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Fig. 1. OSPRay is a CPU-based ray tracing framework designed for visualization workloads including large polygonal, non-polygonal and volume

data. It provides efficient rendering on Intel Xeon and Intel Xeon Phi based systems and supports “high-fidelity” ray traced illumination. These

interactive examples show several use cases, rendered using OSPRay on a single dual-socket Xeon E5-2699 v3 processor workstation (unless

otherwise noted). From left to right: An isosurface of 290 million polygons rendered in (OSPRay-enabled) ParaView ; a complex Organelle rendered

in OSPRay-enabled VMD; a 100 GB seismic volume data set; combined surface and volume rendering of the MPAS-Ocean model (ACME, U.S.

Dept. of Energy) running data-parallel on the CPUs across eight nodes of TACC’s Maverick cluster; OSPRay running on the 80-display Stallion

display wall at TACC.

Abstract— Scientific data is continually increasing in complexity, variety and size, making efficient visualization and specifically rendering an ongoing

challenge. Traditional rasterization-based visualization approaches encounter performance and quality limitations, particularly in HPC environments

without dedicated rendering hardware. In this paper, we present OSPRay, a turn-key CPU ray tracing framework oriented towards production-use

scientific visualization which can utilize varying SIMD widths and multiple device backends found across diverse HPC resources. This framework

provides a high-quality, efficient CPU-based solution for typical visualization workloads, which has already been integrated into several prevalent

visualization packages. We show that this system delivers the performance, high-level API simplicity, and modular device support needed to provide

a compelling new rendering framework for implementing efficient scientific visualization workflows.

1 INTRODUCTION

As computing has become the scientific method’s third pillar, visual-
ization has become indispensable in interpreting generated data. In ad-
dition to guiding scientific discovery, visualization fosters novel analy-
sis, validation of theoretical models, debugging of computational code,
and communication of science to general audiences. Recent trends
have shown visualization increasingly becoming integrated with large-
scale simulation runs, making efficient visualization a critical compo-
nent and potential bottleneck not just of post-processed analysis, but
of simulation pipelines themselves.

Visualization rendering typically includes rendering data repre-
sented as explicit geometry or volumes, and traditionally utilizes stan-
dard graphics APIs (e.g., OpenGL) with hardware acceleration used to
achieve interactive rendering. Increasing data sizes and associated data
movement costs pose unique challenges to traditional rendering tech-
niques. Increasingly, remote visualization occurs on high-performance
computing (HPC) and cloud resources that lack dedicated rendering
hardware; and even where GPUs are available, limited GPU memory
and PCI bus bandwidth restrict the size of data that can be rendered
in-core.

Traditional OpenGL rendering limits both the shading models and
type of geometry that can be rendered. For example, advanced shad-
ing effects can greatly help in conveying the shape of complex spatial
data [17] (also see Figures 2 and 8d), but is not trivially supported
by traditional rasterization. Tessellating streamlines, isosurfaces or

Fig. 2. High-Fidelity Visualization in the FIU data set, with OpenGL-like shad-

ing on the left, and OSPRay ambient occlusion on the right. Using advanced

shading models in visualization is not about aesthetics, but about their ability to

better convey the shape, depth and, ultimately, the meaning of complex data.

sphere glyphs can lead to an unnecessary explosion in triangle counts
and the time and memory needed to compute and store their repre-
sentations. For any of these issues—rendering on CPUs, large data
sizes, advanced shading, etc—there are individual solutions such as
software rasterization, level of detail, streaming, image-space ambient
occlusion, etc; but combining all of them into existing rasterization-
based visualization frameworks has proven challenging.

Ray tracing is appealing in that it potentially addresses all of these
issues in a unified manner: it easily scales to large polygon counts and
lends itself naturally to non-polygonal geometry, volume data, and ad-
vanced shading. Thanks to recent advances in compute performance
and ray tracing algorithms (in particular, improved acceleration struc-
ture build performance and high-performance frameworks such as Op-
tiX [37] and Embree [49]) it can already offer the performance re-
quired to drive visualization-style rendering at interactive rates. How-
ever, visualization pipelines require a higher level of abstraction than
offered by OptiX or Embree: in particular, they need a complete ren-
dering framework that offers things like an API, cameras, volumes,
renderers, etc. Existing ray tracing systems have been utilized for sci-
entific visualization, such as the open source ray tracer Manta [7], how-
ever these solutions have limited adaptability to modern architectures
due to their reliance on hand-coded intrinsics and long acceleration
structure build times. A full comparison of our system to existing im-
plementations is provided in Section 8.1.

Contributions. In this paper we introduce OSPRay, a ray tracing
framework for high-quality visualization rendering (see Figure 1).
OSPRay’s goal is to go beyond previous proof-of-concept ray tracing
systems for visualization, and to offer a complete turn-key solution
for existing production visualization software packages than can run
efficiently on current hardware while offering modular device support
for future hardware architectures. In particular, we propose a small
and device-independent API for general but visualization-oriented ray
tracing, as well as a specific, CPU-oriented implementation of this API
that provides an efficient visualization rendering engine for general-
purpose CPU workstations and HPC resources that can utilize vary-
ing SIMD widths. We demonstrate and evaluate the breadth, perfor-
mance, and capabilities of this framework through integrations with
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widely used, off-the-shelf visualization packages such as VTK, Para-
View, VisIt, and VMD.

2 BACKGROUND

Visualization is the process of “providing new scientific insight
through visual methods” [19]. It is most commonly described as a
pipeline of operations—specifically: data analysis, filtering, mapping,
and rendering—that transforms raw data into 2D images. Visualiza-
tion’s primary use is for interactively exploring simulation data, but
also provides key debugging and tuning support for simulation codes
[9]. Different simulation data types and sizes present unique visualiza-
tion challenges. Consequently, visualization software, such as VTK,
utilize an underlying data model to represent and process a wide vari-
ety of uniform, structured and unstructured grid data.

Visualization is highly interdisciplinary (see, e.g., [19]), resulting in
a variety of specialized visualization solutions. However, a few pack-
ages have been widely adopted in the open science community, and
are readily available on many HPC resources: For molecular visualiza-
tion, the University of Illinois’ Visual Molecular Dynamics package
(VMD) is prevalent. For general-purpose scientific visualization, Pa-
raView [3], VisIt [10], and EnSight [8] are analysis tools of choice.
ParaView and VisIt are distributed-parallel analysis tools with a client-
server architecture and user-friendly graphical interface. Both are
open-source projects with large user bases and developer communities,
and build upon the Visualization Toolkit (VTK) [29], a general-purpose
analysis framework for visualization, and the de-facto standard for sci-
entific visualization. Given the paramount need to handle very large
data sets, all three tools offer powerful frameworks for parallel data
processing (including data-parallel rendering) on multi-node HPC en-
vironments. Though ParaView, VisIt and EnSight have direct volume
rendering capabilities, they primarily utilize indirect visualization (i.e.,
analysis that processes tessellated/triangle data) for rendering.

