
To appear in IEEE VIS 2020 Short Papers

A Virtual Frame Buffer Abstraction for Parallel Rendering of Large Tiled

Display Walls

Mengjiao Han*∗ Ingo Wald‡ Will Usher∗,† Nate Morrical∗ Aaron Knoll† Valerio Pascucci∗

Chris R. Johnson∗

∗SCI Institute, University of Utah ‡NVIDIA Corp †Intel Corp.

Figure 1: Left: The Disney Moana Island [18] rendered remotely with OSPRay’s path tracer at full detail using 128 Skylake Xeon
(SKX) nodes on Stampede2 and streamed to the 132Mpixel POWERwall display wall, averages 0.2-1.2 FPS. Right: The Boeing 777
model, consisting of 349M triangles, rendered remotely with OSPRay’s scivis renderer using 64 Intel Xeon Phi Knight’s Landing
nodes on Stampede2 and streamed to the POWERwall, averages 6-7 FPS.

ABSTRACT

We present dw2, a flexible and easy-to-use software infrastructure
for interactive rendering of large tiled display walls. Our library
represents the tiled display wall as a single virtual screen through a
display “service”, which renderers connect to and send image tiles
to be displayed, either from an on-site or remote cluster. The display
service can be easily configured to support a range of typical network
and display hardware configurations; the client library provides a
straightforward interface for easy integration into existing renderers.
We evaluate the performance of our display wall service in different
configurations using a CPU and GPU ray tracer, in both on-site and
remote rendering scenarios using multiple display walls.

Index Terms: Tiled Display Walls; Distributed Display Frame-
works

1 INTRODUCTION

Tiled displays are important communication tools in modern visual-
ization facilities. They are beneficial to visualization in many ways:
displaying the features of data at a large scale increases the user’s
sense of immersion, better conveys a sense of scale (e.g., when
viewing an entire car or airplane), and the high resolution provided
is valuable when visualizing highly detailed datasets (Figure 1). Per-
haps most importantly, tiled displays are powerful communication
tools and can engage a large group of collaborators simultaneously.

A number of high-end visualization facilities feature tiled dis-
plays, using either multiprojector systems, CAVEs [4, 17], or mul-
tiple high-resolution LED panels—such as TACC’s 189 MPixel
Rattler display wall and 328 MPixel Stallion, NASA’s 245 MPixel
HyperWall 2, or SUNY StonyBrook’s RealityDeck. Unfortunately,
the exact requirements, configurations, and software stacks for such
tiled display walls vary greatly across systems, and thus there is no
easy or standardized way to use them [3]. Visualization centers often
build their own proprietary software for driving such walls, requiring
system-specific modifications to each software package to use the
wall. Typical software set-ups often assume that each display node
will render the pixels for its attached display [6,9,16]. Rendering on
the display nodes is sufficient for moderately sized datasets but not
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for large-scale ones. To support large data, systems typically render
on an HPC cluster and stream the image back to the display wall.

DisplayCluster [10] and SAGE2 [12] are two general and widely
used streaming frameworks for tiled display walls that can support
local and remote collaborations with multiple devices, such as kinect,
touch overlays, or smart phones/tablets. One disadvantage is that
communication with the display wall must be performed through a
master node. The master node, therefore, must be powerful enough
to process and stream all the pixels for the entire display wall to
avoid becoming a bottleneck. DisplayCluster is used for scientific
visualization as it supports distributed visualization applications
using IceT [13]. However, IceT, a sort-last compositing framework,
is less well suited for large tile-based ray tracing applications [19].

In this paper, we describe a lightweight open-source framework
for driving tiled display walls from a single node or distributed ren-
derer. In our framework, the display wall is treated as a single virtual
frame buffer managed through a display service. Our framework
supports both dispatcher and direct communication modes between
the rendering clients and display service to support typical network
configurations. The direct mode can relieve network congestion
and the bottleneck on the master node, which makes it possible to
use low-cost hardware for display walls, e.g., the Intel NUC mini
PCs [1]. Moreover, our framework can easily be used by both CPU
and GPU renderers for portability. We demonstrate integration of
our library into OSPRay [20] and a prototype GPU raycaster [21]
for interactive rendering on typical tiled display walls and low-cost
display walls. Our contribution are:

• We present a lightweight open-source framework for driving
tiled display walls that can be integrated into CPU and GPU
renderers;

• The framework can transparently operate in the dispatcher or
direct mode to support typical network configurations;

• We demonstrate this framework for use in deploying low-cost
alternatives for display walls.

