
61© NVIDIA 2019
E. Haines, T. Akenine-Möller (eds.), Ray Tracing Gems, https://doi.org/10.1007/978-1-4842-4427-2_5

CHAPTER 5

Computing Minima and Maxima
of Subarrays
Ingo Wald
NVIDIA

ABSTRACT

This chapter explores the following problem: given an array A of N numbers Ai, how
can we efficiently query the minimal or maximal numbers in any sub-range of the
array? For example, “what is the minimum of the 8th to the 23rd elements?”

5.1 MOTIVATION

Unlike the topics of other chapters, this particular problem does not directly
relate to ray tracing in that it does not cover how to generate, trace, intersect, or
shade a ray. However, it is a problem occasionally encountered when ray tracing,
in particular when rendering volumetric data sets. Volumetric rendering of data
sets, whether structured or unstructured volumes, usually defines a scalar field,
z = f(x), that typically is rendered with some form of ray marching. As with surface-
based data sets, the key to fast rendering is quickly determining which regions of
the volume are empty or less important, and speeding up computation by skipping
these regions, taking fewer samples, or using other approximations. This typically
involves building a spatial data structure that stores, per leaf, the minimal and
maximal values of the underlying scalar field.

In practice, this chapter’s problem arises because a scalar field is rarely rendered
directly—instead, the user interactively modifies some sort of transfer function t(z)
that specifies which color and opacity values map to different scalar field values
(e.g., to make muscle and skin transparent, and ligaments and bone opaque). In that
case, the extremal values of a region’s scalar field are not important for rendering.
Instead, we need the extremal values of the output of our transfer function applied to
our scalar field. In other words, assuming we represent our transfer function as an
array A[i], and the minimum and maximum of the scalar field map to array indices ilo
and ihi, respectively, what we want is the minimum and maximum of A[i] for i ∈ [ilo, ihi].

At first glance, our problem looks similar to computing the sum for a subarray,
which can be done using summed-area tables (SATs) [3, 9]. However, min() and
max() are not invertible, so SATs will not work. The remainder of this chapter
discusses four different solutions to this problem, each having different trade-offs
regarding the memory required for precomputation and query time.

https://doi.org/10.1007/978-1-4842-4427-2_5

62

5.2 NAIVE FULL TABLE LOOKUP

The naive solution precomputes an N × N sized table, Mj,k = min {Ai, i ∈ [j, k]}, and
simply looks up the desired value.

This solution is trivial and fast, providing a good “quick” solution (see, e.g.,
getMinMaxOpacityInRange() used in OSPRay [7]). It does, however, have one big
disadvantage: storage cost is quadratic (O(N2)) in array size N, so for nontrivial arrays
(e.g., 1k or 4k entries), this table can grow large. In addition to size, this table has to
be recomputed every time the transfer function changes, at a cost of at least O(N2).

Given this complexity, the full table method is good for small table sizes, but larger
arrays probably require a different solution.

5.3 THE SPARSE TABLE METHOD

A less known, but worthwhile, improvement upon the full table method is the
sparse table approach outlined in the online forum GeeksForGeeks [6]. We were
unaware of this method until performing our literature search (and we did not find
it discussed elsewhere); as such, we briefly describe it here.

The core idea of the sparse table method is that any n-element range [i. . j] can be
seen as the union of two (potentially overlapping) power-of-two sized ranges (the
first beginning at i, the other ending at j). In that case, we do not actually have to
precompute the full table of all possible query ranges, but only those for power-of-
two sized queries; then we can look up the precomputed results for the two power-
of-two ranges and finally combine their results.

In a bit more detail, assume that we first precompute a lookup table L(1) of all

possible queries that are 21 = 2 elements wide; i.e., we compute () ()L A , A1
0 0 1min= ,

() ()L A , A1
1 1 2min= , and so on. Similarly, we then compute table L(2) for all 22 = 4 wide

queries, L(3) for all 23 = 8 wide queries, etc.1

Once we have these logN tables L(i), for any query range [lo, hi] we can simply take
the following steps: First, compute the width of the query as n = (hi − lo + 1). Then,
compute the largest integer p for which 2p is still smaller than n. Then, the range
[lo, hi] can be seen as the union of the two ranges [lo, lo + 2p − 1] and [hi − 2p + 1, hi].
Since the queries for those have been precomputed in table L(p), we can simply look
up the values ()p

loL and ()
p

p

hi
L

2 1- +
, compute their minimum, and return the result. A

detailed illustration of this method is given in Figure 5-1.

