
libIS: A Lightweight Library for Flexible In Transit Visualization

Will Usher∗1,2, Silvio Rizzi3, Ingo Wald2,4, Jefferson Amstutz2, Joseph Insley3, Venkatram
Vishwanath3, Nicola Ferrier3, Michael E. Papka3, and Valerio Pascucci1

1SCI Institute, University of Utah, 2Intel Corporation
3Argonne National Laboratory, 4Now with Nvidia

∗will@sci.utah.edu

ABSTRACT

As simulations grow in scale, the need for in situ analysis methods

to handle the large data produced grows correspondingly. One de-

sirable approach to in situ visualization is in transit visualization.

By decoupling the simulation and visualization code, in transit ap-

proaches alleviate common difficulties with regard to the scalability

of the analysis, ease of integration, usability, and impact on the

simulation. We present libIS, a lightweight, flexible library which

lowers the bar for using in transit visualization. Our library works

on the concept of abstract regions of space containing data, which

are transferred from the simulation to the visualization clients upon

request, using a client-server model. We also provide a SENSEI anal-

ysis adaptor, which allows for transparent deployment of in transit

visualization. We demonstrate the flexibility of our approach on

batch analysis and interactive visualization use cases on different

HPC resources.
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1 INTRODUCTION

The increasing gap between FLOPs and I/O has motivated the de-

velopment of in situ visualization [3], which has been identified

as a key technology to enable science at exascale [1]. A range of

in situ visualization and analysis approaches have been proposed,

from simulation-tailored methods [5, 12, 17, 19, 23ś26], to general

purpose frameworks, such as ParaView Catalyst [4, 11], VisIt Lib-

Sim [8, 22], ADIOS [16], and GLEAN [20]. The SENSEI [2] project

addresses the portability and reusability challenges introduced by
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this growth in frameworks, by enabling simulations to implement

a single in situ integration which can then work with different

visualization backends.

Two key axes by which an in situ integration can be classified

are its proximity and access [7]. Proximity describes how close the

simulation and visualization are run, e.g., in the same process or

a separate one, potentially on another node. Access refers to how

the visualization gains access to the simulation data, e.g., directly

via sharing pointers, or indirectly through a copy of the data. In

situ methods can be roughly categorized as either łtightly-coupledž

(same process, direct access), or łloosely-coupledž (separate process,

indirect access). Loosely-coupled approaches are also frequently

referred to as in transit, which is the terminology we adopt in this

paper.

While a tightly-coupled approach brings clear benefits by elimi-

nating data copies and not requiring coordination between separate

processes, in transit approaches can offer specific desirable advan-

tages at scale [13]. By decoupling the simulation and visualization,

in transit methods allow for greater flexibility in when, where, and

at what scale, the visualization code is run (e.g., Bennett et al. [5]),

ease integration effort and usability, and reduce the impact of the

visualization on the simulation. Furthermore, with in transit vi-

sualization it is possible to run the visualization sporadically as

a separate process or job, reducing resource requirements. These

features are especially desirable for exascale simulations, as any

scalability limitations of the visualization code will not impact the

simulation, nor will faults in the visualization crash the simulation.

However, a set of algorithmic and practical challenges remain

to deploying in transit visualization in practice. The bulk of work

on general in situ infrastructures has targeted tightly-coupled in

situ [11, 22], or has implemented in transit by re-purposing I/O

APIs [16, 20] and performing data aggregation with a general data

communication and query system (e.g., DataSpaces [10]). While

the latter approach is desirable if the simulation is already using

the I/O API being repurposed, doing so for a new integration with

the express goal of in transit visualization may not be, requiring

additional implementation effort and complexity.

The contribution of this paper is libIS, a flexible, lightweight

library for in transit visualization. Our library alleviates common

challenges with in transit visualization by managing data aggrega-

tion and coordination with the simulation. To enable low overhead

data aggregation fromM simulation ranks to N visualization ranks,

we introduce a generic representation of the distributed simulation

domains. Visualization code run with libIS can be run on either

the same nodes as the simulation, or a distinct set of nodes, or

even within the same MPI communicator, when using MPI MPMD.

