libIS: A Lightweight Library for Flexible In Transit Visualization

Will Usher*!2, Silvio Rizzi®, Ingo Wald®*, Jefferson Amstutz?, Joseph Insley>, Venkatram
Vishwanath?, Nicola Ferrier®, Michael E. Papka®, and Valerio Pascucci’
1SCI Institute, University of Utah, ’Intel Corporation

3 Argonne National Laboratory, *Now with Nvidia
*will@sci.utah.edu

ABSTRACT

As simulations grow in scale, the need for in situ analysis methods
to handle the large data produced grows correspondingly. One de-
sirable approach to in situ visualization is in transit visualization.
By decoupling the simulation and visualization code, in transit ap-
proaches alleviate common difficulties with regard to the scalability
of the analysis, ease of integration, usability, and impact on the
simulation. We present libIS, a lightweight, flexible library which
lowers the bar for using in transit visualization. Our library works
on the concept of abstract regions of space containing data, which
are transferred from the simulation to the visualization clients upon
request, using a client-server model. We also provide a SENSEI anal-
ysis adaptor, which allows for transparent deployment of in transit
visualization. We demonstrate the flexibility of our approach on
batch analysis and interactive visualization use cases on different
HPC resources.

CCS CONCEPTS

« Computing methodologies — Massively parallel and
high-performance simulations; Scientific visualization; Ray
tracing;

KEYWORDS
In Transit Visualization, Scientific Visualization, SENSEI

ACM Reference Format:

Will Usher, Silvio Rizzi, Ingo Wald, Jefferson Amstutz, Joseph Insley, Venka-
tram Vishwanath, Nicola Ferrier, Michael E. Papka, and Valerio Pascucci.
2018. libIS: A Lightweight Library for Flexible In Transit Visualization. In
ISAV: In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visual-
ization (ISAV ’18), November 12, 2018, Dallas, TX, USA. ACM, New York, NY,
USA, 6 pages. https://doi.org/10.1145/3281464.3281466

1 INTRODUCTION

The increasing gap between FLOPs and I/O has motivated the de-
velopment of in situ visualization [3], which has been identified
as a key technology to enable science at exascale [1]. A range of
in situ visualization and analysis approaches have been proposed,
from simulation-tailored methods [5, 12, 17, 19, 23-26], to general
purpose frameworks, such as ParaView Catalyst [4, 11], VisIt Lib-
Sim [8, 22], ADIOS [16], and GLEAN [20]. The SENSEI [2] project
addresses the portability and reusability challenges introduced by

ISAV ’18, November 12, 2018, Dallas, TX, USA

© 2018 Association for Computing Machinery.

This is the author’s version of the work. It is posted here for your personal use.
Not for redistribution. The definitive Version of Record was published in ISAV: In
Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization (ISAV ’18),
November 12, 2018, Dallas, TX, USA, https://doi.org/10.1145/3281464.3281466.

this growth in frameworks, by enabling simulations to implement
a single in situ integration which can then work with different
visualization backends.

Two key axes by which an in situ integration can be classified
are its proximity and access [7]. Proximity describes how close the
simulation and visualization are run, e.g., in the same process or
a separate one, potentially on another node. Access refers to how
the visualization gains access to the simulation data, e.g., directly
via sharing pointers, or indirectly through a copy of the data. In
situ methods can be roughly categorized as either “tightly-coupled”
(same process, direct access), or “loosely-coupled” (separate process,
indirect access). Loosely-coupled approaches are also frequently
referred to as in transit, which is the terminology we adopt in this
paper.

While a tightly-coupled approach brings clear benefits by elimi-
nating data copies and not requiring coordination between separate
processes, in transit approaches can offer specific desirable advan-
tages at scale [13]. By decoupling the simulation and visualization,
in transit methods allow for greater flexibility in when, where, and
at what scale, the visualization code is run (e.g., Bennett et al. [5]),
ease integration effort and usability, and reduce the impact of the
visualization on the simulation. Furthermore, with in transit vi-
sualization it is possible to run the visualization sporadically as
a separate process or job, reducing resource requirements. These
features are especially desirable for exascale simulations, as any
scalability limitations of the visualization code will not impact the
simulation, nor will faults in the visualization crash the simulation.