1 At least logically, we can also assume a table L(0) of 1 wide queries, but this is obviously identical to the input
array A and thus would not get stored.

RAY TRACING GEMS

63

Figure 5-1. Example of the sparse table method: from our 13-element input array A[], we precompute
tables L(1), L(2), and L(3) containing all 2, 4, and 8 wide queries. Assuming that we query for the minimum
of the 7-element range [A2. . A8], we can decompose this query into the union of two overlapping 4-wide
queries ([A2. . A5] and [A5. . A8]). These decomposed queries were precomputed in table L(2). Thus, the

result is () ()() ()2 2
2 5min L , L min 3, 4 3= = .

 COMPUTING MINIMA AND MAxIMA OF SUBARRAyS

64

For a non–power-of-two input range the two sub-ranges will overlap, meaning
that some array elements will be accounted for twice. This makes the method
unsuitable for other sorts of reductions such as summation and multiplication;
for minimum and maximum, however, this double-counting does not change the
results. In terms of compute cost, the method is still O(1) because all queries can
be completed with exactly two lookups. In terms of memory cost, there are N − 1
entries in L(1), N − 3 in L(2), etc., for a total storage cost of O(N logN)—which is a
great savings over the full table method’s O(N2).

5.4 THE (RECURSIVE) RANGE TREE METHOD

For ray tracing—where binary trees are, after all, a common occurrence—an
obvious solution to our problem is using some type of range tree, as introduced by
Bentley and Friedman [1, 2, 8]. An excellent discussion of applying range trees to
our problem can be found online [4, 5].2

A range tree is a binary tree that recursively splits the range of inputs and, for
each node, stores the corresponding subtree’s result. Each leaf corresponds to
exactly one array element; inner nodes have two children (one each for the lower
and upper halves of its input range) and store the minimum, maximum, sum,
product, etc. of the two children. An example of such a tree—for both minimum and
maximum queries—is given in Figure 5-2.

2 Note that those articles use the term segment tree but describe the same data structure and algorithm. This
chapter adopts the range tree term used by both Bentley and Wikipedia.

RAY TRACING GEMS

65

Given such a range tree, querying over any range [lo, hi] requires finding the set of
nodes that exactly spans the input range. The following simple recursive algorithm
performs this query:

 1 RangeTree::query(node,[lo,hi]) {

 2 if (node.indexRange does not overlap [lo,hi])

 3 /* Case 1: node completely outside query range -> ignore. */

 4 return { empty range }

Figure 5-2. Illustration of the recursive range tree method. Given input array A (top), we compute
a binary tree (middle) where each node stores the minimum and maximum of its corresponding leaf
nodes. Our recursive traversal for a query range (bottom) uses all three cases from the pseudocode:
gray nodes recurse into both children (case 3), green nodes with dark outlines get counted and
terminate (case 2), and blue nodes with dashed outlines lie outside the range (case 1).

 COMPUTING MINIMA AND MAxIMA OF SUBARRAyS

66

 5 if (node.indexRange is inside [lo,hi])

 6 /* Case 2: node completely inside query range -> use it. */

 7 return node, valueRange

 8 /* Case 3: partial overlap -> recurse into children, & merge. */

 9 return merge(query(node.leftChild,[lo,hi]),

10 query(node.rightChild,[lo,hi])

11 }

Range trees require only linear storage and preprocessing time, which can be
integer factors less than the sparse table method. On the downside, queries no
longer occur in constant time, but instead have O(logN) complexity. Even worse,
recursive queries can incur relatively high “implementation constants” (especially
on SIMD or SPMD architectures), even with careful data layouts and when avoiding
pointer chasing.

5.5 ITERATIVE RANGE TREE QUERIES

In practice, the main cost of range tree queries lies not in their O(logN) complexity,
but rather in the high implementation constants for recursion. As such, an iterative
method would be highly preferable.

To derive such a method, we now look at a logical range tree from the bottom up,
as a successive merging of respectively next-finer levels. On the finest level L(0), we
have the N0 = N original array values, ()

i iL A0 = . On the next level, we compute the
min or max of each (complete) pair of values from the previous level, meaning there
are N1 = ⌊N0/2⌋ values of () () ()()i i iL f L ,L1 0 0

2 2 1+= , where f could be min or max; level 2 has
N2 = ⌊N1/2⌋ such merged pairs from L(1), and so on. For non–power-of-two arrays,
some of the Ni can be odd, meaning some nodes will not have a parent; this is
somewhat counterintuitive, but for our traversal algorithm it will turn out just fine.