Rendering. Though much of visualization focuses on data analysis
(i.e., pre-processing), the final pipeline stage is rendering, the process
of transforming 3D geometric (and/or volumetric) primitives into 2D
images. Rendering is also—and in fact, predominantly—used outside
of visualization, and can be roughly organized into two categories:
1) real-time rendering and 2) production rendering. The gaming and
entertainment industry predominantly drives real-time rendering, re-
lying significantly on high-end graphics accelerator (GPU) triangle
rasterization speed using the Z-buffer algorithm [44]. Given the on-
going demand for more realistic computer games, real-time rasteri-
zation has made tremendous advances, producing stunning real-time
visuals when using properly tuned content and algorithms. Production
rendering (e.g., movie rendering, photo-realistic rendering for design
and virtual prototyping), on the other hand, aims primarily for highest
image quality, driven increasingly (though not exclusively) by some
variant of ray tracing [26, 50]. Though originally an offline rendering
technique, increasingly powerful parallel architectures have enabled
interactive use cases. Most graphics and CPU manufacturers now of-
fer platform-specific solutions for fast ray tracing: Intel released Em-
bree [49], AMD released FireRays [1], and NVIDIA maintains a to-
tal of four separate products (OptiX a low-level library [37], Iray for
photo-realistic rendering, IndeX for visualization rendering, and the
NVIDIA Visual Compute Appliance (VCA) as a turn-key platform for
Iray and IndeX). These solutions reflect growing adoption of ray trac-
ing for both offline and interactive rendering.

Rendering for Visualization. Rendering, as the visualization
pipeline’s final stage, is responsible for transforming the output of
the analysis stages into 2D images. Existing literature [15, 19] dis-
tinguishes between direct techniques (such as volume rendering) that
map and render from input data with a shallow (if any) preprocess
pipeline, and indirect methods, which typically convert continuous
data into triangle geometry for rendering. The data types emitted from
the final pipeline stage largely determine the rendering modality (i.e.,
volume rendering, triangle rasterization, glyph primitives). Though
VTK, ParaView, VisIt and VMD provide comprehensive analysis tool-
sets focused on “indirect” data processing for analysis and rendering,

most visualization frameworks provide both direct (e.g., volume ren-
dering) and indirect (e.g., mesh extraction) techniques.

To allow data exploration, rendering for visualization has to be in-
teractive, and today is almost exclusively driven by rasterization using
standard APIs (e.g., OpenGL). Ray tracing for visualization has had
some selected use. For instance, VMD has had a ray tracing backend
for two decades [43], and in biomolecular visualization the benefits of
effects like soft shadows and ambient occlusion are well understood.
Ray tracing has seen successful proof-of-concept uses even in interac-
tive visualization rendering, typically focusing on a ray tracer’s ability
to handle large numbers of geometric primitives [7], non-polygonal
primitives such as implicit isosurfaces [13, 39], particle data [16, 48]),
and large volumes [30, 36], often with good quality, and sometimes
even in a single system [5,39,47]. Similarly, state-of-the-art direct vol-
ume rendering software on the GPU (see, e.g., [11, 33]) largely lever-
age “ray-guided” techniques; a comprehensive survey can be found
in [4]. While ray tracing naturally supports these application-specific
“direct” approaches, we seek a ray-tracing solution that can readily in-
tegrate with general-purpose visualization packages employing deep
analysis ’indirect’ pipelines and rasterization focused solutions for a
combination of polygonal, glyph and volume data. Most relevant to
this paper’s context, ray tracing backends have been previously in-
tegrated in off-the-shelf visualization packages through OpenGL in-
terception [6], or direct integration [7, 28]. The main limitation of
those approaches was, in fact, not the ray tracing render performance,
but rather, the time to build the acceleration data structures that ray
tracers rely on, and the lack of readily available, optimized and well-
maintained libraries for visualization oriented ray tracing. Despite sig-
nificant technology and experience to build on, truly widespread adop-
tion of ray tracing for visualization will require significant effort in
making this technology more easily accessible for production visual-
ization pipelines—which is the ultimate goal of our system.

3 MOTIVATION AND DESIGN GOALS

OSPRay is motivated by several recent and increasingly important
trends in HPC and visualization.

3.1 Trends and Challenges

The first such trend is a growing need for effective visualization on
HPC resources. Large-scale computing has been a cornerstone of sci-
ence for at least the past four decades. Particularly this past decade,
I/O and network transfer rates have failed to keep pace with the in-
crease in computational throughput [9]. This I/O versus compute dis-
parity has sparked considerable interest in in situ visualization (i.e.,
visualization on the compute resource itself, thereby minimizing data
movement), as well as in in transit visualization (where data are imme-
diately transfered to a dedicated visualization process, thus bypassing
disk storage). In that context we note that the vast majority of HPC
resources do not have GPUs: as of the November 2015 edition of the
Top 500 list, only two in the top 10, and 15 out of the top 100, HPC
systems have GPUs on all compute nodes [45]—and many of the up-
coming large open-science HPC systems continue to be predominately
CPU-based [20, 24]. Efficient visualization on such machines will re-
quire either significantly faster software rasterization than currently
available, or new approaches that rely on other paradigms (or both).
Even dedicated visualization resources that do have GPUs often fea-
ture large memory and powerful CPUs; even when rendering is done
on the GPU, most of the analysis pipeline typically runs on the host.
Thus, software rendering can perform well even on resources equipped
with GPUs.

The second trend is that increasingly large simulations are challeng-
ing traditional, rasterization-based visualization pipelines. Modern
GPUs can rasterize billions of triangles per second, but achieve peak
performance only under specific conditions (fixed polygon budget, pre-
baked illumination, efficient acceleration techniques) that have proven
difficult to meet in general visualization frameworks. Moreover, stan-
dard triangle rasterization cannot trivially render non-polygonal geom-
etry used in common visualization modalities (implicit isosurfaces,
particles, streamlines), nor advanced shading effects (soft shadows,
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ambient occlusion and global illumination). The latter are important
for more effectively conveying the depth and shape of complex assem-
blies (see Figures 2 and 8d), which in turn is at its most useful for
large and complex data. There are many techniques that solve both
quality and data size/type related challenges using triangle rasteriza-
tion (e.g., using rasterized impostors, screen-space ambient occlusion,
level-of-detail methods, data-parallel GPU rendering, etc), but those
have proven challenging to combine in a unified way that integrates
well with existing visualization pipelines. Ray tracing promises to
address all those challenges in a unified manner: it can handle both
polygonal and non-polygonal surface data, can handle both surface
and volume data, scales well to large data, is synonymous with ad-
vanced shading effects, and runs equally well on both GPUs and CPUs.

