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A Memory Efficient Encoding for Ray Tracing

Large Unstructured Data
Ingo Wald Nate Morrical Stefan Zellmann

DKRZ full ocean NASA Exa-Jet NASA Mars Lander (small) NASA Mars Lander (large)
485 M verts, 749 M elements 656 M verts, 652 M elements 143 M verts, 789 M elements 576 M verts, 2.9 B elements

compression rate 5.9 : 1 compression rate 4.9 : 1 compression rate 14.0 : 1 compression rate 12.3 : 1

Figure 1: Compression rates we achieve for four very large unstructured-mesh data sets: Ocean, ExaJet, and two resolutions
of the Fun3D Mars Lander Retropulsion Study. Quoted memory consumption includes, for both compressed and uncompressed
versions, both the unstructured mesh elements and the acceleration data structure that allows for fast random-access sampling. Our
representation encodes the same information as an uncompressed reference implementation, but at up to 14× less memory.

ABSTRACT

In theory, efficient and high-quality rendering of unstructured data
should greatly benefit from modern GPUs, but in practice, GPUs
are often limited by the large amount of memory that large meshes
require for element representation and for sample reconstruction
acceleration structures. We describe a memory-optimized encod-
ing for large unstructured meshes that efficiently encodes both the
unstructured mesh and corresponding sample reconstruction acceler-
ation structure, while still allowing for fast random-access sampling
as required for rendering. We demonstrate that for large data our
encoding allows for rendering even the 2.9 billion element Mars
Lander on a single off-the-shelf GPU–and the largest 6.3 billion
version on a pair of such GPUs.

1 INTRODUCTION

Our computational capabilities are rapidly evolving. Year over year,
supercomputing power improves by about 1.5 to 2× [29]. As we
improve our ability to simulate the world around us, our simulations
naturally grow larger to match these increased computational bud-
gets. Take—for example—the NASA Mars Lander Study [1] shown
in Figure 1. The largest unstructured mesh used for this study con-
sists of 1.14 billion vertices and more than 6.3 billion finite elements
per time step, and many different time steps thereof.

What not long ago used to be simple structured volumes have
become complex, largely unstructured data sets. These data sets
commonly come in one of two predominant formats: semi-structured
grid data, and unstructured finite elements. Semi-structured data
sets like adaptive mesh refinement (AMR) data consist of a set of
bricks or trees containing grids of voxels at varying resolutions.
Unstructured finite elements on the other hand consist of a mix of
tetrahedra, pyramids, wedges, and hexahedra that can twist and bend
to more effectively adapt to the computational domain.

Today, both AMR and unstructured meshes seem equally im-
portant, with some applications preferring the one, and vice versa.

However, from the standpoint of visualizing the computed data, the
difference between AMR and unstructured meshes can be quite pro-
nounced. AMR data can come in many different forms and thus
require many different codes to handle. Conversely, unstructured
mesh representations are relatively standardized and thus easy to
support across many different tools. Unstructured meshes are also
arguably more general, in that AMR representations can always
be converted into an unstructured mesh (by computing their dual
mesh), but not vice versa. Consequently, any advances in quality or
performance of rendering unstructured meshes should benefit both
unstructured and AMR codes.

For the remainder of this paper, we assume that truly high-quality
rendering of unstructured data involves sample-based volume ray
marching (with or without volumetric scattering), combined with
surface based rendering for embedded geometry. Within that context,
large unstructured data sets cause two apparent issues:

1. Unstructured meshes by design have little implicit structure,
meaning that reconstructing samples requires expensive cell
location kernels with often complex and incoherent memory
accesses, pointer chasing, and code divergence.

2. The situations where unstructured codes are most useful are
those where the simulation needs to adapt to high-frequency
features in the computed function. Consequently AMR and
unstructured data often suffer from large differences in the
size of the features of interest relative to the computational
domain. This, in turn, requires advanced sampling strategies
or a large number of samples to resolve features of interest
during visualization.

The resulting high cost for rendering such models would suggest
the use of modern GPUs. This, however, is further complicated by
another, less obvious problem—memory. Since unstructured meshes
have to store both scalar values and mesh topology, their storage cost
per scalar value is often much higher than that of more structured or
semi-structured formats. For example, for the Mars Lander data set
shown in Figure 1, the 576 million scalar field values require an addi-
tional 576 million vertices to represent the positions of these scalars,
and yet another 2.9 billion cells for the connectivity, for a total of

1



This is the authors’ version of the article that has been accepted at IEEE Vis 2021, to eventually be published in IEEE TVCG.

roughly 30× as much memory for vertices and indices as for scalar
values. Even worse, to perform the sample reconstruction required
for sample-based volume rendering, a corresponding acceleration
structure built over these elements must also be stored, introducing
further memory requirements that complicate their ability to benefit
from GPUs. Thus, we end up in a situation where unstructured mesh
visualization and processing should in theory be a prime candidate
for GPU acceleration, yet we often cannot fit these data sets into
GPU memory because of their high memory footprint.

In this paper, we look at how to store unstructured meshes in a
more memory-efficient way. In particular, we focus on a strategy
to reduce the memory footprint of the acceleration data structures
required for high-quality, sample-based ray tracing. We do this by
analyzing where a state-of-the-art data structure that was optimized
for CPUs spends most of its memory. Step by step, we adopt strate-
gies that reduce this memory overhead while still maintaining what
is essentially the same implicit structure. We do so with the explicit
goal of creating an encoding that is so compact that even some of
the largest unstructured data sets—including everything required for
random-access sampling—can be fit onto a single high-end GPU.

We observe that reducing this memory consumption is entirely
orthogonal to the question of where to place samples during ray
marching. Therefore, we leave a discussion of space skipping or
adaptive sampling to another paper, and in this work focus exclu-
sively on the problem of memory consumption and on the influence
that the proposed technique has on raw sample throughput.

2 RELATED WORK

Rendering of large unstructured meshes has posed a challenge to
visualization researchers for some time, and a large body of work
has set out to tackle the various challenges involved. Prior work
has focused on rendering performance, memory consumption, and
compression strategies, either independently or together in a holis-
tic approach. Our work addresses challenges specific to memory
consumption; however, we review relevant work across all these
categories to provide more context to the challenges involved in
rendering these data sets.

2.1 Unstructured Volume Rendering

Some prior works has focused on the challenges involved in ren-
dering unstructured data. Early work looks at either splatting the
unstructured elements into the frame buffer [36, 27] or on marching
view-aligned rays from element face to element face [19, 20]. A
still excellent survey of early GPU-accelerated techniques can be
found in Silva et al. [28]. Today, high-quality volume rendering
(with or without unstructured elements) typically relies on some
form of volume ray marching as originally proposed by Drebin et
al. [7], which for unstructured meshes requires some form of cell
location to find—and then, interpolate within—the elements that a
given sample is in.