2 RELATED WORK

2.1 Cluster-Based Tiled Display Walls

A large number of supercomputing centers now use a tiled display
wall for some of their high-end visualizations. These systems come
in a mix of configurations, in terms of the display layout, hardware
used to drive the displays, and network connectivity to local and
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remote HPC resources. For example, TACC’s Stallion and Rattler
systems and NASA’s Hyperwall 2 use a single node per display;
however, the POWERwall at the Scientific Computing and Imaging
(SCI) Institute uses one node per column of four displays. Each node
on the POWERwall is directly accessible over the network, and on
Hyperwall 2, each node is connected directly to Pleiades. However,
on Stallion and Rattler, the display nodes are not externally visible
and must be accessed through a head node. We refer to the survey
by Chung et al. [3] for a more in-depth discussion of tiled display
wall frameworks.

2.2 GPU Rendering on Tiled Displays

Parallel rendering on a cluster based on OpenGL is a common solu-
tion for driving tiled displays. Eilemann et al. [5] presented an exper-
imental analysis of the important factors for performance of parallel
rendering on multi-GPU clusters. The basic approach for OpenGL-
based applications is to run an instance of the application on each
node, with a master node used to broadcast user interactions to the
display nodes. The Chromium project [9], an automatic method
for such approaches, intercepts the application’s OpenGL command
stream and broadcasts it to the worker nodes. The Chromium Render-
server [16] also supports the distributed-memory parallel rendering
using Chromium. However, it is inherently limited by the available
processing power on the display nodes, requiring powerful on-site
hardware.

An alternative to having each node render the pixels for its display
is to use a compositing or pixel routing framework that can route
pixels from the render nodes to the corresponding display node.
One of the first methods using such an approach was described by
Moreland et al. [14], who used a sort-last compositing scheme for
rendering to tiled display walls. The same general approach is now
available in IceT [13], where users can specify a number of output
windows and provide a callback to render specific frusta for the
displays. Equalizer [6], introduced by Eilemann et al., supports scal-
able parallel rendering and can distributed rendering works directly
to worker nodes. However, Chromium and Equalizer are all specific
to OpenGL, and IceT is less applicable to tile-based ray tracers.
Moreover, these frameworks impose the rendering work distribution
on the application, and are not suited to applications that perform
more complex load balancing.

2.3 Distributed Display Frameworks

A work similar to our own for driving tiled display walls was pro-
posed by Johnson et al. in the “DisplayCluster” framework [10].
Similar to our proposed framework, DisplayCluster makes a clear
distinction between a display wall “service”, which receives pixels
and presents them on the appropriate displays, and client appli-
cations, which produce these pixels and send them to the service.
DisplayCluster assumes that the display nodes are connected over a
high-bandwidth network, but that they are not visible to the external
network and must be accessed through a head node. The head node
communicates with clients over TCP and broadcasts the received
pixel data to the display nodes over the Message Passing Interface
(MPI) [8]. The display nodes then decompress the pixel data and
discard portions of the received image that are outside their display
region. DisplayCluster has found wider use in the communities
(e.g., by the Blue Brain Project), and has been used for displaying
interactive rendering from Stampede on Stallion [11].

SAGE2 [12] is another popular windowing environment for tiled
displays, designed for collaborative workspaces on tiled display
walls. OmegaLib [7] is designed for similar use cases, with a focus
on stereo tiled display environments. DisplayCluster, SAGE2, and
OmegaLib support displaying multiple applications on the wall
simultaneously, each streaming to its own virtual window, which can
be repositioned using the library. These libraries are more similar
to full-featured window managers, whereas, in contrast, we aim to

Figure 2: An overview of dw2 in the dispatcher and direct communi-
cation modes. The best mode for the system’s network architecture
can be used as needed, without modifying the rendering client code.

provide a simple lightweight framebuffer abstraction that can be
rendered to by a single application.