See Figure 5-3 for an illustration of the resulting data structure, which forms a
series of binary trees (one tree if N is a power of two, and more otherwise). A node
n on any level L is the root of a binary tree representing all array values within this
(sub)tree.

RAY TRACING GEMS

67

Given a query range [lo, hi], let us look at all subtrees n0, n1, n2, … whose children
fall completely within the query but are not part of a larger tree in the range
(circled in bold in Figure 5-3). Clearly, those are the nodes we want to consider—so
we need to find an efficient method of traversing those nodes.

To do this, consider the node ranges that our query range spans on each level L; let
us call these [loL. . hiL]. Now, let us first look at loL. By construction, we know that loL
can be the root of a subtree only if its index is odd (otherwise, it is another subtree’s
left child). Whether odd or even, the leftmost index in the next coarser level can be

Figure 5-3. Illustration of our iterative range tree: given an array of 13 inputs, we iteratively merge
pairs to successively smaller levels, forming a total of (in this example) three binary trees. For a sample
query [lo = 2, hi = 8], we must find the three nodes ()0

8L , ()1
1L , and ()2

1L marked with dark solid outlines.

Our algorithm starts with lo = 2 and hi = 8 on L(0); it determines that hi is even and should be counted
(solid circle), and that lo is odd and thus should not (dashed circle). The next step updates lo and hi to
lo = 1 and hi = 3 (now in L(1)) and correctly counts ()1

loL (solid outline) because lo is odd, while skipping
over ()1

hiL because hi is not even (dashed outline). It then does the same for lo = 1 and hi = 1 on L(2), after
which it steps to lo = 1, hi = 0 on L(3) and then terminates.

 COMPUTING MINIMA AND MAxIMA OF SUBARRAyS

68

computed as loL + 1 = (loL + 1)/2.3 Similar arguments can be made for the right-side
index hiL, except that “odd” and “even” get exchanged and that the next index gets
computed as hiL + 1 = (hi + 1)/2 − 1 (or, in signed integer arithmetic, as (hi − 1) ≫ 1).
This iterative coarsening continues until loL becomes larger than hiL, at which point
we have reached the first level that no longer contains any subtrees.4 With these
considerations, we end up with a simple algorithm for iterating through subtrees:

 1 Iterate(lo,hi) {

 2 Range result = { empty range }

 3 L = finest level

 4 while (lo <= hi) {

 5 if (lo is odd) result = merge(result,L[lo])

 6 if (hi is even) result = merge(result,L[hi])

 7 L = next finer Level;

 8 lo = (lo+1)>>1

 9 hi = (hi-1)>>1 /* Needs signed arithmetic, else (hi+1)/2-1 */

10 return result

11 }

12 }

As noted in the pseudocode, care must be taken to properly handle computation
of the high index when hi = 0, but following the pseudocode takes care of this. As
in classical range trees, this iterative method accounts for each value in the input
range exactly once and could thus be used for queries other than minimum and
maximum.

With regard to memory layout, we have logically explained our algorithm using a
sequence of arrays (one per level). In practice, we can easily store all levels in a
single array that first contains all N1 values for L1, then all values for L2, and so on.
Since we always traverse from the finest to successively coarser levels, we can
even compute level offsets implicitly, yielding a simple—and equally tight—inner
loop. See our reference implementation online, at http://gitlab.com/ingowald/
rtgem-minmax.

3 Here is a brief proof. If loL was a root node in L then it was odd, so this moves it to the next subtree on the right
side; if not, it moves up to loL’s parent, which is still the leftmost subtree. Either way the index can be computed
as loL + 1 = (loL + 1)/2.

4 The case where loL and hiL meet at exactly the same node is fine: the value is either odd (and counted on the low
side) or even (and counted on the high side), and the next step will terminate.

RAY TRACING GEMS

http://gitlab.com/ingowald/rtgem-minmax
http://gitlab.com/ingowald/rtgem-minmax

69

5.6 RESULTS

Theoretically, our iterative method has the same storage complexity, O(N), and
computational complexity, O(logN), as the classical range tree method. However,
its memory layout is much simpler, and the time constant for querying is
significantly lower than in any recursive implementation. In fact, with our sample
code this iterative version is almost as fast as the O(1) sparse table method,
except for tables with at least hundreds of thousands of elements—while using
significantly less memory.