OSPRay [33], a widely used open-source framework for scientific
visualization, performs volume rendering of unstructured meshes
using the approach presented by Rathke et al. [24]. In the method
described by Rathke, a series of point queries are taken per view-
aligned ray in a volumetric ray marcher. These point queries require
traversal of a bounding volume hierarchy-based acceleration struc-
ture, in combination with several point-in-element tests.

The performance of these point queries is a critical component
in the performance of a volumetric ray marcher. Garth and Joy [11]
proposed the celltree, an optimized and memory-efficient data struc-
ture to perform point queries that is based on bounding interval
hierarchies. Recent work by Wald et al. [34] and by Morrical et
al. [17] leverages the ray traversal units found in modern GPUs to
accelerate and optimize these point queries proposed by Rathke.
While these two papers only looked at tetrahedral meshes, more
recent work by Morrical et al. has also looked at extending this same

hardware-accelerated concept to more general unstructured meshes
consisting of mixed tetrahedra, pyramid, wedge, and hexahedra el-
ement types [18]. This latter paper in particular can handle all the
types of model used in this paper, but requires too much memory to
render our larger data sets due to their additional triangles structure.

2.2 Acceleration Structure Compression

Bounding volume hierarchies (BVHs) [25] have become the de facto
standard for interactive ray tracing. When using a naïve encoding of
a BVH, the overall memory limiting factor will—for both unstruc-
tured mesh and surface rendering—typically be the BVH structure
itself. Prior work has sought to reduce the size of the acceleration
structure by reducing the number of internal nodes. One such way
is to use a BVH with a wide branching factor, as demonstrated by
Dammertz [5], Ernst and Greiner [8], and Wald [30]. Additionally,
as shown by Benthin et al. [2], wide BVHs can be further com-
pressed by quantizing child node bounds relative to their parent’s
bounds using a fixed point encoding. By constraining the child node
bounds from 32-bit floating point values to a small set of finite val-
ues, these nodes can be represented using a smaller integer type to
compress them. Ylitie et al. [37] used a similar BVH compression
scheme and wide BVH, with the goal of reducing traversal memory
traffic when tracing incoherent rays.

2.3 Mesh Compression

Beyond compressing just the acceleration structure, prior work has
explored strategies for compressing the mesh data itself. Gener-
ally speaking, unstructured meshes are represented using a list of
vertices followed by potentially multiple lists of primitive indices
that connect these vertices together to form the mesh primitives.
In elements comprised of multiple primitive types (e.g., tetrahedra,
wedges, and hexahedra), primitive indices can connect a variable
number of vertices together depending on their type.

A common, though lossy, approach to compressing unstructured
meshes is to quantize the vertices [26]. However, for unstructured
meshes the amount of memory required for vertices is typically
small compared to vertex indices and BVH nodes, so any savings in
the vertex positions tends to be limited. Consequently, compression
of meshes typically focusses on compressing the primitives’ vertex
indices and not on vertex positions. An orthogonal approach to
ours is to use sequential-range encoding as proposed by Fellegara et
al. [9, 10].

Mesh compression and simplification techniques are also used for
surfaces [14] and often employ adaptive tessellation and multi-level
approaches such as proposed by Cignoni et al. [4].

More relevant to our work are progressive multi-resolution mesh
compression techniques. An advantage of these techniques is that
meshes can be progressively decoded and visualized, possibly at suc-
cessive levels of detail. Pajarola et al. [21] proposed collapsing and
decollapsing tetrahedral edges, and Danovaro et al. [6] suggested
incrementally subdividing a base tetrahedral mesh; Castro et al. [3]
suggested a wavelet-based decompression scheme for decoding tetra-
hedral meshes; and Peyrot et al. [23] suggested a multi-resolution
technique that supports efficient encoding of hexahedral meshes.
Although these approaches allow for fine control over the level of
detail, as meshes grow larger the decoding process can become pro-
hibitively expensive. In particular, any ray marching-based approach
to rendering unstructured meshes will require efficient decoding per
sample, limiting what kind of encoding can be done.

3 MESH AND BVH ENCODING FOR A REFERENCE UNCOM-
PRESSED MESH AND BVH

Our work aims to improve state of the art in memory efficient encod-
ing of unstructured mesh data for rendering using a sample-based
ray caster. First, it is worth noting that there exist other methods than
random-access sampling that have been proven to be effective at
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(a) Mesh Encoding (b) Submesh Encoding
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Figure 2: Illustration of our method. In (a), the input mesh is split into several submeshes as described in Section 4.2. In (b), each submesh
contains a multi-branching BVH for sample reconstruction (See Section 5.2), as well as a list of vertices and elements (tetrahedra through four
indices, and higher dimensional elements using eight). In (c), node bounds are quantized to reduce the memory footprint of each node. Item lists
are replaced by offsets into a common per-submesh list of either multi-nodes or primitives (See Section 5.4).

rendering large-scale unstructured meshes. For the purposes of this
work, we consider these alternative techniques orthogonal to the one
that we use. The choice of mesh traversal technique ultimately has
a strong influence on the design choices we make in the following
sections. We discuss these alternative techniques in Section 7.

To better understand the design choices that need to be taken
when implementing random-access sampling for large-scale unstruc-
tured meshes, we first investigate the memory layout used by what
we consider a good reference implementation: OSPRay [33]. Before
we go into this analysis though, we want to recognize two important
caveats: First, that design choices in OSPRay were made under
the assumption that memory pressure is less severe for CPUs; that
OSPRay could adopt a more efficient BVH encoding like ours too;
and that OSPRay can do many tasks that our implementation can-
not. Second, that OSPRay’s choice of BVH and mesh encoding
is by no means a wasteful outlier, but is instead representative of
what any non-compressed method would use; in fact, an almost
identical encoding for BVH and/or unstructured meshes was also
used—including by some of this paper’s authors—for ray tracing
dynamic geometry [31], for iso-surface ray tracing by Rathke et
al. [24] and by Wald et al. [32], and recently by Morrical et al. [18]
for GPU tet-mesh point location.

As such, we emphasize that this paper is not intended to be a
head-to-head comparison to OSPRay specifically, but rather, a step
towards exploring just how much memory could be saved relative
to a typical non-compressed encoding for sample-based rendering.
Arguably, memory is of major concern only on certain architectures
such as for example GPUs. In that context, we see OSPRay as
merely the most easily accessible “proxy” for what any other (un-
compressed) state of the art solution would likely spend its memory
on.

As a specific data set to do this analysis with, we chose the
“medium” version of the NASA Mars Lander. In total, for this model
of 577 million vertices and 2.9 billion elements the total memory for
unstructured mesh and BVH (in OSPRay’s chosen memory layout)
sum up to approximately 333 GB.