These advantages of ray tracing are generally well understood, and
are increasingly widely accepted even in the visualization community:
In the movie industry, products like RenderMan have already replaced
REYES-style rendering (the equivalent of rasterization that it was orig-
inally built on) with ray tracing [46], and even in visualization the ad-
vantages of ray tracing have been amply demonstrated in a multitude
of papers and systems (e.g., [5, 7, 39, 47]). However, unlike in the
movie industry ray tracing is not yet widely established in visualiza-
tion: it has been shown to be a viable technology in academic papers
and proof-of-concept systems, but the next step in making it a real-
ity—the step from academic proof of concept to actual, widespread
use in everyday production visualization tasks—needs significant ef-
fort in making the technology more accessible.

3.2 OSPRay: Goals

The main challenge with ray tracing as a visualization rendering back-
end is that it does not easily map to existing rasterization oriented
APIs—it requires new APIs that more generally target visualization
applications, and then integration work for those applications to utilize
the new APIs. Frameworks such as OptiX and Embree are excellent
starting places for building such solutions, but in themselves are on too
low an abstraction level: A visualization application like, for example,
VisIt or ParaView does not want to care about exactly which rays to
trace or how exactly to shade each individual ray; rather, such appli-
cations wants to specify the underlying data and appearance, but leave
the details of rendering to a dedicated renderer. This gap is exactly
what OSPRay is designed to fill. More specifically, OSPRay is:

A library, not a visualization tool. Rather than designing a brand new
visualization package, OSPRay is a library that many different visu-
alization tools can then leverage.

A rendering solution for visualization tools. Visualization tools are
complex, often relying on middleware libraries (such as VTK). OSP-
Ray does not replace or compete with such middleware, and focuses
exclusively on the visualization pipeline’s rendering component. By
broadening supported rendering primitives, shading models, data set
sizes, etc OSPRay gives existing visualization tools’ analysis stages
additional choices in what they can ask the rendering stage to do.

Focused on visualization rendering. OSPRay emphasizes the render-
ing features needed by production scientific visualization—simple
color-mapped geometry and palettes, and different renderers (pri-
mary, ambient occlusion and path tracing) that cater to a variety of
needs. It does not aim for the photo-realism of professional graph-
ics, nor for game performance.

Focused on HPC visualization rendering. Since “simple” problems
are successfully handled by Mesa or GPU-based approaches, we ex-
plicitly focus on problems that remain challenging for visualization
applications, such as large data, volume rendering and advanced
shading. In particular, we strive to enable effective and performant
visualization across all kinds of HPC resources, even those that lack
GPUs. We do not discourage GPU use for all problems, but offer
an efficient alternative for platforms that do not have any, and, more
generally, wish to advance ray tracing solutions for those problems
that can benefit from its characteristics.

Focused on performance. Though we do not have to achieve game-
like frame rates, interactive data exploration requires performant

Fig. 3. (left) The OSPRay API in the context of the ubiquitous software stack

found in visualization applications. (right) The components that comprise our

CPU-based implementation. This paper primarily covers the dark shaded areas.

rendering. Our implementation makes efficient use of threading,
vectorization, and, if desired, node-parallelism; and leverages the
most efficient ray tracing technologies available.

4 THE OSPRAY API

The OSPRay API exists as a layer between visualization applications
and low level hardware resources. Figure 3 shows the OSPRay API in
relation to other hardware and software components commonly found
in visualization applications, as well as the components of our imple-
mentation discussed in Section 5. The API itself is designed to be
platform independent—our implementation targets CPUs, but the API
should equally map to GPUs, integrated graphics, etc. We deliberately
chose a low level of abstraction similar to that of OpenGL, which is the
abstraction level that current visualization tools already use for render-
ing. Akin to familiar solutions in OpenGL and GPGPU uses, our API
focuses on the low-level data model, and on the syntax and semantics
of creating—and communicating with—specific actors.

4.1 Categories of Actors

Ray tracing naturally supports an object-oriented programming (OOP)
design in which different objects such as cameras, surfaces, etc, inter-
act in specifying the frame to be rendered. We expose this concept of
interacting objects through a small set of low-level, C-style functions
to create, configure, and connect these actors. Conceptually, our API
is heavily inspired by PBRT [40]: In PBRT, a scene file (the logical
equivalent of a sequence of API calls to set up a frame) specifies a
set of actors such as cameras, “shapes”, etc. Each of these actors is
a concrete type (e.g., a camera can be orthographic, perspective, etc)
and has parameters that specify its configuration.

The OSPRay API exposes the following categories of actors:

OSPFrameBuffers hold the final result of a rendered frame. Infor-
mation held can contain, but is not limited to, pixel colors, depth
values, and accumulation information.

OSPData are 1D data arrays, similar to “buffers” in a GPGPU con-
text. In addition to the typical scalar and 2-, 3-, or 4-dimensional
vector data, data arrays can also contain references to other actors
(including to other data arrays), in device-abstract fashion.

OSPGeometry contain geometric surface primitives such as trian-
gles, spheres, cylinders, etc.

OSPVolumes represent 3D scalar fields that can produce, for any 3D
position, a scalar value that a volume renderer can sample.

OSPTransferFunctions map scalars to RGBA colors.

OSPModels are collections of geometries and volumes – the parent
objects of the hierarchy. Time-varying data are vectors of OSP-
Models.

OSPCameras generate primary rays for renderers to compute on.

OSPRenderers use cameras, models, etc, to render pixels.

OSPLights, OSPTextures, and OSPMaterials specify addi-
tional inputs for rendering, lighting, shading, etc.

OSPPixelOps are generic operations that can be used to post-
process readily-computed pixels (for blending, tone mapping, etc).
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4.2 Object Categories, Types, and Instances

In OOP parlance, the above categories are abstract objects that de-
scribe the role of objects, but not exactly how that role is filled. In
practice, object categories have several discrete types—for example,
a triangle mesh or set of spheres for geometry; perspective or ortho-
graphic camera, etc. For each such category the user can create in-
stances of specific types through the use of factory methods.

