we have
made the implicit assumption that a ray always known which node(s) it has already been on. For
not too large a number of ranks this can be realized through a bit mask (with one bit per rank) that
gets attached to each ray. For a large number of ranks this would lead to an explosion in ray size;
however, this can be avoided by what we call the “replay” technique: if each ray only ever stores
which rank it was generated on, then any node can later re-compute the actual set of visited nodes
by simply re-running the above logic until it reaches itself.

In combination, these technique provide a very effective operator that—using only the proxies,
the ray, and the ray’s stored history—allows any node to robustly and efficiently determine which
other rank to forward that given ray to next; if this comes up empty then that ray’s distributed
traversal is complete.

4 PARTITIONING
This paper is not about one particular partitioning strategy; in fact, we believe our method’s
greatest strength is its ability to express and ray trace distributed content in a more general way. To
demonstrate this flexibility we implemented multiple different partitioners, including both spatial,
object space, and hybrid methods. All our variants work similarly in that we start by creating one
part containing the whole scene, then iteratively take the respectively largest part, and split that
into two. For objects with more than one instance we use the individual instances of that object, for
those with only one instance we follow Zellmann [2020] and break that object into its constituent
meshes (we could of course also split meshes into individual triangles, but currently do not do this).
Spatial partitioning starts with an initial domain set to the scene’s bounding box, and in each

split creates two non-overlapping halves, then checks which objects overlap each half’s domain.
Again following Zellmann, after each step each side’s domain gets shrunk to the content it contains,
if possible. For deciding where to split we implemented two methods: spatial-simple splits each
domain at its spatial median; spatial-sah uses a cost function to pick one among 3 × 7 equidistant
candidate splits (i.e., 7 split planes in each of the three dimensions2. As cost function we first
compute how many unique meshes, triangles, vertices, texels, etc., each rank has, then weigh these
with an estimated memory cost for each such item; the final cost of a split then is a 50:50 blend
between traditional SAH and the sum of these memory estimates. As proxies we eventually use
exactly those domain boxes, at which point our method can handle this data. This is, in fact, a
powerful finding: the techniques we propose are not the exact opposite of spatial subdivision, but
is, in fact, a generalization of how data-parallel content can be expressed and rendered: though we
can do more, spatial subdivision can still be represented just as well, and some of our optimizations
can even be back-ported into spatial subdivisions.
Object partitioning works on objects, not instances: all instances of an object always go to the

same rank. For each object we create one box around all its instances, then use this box to sort this
object left or right of any candidate plane. Again we use 3 × 7 planes, and our cost function to pick
the best one. For computing the proxies we implemented two methods: object-naive uses the same
boxes as used for partitioning; object-proxies creates one proxy for every instance, and by default
64 smaller proxies for non-instanced meshes. The latter we compute just like with braiding, by
performing a number of BVH build steps on each such mesh.

Hybrid partitioning combines both techniques: we partition based on instances, not objects—so
some instances can get replicated, if the cost function so chooses. Otherwise partitioning is similar
to object space, using the same cost function. In bvh-style we use one box per instance respectively
2We could of course also use more than 7 planes, but this is the default value we chose as sweet spot between partitioning
time and quality
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non-instanced mesh; these boxes are then also used as proxies. In our currently best partitioner we
first—before partitioning—split large objects into multiple boxes, then partition these. This means
that some objects can now get assigned to more than one rank if the cost function so chooses. The
partitions and proxies resulting from these strategies are shown in Figure 3. We observe that this
way of choosing either spatial or object splits in the same splitter is also similar to how some BVH
builders work even in a non-data parallel setting (see, e.g., [Hendrich et al. 2017; Wald et al. 2014]).

landscape island

spatial (median) spatial (w/ cost fct) spatial (median) spatial (w/ cost fct)

object (naïve) object (+ proxies) object (naïve) object (+ proxies)

bvh-like best (w/ some replication) bvh-like best (w/ some replication)
Fig. 3. Visual depiction of the model partitions that our sample partitioners produce for both landscape and
island , with the boxes showing the used proxies’ bounding boxes, and their color encoding the rank they are
on (proxies with same color are on the same rank (the reason the two images in the top right look they way
they are is because with this technique produces one partition that contains the entire back half of the model,
whose bounding box (green in this visualization) covers the entire viewpoint). Proxies with a checkerboard
pattern mean that this content is owned on more than one rank.