Biedert et al. [2] recently demonstrated a parallel compositing
framework for streaming from multiple asynchronously running im-
age sources, leveraging GPU video compression and decompression
hardware. They achieve consistently real-time rates compositing
hundreds of sources into a single 4K or tiled video stream. However,
their system requires GPU-accelerated video encoding and does
not consider a synchronized full-resolution frame rate across the
displays.

3 FRAMEWORK OVERVIEW

Our framework, dw2, is split into an MPI parallel display service
that manages the mapping from the single virtual framebuffer to the
physical tiled display wall (Section 3.1) and a client library used to
connect renderers to the display service (Section 3.2). The client
can be a single program, an MPI-parallel program, or a distributed
application with some custom parallel communication setup. To
allow for different configurations of the clients and displays, e.g.,
rendering on the display nodes, on a different on-site cluster, or
on a remote cluster, we use TCP sockets to communicate between
the clients and displays through a socket group abstraction. We
provide pseudo-code of how the display service cooperates with
the rendering clients in the supplementary material. Source code
and detailed instructions can be found in the project repository:
https://github.com/MengjiaoH/display_wall.

3.1 Display Service

The display service supports two modes: a dispatcher mode, where
a central dispatch node manages routing of tiles to the display nodes,
and a direct mode, where clients send tiles directly to the display
nodes (see Figure 2). The latter mode can achieve better network
utilization and performance, but on some systems the display nodes
are not visible to the outside network for security reasons and must
be accessed via a single externally visible node.

The display service is run using MPI, with one process launched
per display on each node. In the dispatcher mode, an additional pro-
cess is needed, and rank 0 is used as the dispatcher on the head node.
At start-up the service is passed information about the windows to
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open on each node, their location on the wall, and the bezel size, to
provide a single continuous image across the displays.

In both the dispatcher and direct modes, rank 0 acts as the infor-
mation server for the wall. Clients connect to the service through
this rank and receive information about the display wall’s size and
configuration. In the dispatcher mode, all clients connect to the dis-
patcher through a socket group. In the direct mode, clients are sent
back host name and port information for each display that they then
connect to directly. Each display process returns its size and location
in the display wall to allow each client to perform tile routing locally.
Each tile consists of an uncompressed header specifying its size and
location, along with the JPEG compressed image data.

On both the dispatcher and the display processes, multiple threads
are used for receiving and sending data, and for decompressing
tiles on the displays. Communication between threads is managed
by timestamped mailboxes, which are locking producer-consumer
queues that can be optionally filtered to return only messages for the
current frame. Each socket group is managed by a pair of threads,
one that takes outgoing messages from the mailbox and sends them,
and another that places received messages into an incoming mailbox.
In the dispatcher mode, the dispatcher receives tiles, reads their
header, and routes them to the display processes they cover via
MPI. In the direct mode, each client tracks the individual display
information received above and runs its own dispatcher to route
tiles directly to the displays via the socket group. Each display
places incoming messages into a timestamped mailbox. A set of
decompression threads take tiles for the current frame from the
mailbox, decompress them, and writes them to the framebuffer.
Once all pixels in the virtual framebuffer have been written, the
frame is complete.

After the frame is complete, process 0 sends a token back to
the clients to begin rendering the next frame. This synchronization
prevents the renderer from running faster than the displays, and
thus a buildup of buffered tiles, causing them to run out of memory.
However, it causes a delay on how soon the renderer can start on the
next frame. To alleviate this delay, users can configure the number
of frames that can be in flight at once, allowing the renderer to begin
the next frame immediately to buffer some number of frames. If
the renderer and displays run at similar speeds, this approach will
significantly reduce the effect of latency.