Moreover, the visualization can be run sporadically, connecting and

disconnecting seamlessly from the simulation as desired to provide
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Figure 1: LibIS supports a variety of runtime configurations, making it applicable to a wide range of in situ use cases. The

socket-handshake modes (b, c) can disconnect and reconnect as desired, allowing for sporadic execution of the visualization

code.

on-demand, flexible visualization. To ease the integration of libIS

into existing code, we provide a SENSEI data adaptor. Our adaptor

transfers data to a set of visualization clients, which can then run

any Catalyst, LibSim, etc., pipelines which would have previously

been run tightly-coupled with SENSEI.

2 RELATED WORK

There has been a substantial amount of work in the last decade

focusing on in situ analysis and visualization, covering a wide range

of approaches for integrating these tasks into simulations. For a

detailed discussion of the current space of in situ visualization we

refer to the comprehensive surveys by Bauer et al. [3] and Childs

et al. [7], and summarize the work most related to our own below.

From the simulation’s perspective, I/O and data transfer for in

transit visualization share many similarities. As such, one approach

to easily integrate in transit visualization is to integrate it within the

I/O library used by the simulation, e.g., ADIOS [16] or GLEAN [20].

These approaches often introduce a distributed data transfer and

restructuring technique into the I/O library, e.g., PreDatA [27],

DataSpaces [10], FlexIO [28] or FlexPath [9]. By leveraging the

metadata provided to the I/O library, these methods can aggregate

and restructure the data tomatch the parallelism of the visualization

process.

Although these approaches provide a large amount of flexibil-

ity in how and where the visualization routines can be run, this

comes at the cost of increased library complexity. Furthermore, the

restructuring of the data incurs additional runtime cost [19], and

may require additional effort to support new mesh types. Moreover,

if the simulation is not already using the I/O library that the in

transit system is integrated into, migrating the simulation to use

a different I/O library can be a significant effort. As a result, new

integrations of in transit visualization for prototyping or evaluation

can require unnecessary additional effort. Recent work by Larsen

et al. [14, 15] has investigated the development of lightweight in

situ infrastructures, providing easy to use, low overhead, tightly-

coupled in situ. With libIS we provide a similar simplification for in

transit visualization.

3 THE LIB-IS LIBRARY

LibIS is specifically designed for asynchronous, in transit visualiza-

tion, where the simulation and visualization run decoupled from

each other, and communicate over MPI. The library provides a

lightweight method to communicate data between a distributed

simulation, acting as a server, and a distributed visualization client.

The simulation and visualization can be run on the same nodes,

separate nodes, or within the same MPI launch command (Figure 1).

LibIS is split into a simulation-side and client-side library. The

simulation-side library, coupled to the simulation either through

our SENSEI interface or directly, exposes the simulation as a data-

server, while the client-side library queries this server for new

timesteps.

3.1 Connecting the Simulation and Client

LibIS provides two methods for connecting the simulation and

client, either over an existing MPI communicator or via a socket-

handshake. The first method allows users to specify a previously

created communicator to be used for communication. For exam-

ple, MPI_COMM_WORLD can be used when launching multiple pro-

grams simultaneously with MPI (Figure 1a). When using the socket-

handshake method, the simulation always listens on a background

thread for a new client, which opens an MPI port and sends this

information to the simulation over a TCP socket. The simulation

and client then set up an MPI intercommunicator using this MPI

port (Figures 1b and 1c).

3.2 Querying Data

After the communicator between the simulation and client has

been setup, rank 0 of the simulation posts a MPI_Irecv to receive

the next command the client wants to execute, either query data

or disconnect. The state of this receive is checked each time the

simulation calls libISProcess (each timestep). When a new com-

mand is received, it is broadcast to the other simulation ranks and

processed collectively.