Object interfaces are accessed through a generic parameter passing
API. All objects contain a list of named parameters—the interface of
specific object types is implicitly defined by the parameters the type
understands and uses. This design strives to prevent compile-time cou-
pling between specific object types, and allows maximal flexibility for
implementations to be extended through type registration in the object
factories. In particular, our implementation allows for compiling new
actor types into demand-loadable shared libraries that, when loading
the library, automatically register all actor types contained therein.

4.3 Commit Semantics

An important aspect of object parameters is that parameters do not get
passed to objects individually; instead, parameters are not visible at
all to objects until they get explicitly committed to an object via a call
to ospCommit(object), at which time all previously additions or
changes to parameters are visible at the same time. If a user wants to
change the state of an existing object (e.g., to change the origin of an
already existing camera) it is perfectly valid to do so, as long as the
changed parameters are recommitted.

The commit semantics allow for batching up multiple small
changes, and specifies exactly when changes to objects will occur.
This is important to ensure performance and consistency for devices
crossing a PCI bus, or across a network. In our MPI implementa-
tion, for example, we can easily guarantee consistency among different
nodes by MPI barrier’ing on every commit.

4.4 Models and Acceleration Structures

OSPModels are the objects that encapsulate multiple 3D objects that
a renderer may query rays against. In addition to allowing a ray tracer
access to all relevant volumes and geometries through a single handle,
this offers implementations a natural place in which to build acceler-
ation structures. Whereas ray tracing backends prefer all geometric
primitives in one single data structure, hierarchical scene graphs (or
middleware like VTK) generally prefer some higher level grouping of
objects based on common properties (such as primitive types, materi-
als, VTK Object they got generated from, etc). Having both models
and geometries allows applications to use individual geometries for
logical grouping of primitives, yet give the ray tracer a single entity to
construct an acceleration structure over.

4.5 Frame Buffers and Rendering Semantics

Framebuffers contain pixel color information, as well as additional
pixel related data such as accumulation and depth information. OSP-
Ray supports OpenGL-like accumulation buffers to enable progressive
refinement, allowing applications to trade image quality for interac-
tivity. In a similar manner, OSPRay employs an OpenGL-like depth
buffer. When combined with alpha (opacity), depth buffers enable al-
pha and depth compositing of OSPRay rendered imagery with other,
OpenGL-rendered content (e.g., UI elements, font, wire-frame bound-
ing boxes, etc). With these features, OSPRay runs out of the box with
ParaView’s and VisIt’s sort-last parallel rendering modes.

OSPRay uses traditional frame semantics in which renderers ren-
der complete frames. To render a frame, the user calls ospRen-

derFrame(), and can then read the result using ospMapFrame-

Buffer(). Progressive refinement is handled by the renderer, which
can use information from previously accumulated frames to adjust
sample counts, random number sequences, etc. We note that progres-
sive refinement is not uncommon in visualization tools; ParaView, for
example, uses progressive refinement for volume rendering, and, by
default, uses coarsified geometry during user interaction.

#include "ospray/ospray.h"

ospInit(&argc, argv);

// create and setup camera

OSPCamera camera = ospNewCamera("perspective");

ospSetf(camera, "aspect", width/(float)height);

ospSetVec3f(camera, "pos", cam_pos);

ospSetVec3f(camera, "dir", cam_view);

ospSetVec3f(camera, "up", cam_up);

ospCommit(camera);

// create and setup model and mesh

OSPData vtx = ospNewData(4, OSP_FLOAT3A, vertex);

OSPData col = ospNewData(4, OSP_FLOAT4, color);

OSPData idx = ospNewData(2, OSP_INT3, index);

OSPGeometry mesh = ospNewGeometry("triangles");

ospSetData(mesh, "vertex", vtx);

ospSetData(mesh, "vertex.color", col);

ospSetData(mesh, "index", idx);

ospCommit(mesh);

OSPModel world = ospNewModel();

ospAddGeometry(world, mesh);

ospCommit(world);

// create and setup renderer

OSPRenderer renderer = ospNewRenderer("scivis");

ospSetObject(renderer, "model", world);

ospSetObject(renderer, "camera", camera);

ospCommit(renderer);

// create and setup framebuffer

OSPFrameBuffer fb = ospNewFrameBuffer(size, OSP_RGBA_I8,

OSP_FB_COLOR);

// render one frame and access framebuffer

ospRenderFrame(fb, renderer, OSP_FB_COLOR);

const uint *p = (uint*)ospMapFrameBuffer(fb, OSP_FB_COLOR);

Fig. 4. A simple example of using the OSPRay API.

4.6 A Simple Example

We provide a simple API usage example in Figure 4. OSPRay provides
the framework to create and parameterize all the respective actors re-
quired to render a frame in a device-independent manner. However, it
is also important to understand what OSPRay will not do: In particular,
the OSPRay API allows a user to select a renderer of a given type (say,
a “scivis” renderer), but it does not by itself specify which renderers
the implementation offers, nor what shading models are used, etc. Our
current implementation (Section 5) comes with a set of clearly defined
renderers, cameras, etc, that we expect to evolve into a de-facto stan-
dard of minimally supported actors; but the API specification itself
intentionally does not prescribe the behavior of these renderers.

5 IMPLEMENTATION

In this section we detail our specific implementation of OSPRay,
which is freely available under an Apache 2.0 Open Source Li-
cense [35]. While the OSPRay API has been designed in a device-
abstract fashion, our particular implementation is specifically designed
for CPU based platforms such as Intel Xeon and Xeon Phi based work-
stations and HPC resources. Figure 3 shows a depiction of our sys-
tem’s components, and of their relationship to each other.

5.1 Device Abstraction

Even in an otherwise homogeneous setup that only targets CPUs
we note that the ideal implementation for directly rendering on a
single compute node or workstation will differ from an offload-
implementation for a PCI-card based Knights Corner Xeon Phi copro-
cessor, which in turn will differ from an implementation that targets
MPI-parallelism. To support such different configurations we adopt a
device abstraction in which the API calls are seen as a stream of com-
mands that are internally routed to one of multiple possible backend
devices, which execute the commands.

The main such device in our implementation is the LocalDevice,
which executes all rendering right in the same process as the visualiza-
tion application. We also include a COIDevice for offload to first-
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generation Xeon Phi Knights Corner coprocessor cards where avail-
able, as well as a MPIDevice that supports MPI-parallel rendering.
MPI-parallel rendering is typically not required for most workloads,
but can be used to drive large display walls (Figure 1e), for realizing
data-parallel rendering (Section 6.5), or for fully path traced rendering
without progressive refinement. Which device is used can be specified
during startup, and is otherwise completely transparent to the applica-
tion. All devices build on top of a shared rendering infrastructure that
implements the actors (see Figure 3).