5 IMPLEMENTATION
The core contribution of this paper is not any one implementation, but the general concepts of
looking beyond purely spatial partitioning, the proxies, and the specific techniques for the data-
distributed traversal operating on these proxies. Nevertheless, to prove that these concepts do in
fact work we also developed a data-distributed GPU path tracer that uses these concepts.
For communication we use a CUDA-aware build of OpenMPI 4.1.2, which means that we can

directly pass device addresses to MPI, which then copies data as required. With better hardware this
would also allow RDMA communication between GPUs and network devices, but on our low-end
setup this is not the case. The renderer uses a wavefront-design, with all shading, compaction, etc.,
done in CUDA 11.4, and all tracing done using OptiX 7.4.
That same renderer can also be recompiled to a CPU-only version that uses Embree and TBB.

The same concepts work there as well, but for our model the texturing in particular is an issue on
that setup. A detailed comparison is beyond the scope of this paper.

5.1 Rays, Paths, Hits, and Ownership Masks
Our framework builds on small, self-contained path nodes that can be forwarded across the network.
Each path contains a ray origin and direction, a throughput value [Boksansky and Marrs 2021],
and the pixel ID to which it belongs, plus some bits to indicate whether a ray is a shadow ray, in
medium, etc. To track already visited nodes we use a bit-field of either 8 or 64 bits depending on
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number of ranks; for more ranks we would use the technique described in Section 3.3.7. We use
half precision for ray direction and throughput, and encode all bits and pixel ID in a 32-bit integer.

For the currently closest intersection we only store the distance in ray.tmax, plus the node mask
of the geometry that was hit. This means paths have to be re-traced for shading (to re-compute
information lke texture coordinates, differential surface, etc., from the mesh that this node now has
access to); but this re-tracing is still cheaper than sending every ray’s hit information across the
network. We could also have stored the node ID that produced the hit; but using a node mask is
better: if the ray were to need forwarding and later terminates on another node, having the node
mask of the hit allows this other rank to check if it, too, happens to have that data, thus allowing
the ray to be shaded there without it having to be sent back.
Using this encoding, the path struct is a mere 36 bytes in size. We refer to that same structure

as either ray or a path depending on context, but always mean that same struct. Paths always get
generated and shaded in wavefronts; between two such shading operations each wavefront goes
through a distributed traversal until every path is on the node it can be shaded on.

5.2 Distributed Path Tracing
For the forwarding logic we use an OptiX acceleration structure built over the proxies, with an
intersection program that rejects all proxies whose ownership mask lists any node that the ray
has already visited. If any next proxy was found, we use the proxy’s bit mask to pseudo-randomly
pick one of the ranks listed in that mask. Otherwise, the ray is finished traversing, and can go to
shading. In that case we check whether that ray can be shaded on the current node, and if not,
pseudo-randomly pick one of the ranks listed in its hit mask.

5.2.1 Wavefront Ray Traversal. Our core operation is to take one wavefront of rays, and trace
these—across nodes—until each ray has terminated traversal, and is on a node where it can be
shaded. We call this the distributed ray traversal, and it proceeds in three stages: We first launch an
OptiX program that traces each ray into the rank’s local geometry. This uses an anyhit program
to do alpha texturing, and a closest-hit program that updates the ray’s tmax and hit mask if a
closer intersection is found. The program then updates the ray’s alreadyVisited mask, traces it into
the proxy acceleration structure, and determines which rank that ray needs to be sent to next as
described above. We then run a CUDA compaction kernel that rearranges all rays such that those
that can be shaded locally go to one place, and those that need forwarding go to another, with the
latter sorted by the rank they need to go to.