However, a set of algorithmic and practical challenges remain
to deploying in transit visualization in practice. The bulk of work
on general in situ infrastructures has targeted tightly-coupled in
situ [11, 22], or has implemented in transit by re-purposing I/O
APIs [16, 20] and performing data aggregation with a general data
communication and query system (e.g., DataSpaces [10]). While
the latter approach is desirable if the simulation is already using
the I/O API being repurposed, doing so for a new integration with
the express goal of in transit visualization may not be, requiring
additional implementation effort and complexity.

The contribution of this paper is libIS, a flexible, lightweight
library for in transit visualization. Our library alleviates common
challenges with in transit visualization by managing data aggrega-
tion and coordination with the simulation. To enable low overhead
data aggregation from M simulation ranks to N visualization ranks,
we introduce a generic representation of the distributed simulation
domains. Visualization code run with libIS can be run on either
the same nodes as the simulation, or a distinct set of nodes, or
even within the same MPI communicator, when using MPI MPMD.
Moreover, the visualization can be run sporadically, connecting and
disconnecting seamlessly from the simulation as desired to provide

ISAV 18, November 12, 2018, Dallas, TX, USA

MPI_COMM_WORLD

socket

Usher et al.

socket handshake — _____________________

SN

Client

7
P

il B
Client

Simulation

(a) MPI-multilaunch mode.

1
1
1
1
1
I
I
I
I
I
I
I
I
I
I
I
)

\
] - S~ 1 MPI Intercommunicator 1
: ~ : L I

X, 1
] 2 v]]
4 \ ! 1
| \ ' 1
1 | il
1 | il
1 ! \
1 ! i
1 ! I
1 ! I
1 ! T '
1 ! '

1

i ' 1
) Simulation Client I Simulation Client

(b) Shared node socket-handshake mode.

(c) Separate node socket-handshake mode.

Figure 1: LibIS supports a variety of runtime configurations, making it applicable to a wide range of in situ use cases. The
socket-handshake modes (b, c) can disconnect and reconnect as desired, allowing for sporadic execution of the visualization

code.

on-demand, flexible visualization. To ease the integration of libIS
into existing code, we provide a SENSEI data adaptor. Our adaptor
transfers data to a set of visualization clients, which can then run
any Catalyst, LibSim, etc., pipelines which would have previously
been run tightly-coupled with SENSEL

2 RELATED WORK

There has been a substantial amount of work in the last decade
focusing on in situ analysis and visualization, covering a wide range
of approaches for integrating these tasks into simulations. For a
detailed discussion of the current space of in situ visualization we
refer to the comprehensive surveys by Bauer et al. [3] and Childs
et al. [7], and summarize the work most related to our own below.

From the simulation’s perspective, I/O and data transfer for in
transit visualization share many similarities. As such, one approach
to easily integrate in transit visualization is to integrate it within the
/0O library used by the simulation, e.g., ADIOS [16] or GLEAN [20].
These approaches often introduce a distributed data transfer and
restructuring technique into the I/O library, e.g., PreDatA [27],
DataSpaces [10], FlexIO [28] or FlexPath [9]. By leveraging the
metadata provided to the I/O library, these methods can aggregate
and restructure the data to match the parallelism of the visualization
process.

Although these approaches provide a large amount of flexibil-
ity in how and where the visualization routines can be run, this
comes at the cost of increased library complexity. Furthermore, the
restructuring of the data incurs additional runtime cost [19], and
may require additional effort to support new mesh types. Moreover,
if the simulation is not already using the I/O library that the in
transit system is integrated into, migrating the simulation to use
a different I/O library can be a significant effort. As a result, new
integrations of in transit visualization for prototyping or evaluation
can require unnecessary additional effort. Recent work by Larsen
et al. [14, 15] has investigated the development of lightweight in
situ infrastructures, providing easy to use, low overhead, tightly-
coupled in situ. With libIS we provide a similar simplification for in
transit visualization.

3 THE LIB-IS LIBRARY

LibIS is specifically designed for asynchronous, in transit visualiza-
tion, where the simulation and visualization run decoupled from
each other, and communicate over MPI. The library provides a
lightweight method to communicate data between a distributed

simulation, acting as a server, and a distributed visualization client.
The simulation and visualization can be run on the same nodes,
separate nodes, or within the same MPI launch command (Figure 1).

LibIS is split into a simulation-side and client-side library. The
simulation-side library, coupled to the simulation either through
our SENSEI interface or directly, exposes the simulation as a data-
server, while the client-side library queries this server for new
timesteps.