3.1 Mesh Data

The input unstructured data set consists of vertex positions, scalar
field values, and vertex indices for the unstructured mesh elements
(which comprise mostly of tetrahedra, but also several million pyra-
mids, wedges, and hexahedra). Vertex and scalar data for the Lander
comes in double-precision floats, but in OSPRay (as well as others)
is stored in single precision floats. Each vertex stores floats: three
for the position, and the fourth for the scalar value. For a total of

576 million vertices, this costs 8.6 GB.
Unstructured mesh elements in the input are stored as arrays of

64-bit indices, with separate arrays for tetrahedra, pyramids, wedges,
and hexahedra, using either 4, 5, 6, or 8 such 64-bit ints, respectively.
To store all elements in a single array, OSPRay instead stores each
element as a record of eight 32-bit integers, with the first element of
each such record encoding the type of element: for a hex, all eight
indices are non-negative; for tetrahedra, pyramids, and wedges the
first index is a negative number encoding the type of element, and
the last 4, 5, or 6 indices, respectively, encode that element’s vertex
indices. In this single array format, each element consumes exactly
8× 4 = 32 bytes, for a total of 96 GB for the Mars Lander. We
observe that this alone is already roughly 11× the memory stored
for the vertices (and 44× that for actual scalar field data), and already
as much as two NVLinked RTX 8000 GPUs could possibly store.

3.2 BVH Memory

To allow for random access sample reconstruction, OSPRay uses a
binary min-max BVH [24] in which each node stores both the spatial
bounds and the minimum and maximum scalar value of any vertex
within this node’s subtree (the latter isn’t required for cell location,
but is useful for implicit iso-surface ray tracing). In OSPRay, each
such node consists of six floats for the spatial bounds, two floats for
the min and max of the scalar field, and a 64-bit integer, where three
bits encode how many primitives this node contains (a value of 0
primitives indicates an inner node), and the remaining bits encode
an offset into either the node array (for inner nodes) or into a list of
64-bit primitive indices (for leaves).

In total, this memory layout stores exactly one 64-bit integer per
each unstructured element across the leaf item lists, plus 6× 4+
2×4+8 = 40 bytes per each BVH node. In OSPRay, the number
of BVH nodes created by the builder is decided by a surface area
heuristic (SAH [16, 13]) based termination criterion, which in turn
depends on the actual model1.

For the Mars Lander data set, the OSPRay unstructured BVH
builder creates a total of 5.75 billion BVH nodes, for a total of
214 GB in BVH nodes, and 22 GB in item lists.

Total memory used by OSPRay for the Mars Lander sums up to a
total of 333 GB with roughly 71% going into the BVH, 26% going
into unstructured element indices, and 2.6 % going into vertex data.
A tabulated summary of this data is given in Table 1. Other data sets

1The BVH builder itself does not actually use a SAH criterion in
OSPRay’s unstructured mesh module, but the termination criterion does.
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may have slightly different numbers, but the overall ratios will be
roughly the same. Note that this is excluding any data that OSPRay
would usually have computed for per-vertex gradients or similar, as
well as any temporary memory used during BVH construction.

Datatype number of size/elt bytes total
vertex positions 576.3 M 12 B 6.4 GB
vertex scalars 576.3 M 4 B 2.2 GB
sum vertices 8.6 GB

element index records 2.9 B 32 B 87.8 GB
sum indices 87.8 GB

sum mesh data (vertices+indices) 96.4 GB

BVH nodes 575M 40 B 214 GB
BVH item list 2.9B 8 B 22 GB
sum BVH 236 GB

sum total (mesh+BVH) 333 GB

Table 1: Memory used for the Mars Lander data set when using the
unstructured mesh implementation of Rathke et al. [24], as measured
by loading into an instrumented version of OSPRay. (Element count
K/M/G use multiples of 1000, bytes use 1024).

4 ENCODING MESH DATA

Table 1 shows that the primary target for memory optimization
should be the acceleration structure. However, the mesh data of
Mars Lander alone exceeds any available GPU memory.

For the vertex positions and scalar values, we briefly consid-
ered some lower-precision encoding in the spirit of Segovia et al.’s
hierarchical mesh quantization [26], but eventually discarded this
primarily because of the scalar field data: while vertex positions
do exhibit some spatial coherence, the scalar values can (and in
practice, do) cover some very large range of numbers that cannot
easily be quantized. We therefore opted to use the same four-float
vertex layout as OSPRay.

For the unstructured mesh elements there are two sources of
potential savings: reducing the average number of indices stored per
element, and reducing the number of bytes per index.

4.1 Reducing Number of Element Indices

OSPRay stores eight indices per element, even though most elements
are tetrahedra that would require only four indices. This gives us the
opportunity to roughly halve the memory needed for vertex indices
by adopting an encoding in which elements use only as many indices
as required. The downside of this strategy is that elements become
harder to address (because they are no longer all multiples of a
common size). As a consequence, we would then need another way
of encoding each element’s type. An obvious choice for variable
offsets and element types is to use unused bits in the leaves’ item
lists, but as we later show, it is better to eliminate these item lists
altogether (cf. Section 5.1).

We initially adopted a hybrid solution in which all primitives are
encoded in multiples of four indices; i.e., tetrahedra use four indices,
and wedges, pyramids, and hexes all use eight (with any unused
indices marked using a special “invalid index” value). This required
encoding for only two element types (either four indices, or eight),
and already produced significant savings; however, later experiments
showed that leaves with multiple tetrahedra still contained many
repeated vertex indices because nearby tets often share vertices,
edges, or faces. To exploit this redundancy, we added a special tet-
pair primitive where, for each leaf, we identify pairs of tets that share
a face and encode these using only 5 indices (three for the shared
face, and two for the other two vertices) instead of 2× 4 = 8 for
individual tets. The idea is similar to what was proposed by Gurung
et al. [12] who grouped triangle pairs to quads to obtain a more
compact memory representation for triangle meshes. In our case, the
savings of using such tet-pairs vary, but for models with many tets
is usually in the range of 10% of final data size. Pyramids, wedges,

and hexes still all use eight indices, meaning that we eventually need
to encode only three different primitive types, which will be useful
later on (cf. Section 5.1). On average our primitive encoding gives
us roughly a 2× reduction in vertex indices that we need to store.

4.2 Sub-Mesh Encoding

For the Mars Lander, even after a 2× reduction of indices, storing
four or eight 32-bit integers per element would still require over
40 GBs (and with 8.6 GB for vertices, we would already exceed an
RTX 8000’s total GPU memory).