Given a run withM simulation ranks and N client ranks, where

M ≥ N , each client will receive data from M

N
simulation ranks,

with any remainder ranks assigned evenly among the clients. Each

simulation rank sends its data independently to its client using MPI

point-to-point communication, allowing for better communication

locality. In contrast to more complex approaches which restructure

the data to match the parallelism of the clients (e.g., ADIOS, FlexIO),

libIS keeps the original simulation data distribution, returning to

each client a list of M

N
regions. By avoiding more expensive data re-

distribution, libIS incurs little additional transfer cost, and requires

minimal information about the data being transferred. Although

libIS requiresM ≥ N , this is typically the case in practice.
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3.3 Simulation Library

The simulation-side library exposes a C API, allowing it to be easily

integrated into simulations written in a broad range of languages.

The API is used to pass libIS information about the simulation state,

including the world, local and ghost bounds (if applicable), along

with the rank’s field and particle data. This is done by creating

and filling out a libISSimState using the following API calls.

The configured simulation state consists of a list of pointers to

the simulation data, and some metadata describing it, providing a

zero-copy interface.

void libISSetLocalBounds(libISSimState *state,

const libISBox3f box); // World/Ghost identical

void libISSetField(libISSimState *state,

const char *name, const uint64_t dims[3],

const libISDType type, const void *data);

void libISSetParticles(libISSimState *state,

const uint64_t nLocal, const uint64_t nGhost,

const uint64_t stride, const void *data);

void libISProcess(const libISSimState *state);

The current API only supports regular 3D grid fields and array-of-

structures particle layouts; however, the mapping from simulation

ranks to client ranks requires no spatial information or data re-

distribution, making it straightforward to add support for additional

mesh types and particle layouts.

The final call, libISProcess, is called each timestep, and passes

the filled out simulation state to libIS to send to any clients which

have requested data. If the simulation has clients requesting data,

it is sent directly from the passed pointers, otherwise control is

returned back to the simulation.

3.4 Client Library

The client-side library provides a C++ API to query data from the

simulation. In contrast to the simulation-side, where libISProcess

is non-blocking, the client’s query method will block until it re-

ceives data for the new timestep. Having a blocking query simplifies

the client implementation in most cases, where there is nothing to

do besides wait until the data has arrived. Interactive applications

can call query on a background thread to prevent blocking the

application (e.g., Section 4.2).

After the query has completed, the client will receive the simu-

lation data and metadata from each of its assigned M

N
simulation

ranks. This is returned as a vector of SimState structures.

struct SimState {

libISBox3f world, local, ghost;

int simRank;

std::unordered_map<std::string, Field> fields;

Particles particles;

};

std::vector<SimState> query();

The fields member is the list of field data sent by the simulation,

indexed by the field name. The particles member contains the array-

of-structures layout particle data, if any.
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Figure 2: The architecture of our in transit visualization ex-

ecution system for SENSEI.

3.5 SENSEI Analysis Adaptor

To ease integration effort for simulations or visualization code al-

ready using SENSEI [2], we also provide a SENSEI analysis adaptor

and in transit analysis execution application. A SENSEI in situ sys-

tem consists of a bridge, data adaptor and analysis adaptor. The first

two are tailored to the simulation, and responsible for converting its

data representation to the VTK representation used by SENSEI. The

VTK representation is then passed to an analysis adaptor, which

runs the desired in situ visualization. To transparently provide in

transit visualization to SENSEI users, we provide a libIS analysis

adaptor and an in transit analysis execution application which runs

the user’s analysis adaptors (Figure 2).

Our libIS analysis adaptor takes the VTK data from SENSEI, con-

structs the equivalent libISSimState, and calls libISProcess

to send the data to our in transit analysis application. The in transit

analysis application uses libIS to query data from the simulation,

constructs the equivalent VTK representation, and passes it on

to the user’s analysis adaptors. The conversion back to the VTK

representation from libIS’s uses VTK’s zero-copy arrays, avoiding

additional data copies.