3.1 Connecting the Simulation and Client

LibIS provides two methods for connecting the simulation and
client, either over an existing MPI communicator or via a socket-
handshake. The first method allows users to specify a previously
created communicator to be used for communication. For exam-
ple, MPI_COMM_WORLD can be used when launching multiple pro-
grams simultaneously with MPI (Figure 1a). When using the socket-
handshake method, the simulation always listens on a background
thread for a new client, which opens an MPI port and sends this
information to the simulation over a TCP socket. The simulation
and client then set up an MPI intercommunicator using this MPI
port (Figures 1b and 1c).

3.2 Querying Data

After the communicator between the simulation and client has
been setup, rank 0 of the simulation posts a MPI_Irecv to receive
the next command the client wants to execute, either query data
or disconnect. The state of this receive is checked each time the
simulation calls 1ibISProcess (each timestep). When a new com-
mand is received, it is broadcast to the other simulation ranks and
processed collectively.

Given a run with M simulation ranks and N client ranks, where
M > N, each client will receive data from % simulation ranks,
with any remainder ranks assigned evenly among the clients. Each
simulation rank sends its data independently to its client using MPI
point-to-point communication, allowing for better communication
locality. In contrast to more complex approaches which restructure
the data to match the parallelism of the clients (e.g., ADIOS, FlexIO),
libIS keeps the original simulation data distribution, returning to
each client a list of % regions. By avoiding more expensive data re-
distribution, 1ibIS incurs little additional transfer cost, and requires
minimal information about the data being transferred. Although
libIS requires M > N, this is typically the case in practice.

liblS: A Lightweight Library for Flexible In Transit Visualization

3.3 Simulation Library

The simulation-side library exposes a C API, allowing it to be easily
integrated into simulations written in a broad range of languages.
The API is used to pass libIS information about the simulation state,
including the world, local and ghost bounds (if applicable), along
with the rank’s field and particle data. This is done by creating
and filling out a 1ibISSimState using the following API calls.
The configured simulation state consists of a list of pointers to
the simulation data, and some metadata describing it, providing a
zero-copy interface.

void 1libISSetLocalBounds(libISSimState *state,
const 1ibISBox3f box); // World/Ghost identical

void 1ibISSetField(1libISSimState *state,
const char *name, const uint64_t dims[3],
const 1ibISDType type, const void *data);

void libISSetParticles(libISSimState *state,
const uint64_t nlLocal, const uint64_t nGhost,
const uint64_t stride, const void *data);

void 1libISProcess(const 1ibISSimState *state);

The current API only supports regular 3D grid fields and array-of-
structures particle layouts; however, the mapping from simulation
ranks to client ranks requires no spatial information or data re-
distribution, making it straightforward to add support for additional
mesh types and particle layouts.

The final call, 1ibISProcess, is called each timestep, and passes
the filled out simulation state to libIS to send to any clients which
have requested data. If the simulation has clients requesting data,
it is sent directly from the passed pointers, otherwise control is
returned back to the simulation.

3.4 Client Library

The client-side library provides a C++ API to query data from the
simulation. In contrast to the simulation-side, where 1ibISProcess
is non-blocking, the client’s query method will block until it re-
ceives data for the new timestep. Having a blocking query simplifies
the client implementation in most cases, where there is nothing to
do besides wait until the data has arrived. Interactive applications
can call query on a background thread to prevent blocking the
application (e.g., Section 4.2).

After the query has completed, the client will receive the simu-
lation data and metadata from each of its assigned % simulation
ranks. This is returned as a vector of SimState structures.

struct SimState {
1ibISBox3f world, local, ghost;
int simRank;
std: :unordered_map<std: :string, Field> fields;
Particles particles;
1

std: :vector<SimState> query();

The fields member is the list of field data sent by the simulation,
indexed by the field name. The particles member contains the array-
of-structures layout particle data, if any.