5.2 Software Infrastructure

Our implementation makes heavy use of two external tools: the In-
tel SPMD Program Compiler (ISPC) [41], and the Embree ray trac-
ing kernels [49]. We use Embree as the basic foundation for building
and traversing acceleration structures, and ISPC and C++ to build a
general-purpose rendering and shading layer on top of that (also see
Figure 3). Embree automatically selects the acceleration structure and
traversal kernels that are best suited for a given CPU; however, where
required it is equally possible to bypass Embree and implement new
acceleration structures and traversals in C++ and ISPC. All volume-
related code, for example, is implemented completely in ISPC.

Though the API is expressed in low-level C, all the rest of OSP-
Ray is implemented in either C++ or ISPC. Generally speaking, all
throughput sensitive operations that require vectorization (e.g., ren-
dering, shading, primitive intersection, etc) are implemented in ISPC,
while everything else uses high-level C++11 constructs.

Benefits and Challenges of Using ISPC The main advantage of build-
ing on top of ISPC is that is allows us to transparently target multiple
vector instruction set architectures (ISAs). In particular, we currently
support Intel SSE4, AVX, AVX2, IMCI (Xeon Phi Knights Corner),
and AVX-512 (Xeon Phi Knights Landing), all without a single line of
low-level assembly or vector intrinsics code. ISPC can also generate
multi-target binaries in which the compiler automatically chooses, dur-
ing runtime, the best vector instructions available on the machine. ISA
portability, and generally better performance than other approaches
we experimented with, have made ISPC the method of choice for our
particular implementation.

The biggest challenge of using ISPC is that it does not (yet) allow
features such as templates, inheritance, or virtual functions. As the
latter in particular are indispensable in a ray tracer we have to emulate
this using “manual” inheritance and function pointers, which adds sig-
nificant inconvenience. Furthermore, ISPC does not yet support tem-
plates, which requires significant amounts of code replication, or use
of compiler macros. ISPC is not a performance panacea, either. It does
handle code vectorization in a ISA-independent way, but does not fully
relieve the programmer from writing code that allows the compiler to
generate the kind of instructions that the underlying CPUs like. In par-
ticular, as with any SPMD compiler it is easy to write code that gen-
erates lots of performance-unfriendly scatter/gather instructions, and
though ISPC offers better ways than other compilers we experimented
with to avoid such performance pitfalls it still requires significant pro-
grammer effort (and experience) to avoid them.

Despite these limitations—and after considerable experimentation
with alternatives such as OpenCL, OpenMP, #pragma vector,
#pragma simd, and several others—we have concluded that for our
purposes ISPC currently offers the best compromise between perfor-
mance, portability, ease of use, and what the language can express.
In particular, we found that ISPC offered a hardware-savvy coder the
most options to tune the code to produce hardware-friendly output.

A complete discussion of ISPC performance considerations exceeds
the scope of this paper, but two guidelines are important. First, any
type, variable, or construct that is uniform should be explicitly ex-
pressed as such, as it enables the compiler to use scalar registers
and control flow rather than vector registers and vectorized control
flow. Second, we use ISPC in 32-bit mode, in which it maps all
addresses for varying array accesses to vectors of 32-bit offsets
relative to a shared 64-bit base pointer. This yields (much cheaper)
32-bit address computations, and makes better use of existing scat-
ter/gather instructions—which together can lead to significant perfor-

mance gains. However, in particular for large data visualization some
arrays will undoubtedly be larger than what can meaningfully be ad-
dressed by 32 bit offsets. In those cases, we have to manually ensure
correctness by treating each array as consisting of smaller segments,
then using ISPC’s foreach_unique statement to iterate over all
unique segments addressed by a vector. Inside each such segment,
array accesses are then guaranteed to be addressable by with 32-bit
offsets, and thus safe.

6 SUPPORTED FEATURES AND CAPABILITIES

Building on top of ISPC and Embree, our implementation offers a va-
riety of geometries, renderers, and other actors that provide a powerful
set of capabilities for visualization software to use.

6.1 High-Fidelity Shading

While initial implementation efforts focused on several specialized ren-
derers, feedback from users since made us develop a single scivis
renderer that combines many rendering techniques into a single ren-
derer. In this renderer we focus on the needs of scientific visualization:
we implement an OpenGL-like material model, with customizable con-
tributions of transparency, shadows, ambient occlusion, and fully in-
tegrated volume rendering. In addition to the scivis renderer we
also include a dvr volume renderer that allows for some specially de-
signed, OSPRay-internal data-parallel rendering (which the scivis
renderer does not yet support). Finally, we also support a fully photo-
realistic pathtracer renderer that can be used for generating high-
quality publication images, and that has since seen adoption even out-
side of scientific visualization (also see Section 7.3).

6.2 Surface Geometry

Most of today’s visualization pipelines have been designed for GPUs.
Consequently, triangles are still the most common geometry that any
vis renderer must support. OSPRay implements a trianglemesh
geometry that accepts a variety of data formats for specifying vertex,
normal, color, and index buffers. We use C++ and ISPC code to main-
tain these data structures, but leave all BVH construction, traversal,
and triangle intersection to Embree.

Thanks to Embree, we can efficiently handle even very large tri-
angle meshes. Memory footprint per triangle (including acceleration
structure) is in the order of 50 to 100 bytes per triangle, meaning that
even on a single workstation, models with hundreds of millions of
polygons are generally not a problem (see Figure 5). Build time, too,
is not a major limitation; in some cases (e.g., an isosurface extrac-
tion filter), Embree’s building of the acceleration structure is actually
faster than generation of the input triangles. In perspective, we note
that Embree achieves build performance of up to hundreds of millions
of polygons per second [49], which is comparable to (and often better
than) Mesa’s performance for rasterizing these triangles, which would
make it competitive with Mesa even if the entire acceleration had to
be re-built every frame.

Fig. 5. Polygonal isosurfaces (using ParaView’s contour filter) rendered with

OSPRay’s Ambient Occlusion renderer, from left to right: isotropic turbulence;

magnetic resonance; Richtmyer-Meshkov. Despite high polygon counts of 21.5,

170, and 290 million triangles, using OSPRay a single dual-Xeon E5-2699 v3

workstation achieves roughly 48, 29, and 33 fps at 1k2 pixels with direct shading,

and at over 20 fps with ambient occlusion.