Once the rays are thus arranged all ranks collaboratively execute an MPI Allgetherv to exchange
how many rays each rank wants to send to any other node, followed by an MPI All2all that moves
the rays to their respective destinations. These three stages get repeated until no more rays need
exchanging, at which point every rank has a wavefront of rays ready to be shaded on that rank.

5.2.2 Wavefront Shading and Secondary Ray Generation. After a wavefront has been traced to
completion each rank locally shades its rays. Shadow rays that terminated traversal on the current
rank check if that shadow ray did find an occluder, and if so, get discarded; those that didn’t
atomically add their throughput value into the rank’s frame buffer. For non-shadow rays, those
that did not find an intersection get shaded by either background or environment light, and get
accumulated into the frame buffer.
For a non-shadow ray that did have a hit we first re-trace that ray into the local geometry to

re-compute the full hit and BRDF data (Section 5.1). We sample the BRDF to produce either a
reflected or refracted ray, modify the ray’s throughput value according to the sampled BRDF, and
use rejection sampling to avoid tracing rays with too low a throughput value. The secondary ray—if
not rejected—gets appended to the next step’s wavefront queue.
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Shading can also generate a shadow ray. To prevent possibly unlimited growth of the ray queues
we use repeated reservoir sampling [Wyman 2021] and importance sampling to always choose at
most one sample from possibly multiple different lights and light types. Thus any pixel can have at
most two rays active at any time: one for the path itself, and one for its corresponding shadow ray.
Shadow rays first compute the pixel contribution they would have if not occluded, then store that
value in their throughput field, and set a bit in the path that flags this as a shadow ray.

landscape model: max per-rank GPU memory usage 3.7 GB (ours) vs 4.8 GB (spatial)
(including all shading data, textures, etc, and including non-model data like ray queues, frame buffers, etc.)

path: 6.1 fps (ours) 5.2 fps (spatial) view-3: 9.1 fps (ours) 4.7 fps (spatial) top: 13.3 fps (ours) 10.1 fps (spatial)

island model: max per-rank GPU memory usage : 25 GB (ours) vs 48 GB (spatial)
(including all shading data, textures, etc, and including non-model data like ray queues, frame buffers, etc.)

default: 7.9 fps (ours) (3.0★) fps (spatial) beach: 3.6 fps (ours) (2.8★) fps (spatial) overview: 11.1 fps (ours) (3.7★) fps (spatial)

Fig. 4. Views used for our evaluation, and render performance for these views. (2560 × 1080, one path/pixel,
4 workers@2×RTX 8000, 10-GigE Ethernet). (★: spatial can render this model only if we upgrade the memory
of the node that holds the the first two ranks to 128 GBs of RAM, and even then requires significant swapping
during scene setup.)

5.2.3 Proxy-Guided Primary Ray Generation. For primary rays we use the technique described
in Section 3.3.6: each rank generates every primary ray and traces it into the proxy acceleration
structure (which on modern hardware is very cheap). This ray then picks a primary owner based on
the bits of the closest proxy, and all but one rank will then discard this ray. For rays that hit proxies
stored on more than one rank we use the pixel ID as a tie-breaker, which in the pseudo-color images
in Figure 4 can be observed as a checkerboard pattern on those objects that the partitioner chose to
replicate.