ISAV ’18, November 12, 2018, Dallas, TX, USA

. Analysis .
Bridge Execution 7
L5 g by /\ Application
=8 SR . .
~§ S O < 5 libIS-sim| |libIS-client User Analysis
< V A%
=8 = Adaptor

"

Figure 2: The architecture of our in transit visualization ex-
ecution system for SENSEIL

3.5 SENSEI Analysis Adaptor

To ease integration effort for simulations or visualization code al-
ready using SENSEI [2], we also provide a SENSEI analysis adaptor
and in transit analysis execution application. A SENSEI in situ sys-
tem consists of a bridge, data adaptor and analysis adaptor. The first
two are tailored to the simulation, and responsible for converting its
data representation to the VTK representation used by SENSEIL The
VTK representation is then passed to an analysis adaptor, which
runs the desired in situ visualization. To transparently provide in
transit visualization to SENSEI users, we provide a libIS analysis
adaptor and an in transit analysis execution application which runs
the user’s analysis adaptors (Figure 2).

Our libIS analysis adaptor takes the VTK data from SENSEI, con-
structs the equivalent 1ibISSimState, and calls 1ibISProcess
to send the data to our in transit analysis application. The in transit
analysis application uses libIS to query data from the simulation,
constructs the equivalent VTK representation, and passes it on
to the user’s analysis adaptors. The conversion back to the VTK
representation from libIS’s uses VTK’s zero-copy arrays, avoiding
additional data copies.

While running the SENSEI analysis in transit with libIS in a
1 : 1 configuration is straightforward, doing so for an M > N
configuration is less so. SENSEI’s existing data model expects one
region per-process, i.e., a tightly-coupled in situ use case, or a data
restructured in transit use case, requiring some special treatment
for M > N configurations. For example, an analysis adaptor which
computes a global reduction over the data, such as the min or max,
or a histogram, may not produce the correct result if each analysis
rank ran a for loop over its assigned regions. To avoid requiring
users to modify their analysis code, we pass the data to the user’s
SENSEI analysis code as a vtkMultiBlockDataset, giving the
appearance of a single simulation rank with % blocks of data.

4 RESULTS

We evaluate the performance and scalability of libIS using LAMMPS
as our simulation code. We demonstrate our SENSEI analysis adap-
tor on the analysis algorithms and infrastructures provided by the
SENSEI configurable analysis adaptor (Section 4.1). To compare the
different configurations libIS supports, we implement an interactive
in transit viewer (Section 4.2), and examine the simulation and visu-
alization performance, and data transfer bandwidth in each config-
uration (Section 4.3). We run our benchmarks on Theta at Argonne
National Laboratory, and Stampede2 at the Texas Advanced Comput-
ing Center. Theta and Stampede2 use the Intel® Xeon Phi™ Knight’s
Landing (KNL) processors. Stampede2 has an additional partition
with Intel® Xeon® Skylake (SKX) processors; however, our evalua-
tions were done only on the KNLs.

ISAV 18, November 12, 2018, Dallas, TX, USA

type

— 20
l 1.0e+00

Figure 3: Interactive visualization of a LAMMPS simulation
with two ranks in ParaView. The data is passed in transit
through 1ibIS and our SENSEI interface, saved to disk using
the VIK I/O backend in SENSEI, and visualized in a post-
process with ParaView.

4.1 SENSEI Integration

We integrate our SENSEI interface into LAMMPS by taking advan-
tage of existing mechanisms in LAMMPS for coupling it with other
simulation codes [18]. We provide a driver application which acts as
a thin wrapper over LAMMPS, along with a bridge and data adaptor
for SENSEI The driver takes the user’s input file and LAMMPS
commands as before, and inserts an additional callback to be run by
LAMMPS each timestep. This callback passes the data to our SEN-
SEI data adaptor, which converts the particles to a vtkPolyData,
with additional attributes (e.g., atom type and id) treated as 1D
fields.

The VTK data is then passed to our libIS analysis adaptor, which
sends the data to our analysis execution application. Our analysis
application runs SENSEI’s configurable analysis, which can connect
to in situ algorithms in SENSEI, and multiple in situ infrastructures,
including Catalyst, LibSim, and ADIOS. We validate our implemen-
tation with the SENSEI histogram algorithm, and verify that the
results are correct for multiple MPI ranks. We also demonstrate the
VTK I/O capabilities of SENSEIL and write out the simulation data,
which we visualize in ParaView (Figure 3).

4.2 Interactive Visualization

An advantage of in transit visualization is that the visualization and
simulation can execute in parallel, allowing for interactive in situ
visualization, without blocking the simulation. This is in contrast
to tightly-coupled interactive visualization approaches, which must
pause the simulation. Furthermore, by using 1ibIS’s connect and dis-
connect support, such interactive viewers can be used sporadically,
e.g., to check in on a long running simulation, or begin monitor-
ing after some event, without requiring additional nodes be set
aside for the entire run. To evaluate interactive visualization with
libIS we implemented a client-server based renderer for LAMMPS
simulations using OSPRay [21] for rendering.