For example, using an array with 4k elements and randomly chosen query
endpoints lo and hi, the iterative method is only about 5% slower than the sparse
table method, at 10× lower memory usage. For a larger 100k-element table, the
speed difference increases to roughly 30%, but at 15×; lower memory usage. While
already a interesting trade-off, it is worth noting that randomly chosen query
endpoints are close to the iterative method’s worst case: since iteration count is
logarithmic in ∣hi-lo∣, “narrower” queries actually run faster than very wide ones
performed by uniformly chosen lo and hi values. For example, if we limit the query
values to ∣hi-lo∣ ≤ N , the iterative method on the 100k-element array changes
from 30% slower to 15% faster than the sparse table method (at 15× less memory)

5.7 SUMMARy

In this chapter, we have summarized four methods for computing the minima and
maxima for any sub-range of an array of numbers. The naive full table method is
the easiest to implement and is fast in query—but suffers from O(N2) storage and
recomputation cost, which limit its usefulness. The sparse table method is slightly
more complex but significantly reduces the memory overhead, while retaining
the O(1) query complexity. The recursive range tree method reduces this memory
overhead even more (to O(N)), but at the cost of a significantly higher query
complexity—not only theoretically (at O(logN)) but also in actual implementation
constants. Finally, our iterative range tree retains the low memory overhead of
range trees, uses a simpler memory layout, and converts the recursive query into
a tight iterative loop. Though asymptotically still O(logN), in practice its queries
perform similar to the O(1) sparse table method, at lower memory consumption.
Overall, this makes the iterative method our favorite, in particular since both
precomputation code and query code are surprisingly simple.

Sample code for the sparse table and the iterative range tree methods are
available online, at https://gitlab.com/ingowald/rtgem-minmax.

 COMPUTING MINIMA AND MAxIMA OF SUBARRAyS

https://gitlab.com/ingowald/rtgem-minmax

70

REFERENCES

 [1] Bentley, J. L., and Friedman, J. H. A Survey of Algorithms and Data Structures for Range
Searching. http://www.slac.stanford.edu/cgi-wrap/getdoc/slac- pub- 2189.pdf,
1978.

 [2] Bentley, J. L., and Friedman, J. H. Algorithms and Data Structures for Range Searching. ACM
Computing Surveys 11, 4 (1979), 397–409.

 [3] Crow, F. Summed-Area Tables for Texture Mapping. Computer Graphics (SIGGRAPH) 18, 3 (1984),
207—212.

 [4] GeeksForGeeks. Min-Max Range Queries in Array. https://www.geeksforgeeks.org/
min-max-range-queries-array/. Last accessed December 7, 2018.

 [5] GeeksForGeeks. Segment Tree: Set 2 (Range Minimum Query). https://www.
geeksforgeeks.org/segment-tree-set-1-range-minimum-query/. Last accessed
December 7, 2018.

 [6] GeeksForGeeks. Sparse Table. https://www.geeksforgeeks.org/sparse-table/. Last
accessed December 7, 2018.

 [7] Wald, I., Johnson, G. P., Amstutz, J., Brownlee, C., Knoll, A., Jeffers, J. L., Guenther, J.,
and Navratil, P. OSPRay—A CPU Ray Tracing Framework for Scientific Visualization. IEEE
Transactions on Visualization 23, 1 (2017), 931–940.

 [8] Wikipedia. Range Tree. https://en.wikipedia.org/wiki/Range_tree. Last accessed
December 7, 2018.

 [9] Wikipedia. Summed-Area Table. https://en.wikipedia.org/wiki/Summed- area_table.
Last accessed December 7, 2018.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/
licenses/by-nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and

reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if you modified the licensed material. you do
not have permission under this license to share adapted material derived from this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter's Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you
will need to obtain permission directly from the copyright holder.

RAY TRACING GEMS

http://www.slac.stanford.edu/cgi-wrap/getdoc/slac-pub-2189.pdf
https://www.geeksforgeeks.org/min-max-range-queries-array/
https://www.geeksforgeeks.org/min-max-range-queries-array/
https://www.geeksforgeeks.org/segment-tree-set-1-range-minimum-query/
https://www.geeksforgeeks.org/segment-tree-set-1-range-minimum-query/
https://www.geeksforgeeks.org/sparse-table/
https://en.wikipedia.org/wiki/Range_tree
https://en.wikipedia.org/wiki/Summed-area_table
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Chapter 5: Computing Minima and Maxima of Subarrays
	5.1	 Motivation
	5.2	 Naive Full Table Lookup
	5.3	 The Sparse Table Method
	5.4	 The (Recursive) Range Tree Method
	5.5	 Iterative Range Tree Queries
	5.6	 Results
	5.7	 Summary