6.2.1 Non-polygonal geometry

In addition to polygons, our implementation can naturally handle any
arbitrary geometry for which an intersection algorithm can be writ-
ten. In our implementation, adding specific geometries is rather sim-
ple: In most cases, we can use Embree’s user-defined geometry ca-
pability to handle BVH construction and traversal, and only have to
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Fig. 6. Examples of non-polygonal geometry supported in OSPRay, clockwise

from the top left: stream lines; particles using sphere glyphs; implicit isosurfaces

in a volume data set; a mix of spheres, cylinders, and polygons.

implement three functions in ISPC: One to compute a given primi-
tive’s bounding box, one to perform a ray-primitive intersection, and
one post intersect function to query shading data. Using this mecha-
nism we currently support spheres, cylinders, streamlines
(constant-radius tubes passing through specified control points), and
implicit isosurfaces (defined through a volume and a set of iso-
values). Several examples are shown in Figure 6. OSPRay also sup-
ports instancing through a special geometry object containing a refer-
ence to another model, plus an affine transformation matrix.

6.3 Volumetric Data and Volume Rendering

Volumetric data is generally more widespread in scientific visualiza-
tion than in games or professional ray tracing. Consequently, volumes
are treated as first-class citizens in our implementation. However, vol-
umes are also tricky in that most of the recent breakthroughs in ray trac-
ing technology–such as better acceleration data structures and faster
traversal kernels—do not easily apply to volume rendering (Embree,
for example, does not even offer a data type for volumes). Thus, while
the surface-related part of OSPRay could make heavy use of Embree,
all volume related code had to be implemented from scratch, in ISPC,
with significant effort in terms of both efficiency and generality.

6.3.1 Volume Data Abstraction

In our implementation, OSPVolume objects are containers for var-
ious types of volume data. The most common volume data are
structured volumes, for which we offer two different types: the
shared_structured volume type allows for sharing voxel data
with the application, avoiding the need to copy the data. To im-
prove memory access patterns and thus performance, we also offer
a block_bricked volume format that uses two levels of brick-
ing [36] (one on 5123 blocks, one on 23 bricks), and that ren-
ders up to 50% faster than naïve 3D arrays. To enable implemen-
tations to use such data layouts we introduced a special API call
(ospSetRegion()) through which applications can populate an
opaque structured volume type without having to understand which
data layout the actual implementation will use. Internally, all volume
types have a accelerator that skips fully-transparent regions of the vol-
ume. In our implementation, all structured grids use a grid of macro-
cells as previously done by Parker et al. [36].

An important aspect of OSPRay’s volume data type is that it can
abstract any volume type that can be sampled using a 3D sample loca-
tion. In addition to the already supported structured data types this al-
lows for eventually also supporting non-structured volume types such
as tetrahedral grids, adaptive mesh refinement (AMR) data, etc, which
offers promising avenues for future work.

Fig. 7. Images demonstrating OSPRay based volume rendering. Top, from

left to right: RM (2048×2048×1920); magnetic resonance (5123 cells); seis-

mic (100 GB). Bottom left: isotropic turbulence (512 MB). On a dual-Xeon E5-

2699 v3 workstation these examples render at 35, 15, 10, and 41 fps, respec-

tively (1k2 pixels, with progressive refinement). Bottom center and bottom right:

two time steps from the COSMOS walls dataset (40 time steps of 4k3, total

10 TB), rendered on a 16 TB SGI UV 300 (in cooperation with SGI and the

Stephen Hawking Center for Theoretical Cosmology).

6.3.2 Implicit Isosurfaces

Volume data can also be used to define implicit isosurface geometry.
Our implementation supports this using a dedicated surface type that
uses a given volume’s macrocell data for acceleration and its sampling
function to find the closest isosurface intersection along the given ray,
similar to the GPU approach of Hadwiger et al. [18]. The result is
a OSPGeometry just like triangles or spheres, and fully compatible
with all surface renderers. The general sample function can also be
used for purposes other than volume integration; for example, to imple-
ment slice planes, or for otherwise mapping volume data to surfaces.

6.4 Large Volume Data.

Since many volumes are larger than 2 GB, we have to make use of
64/32-bit addressing mentioned in Section 5.2. For the block-bricked
volume, for example, we first perform all index computations for brick-
ing in vanilla SPMD, then do a foreach_unique over all unique
blocks, then doing varying array accesses inside this block. ISPC maps
all varying array addresses to integer vectors of offsets that are rela-
tive to the (scalar) base pointer of the array, so if we use the fore-
ach_unique to iterate over the (less than 2 GB sized) blocks we
know all offsets inside this block will be valid 32-bit values. The
foreach_unique is expensive, but by introducing a 1-cell overlap
between neighboring blocks we guarantee that all of a tri-linear inter-
polation’s eight inputs will always be in the same block, so the costly
foreach_unique has to be executed only once per interpolation.

Using these techniques the volume sizes our implementation can
handle is limited only by the amount of available memory. Typical
workstations today are in the range of 64–256 GB, but our system has
also already been used on Stampede’s 1 TB largemem vis nodes, on
a NUMA workstation with 3 TB RAM, and on shared-memory SGI
machines with up to 16 TB of RAM (see Figure 7).

Performance of the volume renderer is hard to quantify, as it de-
pends significantly on sampling rate, chosen transfer function, amount
of “empty” space in the volume, etc. We therefore intentionally re-
frain from even attempting any meaningful side-by-side comparisons,
but refer to Figure 7 for what we believe gives a rough indication of
what our system can do.

6.5 Data-Distributed Volume Rendering

With full access to host memory, our implementation can handle
volumes that would quickly exceed single-GPU memory, even with
24 GB of on-board memory (the largest at the time of this writing).
However, no matter how much memory is available, ultimately some
data sets will require some form of data-parallel rendering. Data-
parallel rendering can be done in either of three ways: sending data,
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Fig. 8. Though still in Beta release, our OSPRay implementation is already prototypically integrated into three of the most widely used visualization tools, from left

to right: VisIt; ParaView; VMD; a prototypical integration into VTK (done by Dave DeMarle at Kitware), showing a simple VTK application using three different VTK

renderers—OpenGL points, GL Point Sprites, and OSPRay—side-by-side. Note the improvement in partical locality with ambient occlusion.

sending rays, and sort-last alpha-compositing [34]. Of those three, the
last is most problematic for a ray tracer in that it does not work for ar-
bitrary secondary rays. It is, however, the only method that is proven
by continued practical use to work for truly large volume data.

Even without any support in OSPRay, visualization tools can use
OSPRay in existing data-parallel rendering frameworks by having
each node render its part of the data (using OSPRay), followed by
compositing the resulting partial images.