3.2 Rendering with the Client Library

The client library provides a small C API to allow for easy integra-
tion into a range of rendering applications (also see supplemental
materials). Clients first query the size of the virtual framebuffer
from the display service using dw2_query_info, after which they
connect to the service to set up a socket group. Depending on the
mode used by the display service, the library will either connect to
the dispatcher or to each individual display. Connections are estab-
lished using socket groups, where each client sends a token returned
with the initial information query and its number of peers, allowing
the display process to track when all clients have been connected.
All clients then call dw2_begin_frame, which returns when the
display service is ready to receive the next frame. The client can
divide the image into tiles as it sees fit to distribute the rendering
workload. After a tile is rendered, the client calls dw2_send_rgba
to send it to the display service. The tile is then compressed and
sent to the dispatcher or the overlapped displays by the library. The
client library also leverages multiple threads for compression and
networking, in the same manner as the display processes.

4 OSPRAY INTEGRATION

We integrate our client library into OSPRay (version 1.8) through a
pixel operation that reroutes tiles to the display wall. Pixel operations
in OSPRay are per-tile postprocessing operations that can be used
in local and MPI-parallel rendering through OSPRay’s Distributed

(a) Landing Gear, on the NUCwall (b) The Moana Island, on Rattler.

Figure 3: The test images and use cases of (a) the landing gear
remote rendering to the low-cost NUCwall and (b) the Moana Island
Scene on-site rendering to Rattler.

FrameBuffer [19]. After querying the display wall’s dimensions, we
create a single large framebuffer with the display wall’s size and
attach our pixel operation it. The framebuffer is created with the
OSP_FB_NONE color format, indicating that no final pixels should
be stored. By sending the tiles in the pixel operation and creating a
NONE format framebuffer, we can send tiles directly from the node
that rendered them and skip aggregating final pixels to the master
process entirely.

5 GPU RAYCASTER INTEGRATION

The prototype GPU raycaster [21] uses OptiX [15] (version 6.5) for
rendering on a single node equipped with one GTX 1070 GPU. To
allow rendering to large-scale display walls, we extend the renderer
with an image-parallel MPI mode that divides the image into tiles
and assigns them round-robin to the processes. On each rank, we
create a tiled framebuffer containing the tiles it owns and render
them using the prototype’s existing renderer code. After the tiles are
rendered, each rank passes its tiles to dw2 to be sent to the displays.
To achieve interactive performance at high resolution, we also extend
the rendered with a screen-space subsampling strategy.

6 EXPERIMENTS AND RESULTS

We evaluate the performance of dw2 in on-site and remote streaming
rendering scenarios to study the performance of the dispatcher and
direct modes, the impact of compression and the client’s chosen tile
size on performance, and scalability with the number of clients and
displays in Section 6.1. We demonstrate interactive rendering use
cases of dw2 on a range of datasets in Section 6.2 using OSPRay
and the GPU renderer.

We conduct our evaluation on three tiled display wall systems:
the POWERwall and NUCwall at SCI and Rattler at TACC. The
POWERwall has a 9×4 grid of 2560×1440 monitors (132Mpixel),
with each column of four monitors driven by one node, along with an
optional head node; each node has an i7-4770K CPU. The NUCwall
has a 3× 4 grid of 2560× 1440 monitors (44Mpixel), with each
column of four monitors driven by an Intel NUC (i7-8809G CPU).
We run on a subset of TACC’s Rattler, a 3× 3 grid of 4K moni-
tors (74Mpixel), with each display driven by a node with an Intel
Xeon E5-2630 v3 CPU. The POWERwall and NUCwall use the
same network configuration, where each node has a 1Gbps ethernet
connection and is accessible externally. Rattler’s display nodes are
not accessible externally and are connected to a head node using
a 1Gbps network, with a 1Gbps connection from the head node to
Stampede2.

6.1 dw2 Performance Evaluation

To isolate the performance impacts of the different configurations
of dw2 from the renderer’s performance, our benchmarks are run
using pre-rendered images created using OSPRay. These images are
representative of typical visualization and rendering use cases on
display walls, and they vary in how easily they can be compressed.
The Landing Gear contains a complex isosurface with a large amount
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Figure 4: The performance impact of different tile sizes and JPEG
quality settings in both modes on the POWERwall. Left: Clients run
on-site on an eight-node KNL cluster. Right: Clients run remotely on
eight KNL nodes on Stampede2.