Usher et al.

Figure 4: Interactive in situ visualization of a 172k atom sim-
ulation of silicene formation [6] with 128 LAMMPS ranks
sending to 16 OSPRay renderer ranks, all executed on Theta
in the mpi-multi configuration. When taking four ambient
occlusion samples per-pixel, our viewer averages 7FPS at
1024x1024.

The render server runs on the HPC resource, and uses libIS to
query data, and OSPRay’s data-distributed API to render it. The ren-
der server continues querying data as the simulation runs, enabling
the user to watch the simulation state evolve over time. Along with
rendering the data, the server also supports running some local
VTK pipelines to process the data, e.g., to compute bonds between
atoms. The client is run on the user’s desktop, and connects to the
render server over a socket. The client sends the user’s camera
position, and receives back rendered images as JPGs. An example
image from the renderer is shown in Figure 4.

4.3 Performance of Different Configurations

We evaluate the weak scaling of libIS and our interactive viewer
by replicating the LAMMPS Lennard-Jones benchmark problem to
keep a constant 2 million atoms per-node, with each renderer rank
receiving from 16 simulation ranks. The benchmarks are rendered
at a 1024 X 1024 resolution as the camera is rotated around the data
set. We find that 1ibIS and the OSPRay rendering client provide
good weak scaling for both data-transfer bandwidth (Figure 5), and
rendering performance (Figure 6). It is worth noting that the shared
and separate node configurations do not have much effect on either
the bandwidth or render time; however, the MPI multilaunch mode
on Theta yields better performance at some node counts. While we
would expect the MPI MPMD (mpi-multi) to perform similar to the
separate node case, we could not run this configuration on Theta
to compare, due to the machine not supporting the necessary MPI
APIs.

We find that 1ibIS has little impact on the simulation. In the
separate node and mpi-multi configurations (which use a sepa-
rate set of nodes for rendering) we find that LAMMPS takes an
average of 6.6% longer to compute each timestep. When rendering
on the same nodes as the simulation we find a larger impact due
to oversubscribing the nodes, with LAMMPS taking 16.1% longer
per-timestep.

5 CONCLUSION

We have presented libIS, a lightweight, flexible library which lowers
the barrier to in transit visualization. By combining our library and
our provided SENSEI analysis adaptor and execution application,

liblS: A Lightweight Library for Flexible In Transit Visualization

90 -
» ;/_—\/\/
70F a
> 192 a
] — °
2 /
z 50 a
T 4ol
z 40
] 30 . .
E e—e mpi-multi-theta
20f oo separate-stampede2
10| e shared-stampede2
0 : r ; '
s m 8 16 32 64 128
Nodes

Figure 5: Peak bandwidth per-client weak scaling of dif-
ferent configurations. Clients communicate independently
with their simulation ranks, allowing for good weak scaling,.

60

o
S

'S
S

N
S

e—e mpi-multi-theta

Frames per Second (FPS)
W
(=]

|| ©© separate-stampede2

—_
o

@—@ shared-stampede2

% 1 5 16 32 64 128
Nodes

Figure 6: Rendering performance weak scaling of differ-

ent configurations, without ambient occlusion. Our OSPRay-

based renderer provides good weak scaling, and high frame

rates.

existing tightly-coupled in situ workflows can be transparently
converted to run in transit. Running the analysis in transit incurs
little impact on the simulation, and offers greater flexibility in how
the visualization can be run. In addition to batch analysis, we also
demonstrated libIS’s applicability to interactive visualization as the
simulation evolves, which, due to the decoupled execution, can be
done without blocking the simulation. We release both 1ibIS and our
SENSEI adaptor and application open source to allow developers
to easily integrate them into their simulations (Appendix A).

In future work, it would be interesting to investigate restruc-
turing the data to match the visualization process’s parallelism.
Although this comes at a runtime cost, restructuring has the poten-
tial to reduce bandwidth and memory use by removing duplicated
ghost regions, and simplify the implementation of some analysis
tasks. To provide better support for simulations with a long timestep
it is also interesting to consider buffering the previous timestep in
memory, or on a burst buffer, to make data immediately available
to clients when they connect.

