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Figure 1: Glyph visualizations with several different shapes and appearance. Left: Particle flow in a combustion chamber visualized with

arrow glyphs and high-quality rendering with path tracing and filmic BRDF. Second from left: Diffusion tensor imaging with tensor eigen-

values mapped as RGB colors. Middle: Diffusion tensor imaging rendered with ambient occlusion to help with clutter. Second from right:

Isotropic superquadric glyphs. Right: Motion blur to provide additional visual cues.

Abstract

Glyph rendering is an important scientific visualization technique for 3D, time-varying simulation data and for higher-

dimensional data in general. Though conceptually simple, there are several different challenges when realizing glyph rendering

on top of triangle rasterization APIs, such as possibly prohibitive polygon counts, limitations of what shapes can be used for

the glyphs, issues with visual clutter, etc. In this paper, we investigate the use of hardware ray tracing for high-quality, high-

performance glyph rendering, and show that this not only leads to a more flexible and often more elegant solution for dealing

with number and shape of glyphs, but that this can also help address visual clutter, and even provide additional visual cues that

can enhance understanding of the dataset.

CCS Concepts

• Human-centered computing → Scientific visualization; Visualization techniques; • Computing methodologies → Ray

tracing; Graphics processors;

1. Introduction

Glyph-based rendering is a popular scientific visualization tech-
nique and is traditionally implemented with rasterization, point
splatting, or ray casting of implicit surfaces. Each of these tech-
niques have their individual merits but also challenges. Purely
rasterization-based approaches e.g. require the glyphs to be tessel-
lated, which limits the complexity and the number of the shapes
being used. While ray tracing glyphs represented with implicit sur-
faces allows for high-quality images and visually pleasing results,
calculating intersections involves costly root finding algorithms.

The RTX ray tracing cores found on current-generation NVIDIA

GPUs can perform ray / primitive intersection tests with hardware-
accelerated bounding volume hierarchy (BVH) traversal and sup-
port hardware instancing as well as user-defined primitives. APIs
that expose the RTX hardware extension are OptiX [PBD∗10],
Vulkan [NVI18] or Microsoft DXR [Mic18].

With ray tracing hardware being available even on consumer
graphic cards, we argue that ray tracing is a viable, if not superior,
option to implement scientific visualization algorithms and demon-
strate this using glyph rendering. Ray tracing opens the door for
techniques that could not easily be implemented with traditional
rasterization-based approaches. In this paper we contribute:

© 2020 The Author(s)
Eurographics Proceedings © 2020 The Eurographics Association.

https://orcid.org/0000-0003-2880-9090
https://orcid.org/0000-0003-2975-3332
https://orcid.org/0000-0003-1670-2368
https://orcid.org/0000-0003-0046-713X


S. Zellmann, M. Aumüller, N. Marshak & I. Wald / Glyph Ray Tracing

• An implementation of various glyph rendering techniques using
hardware-accelerated ray tracing with RTX.

• Examples of how ray tracing-based algorithms that make use of
global illumination effects can deal with visual clutter that is typ-
ical for glyph data sets.

• Examples of rendering techniques that are typically imple-
mented with ray tracing, which cannot easily be reproduced with
rasterization but can help to provide additional visual cues.

2. Related Work

Glyphs are typically used for medical [MRZH14] or particle flow
visualization [GRE09, RGE19] and are often implemented using
rasterization hardware [TL04]. They can be classified by shape (e.g.
deformed spheres, superquadrics, or arrows) and appearance (e.g.
color or transparency) [ROP11].

In the context of diffusion tensor imaging (DTI), tensor param-
eters are mapped as anisotropy to the parameters of superquadric
glyphs [Kin04]. Ropinski et al. [RSMS∗07] use superquadrics to
represent the principal eigenvectors of diffusion tensors. Schultz
and Kindlmann [SK10] extend the scope of glyphs to indefinite
tensors with negative eigenvalues by using concave superquadrics,
and Gerrits et al. [GRT16] lift the restriction to symmetric tensors.
Podlozhnyuk et al. [PPK17] present a C++ implementation of su-
perquadric evaluation using Newton’s root finding method.

Several rendering systems are aimed at high-quality scientific
visualization based on ray tracing [WJA∗17, ZHL17] or extend
medical visualization algorithms with ray tracing [ZWL17]. The
recent success of ray tracing for interactive visualization applica-
tions can be attributed to the existence of ray tracing kernel li-
braries [PBD∗10, WWB∗14] that provide optimized implementa-
tions for ray / primitive intersection.

The introduction of RTX hardware has led to several re-
search papers. Ganter and Manzke [GM19] as well as Morrical et
al [MUWP19] use RTX for volume rendering with empty space
skipping. Wald et al. [WUM∗19] use RTX for tetrahedron point
queries and thus for an application that is not limited to rendering.

3. Method Overview

We present a prototypical glyph rendering system with RTX that
supports a variety of glyph types with different shape and appear-
ance plus static triangle base geometry (see Figure 1). Our system
uses OptiX 7 and the high-level wrapper library owl [WMH20].