To further reduce this index memory, we adopt some ideas from
Segovia et al. [26], and observe that if we pre-partitioned the whole
mesh into several smaller, and independently encoded meshes with at
most 2N vertices per mesh, then each such mesh would require only
up to N bits per index. This strategy does require that those vertices
shared by primitives that end up in different meshes would need to
get replicated into more than one mesh, which leads to a trade-off
between lower memory for indices but more memory for replicated
vertices. Starting with a single input mesh, we evaluated this concept
by recursively partitioning each mesh into two submeshes until each
submesh has at most 2N vertices left. To do this we use a surface
area heuristic (SAH [16, 13]). This is similar to the splits OSPRay’s
BVH builder would have performed, meaning that topologically the
resulting partitions are very similar.

Using this pre-partitioner, we can now evaluate the trade-off
between the number of index bits and vertex replication: Given the
resulting data in Table 2, we adopted a number of N = 16 index bits:
this is only about 10% worse than the optimum (at N = 12 bits), but
unlike N = 12, results in a natively supported integer type. While
N = 8 also would have resulted in a native data type, N = 8 requires
an unacceptable amount of vertex replication, and consequently
results in worse total memory usage than for N = 16.

Index #gen. Average num Total num Approx
bits groups prims/grp vtx/grp vertices memory
32 1 2.7G 570M 570M (+0%) 50 GB
16 15.1K 191K 32K 620M +12.8% 28 GB
14 63.7K 45.2K 10.8K 671M +22.1% 26 GB
12 286K 10.1K 2.7K 765M +39.1% 25 GB
8 <4M oom oom <1.7G <+200% <30GB

Table 2: Impact of pre-partitioning with different number of bits per
vertex index (Section 4.2). Fewer bits for encoding indices requires
generating more groups, which in turn triggers more vertex replication.

4.3 Encoding of Mesh Data: Summary

In total, we represent our input mesh as a set of multiple sub-meshes,
with four floats for each vertex, and either four, five, or eight un-
signed 16-bit integers per element. In this representation (and includ-
ing vertex replication) for the Mars Lander, we end up with a total
of 25 GBs for all mesh data—or almost 4× less than our reference
uncompressed layout.

5 ACCELERATION STRUCTURE ENCODING

Even though we can now reduce mesh memory by roughly 4×, more
work must be done to carefully encode the acceleration structure to
reduce memory overhead. Once again referring to Table 1, there
are three major avenues for reducing BVH memory: reducing the
number of BVH nodes, reducing the size of each BVH node, and
reducing the size of—or ideally, entirely eliminating—the item lists.

We observe that we are not going to build a single BVH over
all primitives, but rather, adapt our BVH to the pre-partitioning as
described before: i.e., we need each BVH to cover only one submesh.
Since each submesh’s size is necessarily limited, this also means we
can use smaller integers to index into the (per-submesh) node array
and index array.
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5.1 Eliminating the BVH Leaf Lists

The first thing we can get rid of are the item lists. Since each
primitive in the BVH is referenced by exactly one leaf, instead of
each leaf node storing a pointer to a list of N node IDs, we can
instead re-arrange the primitives in the order they are referenced by
the nodes, and have each node store only the offset into a common
list, and how many primitives this leaf contains. These two values
(offset and count) could be stored in the same values that the address
and length of the original item list would have been stored in, so the
structure of the node itself does not change, but the item list—for the
Mars Lander in OSPRay, a total of 22 GBs—completely disappears.

One caveat with this is that our primitives no longer have a uni-
form size and type (cf. Section 4.1). This requires us to encode which
of the primitives in the leaf are four-index tetrahedra, which ones
are five-index tet-pairs, and which ones are eight-index pyramids,
wedges, or hexes. One way to do this is through two bits in each
entry of the leaf list; however, we just eliminated these, so this is not
possible. Instead, we solve this by encoding the type in the primitive
ordering: we first store all the leaf’s tetrahedra, then all pairs, and all
others at the end; requiring only three small counters for all types;
plus one offset to the start of this list (also see Section 5.3).

One challenge was that in order not to increase the final node
layout (Section 5.3) we needed to squeeze all three counters into a
single byte. This creates a trade-off in how many bits to spend on
each type, because the number of bits available influences which
kinds of leaves the BVH builder can possibly produce. We experi-
mented with different values, and eventually chose to use 4 bits for
tet pairs, and 2 bits each for individual tets and non-tet elements.

5.2 Adopting a Multi-Branching BVH

After eliminating the item lists, the first step we can take towards
reducing BVH node memory is to adopt ideas from existing ray
tracers such as Embree, and switch from a binary BVH to a multi-
branching BVH with 8 children per node. This does not change the
number of leaf nodes, but will create significantly fewer inner nodes.

We experimented with different branching factors, but eventually
adopted eight: Always having 8 children per node means that no
matter how many bits we use for any given per-node variable, we
can always create byte-aligned (and thus, easily accessible) data by
storing 8 of those together.

Unlike Embree’s eight-wide BVH, we do not, however, build
our BVH top-down. Rather, we first build a binary BVH, and then
re-collapse this backwards from the leaves: when building top-down,
one often ends up with leaves with fewer than 8 “active” children,
which in turn leads to a low average number of active children
per multi-node. Merging bottom-up cannot guarantee always fully
occupied multi-nodes either (e.g., two subtrees with five children
each cannot be merged into 10), but the average number of children
per leaf is generally higher—-which in turn means less total nodes.

We observe that despite similar partitioning and termination cri-
teria our initial binary BVH (before collapsing) has significantly
fewer leaves than OSPRay’s: OSPRay’s BVH builder almost always
partitions down to individual primitives, which seems excessive.

5.3 Multi-Node Encoding

After eliminating item lists and reducing the number of nodes, our
final means of reducing BVH size is through more efficient encoding
of the (8-wide) nodes themselves. For each of the 8 children of such
a multi-node, we have to encode the following information: the 3D
bounding box; the offset into either primitive list (if a leaf node) or
node array (if a inner node); and the tree leaf counters (if a leaf).

For the bounding boxes, we initially considered incremental en-
coding as proposed by Mahovsky and Wyvill, but eventually aban-
doned that as being too expensive to traverse (due to a much higher
stack requirement). We also considered the quantization proposed

by Benthin et al. [2], with one float-precision box shared across the
entire multi-node, and 8-bit quantization relative to this box.

Eventually, we use the same core idea as Benthin, but even more
aggressively: instead of using floats for the shared bounding box we
store this box using 16-bit quantization relative to the bounding box
of the subtree (i.e., we use two layers of quantization: one relative
to the parent submesh, then another relative to that shared box). For
the individual node values, we then use only 4 bits (instead of 8).

5.4 Reducing Child Pointers

As observed by Benthin et al. [2], after quantizing the bounding
information the size of a multi-node eventually becomes dominated
by the 8 pointers (or offsets) and counters with which each of the
eight children point to their children and contained primitives, re-
spectively.