ACKNOWLEDGMENTS

We would like to thank Mathew Cherukara, Badri Narayanan,
Henry Chanc and Subramanian Sankaranarayanan at Argonne Na-
tional Laboratory for sharing their simulation data and providing
insightful discussion.

This work is supported in part by the Intel Parallel Comput-
ing Centers Program, NSF: CGV Award: 1314896, NSF:IIP Award:
1602127, NSF:ACI Award: 1649923, DOE/SciDAC DESC0007446,
CCMSC DE-NA0002375 and NSF:OAC Award: 1842042. This work

ISAV ’18, November 12, 2018, Dallas, TX, USA

was supported by and used resources of the Argonne Leadership
Computing Facility, which is a U.S. Department of Energy Of-
fice of Science User Facility supported under Contract DE-AC02-
06CH11357. This work was supported in part by the U.S. Depart-
ment of Energy, Office of Science, Advanced Scientific Computing
Research, under Contract DE-AC02-06CH11357, through the project
“Scalable Analysis Methods and In Situ Infrastructure for Extreme
Scale Knowledge Discovery.” The authors acknowledge the Texas
Advanced Computing Center (TACC) at The University of Texas at
Austin for providing HPC resources that have contributed to the
research results reported in this paper.

REFERENCES

[1] Sean Ahern, Arie Shoshani, Kwan-Liu Ma, Alok Choudhary, Terence Critchlow,
Scott Klasky, Valerio Pascucci, Jim Ahrens, E. Wes Bethel, Hank Childs, Jian
Huang, Ken Joy, Quincey Koziol, Gerald Lofstead, Jeremy S. Meredith, Kenneth
Moreland, George Ostrouchov, Michael Papka, Venkatram Vishwanath, Matthew

Wolf, Nicholas Wright, and Kensheng Wu. 2011. Scientific Discovery at the Exas-

cale, a Report from the DOE ASCR 2011 Workshop on Exascale Data Management,

Analysis, and Visualization.

Utkarsh Ayachit, Brad Whitlock, Matthew Wolf, Burlen Loring, Berk Geveci,

David Lonie, and E. Wes Bethel. 2016. The SENSEI Generic In Situ Interface. In

Proceedings of the 2nd Workshop on In Situ Infrastructures for Enabling Extreme-

scale Analysis and Visualization (ISAV ’16).

[3] A.C.Bauer, H. Abbasi, J. Ahrens, H. Childs, B. Geveci, S. Klasky, K. Moreland, P.
O’Leary, V. Vishwanath, B. Whitlock, and E. W. Bethel. 2016. In Situ Methods,
Infrastructures, and Applications on High Performance Computing Platforms.
Computer Graphics Forum (2016).

[4] Andrew C. Bauer, Berk Geveci, and Will Schroeder. 2015. The Catalyst User’s
Guide v2.0. Kitware Inc.

[5] Janine C. Bennett, Hasan Abbasi, Peer-Timo Bremer, Ray Grout, Attila Gyulassy,
Tong Jin, Scott Klasky, Hemanth Kolla, Manish Parashar, and Valerio Pascucci.
2012. Combining In-Situ and In-Transit Processing to Enable Extreme-Scale Scien-
tific Analysis. In Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis.

[6] Mathew J. Cherukara, Badri Narayanan, Henry Chan, and Subramanian K. R. S.
Sankaranarayanan. 2017. Silicene Growth Through Island Migration and Coales-
cence. Nanoscale (2017).

[7] H.Childs, S.D. Ahern, J. Ahrens, A. C. Bauer,]. Bennett, E. W. Bethel, P.-T. Bremer,
E. Brugger, J. Cottam, M. Dorier, S. Dutta, J. Favre, T. Fogal, S. Frey, C. Garth,
B. Geveci, W. F. Godoy, C. D. Hansen, C. Harrison, B. Hentschel, J. Insley, C. R.
Johnson, S. Klasky, A. Knoll, J. Kress, M. Larsen, J. Lofstead, K.-L. Ma, P. Malakar,
J. Meredith, K. Moreland, P. Navratil, P. O’Leary, M. Parashar, V. Pascucci, J.
Patchett, T. Peterka, S. Petruzza, N. Podhorszki, D. Pugmire, M. Rasquin, S. Rizzi,
D. H. Rogers, S. Sane, F. Sauer, R. Sisneros, H.-W. Shen, W. Usher, R. Vickery, V.
Vishwanath, I. Wald, R. Wang, G. H. Weber, B. Whitlock, M. Wolf, H. Yu, and
S. B. Ziegeler. 2018. The In Situ Terminology Project. (Under Submission) (2018).