Figure 2: Mechanical engineering data set with 280 K instanced

spheres. Left: OpenGL rendering. Middle: primary ray casting.

Right: path tracing with an omni-directional light, where ambient

occlusion helps to significantly reduce visual clutter.

3.1. Geometry setup

RTX accelerates ray / object intersections using BVH traversal
and triangle intersection in hardware. Custom primitives can be
added via intersect programs that run on the GPU shader cores and
thus require context switches. Traversal can be intercepted using
closest-hit and any-hit programs. The user can alter the ray inter-
section parameter or reject the intersection from within those pro-
grams. RTX allows us to define a two-level hierarchy where the
bottom level is expressed using instance transforms. When travers-
ing an instance, the world space ray is transformed by the inverse
instance transform. This allows for cheaply creating lots of copies
of one object.

We distinguish between affine glyphs that can be represented as
an affine copy of a template geometry (e.g. spheres that transform
to ellipsoids) and other non-affine glyphs (e.g. arrow glyphs with
fixed-length arrow heads, which cannot be scaled non-uniformly
without objectionable distortion). Affine glyphs can be efficiently
implemented using a custom intersect program and a two-level
BVH, where a single base geometry is spread out all over the space
using transforms. Non-affine glyphs must be implemented by using
one base geometry per glyph instance. This can still be beneficial
as the instance bounds tightly bound the complex glyph shape.

3.2. Rendering setup

We support interactive rendering using local shading with primary
rays and high-quality shading with naïve path tracing and an omni-
directional light source. With the latter we render convergence
frames that on their own are very noisy but through accumulation
gradually converge to a high-quality image. At any point during
the interactive visualization, we can apply tone mapping to the ac-
cumulation buffer and write its content to the framebuffer for in-
teractive display. High visual fidelity is achieved by using Usher’s
implementation of the Disney BRDF [MHH∗12, Ush19].

3.3. Particle flow visualization with glyphs

With particle flow data, we keep all timesteps in CPU main mem-
ory and synchronously upload them to the GPU on demand. We
choose arrow glyphs as those can be fully represented with quadric
surfaces (capped cylinder and rounded cone for the arrow head, see
Figure 3), so that zooming in will not reveal tessellation. In order to
retain the world-space proportions of the arrow heads, we store the
unit size glyph geometry in a GPU buffer and allow RTX to trans-
form it by building a two-level BVH with instance transforms. Up-
loading animation frames—comprised of one affine transform per
glyph, and the glyph geometry itself—comes at moderate memory
transfer costs. Reuploading the data also requires us to rebuild the
BVH on the GPU, which takes on the order of ten milliseconds.

3.4. Lighting models to reduce visual clutter

Glyph data is known to be prone to visual clutter [RSMS∗07].
Rendering with local illumination only—the default mode
in scientific visualization systems like ParaView [AGL05] or
VisIt [CBW∗12]—makes it hard to discern visual features. Path-
traced global illumination with its implicitly generated ambient oc-
clusion shadows can help to reduce that visual clutter and provides
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Figure 3: Fully converged high-quality images of a time-varying combustion simulation in a coal power plant. For this model we combine

arrow glyph rendering with a static triangle geometry (657 K triangles). The data set counts in at 2000 timesteps and 12500 particles in most

timesteps. With RTX, we can render convergence frames at interactive rates for this viewport of 800 × 800 pixels.

Figure 4: Left: Motion blur rendering of spheres based on velocity

only. Since the blur is equally spread out, we gain insight on speed

and direction of particle advection, but not on the absolute orien-

tation. Right: Factoring acceleration into the calculation provides

us with this additional cue—blurriness increases with velocity.

additional depth cues. Figure 2 shows an example where local shad-
ing is compared to ambient occlusion from path tracing. As ambient
occlusion uses an omni-directional light source, frames will gener-
ally converge at interactive rates.

3.5. Adding visual cues with motion blur

A technique that is very common in the movie industry for filmic
rendering and that can be very elegantly implemented with ray trac-
ing is motion blur [CPC84]. This technique models the eponymous
aperture error when sampling a moving scene with respect to time:
instead of capturing an exact representation at a precise moment,
an average over a short time interval is shown. Moving objects will
appear spread out and blurred over the space they cross while the
camera shutter is open. In filmic rendering, motion blur will pri-

Figure 5: Injection of fuel particles depicted as arrow glyphs (left)

or spheres with motion blur (right). The sphere representation is

less cluttered, more easily accessible to non-experts and succeeds

better in showing that particles are injected at high velocity, but

slow down quickly after entering the combustion chamber.

marily be used to simulate this effect, which essentially is just a
deficiency of the underlying camera system.

As time-varying data sets contain enough information to actually
simulate motion blur (cf. Figure 4), we propose motion blur as an
efficient tool for depicting differences in speed. It is a representa-
tion that is easily understood by a non-technical audience. Further-
more, as motion is already conveyed by the blur, a simpler glyph
can be used to encode a particle. Spherical particles with motion
blur, for example, introduce less cluttering than a represention of
movement by arrows of varying length (cf. Figure 5). A distributed
ray tracer lends itself to implementing this effect: It is sufficient to
make the particle position adhere to a stochastic distribution depen-
dent on time.