While running the SENSEI analysis in transit with libIS in a

1 : 1 configuration is straightforward, doing so for an M > N

configuration is less so. SENSEI’s existing data model expects one

region per-process, i.e., a tightly-coupled in situ use case, or a data

restructured in transit use case, requiring some special treatment

forM > N configurations. For example, an analysis adaptor which

computes a global reduction over the data, such as the min or max,

or a histogram, may not produce the correct result if each analysis

rank ran a for loop over its assigned regions. To avoid requiring

users to modify their analysis code, we pass the data to the user’s

SENSEI analysis code as a vtkMultiBlockDataset, giving the

appearance of a single simulation rank with M

N
blocks of data.

4 RESULTS

We evaluate the performance and scalability of libIS using LAMMPS

as our simulation code. We demonstrate our SENSEI analysis adap-

tor on the analysis algorithms and infrastructures provided by the

SENSEI configurable analysis adaptor (Section 4.1). To compare the

different configurations libIS supports, we implement an interactive

in transit viewer (Section 4.2), and examine the simulation and visu-

alization performance, and data transfer bandwidth in each config-

uration (Section 4.3). We run our benchmarks on Theta at Argonne

National Laboratory, and Stampede2 at the Texas Advanced Comput-

ing Center. Theta and Stampede2 use the Intel® Xeon Phi™ Knight’s

Landing (KNL) processors. Stampede2 has an additional partition

with Intel® Xeon® Skylake (SKX) processors; however, our evalua-

tions were done only on the KNLs.
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Figure 3: Interactive visualization of a LAMMPS simulation

with two ranks in ParaView. The data is passed in transit

through libIS and our SENSEI interface, saved to disk using

the VTK I/O backend in SENSEI, and visualized in a post-

process with ParaView.

4.1 SENSEI Integration

We integrate our SENSEI interface into LAMMPS by taking advan-

tage of existing mechanisms in LAMMPS for coupling it with other

simulation codes [18]. We provide a driver application which acts as

a thin wrapper over LAMMPS, along with a bridge and data adaptor

for SENSEI. The driver takes the user’s input file and LAMMPS

commands as before, and inserts an additional callback to be run by

LAMMPS each timestep. This callback passes the data to our SEN-

SEI data adaptor, which converts the particles to a vtkPolyData,

with additional attributes (e.g., atom type and id) treated as 1D

fields.

The VTK data is then passed to our libIS analysis adaptor, which

sends the data to our analysis execution application. Our analysis

application runs SENSEI’s configurable analysis, which can connect

to in situ algorithms in SENSEI, and multiple in situ infrastructures,

including Catalyst, LibSim, and ADIOS. We validate our implemen-

tation with the SENSEI histogram algorithm, and verify that the

results are correct for multiple MPI ranks. We also demonstrate the

VTK I/O capabilities of SENSEI, and write out the simulation data,

which we visualize in ParaView (Figure 3).

4.2 Interactive Visualization

An advantage of in transit visualization is that the visualization and

simulation can execute in parallel, allowing for interactive in situ

visualization, without blocking the simulation. This is in contrast

to tightly-coupled interactive visualization approaches, which must

pause the simulation. Furthermore, by using libIS’s connect and dis-

connect support, such interactive viewers can be used sporadically,

e.g., to check in on a long running simulation, or begin monitor-

ing after some event, without requiring additional nodes be set

aside for the entire run. To evaluate interactive visualization with

libIS we implemented a client-server based renderer for LAMMPS

simulations using OSPRay [21] for rendering.

Figure 4: Interactive in situ visualization of a 172k atom sim-

ulation of silicene formation [6] with 128 LAMMPS ranks

sending to 16 OSPRay renderer ranks, all executed on Theta

in the mpi-multi configuration. When taking four ambient

occlusion samples per-pixel, our viewer averages 7FPS at

1024×1024.