In addition, OSPRay also provides a specialized data distributed vol-
ume renderer of its own (see Figure 9). This renderer uses a extension
of segmented ray casting [21] in which each ray is seen as a sequence
of segments that correspond to where that ray overlaps the distributed
data blocks. In our approach each node generates all ray segments
for its part of the data, then sends those shaded segments to whatever
node owns the respective pixel. Once a pixel has received all segments
it sorts and composites them, which it can do while other rays are still
being traced. A full discussion of our approach is beyond the scope
of this paper; however, a key advantage of our particular technique
is is that it allows for mixing replicated surface geometry (which is
generally small relative to volume data), with data-distributed volume
rendering. I.e., it is perfectly valid to mix (replicated) surface geome-
try with data-distributed volume data (see Figure 1d).

7 OSPRAY IN EXISTING VISUALIZATION TOOLS

OSPRay comes with a set of sample model viewers that allow users to
quickly experiment with OSPRay. However, to make the technology
accessible to a wide range of actual end users it must ultimately get
adopted by—and integrated into—existing, off-the shelf vis tools such
as ParaView, VisIt, and VMD.

7.1 ParaView, VisIt, and VTK

ParaView [3] and VisIt [10] are both open source projects built on top
of the Visualization Toolkit (VTK) [29]. Together, those two tools are
interesting in the sheer sizes of their user communities, meaning that
successful integration into those two tools alone would allow to reach
significant numbers of actual end users and day-to-day visualization
tasks. They are also interesting in that both projects face similar render-
ing challenges: growing data size, performance and quality issues with
relatively old OpenGL implementations, and in particular, strong con-
cerns regarding software rendering performance on upcoming GPU-
less supercomputers—on which they will get widely deployed. Those
challenges are, in fact, exactly what our project strives to address.

Fig. 9. Data-parallel volume rendering of the 450 GB DNS dataset

(10240×7680×1536 floats). Using OSPRay’s distributed volume rendering

with the volume distributed across 8 dual-Xeon E5-2680 v2 nodes at the Texas

Advanced Computing Center’s Maverick machine this renders at 7.7 fps.

ParaView. We targeted ParaView by modifying a VTK-based Para-
View module that Brownlee et al [7] had previously developed for the
Manta ray tracer [5]. This VTK plugin extends vtkPolyDataMap-
per and vtkVolumeMapper to pass data and rendering meta-data
to OSPRay, and is the foundation for both the ParaView and the VisIt
integrations used in this paper.

ParaView’s plugin architecture allows our plugin to insert OSPRay
as a renderer without modifying existing ParaView code. We use
progressive rendering to maximize interactivity during camera move-
ments and quality when the camera is static—with the ability for end-
users to customize quality and performance trade-offs. We also dis-
able ParaView’s geometry coarsification during camera movements:
this coarsification aids interactivity for rasterization-based rendering,
but does not help at all with a ray tracer, and only triggers accelera-
tion structure rebuilds every time the application switches from full to
reduced geometry setting.

Though a full evaluation of the performance and capabilities of
the OSPRay ParaView plugin are beyond the scope of this paper,
in Tables 1 and 2 we briefly compare our OSPRay-based ParaView
against off-the-shelf, OpenGL-based ParaView on two representative
platforms—a high-end workstation (with two Intel Xeon E5-2699 v3
CPUs and a NVIDIA Titan X graphics card), and a visualization node
in the Texas Advanced Computing Center (TACC)’s Maverick visu-
alization cluster (two Intel Xeon E5-2680 v2 CPUs and an NVIDIA
Tesla K40m GPU). For the GPU versions we include performance
measurements for both off-the shelf ParaView (using OpenGL 1.3)
and the most recent, much faster, OpenGL 2.0 rendering backend. For
OSPRay we run on the same machines, but do not use the GPUs at all
beyond display. We focus on data sets that are small enough to fit into
GPU memory; however, for reference we also include one example (a
46 GB subset of the DNS data set, the full resolution reaches 900 GB
of doubles per variable, per timestep) that does exceed GPU mem-
ory. For this data set, we did what any ParaView user would have done
in this case: we run it data-parallel across 8 nodes of Maverick, which

OpenGL GPU OpenGL Mesa OSPRay

model #tris v1.3 v2.0 v1.3 v2.0 simple AO

High-End Workstation

2×Xeon 2699 v3 “Haswell”, 512 GB RAM, NVIDIA Titan X with 12 GB RAM

isotropic 21.5 M 2.38 83.3 < 1 1.49 47.6 25.6
magnetic 170 M < 1 10.0 < 1 —⋆ 28.6 20.4
RM 316 M < 1 4.95 < 1 —⋆ 38.1 20.7

TACC Maverick Node

2×Xeon E5-2680 v2 “IvyBridge”, 256 GB RAM, NVIDIA K40m with 12 GB RAM

isotropic 21.5 M < 1 25.64 < 1 < 1 19.6 10.4
magnetic 170 M < 1 8.55 < 1 —⋆ 16.1 11.59
RM 316 M < 1 3.92 < 1 —⋆ 18.2 8.77

Table 1. ParaView performance (fps) for surface rendering on two representative

platforms. We compare OSPRay to both software and GPU rasterization, and in-

clude both ParaView’s legacy 1.3 backend and its newest, much faster, OpenGL

2.0 backend. OSPRay “simple” produces similar shading as the OpenGL back-

ends, ambient occlusion (“AO”) is included for reference. ⋆Incorrect result.
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produces correct results, but obviously includes additional composit-
ing overhead (OSPRay can render those data sizes on a single node).
Timings are taken from ParaView’s "Still Render" timing logs. For
Mesa, we ran threaded llvmpipe for comparison; however, for larger
datasets this gave an incorrect result with OpenGL2. For OpenGL1,
immediate-mode was used when errors were encountered for larger
data sets. In some cases of volume rendering the OpenGL2 backend
was slower than OpenGL1 backend for volume rendering. This is us-
ing default parameters in ParaView and likely the result of different
algorithms and parameters used by the two volume rendering back-
ends.

Though any comparison of such wildly different algorithms on sim-
ilarly different hardware platforms should be observed with care, the
results in Tables 1 and 2 show that OSPRay is a compelling alternative
to Mesa for CPU-only rendering. Furthermore, even where GPUs are
available, OSPRay is at least competitive with GPU-based OpenGL
rendering—while also offering a pathway to better, more integrated,
shading models, and larger data sets. Based on initial performance re-
sults from this prototype Kitware has now included the OSPRay plugin
as a pre-packaged option for their Version 5 release.