3.6. Superquadrics

We support rendering superquadric surfaces in their parametric
form | x

A |
r
+ | y

B |
s
+ | z

C |
t
= 1. We use Newton’s method for root find-

ing. Instead of the obvious bounding box or sphere intersection, we
decided to compute a coarse tessellation fully including the glyph
and use the hardware-accelerated intersection with that as an initial
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GPU RTX RTX RTX RTX RTX RTX RTX RTX

2080 4000 2080 4000 2080 4000 2080 4000

Primary 197. 186. 111. 142. 76.8 111. 76.3 101.

Path Trace 70.0 97.3 16.1 25.5 4.91 8.42 2.05 5.64

OGL 6 × 12 147. 217. 160. 209. 226. 207. 218. 203.

12 × 12 72.8 106. 81.4 103. 145. 101. 132. 101.

24 × 12 37.1 55.7 40.4 54.7 75.1 53.6 66.2 53.4

24 × 24 19.0 29.0 20.7 28.5 38.2 28.1 33.4 28.0

Table 1: Frames / second for 280 K spheres and a 1200× 1200
viewport. The OpenGL tessellation level is reported by the number

of quadrilateral patches. Path tracing employs up to 10 bounces.

guess for the root. We refine the root using an any-hit program and
report an intersection when the Newton refinement was successful.

3.7. Implementation

The implementation consists of C++ host programs and OptiX de-
vice programs for the various glyph modes. The host programs per-
form geometry setup and upload the instances as OptiX geometries
and instance groups:

void AffineGeomHostProgram() {
// Build single geometry and BVH accelerator
OWLGeomType affineUserType = setupAffineType();
OWLGeom geom = owlGeomCreate(affineUserType);
OWLGroup grp = owlUserGeomGroupCreate(geom);
owlGroupBuildAccel(grp);
...
// Create top level
for (Particle p : particles) {
// Reuse the group from above
owlInstanceGroupSetChild(world,p.idx,grp);
// Set instance transform
owlInstanceGroupSetTransform(world,p.idx,p.trans);

}
// Build top level BVH
owlGroupBuildAccel(world);

}

void NonAffineGeomHostProgram() {
// Build a template geometry for replication
OWLGeomType nonAffineUserType = setupNonAffineType();
OWLGeom geom = owlGeomCreate(nonAffineUserType);
// The "real", non-affine geometry, accessed on the
// device using the geometry instance's instID
owlGeomSetBuffer(geom,geometryBuffer);
...
// Create top level
for (Particle p : particles) {
// Build an individual accelerator per geometry
OWLGroup grp = owlUserGeomGroupCreate(geom);
owlGroupBuildAccel(grp);
owlInstanceGroupSetChild(world,p.idx,grp);
// Set instance transform
owlInstanceGroupSetTransform(world,p.idx,p.trans);

}
// Build top level BVH
owlGroupBuildAccel(world);

}

OpenGL (150 FPS) Ray casting (160 FPS)

Figure 6: OpenGL with tessellation level 12 × 12 vs. primary

ray casting. Although no tessellation artifacts are visible and shad-

ing normals are continuous, frame rates with ray casting are even

higher on a GeForce RTX 2080 GPU than with rasterization.

On the device side we use a ray generation shader that will gen-
erate rays using a pinhole camera model, trace those rays into the
scene, and call a user-supplied intersect program when the bound-
ing box of the primitive was hit.

4. Results

We compare single-bounce ray casting, path tracing with ten
bounces, and rasterization with OpenGL of a massive 280 K glyph
data set (see Table 1 and Figure 6). With RTX, we use the robust
sphere intersection algorithm from [HGAM19]. With OpenGL,
spheres are tessellated to a fixed number of triangles with indexed
coordinates and rendered as instances. Even this brute force ap-
proach allows us to render a high number of glyphs. Due to in-
stancing, the amount of memory needed is also modest.

We observe that the performance of the OpenGL renderer is
dominated by vertex processing load. Especially on the RTX 2080,
the results also depend on the field of view, to an extent that sug-
gests that some kind of culling happens at the driver level. When
ray tracing, the field of view has an important but inverse effect,
which is also more pronounced on the RTX 2080: frame rate drops
with the amount of rays hitting objects, even more so with the com-
plexity increased by path tracing. Except when path tracing, frame
rates are always interactive. But the OpenGL renderer cannot keep
up with tracing primary rays when a tessellation level (24 × 12
vertices) is selected that is sufficiently high to provide for non-
objectionable tessellation even when zoomed in.

5. Conclusions and future work

Glyph rendering is another domain of scientific visualization where
ray tracing hardware acceleration is beneficial, when compared to
scanline methods: not only for its improved performance, but also
for its increased visual fidelity. At the same time, it opens up a
wealth of additional rendering opportunities.

In the future, we aim to combine motion blur with other glyphs
than spheres, so that velocity can be shown together with another
quantity. We also want to enable evaluation of the effectiveness and
usefulness of the proposed methods by making them available to a
broader audience by integrating them into production visualization
systems such as ParaView or Vistle [Aum19].
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