In order to not having to store 8 distinct pointers, we observe
that by properly arranging the nodes and primitives, we can reduce
this to only two offsets (and will eliminate one of those in the next
section). First, we look at all of the node’s 8 children that are inner
nodes, and store them sequentially in the node array. With this, all
an inner node child needs to compute its offset is this first index
(which need be stored but once per multi-node), plus how many of
its siblings to the left were inner nodes. Similarly, we can look at all
children that are leaves, and store all their primitives sequentially in
the item list. Again, each child only needs to know one shared offset
value, plus how long each of its left siblings’ item lists are.

5.5 Removing Inner Nodes Completely

The way just described each node would store only two offset values
(one for inner-node children, and one for leaf node children), plus
the 8 children’s counter values (with a node’s three counters being
all zero indicating it is an inner node). Early experiments using this
layout did indeed have good memory statistics, but at least with our
naïve stack-based CUDA implementation exhibited a rather high
traversal cost. This was root-caused to three factors: first, divergent
code when different threads in the same warp traverse different
children of different types, different primitive types, etc; second, a
large amount of live state in the inner loop (for decompressing entire
multi-nodes and primitives); and third, the need to maintain two
large traversal stacks (one for the BVH over sub-meshes, and one
within each sub-mesh).

To reduce this cost, we also implemented a scheme where we
eliminated all interior nodes completely by always collapsing all
subtrees with at most 8 leaves into a single multi-leaf node (in
which all children are then leaves), and discarding all other nodes. To
perform sample location without interior nodes, we then borrow from
Wald et al. [34], and build an OptiX [22] BVH over the multi-leaves,
using an epsilon-length ray to find all multi-leaves that overlap the
sample point. Within the intersection program, we then decompress
the multi-node, test the child boxes, and sample the primitives of
those children that overlap the query point. An added advantage of
this scheme is that we can put all multi-leaves (even across different
sub-meshes) into the same BVH.

The downside of this scheme is that OptiX will spend more
memory on the inner nodes than our representation would have done;
we currently see the OptiX BVH costing roughly 50% more for inner
nodes than what our inner nodes would have cost. Amortized over
all other data that needs to get stored (vertices, primitive, and leaf
data), the OptiX BVH costs roughly 15% of total model size, as
opposed to only about 8% for inner nodes in our format. On the
upside, this scheme offers three advantages: first, it allows for a
slightly better (because 16-byte aligned) node layout of 48 vs 52
bytes because we can save the offset value for inner nodes. Second,
we do not need a second-level BVH over sub-meshes because we
can put all multi-leaves in a single OptiX BVH. Third, and most
importantly, this scheme allows for leaving all but the final node
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layer of BVH traversal entirely to OptiX, which early experiments
showed to give a roughly 10× speed improvement over our own
CUDA BVH traversal.

5.6 Final Node Layout

Our final node layout (assuming an OptiX BVH for inner nodes) is
given in Figure 3, and sums to a total of 48 bytes: 6×2 = 12 bytes
for the shared bounding box, 4 bytes for the shared item list offset,
8 bytes for the eight counters bytes (each being 4+2+2 bits), and
8× 3× (4+ 4) bits (24 bytes) for the quantized child boxes. We
observe that these 48 bytes encode up to 8 nodes, as compared to 40
bytes per each node in our reference uncompressed layout.

struct MultiLeaf {

box3us quantizedBounds; // 12 bytes

uint32_t leafChildrenOffset; // 4 bytes

struct {

struct { // bytes 16..40

struct {

uint8_t bounds_lo:4;

uint8_t bounds_hi:4;

} child[8]; // 8 bytes

} dim[3]; // 24 bytes

struct { // bytes 40..48

uint8_t numTets :2;

uint8_t numPairs:4;

uint8_t numOther:2;

} primCount[8]; // 8 bytes

} children;

}; // 48 bytes total

Figure 3: Final data layout for our quantized multi-nodes. When not
using the OptiX-BVH we need an extra 4 bytes for the children offset.

5.7 Controlling BVH Size

Just as in OSPRay, our BVH builder uses a surface area heuristic
(SAH [16, 13]) to determine whether to split a node, or make a leaf.
We first construct a binary BVH using this builder, then use this to
create our multi-leaves as described in Section 5.5.

An SAH builder usually includes a SAH termination criterion that
decides when to make a leaf based on estimated costs for a traversal
step and primitive intersection, respectively. We do use this criterion,
but with two caveats: First, we chose a traversal cost estimate to
be twice that of the primitive cost estimate, which should produce
slightly shallower BVHes. On the other hand, we make sure that this
stage will only create leaves that could actually be encoded with the
final 4:2:2 bit encoding described in Section 5.6, which may force
some splits where the regular SAH would have made a leaf.

5.8 Implicit LOD Information

Though rendering is not the focus of this paper, we do observe
that the final data structure also offers several interesting means of
looking at the data in a hierarchical way: In particular, the averages
of a given BVH leaf’s, multi-leaf’s, or even sub-mesh’s value range,
respectively, are close to the value of any samples taken within these
parts of the data structure. This offers obvious potential for using this
information to employ a level-of-detail technique that could be used
to, for example, generate faster samples, to provide information for
space skipping or adaptive sampling, or to bridge loading latencies.

Figure 4: Visualizations of the implicit level of detail (LOD) infor-
mation across our data structure’s four different levels of encoding:
a) rendered with the average of each sub-mesh’s scalar field range;
b+c) with the average of the multi-leaf and leaf node’s value range,
respectively; d) with the real, per-element reconstructed samples.

To demonstrate this, we modified our encoding to also store these
scalar ranges, and used this to render three different images (Fig-
ure 4) where the correct samples have been replaced with the average
of the first leaf, multi-leaf, or sub-mesh, respectively. However, a
detailed discussion of how to use this level of detail during rendering
is completely orthogonal to, and beyond the scope of, this paper.

6 RESULTS

To evaluate our method’s efficacy, we collected several of the largest
unstructured mesh data sets we could get access to; an overview of
these model, and statistical data on their primitive and vertex counts,
is given in Figure 5. Of these models TACC Japan, DKRZ Ocean,
and the three versions of the Mars Lander are native unstructured
meshes from various unstructured codes; ExaJet was natively octree-
AMR and converted to an unstructured mesh by computing its dual
mesh. We explicitly point out that even the smallest of our data sets
was among the largest data sets used by previous work.

6.1 Encoding Efficiency

Table 3 gives statistical data on those data sets, including vertex and
primitive counts as well as the total number of vertices, sub-meshes,
and multi-leaves; the aggregate memory used by these various data
types, and the total amount of memory that a renderer using this data
structure would require.