5.3 Merging Ranks’ Partial Frame Buffers
Irrespective of which rank a path was generated on, it—and the secondary rays it may spawn—can
terminate on any other node; so, every pixel can get contributed to by any rank. One way to handle
that is to send every shading contributions back to the rank that generated the path; but that is
expensive. Instead, we have each rank maintain a full frame buffer for all the image contributions
computed on that rank. These partial-sum frame buffers eventually need to get added for the final
image. For this we use what in visualization is known as parallel direct send compositing [Grosset
et al. 2017] (albeit using addition rather than alpha blending): each rank is responsible for one part
of the final frame buffer, and receives other ranks’ contributions from those ranks. Each rank then
adds up the parts it received, performs tone mapping, and sends the final RGBA pixels to the node
responsible for display or storage.
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6 EVALUATION
Using the implementation described in the previous sections we can now evaluate how well these
techniques work. Since this is the only large production content that is publicly available we focus
primarily on the island model, but also include the PBRT landscape for reference. For island we
enable the isMountainA/xgLowGrowth, and tessellate all curves geometry into 3 linear segments per
curve segment. For the original model’s PTex textures [Burley and Lacewell 2008] we perform
a baking step that creates a per-mesh texture with 8 × 8 texels per quad, with properly created
texture coordinates added to each vertex3.
For hardware we use what is called “Beowulf” cluster of, in our case, five similar networked

PCs, using one as head node, and four as workers. Each worker is equipped with 64 GBs of RAM,
and with two 48 GB RTX 8000 cards; the master only runs the display. For networking we use a
commodity at-home 10Gig-E Ethernet, which is well below what modern data center hardware can
provide (e.g., a Mellanox ConnectX-7 is rated at 400 GBit/s, vs our 10 GBit/s). Better interconnects
also allow RDMA transfers, which our setup does not. Using such low-end network may look
counter-intuitive, but is useful to establish a baseline, and forces us to always focus on the main
problem: bandwidth.

6.1 Maximum GPU Memory Usage
The ultimate rationale behind data-parallel rendering is to reduce the amount of data per node
until it fits per-node memory. As such, we first evaluated how well different partitioning strategies
performed in reducing per-rank memory. To do this we took the island model, split it into a
varying number of 𝑁 parts (from 𝑁 = 1..128), and logged the size of the respectively largest
part—which is the part that would most exceed the memory budget. To measure this we used the
cost function described above; this doesn’t include rendering related data like ray queues, etc., and
is an approximation even for model data; but is hardware agnostic and easy to compute.

The result of this experiment are shown in Figure 5: for purely spatial partitioning the first few
splits hardly manage to reduce the size of the largest part (which is the one that actually matters!)
at all, even when we use multiple candidate planes; and even after splitting into 16 parts the largest
3This baking step is only used because we have no means of directly sampling PTex textures on the GPU; otherwise we
would simply have have used the size of the PTex files in the memory estimate during partitioning.
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Fig. 5. Estimated memory usage of the largest part when splitting island into any number from 1 to 32 parts,
for different partitioning strategies; once with all non-instanced geometry together in one instance (green),
and once with non-instanced objects broken into meshes (red).
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part has barely shrunk to half the size of the original model. When pre-splitting the single-instance
root object into its constituent meshes as proposed by Zellmann et al. [2020] the situation markedly
improves (red lines), but even then it takes a lot of partitions to significantly reduce model size.
For object partitioning max model size drops rapidly, and even with only 4 parts is almost as good
as spatial partition is with 16; it also and eventually reaches a minimum that spatial partitioning
cannot reach.

For our renderer that means that the object-space and hybrid partitionings will easily fit on the
8 GPUs we got for this experiment, and even for island only require 25 GBs out of the 48 GBs
available4. For the spatial partitions even with pre-splitting some of the GPUs will temporarily
exceed their memory during acceleration structure build, which we currently allow by using CUDA
managed memory to temporarily allow paging out of data while the scene is built.