[8] H. Childs, K.-L. Ma, H. Yu, B. Whitlock, J. Meredith, J. Favre, S. Klasky, N. Pod-
horszki, K. Schwan, M. Wolf, M. Parashar, and F. Zhang. 2012. In Situ Processing.
In High Performance Visualization: Enabling Extreme-Scale Scientific Insight.

[9] Jai Dayal, Drew Bratcher, Greg Eisenhauer, Karsten Schwan, Matthew Wolf,
Xuechen Zhang, Hasan Abbasi, Scott Klasky, and Norbert Podhorszki. 2014-
05. Flexpath: Type-Based Publish/Subscribe System for Large-Scale Science
Analytics.

[10] Ciprian Docan, Manish Parashar, and Scott Klasky. 2012. DataSpaces: An Inter-
action and Coordination Framework for Coupled Simulation Workflows. Cluster
Computing (2012).

[11] N. Fabian, K. Moreland, D. Thompson, A.C. Bauer, P. Marion, B. Geveci, M.
Rasquin, and K.E. Jansen. 2011. The ParaView Coprocessing Library: A Scalable,
General Purpose In Situ Visualization Library. In Symposium on Large Data
Analysis and Visualization (LDAV).

[12] Hangi Guo, Tom Peterka, and Andreas Glatz. 2017. In situ magnetic flux vortex
visualization in time-dependent Ginzburg-Landau superconductor simulations.
In Pacific Visualization Symposium (PacificVis).

[13] James Kress, Scott Klasky, Norbert Podhorszki, Jong Choi, Hank Childs, and

David Pugmire. 2015. Loosely Coupled In Situ Visualization: A Perspective on

Why It’s Here to Stay. In Proceedings of the First Workshop on In Situ Infrastructures

for Enabling Extreme-Scale Analysis and Visualization (ISAV 2015).

Matthew Larsen, James Ahrens, Utkarsh Ayachit, Eric Brugger, Hank Childs, Berk

Geveci, and Cyrus Harrison. 2017. The ALPINE In Situ Infrastructure: Ascending

from the Ashes of Strawman. In Proceedings of In Situ Infrastructures on Enabling

Extreme-Scale Analysis and Visualization (ISAV’17).

—_
S

[14

ISAV 18, November 12, 2018, Dallas, TX, USA

[15] Matthew Larsen, Eric Brugger, Hank Childs, Jim Eliot, Kevin Griffin, and Cyrus
Harrison. 2015. Strawman: A Batch In Situ Visualization and Analysis Infras-
tructure for Multi-Physics Simulation Codes. In Proceedings of the First Workshop
on In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization
(ISAV2015).

Jay Lofstead, Fang Zheng, Scott Klasky, and Karsten Schwan. 2009. Adaptable,

Metadata Rich IO Methods for Portable High Performance IO. In Parallel &

Distributed Processing, 2009. IPDPS 2009. IEEE International Symposium On.

Silvio Rizzi, Mark Hereld, Joseph Insley, Michael E. Papka, Thomas Uram, and

Venkatram Vishwanath. 2015. Large-Scale Co-Visualization for LAMMPS Using

V13.In 2015 IEEE 5th Symposium on Large Data Analysis and Visualization (LDAV).

[18] Sandia National Laboratories. Accessed 2018. Coupling LAMMPS to other codes.

[19] Will Usher, Ingo Wald, Aaron Knoll, Michael Papka, and Valerio Pascucci. 2016. In

Situ Exploration of Particle Simulations with CPU Ray Tracing. Supercomputing

Frontiers and Innovations (2016).

Venkatram Vishwanath, Mark Hereld, Vitali Morozov, and Michael E. Papka.

2011. Topology-aware Data Movement and Staging for I/O Acceleration on Blue

Gene/P Supercomputing Systems. In Proceedings of the International Conference

for High Performance Computing, Networking, Storage and Analysis.

Ingo Wald, Greg P. Johnson, Jefferson Amstutz, Carson Brownlee, Aaron Knoll,

Jim Jeffers, Johannes Giinther, and Paul Navratil. 2017. OSPRay - A CPU Ray

Tracing Framework for Scientific Visualization. IEEE Transactions on Visualization

and Computer Graphics (2017).