For all but the biggest version of the Mars Lander, our total mem-
ory usage would comfortably fit into the 48 GBs of an RTX 8000 or
Ampere A6000 GPU. For the big Mars Lander this is—just barely—
no longer possible, requiring the model across two such GPUs.
We currently do the latter by either using a prototypical sort-last
data-parallel renderer (cf. Section 7.3), or by using NVLINK and
managed memory to distribute data across two such GPUs.

6.1.1 Comparison to Morrical et al.

For a comparison of the encoding efficiency, in addition to our
encoded data structure, we also implemented the data structures
discussed by Morrical et al. [17] which either use a shared face
representation, or represent the unstructured elements with OptiX
user geometries. We are primarily interested in the encoding ef-
ficiency of the three methods and report that in Table 4. For the
comparison we aimed at saturating the available GPU memory with
the respective methods. We therefore split the data structure for the
big NASA lander into 64 consecutive chunks, allowing us to only
partially upload the data set to the GPU. The most memory-intensive
data representation is the shared-faces representation by Morrical et
al.—we were able to fit four out of 64 chunks on a single RTX 8000
GPU (48 GB DDR memory total). We were able to load 12 out
of 64 chunks with the user geometry data representation that was
also discussed by Morrical et al. before eventually running out of
memory. With the same amount of unstructured elements, our data
structure consumes a total of 6.6 GB GPU memory.

6.1.2 Comparison to OSPRay

To compare our encoding to that used by OSPRay we also loaded
these models into OSPRay, and measured memory as discussed in
Section 3. Since OSPRay has recently undergone major changes in
how it handles unstructured data we have done this for both versions
1.8.5 and 2.0. The result of this comparison is given in Table 5.

On average we see a reduction in memory usage of roughly 9.4−
10× relative to OSPRay 1.8.5, and 4.7−14× relative to OSPRay 2.0.
Generally speaking tetrahedral meshes seem to see better memory
savings than hexahedral ones, largely because we can compress
the BVH better than index memory, and tetrahedral meshes tend to
spend more of their memory on BVH nodes than hexahedral ones
do.

We intentionally limit our comparison to only the memory con-
sumption aspect, as we could neither get our ray marcher integrated
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model input memory (in bytes) Variant 1: multi-leaves + OptiX BVH Variant 2: inner nodes in our format
verts elts verts indices #nodes mem(nodes) OptiX total mem #nodes mem(nodes) total mem

Jets 2M 12M 34 MB 58 MB 262 K 11 MB 13 MB 116 MB 2 M 14 MB 106 MB

Impact 5K 17M 31M 445 MB 457 MB 2 M 104 MB 112 MB 1.13 GB 2 M 136 MB 1.05 GB

Impact 20K 176M 247M 2.85 GB 2.96 GB 15 M 438 MB 758 MB 7.01 GB 19 M 904 MB 6.71 GB

Impact 46K 299M 356M 4.84 GB 4.73 GB 26 M 1.16 GB 1.27 GB 12.0 GB 31 M 1.50 GB 11.1 GB

TACC Japan 93M 47.8M 886 MB 729 MB 4 M 170 MB 186 MB 1.97 GB 4 M 234 MB 1.84 GB

DKRZ Full Ocean 485M 749M 6.62 GB 11.2 GB 54 M 2.41 GB 2.67 GB 22.9 GB 68 M 3.20 GB 21.0 GB

NASA Exa-Jet 656M 652M 10.8 GB 10.4 GB 52 M 2.34 GB 2.59 GB 26.9 GB 64 M 3.33 GB 24.5 GB

Mars Lander Small 143M 789M 2.39 GB 4.5 GB 33 M 1.16 GB 1.27 GB 9.3 GB 42 M 1.49 GB 8.38 GB

Mars Lander Big 577M 2.9G 9.5 GB 17.7 GB 128 M 5.72 GB 6.36 GB 39.3 GB 162 M 7.87 GB 35.1 GB

Mars Lander Huge 1.14G 6.3G 19 GB 35.4 GB 267 M 11.95 GB 13.27 GB 79.6 GB 340 M 16.49 GB 70.9 GB

Table 3: Input statistics, number of components generated by our builder, and final memory consumption (excluding any third-party GPU data like
frame buffer, surface mesh, transfer function, space skipper data, etc) using our memory-optimized encoding.

Morrical et al.
model ours User Geom Shared-Faces
Lander (4/64) 2.4GB 14.5GB 6.0× 34GB 14×
Lander (12/64) 6.6GB 39.3GB 5.9× oom X×

Table 4: Encoding efficiency of our data structure compared to Morri-
cal et al.’s OptiX user geometry and shared faces methods [17]. We
split the big NASA lander data set into 64 chunks, which allows us to
partially upload the data set to the RTX 8000 GPU (48 GB DDR mem-
ory). Where the more memory-efficient user geometry representation
runs out of GPU memory, our data structure uses only 6.6 GB.

into OSPRay, nor could we use OSPRay’s ray marcher or data
layouts in our framework. We observe that we do see interactive
performance with our prototype renderer, which for these models
and quality settings we have not managed to achieve with OSPRay’s.
However, we conversely point out that OSPRay is a complete render-
ing framework that can do many things that our current framework
can not.

model ours OSPRay 1.8.5 OSPRay 2.0
TACC Japan 1.84 GB — — 8.6 GB 4.7×
DKRZ Ocean 21.0 GB — — 123 GB 5.9×
Exa-Jet 24.5 GB — — 120 GB 4.9×
Lander Small 8.38 GB 90.2 GB 10.1× 117 GB 14.0×
Lander Big 35.1 GB 333 GB 9.4× 432 GB 12.3×

Table 5: Comparison of our representation’s memory usage to es-
sentially the same data structure (but differently encoded) in OSPRay
1.8.5, and 2.0. (“—” indicates that our instrumented OSPRay did not
have an importer for this data set’s format).

6.2 Encoding Time

Computing our encoding is currently an offline and out-of-core pre-
process that can, for the largest model, take several hours. This
could probably be significantly improved, but not to interactive rates:
at least for our largest models, just reading the input model takes
several minutes, as does writing the final outputs. On the upside,
once a model’s compressed encoding has been computed and stored
on disk, it can then be read and re-used again at any time; and reading
mesh and BVH together in encoded form takes roughly as long as
reading just the input data would have taken in uncompressed form.