6.2 Ray-Bandwidth Per Frame
The promise of our motivational example from Section 3.2 was that our techniques would not
only help with how effectively a scene could be partitioned, but would ultimately even reduce
ray bandwidth. To evaluate this we instrumented our MPI code to track, across all nodes and ray
exchanges, howmany such ray forwards were required to render a given frame. In Table 1 we report
these numbers for the configurations and viewpoints shown in Figures 3 and 4: Naïve object space
partitions incurs ray bandwidth several times higher than spatial techniques, but the introduction
of proxies can reduce that significantly. Our currently best partitioner—which by default is allowed
to replicate up to 5% of the input geometries—can do even better, and eventually requires 2 − 35×
less ray bandwidth than our best spatial techniques.
This result is important, for two reasons: First, for a system limited by how many rays can be

sent across the network, any reduction in bandwidth directly translates into higher frame rate. For
the default view of island, using the same hardware our best object-space technique renders at 7.9
frames per second vs only 3 fps for spatial; for the view that captures the whole model, these are
11.1 fps vs 3.7 fps, respectively. When using more than one sample per pixel these speedups are
even higher, as the bandwidth required for adding the final frames becomes less relevant.
Second, we observe that since our object space techniques require less GPU memory per rank

(25 GB vs 48+GB, see Section 6.1) we could actually have used fewer ranks for these, likely achieving
yet higher performance with less resources. For example, for landscape frame rate for our object
techniques goes from 6.2 fps to 7.1 fps when going from 4 workers to 2.

spatial only object hybrid
sp.median cost fct naive proxies bvh-like best

PBRT landscape
path 1.9M (4.4×) 1.6M (3.6×) 6.7M (15×) 16M (36×) 4.3M (9.7×) .45M
view-3 2.4M (5.2×) 2.2M (4.8×) 5.6M (12×) 33M (72×) 5.0M (11×) .46M
top .89M (7.6×) 1.5M (13×) 1.7M (14×) 7.3M (62×) 1.5M (13×) .12M

Moana island
default 5.0M (3.8×) 8.0M (6.2×) 19M (15×) 7.4M (5.7×) 9.7M (7.5×) 1.3M
beach 4.7M (1.7×) 7.3M (2.7×) 24M (8.7×) 14M (5.0×) 20M (7.4×) 2.7M
top 8.6M (43×) 7.3M (36×) 12M (59×) 6.9M (35×) 6.1M (31×) .2M

Table 1. Rays forwarded across all nodes and bounces, for one path per pixel at 2560 × 1080, using the given
view and partitioning method (see Figures 3 and 4 for reference).

4The 25 GB is after partitioning; the non-partitioned model need much more than the 48 GB that any one GPU has.
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6.3 Application to Non-Instanced Models
To ascertain that our method is not limited to heavily instanced models we also developed a separate
content pipeline that can handle large non-instanced models in an out of core fashion, creating the
same spatial partitioning that existing data parallel renderers (e.g., in sci-vis) would produce. This
works just fine; however, a full discussion of this is beyond the scope of this paper.

7 SUMMARY AND DISCUSSION
In this paper, we have argued for taking a closer look at data-distributed rendering beyond its use in
scientific visualization, and in particular, in the context of data-parallel path tracing of production-
style content with lots of instances, textures, geometry that cannot trivially be partitioned with
purely spatial partitioning techniques, etc. We have pointed out some of the issues that arise in that
context, and have in particular proposed to look beyond purely spatial partitioning, and instead, to
look at some of the techniques recently developed for fast BVH-based ray traversal, and to bring
some of these technologies over to a data-parallel object-hierarchy ray traversal.