Brad Whitlock, Jean M. Favre, and Jeremy S. Meredith. 2011. Parallel In Situ

Coupling of Simulation with a Fully Featured Visualization System. In Proceedings

of the 11th Eurographics Conference on Parallel Graphics and Visualization (EGPGV

11).

Wathsala Widanagamaachchi, Karl Hammond, Li-Ta Lo, Brian Wirth, Francesca

Samsel, Christopher Sewell, James Ahrens, and Valerio Pascucci. 2015. Visual-

ization and Analysis of Large-Scale Atomistic Simulations of Plasma-Surface

Interactions. In Eurographics Conference on Visualization (EuroVis) - Short Papers.

J. Woodring, J. Ahrens, J. Figg, J. Wendelberger, S. Habib, and K. Heitmann. 2011.

In-situ Sampling of a Large-Scale Particle Simulation for Interactive Visualization

and Analysis. Computer Graphics Forum (2011).

[25] Jonathan Woodring, Mark Petersen, Andre Schmeiber, John Patchett, James

Ahrens, and Hans Hagen. 2016. In Situ Eddy Analysis in a High-Resolution

Ocean Climate Model. IEEE Transactions on Visualization and Computer Graphics

(2016).

Hongfeng Yu, Chaoli Wang, Ray W. Grout, Jacqueline H. Chen, and Kwan-Liu

Ma. 2010. In Situ Visualization for Large-scale Combustion Simulations. IEEE

Computer Graphics and Applications (2010).

Fang Zheng, Hasan Abbasi, Ciprian Docan, Jay Lofstead, Qing Liu, Scott Klasky,

Manish Parashar, Norbert Podhorszki, Karsten Schwan, and Matthew Wolf. 2010.

PreDatA-Preparatory Data Analytics on Peta-Scale Machines. In IEEE Interna-

tional Symposium on Parallel & Distributed Processing (IPDPS).

[28] Fang Zheng, Hongbo Zou, Greg Eisenhauer, Karsten Schwan, Matthew Wolf, Jai
Dayal, Tuan-Anh Nguyen, Jianting Cao, Hasan Abbasi, Scott Klasky, Norbert
Podhorszki, and Hongfeng Yu. 2013. FlexIO: I/O Middleware for Location-Flexible
Scientific Data Analytics.

[16

[17

[20

[21

[22

[23

[24

[26

[
)

A ARTIFACT DESCRIPTION APPENDIX

To allow for reproducing our results, and make libIS easily available
to users, we released both libIS and our various test applications and
benchmarks open-source on GitHub. The libIS library is available
on at https://github.com/ospray/libIS and our interactive viewer ap-
plication can be found at https://github.com/ospray/ospray_senpai.
The SENSEI adaptor used in the experiments is being merged into
the main SENSEI repo, the development branch can be found at
https://gitlab.kitware.com/sensei/sensei/tree/lammps.

In our evaluation we encountered additional difficulty on Theta,
when trying to connect our viewer client to the render server on
the compute nodes. Due to the system’s network configuration, it
is not possible to SSH tunnel to or from the compute nodes directly,
requiring instead to first tunnel to the login node, then the MOM
node (which runs the job scripts). From the MOM node we then
run socat to bridge the SSH tunnel to a TCP connection on the
compute node. We have encapsulated this process in a bash script,
which we make available on GitHub to aid our fellow researchers:
https://github.com/Twinklebear/theta-tunnel.

Usher et al.

At the time of submission our viewer used an internal branch
of OSPRay with improvements to the distributed renderer, which
added support for local ambient occlusion with ghost zones, and
significantly improved performance. This branch has now been
merged into OSPRay and is available on the public development
branch on GitHub: https://github.com/ospray/ospray/tree/devel.

	Abstract
	1 Introduction
	2 Related Work
	3 The lib-IS Library
	3.1 Connecting the Simulation and Client
	3.2 Querying Data
	3.3 Simulation Library
	3.4 Client Library
	3.5 SENSEI Analysis Adaptor

	4 Results
	4.1 SENSEI Integration
	4.2 Interactive Visualization
	4.3 Performance of Different Configurations

	5 Conclusion
	Acknowledgments
	References
	A Artifact Description Appendix