Part of the reason our build currently takes so long are a direct
consequence of data size: wrangling hundreds of gigabytes of data
takes time, even assuming enough (host) memory is available to han-
dle it; the same argument is true for computing billions of bounding
boxes, billions of BVH nodes, etc. For example, just re-computing
the new mesh connectivity after splitting the model into sub-meshes
takes many minutes. Other reasons are more specific to our cur-
rent implementation: First, our current implementation prioritized
easy experimentation and evaluation of different trade-offs such
as different bit counts, data layouts, tet-pair merge heuristics, etc;
this flexibility comes at a cost (in particular, at the cost of frequent

memory allocations and data copies to frequent use of STL data
structures). Second, our implementation currently performs a large
number of validations and checks for corner cases, as even unlikely
errors can compound over billions of executions. Third, much of the
data currently has to be held several times, in different formats (e.g.,
temporarily keeping both binary BVH and multi-node BVH, etc),
further compounding memory pressure. Finally, our current build
has a lot of intrinsic dependencies: for example, we currently cannot
predict how many entries in the index vector a given subtree will
require until that subtree is built, severely limiting the amount of
parallelism we can use. Many of these factors could be addressed by
a more efficient, parallel encoding—ideally building each subtree in
parallel on the GPU—but this will be left for future work.

6.3 Rendering Quality and Performance

So far, we have only talked about the memory efficiency of our
encoding, and not much about how to sample it, let alone about
the best ways to write a volume ray marcher that uses it. This is
intentional: where a volume renderer places its samples (i.e., what
version of space skipping and/or adaptive sampling it uses) will have
a massive influence on rendering performance that for models of
this complexity will easily dwarf the impact from sample cost. Thus,
unless one is very careful when comparing different renderers this
can lead to skewed and sometimes misleading results.

As such, we intentionally refrain from direct comparisons to any
secondary code bases, and perform all evaluations in our own, thus
guaranteeing all variants to use the exact same samples, transfer
functions, hardware, etc. To this end, we implemented two different
prototypical renderers on top of our data structure. For reference, we
first implemented a naïve direct volume renderer that uses equidis-
tant samples and does but limited space skipping. In addition, we
also implemented a high-quality GPU volume renderer based on
Monte Carlo sampling (all images in Figure 5 are rendered with this
renderer). With both renderers we do, in fact, see interactive results
(albeit with much higher quality when using the latter). However,
due to the size of our models, we could not yet use the same space
skipping and adaptive sampling techniques used by previous work
such as Morrical’s [17], and though we have some early results that
achieve similar sampling efficiency, a detailed discussion of this is
beyond the scope and focus of this paper.

One important question to answer is how much our encoding’s
memory savings will cost in terms of performance: Where less
efficient encodings can directly operate on individual primitives
our method requires operating on entire multi-leaves, including
some non-trivial decoding and dequantization of the data contained
therein—and this decoding cost is not cheap.

To evaluate this trade-off we also took our implementations of
the shared faces and user geom methods mentioned in Section 6.1.1,
added the respective sample routines, and—for some suitably small
enough models to fit those encodings—ran those against our com-
pressed encoding. According to Table 6, this places this trade-off at
roughly 2× lower performance for an associated 6−7× reduction
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TACC Japan Earthquake
93M vertices, 47.8M elements, 1.8 GB final memory

NASA Mars Lander (“small”), Velocity field
143M vertices, 789M elements, 8.38 GB final memory

DKRZ Full Ocean
485M vertices, 749M elements, 21.0 GB final memory

NASA Exa-Jet (dual mesh)
656M vertices, 652M elements, 24.5 GB final memory

NASA Mars Lander (“big”), Density field
577M vertices, 2.9G elements, 35.1 GB final memory

model vertices tets pyrs wedges hexes (sum)
TACC Japan 93M 0 0 0 48M 48M
Mars Lander Small 143M 756M 47K 33M 0 789M
DKRZ Full Ocean 485M 0 0 749M 0 749M
NASA Exa-Jet 656M 580K 2.1M 2.6M 647M 652M
Mars Lander Big 577M 2.7G 283K 247M 0 2.95G

Figure 5: The five data sets used for evaluating the memory efficiency
of our framework (all images are rendered with our prototype renderer
framework). Final memory consumption is final memory uploaded to
GPU after applying our quantized/compressed encoding. Note that
even our smallest model is at the upper range of what previous GPU
based unstructured renderers can handle.

in memory relative to the user geom method, and roughly 6× lower
performance for order 15× memory savings for the all hardware
accelerated shared faces method.

method 1/8 2/8 3/8 4/8 5/8 6/8 7/8 8/8
Time per Frame (seconds)

Ours 0.34 0.73 1.03 1.30 1.70 2.02 2.15 2.18
User Geom 0.57 1.42 2.24 2.90 3.79 4.43 4.72 4.96
Shared Faces 0.05 0.12 0.17 0.21 0.28 0.32 0.35 0.39
Tet Marching 0.03 0.07 0.10 0.15 0.20 0.23 0.24 0.24

Memory Consumption (MB)
Ours 16 31 50 62 81 99 111 123
User Geom 102 206 311 416 520 625 730 831
Shared Faces 255 512 768 1020 1280 1540 1790 2040
Tet Marching 65 120 175 230 285 340 395 440

Table 6: Performance and memory use for our encoding relative to
the shared faces and user geom methods proposed by Morrical et
al. [18] as well as a reference tetrahedra marcher on the (small) Jets
12K data set. Jets was chosen as it consists solely of tetrahedra
(required for tet marching) and is small (highlighting compression
overhead during rendering).

7 DISCUSSION

We can conclude from the results of the studies that our data struc-
ture is efficient at interactively rendering and fitting models into
the GPU memory of workstations that before couldn’t be rendered
interactively with off the shelf software. In aggregate, our scheme
allows for representing a data structure very similar to the one used
by OSPRay’s unstructured mesh renderer in 4.7−14× less memory
(with largely tetrahedral data benefiting more than largely hexahe-
dral data). This in turn allows for fitting all but the largest of our
data set onto a single GPU (the largest needs two NVLinked ones),
which then allows for sampling those in CUDA, and, if so desired,
with RTX acceleration for the cell location. We acknowledge that
the focus of a software system like OSPRay is a potentially different
one than ours and that CPU memory is often less limited in typical
workstations than GPU memory. We however find the memory sav-
ings compared to both OSPRay, as well as compared to the approach
by Morrical et al. [17], compelling.

We note that a limitation of our approach is that the data structure
can neither be rebuilt nor updated interactively. While this wasn’t
the primary objective of our study, exploring potential trade-offs
between build/update times on the one hand, and memory efficiency
on the other hand, would be an interesting future direction.

7.1 Comparison to Ray / Mesh Traversal

An approach that is orthogonal to ours is that of traversing the
volumetric mesh face to face and thereby integrating the volume
over the exact distance that the ray travels through each unstructured
element. Memory-efficient data structures for this approach have
for example been proposed by Muigg et al. [19]. An advantage
of such approaches is that they do not require an auxiliary data
structure other than some connectivity information stored with the
elements. With careful data handling and taking the winding order of
face vertices into account, the memory requirements for tetrahedral
meshes can be reduced significantly with such approaches. To the
best of our knowledge, there does not exist a publicly available
state-of-the-art implementation of such mesh traversal approaches
that is accessible enough, so that we instead discuss the difference in
some detail in the following. We consider a quantitative comparison
interesting future work.