The render server runs on the HPC resource, and uses libIS to

query data, and OSPRay’s data-distributed API to render it. The ren-

der server continues querying data as the simulation runs, enabling

the user to watch the simulation state evolve over time. Along with

rendering the data, the server also supports running some local

VTK pipelines to process the data, e.g., to compute bonds between

atoms. The client is run on the user’s desktop, and connects to the

render server over a socket. The client sends the user’s camera

position, and receives back rendered images as JPGs. An example

image from the renderer is shown in Figure 4.

4.3 Performance of Different Configurations

We evaluate the weak scaling of libIS and our interactive viewer

by replicating the LAMMPS Lennard-Jones benchmark problem to

keep a constant 2 million atoms per-node, with each renderer rank

receiving from 16 simulation ranks. The benchmarks are rendered

at a 1024× 1024 resolution as the camera is rotated around the data

set. We find that libIS and the OSPRay rendering client provide

good weak scaling for both data-transfer bandwidth (Figure 5), and

rendering performance (Figure 6). It is worth noting that the shared

and separate node configurations do not have much effect on either

the bandwidth or render time; however, the MPI multilaunch mode

on Theta yields better performance at some node counts. While we

would expect the MPI MPMD (mpi-multi) to perform similar to the

separate node case, we could not run this configuration on Theta

to compare, due to the machine not supporting the necessary MPI

APIs.

We find that libIS has little impact on the simulation. In the

separate node and mpi-multi configurations (which use a sepa-

rate set of nodes for rendering) we find that LAMMPS takes an

average of 6.6% longer to compute each timestep. When rendering

on the same nodes as the simulation we find a larger impact due

to oversubscribing the nodes, with LAMMPS taking 16.1% longer

per-timestep.

5 CONCLUSION

We have presented libIS, a lightweight, flexible library which lowers

the barrier to in transit visualization. By combining our library and

our provided SENSEI analysis adaptor and execution application,
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existing tightly-coupled in situ workflows can be transparently

converted to run in transit. Running the analysis in transit incurs

little impact on the simulation, and offers greater flexibility in how

the visualization can be run. In addition to batch analysis, we also

demonstrated libIS’s applicability to interactive visualization as the

simulation evolves, which, due to the decoupled execution, can be

done without blocking the simulation. We release both libIS and our

SENSEI adaptor and application open source to allow developers

to easily integrate them into their simulations (Appendix A).

In future work, it would be interesting to investigate restruc-

turing the data to match the visualization process’s parallelism.

Although this comes at a runtime cost, restructuring has the poten-

tial to reduce bandwidth and memory use by removing duplicated

ghost regions, and simplify the implementation of some analysis

tasks. To provide better support for simulations with a long timestep

it is also interesting to consider buffering the previous timestep in

memory, or on a burst buffer, to make data immediately available

to clients when they connect.
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A ARTIFACT DESCRIPTION APPENDIX

To allow for reproducing our results, and make libIS easily available

to users, we released both libIS and our various test applications and

benchmarks open-source on GitHub. The libIS library is available

on at https://github.com/ospray/libIS and our interactive viewer ap-

plication can be found at https://github.com/ospray/ospray_senpai.

The SENSEI adaptor used in the experiments is being merged into

the main SENSEI repo, the development branch can be found at

https://gitlab.kitware.com/sensei/sensei/tree/lammps.

In our evaluation we encountered additional difficulty on Theta,

when trying to connect our viewer client to the render server on

the compute nodes. Due to the system’s network configuration, it

is not possible to SSH tunnel to or from the compute nodes directly,

requiring instead to first tunnel to the login node, then the MOM

node (which runs the job scripts). From the MOM node we then

run socat to bridge the SSH tunnel to a TCP connection on the

compute node. We have encapsulated this process in a bash script,

which we make available on GitHub to aid our fellow researchers:

https://github.com/Twinklebear/theta-tunnel.

At the time of submission our viewer used an internal branch

of OSPRay with improvements to the distributed renderer, which

added support for local ambient occlusion with ghost zones, and

significantly improved performance. This branch has now been

merged into OSPRay and is available on the public development

branch on GitHub: https://github.com/ospray/ospray/tree/devel.
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