Building on some of these conceptswe have proposed a general representation for data-distributed
content that can handle both spatial as well as object-hierarchy partitioning (as well as combinations
thereof), combined with the concept of proxies that allow to represent such content in a way that is
general yet still tight and efficient. We have described the key algorithms to use these proxies to
realize an efficient data-parallel traversal operator that aims at minimizing the number of rays that
need sending across a network. We have also sketched a non-trivial data-parallel path tracer using
these concepts, and have demonstrated that thanks to the memory and ray bandwidth savings
produced by these techniques this prototype renderer can semi-interactively path trace the full
island model on but consumer networking infrastructure. We observe that even without those
specific techniques this is the first interactive, multi-node and GPU-accelerated rendering of this
data that we are aware of.
To evaluate the benefits of our new approach we have compared various different partitioning

strategies, and have shown that the best of these produce not only lower per-node memory use, but
also significantly lower ray forwarding bandwidth when compared to regular spatial partitioning.
However, this paper is not necessarily about one form of partitioning vs the other—instead, we
believe that its main benefit is that it allows an application to use whatever scene partitioning it
might choose, without being constrained to a single one.

The downside to this generality is that our paper does not automatically define what the “best”
partitioning might be, and better understanding how or into how many parts to partition a scene,
which proxies to create, what to replicate or not replicate, etc., will require significant follow-up
work. In this context, the biggest need is for a good cost function that could predict how much ray
bandwidth a given partitioning might incur, similar to how a surface area heuristic can predict
traversal cost on a local node; but though there are similarities the problem is more subtle.
Similarly, though the prototypical path tracer we used to evaluate this framework is already

pretty advanced, it is certainly nowhere near what a real production renderer might want to do in
terms of shading, secondary rays, etc.: Even though we already handle secondary rays, light sources,
non-trivial sampling techniques, etc., we currently assume that rays never need to store or re-visit
anything on the nodes they have traversed—yet for techniques like multiple importance sampling,
photon mapping, or bi-directional path tracing this would not suffice. Production renderers practice
may require more data per ray—either higher precision, or additional data like path differentials
that cannot be recomputed from the local mesh data—but these would likely also use hardware
with better networks.
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Even in the context of pure path tracing, moving to newer hardware with possibly more than an
order of magnitude faster interconnect would also trigger the need to start looking into techniques
like overlapping communication with rendering, or just generally addressing performance issues
that are currently overshadowed by communication cost; this is particularly true when considering
that some of the GPU infrastructure in the cloud will not have ray tracing cores, at which point the
large number of rays we are shooting might become an issue.

Eventually it would also be interesting to back-port some of the techniques we have proposed to
large-scale visualization tasks where data is often natively distributed across many more nodes that
we have yet even considered; at that point even concepts like our node masks may need revisiting;
though we have already sketched techniques that should work in that context, these have yet to
be evaluated. Similarly, in the context of sci-vis we would also have to consider volumetric data,
which so far we have not looked at at all. The ability to handle spatially overlapping pieces of data
might actually be very interesting in particular for unstructured data, data with “ghost cells”, etc.;
but supporting all that will require some major work.
Finally, though the concept of using proxies as described above is certainly the key to how this

method works, if used naïvely the proxies themselves can become a limit to what kind of models
our method can handle for a given type of GPU: For example, the island by default we generate on
the order of 140 million proxies, and if we only needed order 100 bytes per proxy (which including
BVH memory is rather conservative) then this alone is in the order 14 GBs per GPU—and since our
method assumes that proxies are replicated across all ranks this would use or exceed almost all
the memory available on the kind of GPUs that a typical HPC or cloud node would typically have.
This in turn suggests the need to perform some sort of reduction on the generated proxies, where
a set of proxies would get (conservatively) represented with fewer boxes, at slightly higher ray
bandwidth. Early results indicate that this would indeed allow to render even the island model on
GPUs with less than 16 GBs of memory—but a detailed discussion of this would exceed the scope
of this paper.

8 CONCLUSION
The methods described in this paper allow for a more general description of how models can be
represented in a data-parallel context, and when integrated into a non-trivial path tracer are not
only more general, but can also achieve—simultaneously—lower memory use, lower ray bandwidth,
and higher performance. Integrating these techniques into actual products will certainly require
more research and more engineering work; however, we do believe that these techniques will
significantly influence how future data parallel path tracers will be built.
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