There are a number of major advantages of our approach over such
mesh traversal methods. Mesh traversal makes use of connectivity
information. For “real-world data sets”, it is however often hard to
obtain reliable connectivity information, for example in cases where
mesh faces or vertices are duplicated, or at refinement boundaries
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as they occur during numerical simulation [35], where elements of
different mesh resolution are connected and faces are coplanar but
do not have all their vertices in common. Similar issues arise with
partially overlapping, unstructured elements. In those cases with
degenerate or generally “difficult” faces or elements, our technique
is robust in a sense that elements sporadically might not be sampled,
but traversal for the entire ray stays unaffected. Mesh traversal
methods on the other hand are highly sensitive to those issues and
require significant handling of corner cases to not fail completely.

Another advantage of our approach is scalability. As mesh traver-
sal approaches rely on marching from one element to another, con-
ceptually, all those elements need to be touched and pulled from
memory, which makes optimizations such as adaptive sampling hard
to implement. In contrast to that, a sampling approach such as ours
will eventually outperform mesh traversal approaches, but at the ex-
pense of potentially undersampling the volume. With our approach,
it is however trivial to implement jittered ray offsets and accumulate
convergence frames over time—in fact, this is what we do in our
prototypical renderer—so that time to first image is highly reduced
with our approach for large data sets. Generally, we consider the two
approaches orthogonal, and while both have their individual merits,
our data structure is one step into the direction of further amortizing
the memory overhead of acceleration data structures and closing the
memory gap between the two approaches.

7.2 Generality of Our Approach

Our prototypical implementation and the evaluation currently
only use NVIDIA hardware. Nevertheless, the optimizations
we propose aren’t specific to that hardware platform and should be
similarly applicable to GPUs (or even CPUs) by other vendors.

7.3 Compression vs Data-Parallel Rendering

While our method significantly increases the limits of what data
can still be rendered on a single machine, data size rises at a rate
that eventually even with our technique a single GPU will not be
enough. Furthermore, data-parallel rendering is common in scientific
visualization, often because data-parallel computing is necessary
for other parts of the simulation and/or visualization pipelines. As
such, an important question to address is whether our approach is
addressing the wrong problem, and whether it would not make more
sense to rather focus on improving scalability rather than what can
be done on a single GPU.

Though we absolutely acknowledge the need for ultimately going
data-parallel, we point out two caveats of this argument. First,
today’s approaches to data parallel rendering predominantly rely on
sort-last compositing, which hampers techniques like space skipping,
and precludes the kind of high-quality path tracing that our single-
node renderer can do. As such, our technique not only changes how
much data can still be renderer on a single GPU, but also how much
data can still be rendered with the high-quality renderer.

Second, we observe that our technique and going data-parallel
are not at all mutually exclusive, as reducing how much memory is
required for rendering only improves the choices for data parallel ren-
dering: reducing how much memory is needed for rendering allows
to either use less nodes (reducing both cost and communication); or
to use that memory for other means.

To evaluate this trade-off we integrated our data structure into
a data parallel renderer that spatially distributes the models across
multiple GPUs, renders the resulting chunks using (non path traced)
direct volume rendering, and then combines the intermediate results
using MPI-based sort last compositing. In Figure 6 we report re-
sults running this data-parallel renderer on a workstation equipped
with eight NVIDIA A6000 GPUs (48 GB memory per GPU); once
using an uncompressed BVH representation, and once using our
compressed one. As expected, for any given number of GPUs used
the uncompressed version is usually faster; however, most models

require multiple GPUs to render at all, while all but the largest lander
would run with a single GPU. This would allow our compressed
version to instead use all eight GPUs for data-replicated rendering,
at much higher performance and higher quality.

To demonstrate this we also ran another set of experiments on
a workstation with four RTX 8000 GPUs (48 GBs each), using
the small and big lander models and our data-parallel renderer (see
Table 7): Using Morrical’s user geom representation we can just
barely fit the big lander across all four GPUs (in fact, some data gets
paged out over managed memory), while with our encoding, the
same model fits into one GPU, allowing to either run with a single
GPU (if only one was available), or to instead run data-replicated
across all four.

user geom same renderer, using our encoding
sort-last sort-last one GPU replicated

(4 GPUs) (4 GPUs) (1 GPU) (4 GPUs)
small lander 1.49 1.49 0.59 1.96
big lander 2.2 1.85 0.88 2.9

Table 7: Performance (in frames per second) running two large
models in either sort-last data-parallel using a reference BVH, vs.
the same using our encoding. Using our lower memory footprint we
can not only render the same model at similar performance in sort-
last, but could also render either stand-alone on a single GPU, or
data-replicated.

8 SUMMARY AND CONCLUSION

The main goal of this paper was to develop—and evaluate—a
more memory-efficient encoding of all the data required to perform
sample-based rendering of large unstructured data on a GPU. To do
this we have proposed a scheme that uses hierarchical encoding and
quantization to reduce the total memory size of both unstructured
element data and BVH built over these primitives, which in summary
achieves roughly an order of magnitude memory reduction relative
to comparable uncompressed representations.

Being now able to fit these models on a GPU, the next big ques-
tion is how to best use this data structure for rendering. We do
have prototypical rendering implementations; however, truly real-
time rendering for models of this size will require more advanced
techniques for space skipping, adaptive sampling, and probably
level-of-detail than what we have so far implemented. In that vein
the biggest issue is that space skipping and adaptive sampling are
most easily used with spatial subdivision techniques in which sub-
trees do not overlap—this is not the case for our BVH, but building
an additional data structure just for space skipping raises obvious
concerns regarding memory use.

In terms of algorithms operating on this data structure we have so
far only looked at sample reconstruction. In OSPRay, the Min/Max
BVH is also used for implicit iso-surface ray tracing, and though the
same should work with ours, too, we have not yet implemented this.

Maybe most importantly, our technique provides an interesting
proof of concept, but to be truly useful, would eventually have to get
integrated into a larger and more easily end user-accessible software
framework such as VTK, VisIt, or ParaView; possibly through an
OSPRay or ANARI API [15]. How to best achieve this, however, is
still an open question.
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Figure 6: Results of a scalability study we ran on a server with eight NVIDIA A6000 GPUs (48 GB DDR memory each), using a slightly older and
less efficient encoding than the final one described in this paper. We compare the performance of rendering with our data structure against an
uncompressed data representation, using a naïve ray marching approach and prototypical sort-last data-parallel renderer. Green line denote our
compressed data representation, red indicates the reference data representation. In cases where plots don’t fully extend to the left, we could not
fit the model into the combined GPU memory.
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