1 2 3 4 5 6 7 8 9
Column of Displays

0

5

10

15

20

25

FP
S

basic color + dispatcher
basic color + direct
moana + dispatcher

1 2 3 4 5 6 7 8 9
Column of Displays

moana + direct
landing gear + dispatcher
landing gear + direct

(a) Scaling with the number of displays with 8 clients, each column has 4 display

processes.

2 4 6 8
Number of Clients

0

5

10

15

20

25

FP
S

2 4 6 8
Number of Clients

(b) Scaling with the number of clients sending to all 9 display columns.

Figure 5: Scalability studies on the POWERwall. Left: Clients run
on-site on an eight-node KNL cluster. Right: Clients run remotely on
eight KNL nodes on Stampede2.

of background and compresses well, and the Moana Island Scene
contains high-detail geometry and textures and is challenging to
compress (see Figure 3). Additionally, we benchmark on a generated
image with varying colors within each tile to provide a synthetic
benchmark case that is difficult to compress. For on-site client
benchmarks, we use a local cluster with eight Intel Xeon Phi KNL
7250 processors; remote rendering benchmarks use 8 KNL 7250
nodes on Stampede2.

In Figure 4a, we evaluate the display performance when using
different tile sizes on the client. We find that small tile sizes, which
in turn require many small messages to be sent over the network,
underutilize the network and achieve poor performance. Larger
tile sizes correspond to larger messages, reducing communication
overhead and achieving better performance as a result. This effect
is more pronounced in the dispatcher mode, as the overhead of the
small tiles must be paid twice: once when sending to the dispatcher,
and again when sending from the dispatcher to the display.

In Figure 4b, we evaluate the performance impact of the JPEG
quality threshold set by the client. As display walls are typically
on the order of hundreds of mega-pixels, compression is crucial to
reducing the bandwidth needs of the system to achieve interactive
rendering performance.

In Figure 5, we evaluate the scalability of dw2 when increasing
the number of displays or clients. We find the direct mode scales
well with the number of displays and clients, since each client and

Figure 6: Unstructured volume raycasting in our prototype GPU ren-
derer run locally on six nodes, each with two GTX 1070s.

Figure 7: Data-parallel rendering of the 500GB DNS volume
(10240×7680×1536 grid) with OSPRay on 64 SKX nodes on Stam-
pede2, streamed to the POWERwall in direct mode, averaging 6-
10 FPS.

display pair can communicate independently, whereas the dispatcher
mode introduces a bottleneck at the head node.

Based on the results of our parameter study, we recommend using
dw2 with a 1282 or 2562 tile size with JPEG quality of 50-75, and
we prefer the direct mode if the underlying network architecture
supports an all-to-all connection between the clients and displays.

6.2 Example Use Cases

We demonstrate dw2 on interactive rendering of several medium-
to large-scale datasets across the three display walls using a range
of client hardware. Figures 1 and 7 show medium- to large-scale
datasets rendered remotely on 64 or 128 Stampede2 Skylake Xeon
nodes with OSPRay and streamed back to the POWERwall using
the direct connection mode. In Figure 6, we use our GPU prototype
raycaster to render across six nodes, each with two NVIDIA GTX
1070 GPUs, and displayed locally on the POWERwall using the
direct mode. In Figure 3b, we show the Moana Island Scene ren-
dered on Stampede2 with OSPRay and displayed locally on Rattler,
using the dispatcher mode. In Figure 3a we render the Landing
Gear AMR isosurface on-site using the eight node KNL cluster and
displayed on the NUCwall in direct mode. For both on-site and
remote rendering on CPU and GPU clusters, dw2 allows renderers to
achieve interactive performance (also see the supplemental video).

7 DISCUSSION AND CONCLUSION

We have presented an open-source lightweight framework for ren-
dering to large tiled display walls from a single source, based on a
virtual frame buffer abstraction concept. Our framework is easy to
integrate into rendering applications and provides the flexibility re-
quired to be deployed across the display wall configurations typically
found in visualization centers. Moreover, we have demonstrated that
combining low-cost display nodes with remote rendering on an HPC
resource can be a compelling option for interactively driving tiled
displays.
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