OpenGL GPU OpenGL Mesa OSPRay

model size v1.3 v2.0 v1.3 v2.0 simple gradient

High-End Workstation
2×Xeon 2699 v3 “Haswell”, 512 GB RAM, NVIDIA Titan X with 12 GB RAM

isotropic 512 MB 30.3 56.5 < 1 2.05 40.98 29.5
magnetic 4 GB 23.5 13.7 < 1 —⋆ 15.2 8.47
RM 8 GB 15.9 2.80 < 1 —⋆ 34.6 25.1

TACC Maverick Node
2×Xeon E5-2680 v2 “IvyBridge”, 256 GB RAM, NVIDIA K40m with 12 GB RAM

isotropic 512 MB 23.3 42.9 < 1 3.66 23.8 14.5
magnetic 4 GB 16.8 6.99 < 1 —⋆ 8.33 4.41
RM 8 GB 7.63 1.73 < 1 —⋆ 12.5 7.35

DNS(sub) 46 GB 9.52† 2.66† < 1 —⋆ 3.07 1.48

Table 2. Volume rendering performance (fps) using ParaView’s OpenGL volume

renderer vs our OSPRay integration’s volume rendering. We include Mesa for

reference, but this often did not render correctly at all, and when it did was not

interactive (< 1fps). ⋆Incorrect result (blank screen). †Due to data set exceeding

available GPU memory, this was run data-parallel across 8 nodes.

VisIt. The OSPRay integration for VisIt builds on top of the same
VTK plugin, with small modifications. VisIt lacks a plugin interface
for rendering capabilities; instead, we extended VisIt’s avtPlot and
avtVolumePlot to incorporate OSPRay-enabled VTK calls. This
provides OSPRay capability for surfaces and volumes, though not yet
for other capabilities such as streamlines or spheres (e.g., large particle
models). Visit is currently expected to support OSPRay in the next
major release.

VTK beyond ParaView and VisIt. ParaView and VisIt have many
users, but integration into VTK itself without relying on plugins
reaches even more. KitWare is already pursuing direct OSPRay inte-
gration into the native rendering and analysis pathways within VTK by
leveraging the newly-introduced concept of VTK render passes. Once
completed, this would not only unify how ParaView and VisIt can use
OSPRay, but would also make OSPRay available to a large class of
VTK-based visualization applications that we do not yet address. A
early prototype of a native VTK viewer that uses OSPRay (developed
by Kitware) can be seen in Figure 8. In particular, this prototype is al-
ready able to map sphere glyphs to native OSPRay sphere geometries,
or to use the ambient occlusion renderer in a standard VTK render
view.

7.2 VMD

Visual Molecular Dynamics (VMD) is a widely used biomolecular vi-
sualization toolkit designed to visually inspect and understand molecu-
lar structures such as proteins and nucleic acids [23]. Representations

of biomolecular complexes often contain large numbers of spheres and
cylinders (that ray tracers can render without tessellation), and also of-
ten form complex structures, the details of which are most visible with
complex lighting (soft shadows, indirect illumination, transparency,
and/or ambient occlusion). As a result, the value proposition of ray
tracing is already well understood in the biomolecular visualization
community, and VMD itself has supported ray traced rendering (via
the Tachyon Ray Tracer [43]) for the rendering of publication images
for many years. More recently VMD also added a OptiX-based ray
tracing backend, but this requires a high-end GPUs.

The existing backends for Tachyon and OptiX greatly eased the cre-
ation of a OSPRay backend for VMD (primarily developed by the
author of VMD, John Stone): currently, it is realized through a spe-
cialized OSPRay render window and image generator. The OSPRay
window contains a renderer in which the current state of the VMD
scene is given to OSPRay to render. Although VMD itself does not
support MPI parallel rendering of individual frames, OSPRay enables
this without any additional VMD modifications. Full support for all
VMD features will require adding some more features to our OSPRay
implementation. In particular, VMD supports a minimum of six dif-
ferent camera types, and various ways of mapping material properties,
volumetric effects, etc, that we do not fully support yet. Furthermore,
our system’s modular architecture permits these missing features to be
added as an internal implementation detail of VMD.

7.3 Adoption beyond VMD, ParaView, and VisIt

In addition to OSPRay already spreading into VTK itself, we have seen
early adoption in the oil-and-gas industry (INTViewer), the defense in-
dustry, in prototype in situ codes within the DOE labs, and in a variety
of other projects (see Figure 10). These adoptions are increasingly im-
plemented autonomously, without the involvement of OSPRay’s core
developers.

8 DISCUSSION

In this section we discuss how OSPRay compares to existing systems,
as well as current limitations and future directions.

8.1 Comparison to Existing Ray Tracing Systems

Software Architecture. The OSPRay API borrows heavily from
OpenRT [47], OptiX [37], and PBRT [40]; the device concept and
commit semantics was adapted from similar concepts in the Embree’s
path tracer [49]; all BVH construction and ray traversal for surface ge-
ometry use Embree outright; the ParaView, VitIt and VTK integrations
heavily lean on work originally done for Manta [5, 7]; the VMD inte-
gration uses previous work from VMD’s OptiX back-end; the device-
independence comes naturally through the use of ISPC; the idea of
mixing C++ and a ISPC-like SPMD language to architect a complete
ray tracing system builds on previous experiments in the RIVL ray
tracer [31]. In contrast to general ray tracing frameworks such as
Mitsuba [25] and PBRT [40], OSPRay’s emphasis on vectorization
through ISPC orientation towards interactive visualization arguable
make for a more hardware-tuned, though less fully-featured system.
In addition to these similarities, there are also important differences.
Compared to Embree and OptiX, OSPRay is located higher up in the
software stack: Embree and OptiX provide frameworks to build ray
tracing based renderes with, while OSPRay builds on top of embree
in order to be a plug-and-play ray tracing renderer for production vi-
sualization tools, freeing developers from developing and maintaining
efficient renderers. In the context of software architecture and fea-
tures, OSPRay is closer to systems such as OpenRT [47], Manta [5],
Razor [14], or RIVL [31], but even there important differences exist.

Vectorization and Portability. Like other high-performance CPU ray
tracing predecessors (Manta, OpenRT, Razor), OSPRay makes exten-
sive use of low-level intrinsics code across all parts of the system (e.g.,
for all of traversal, shading, rendering, etc). However, the effort re-
quired to write and maintaining such code made prior systems hard
to extend, and nearly impossible to make portable. Both Manta and
OpenRT realized this and eventually adopted domain-specific shad-
ing languages (DSLs) and compilers [38, 51], but this resulted in their
own issues and limitations. Instead, OSPRay builds on lessons learned
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Fig. 10. Three examples of “external” adoptions of OSPRay that use our system for applications beyond the initially targeted VisIt, ParaView, and VMD, from left to

right: a visualization tool (in this case, flow through a rotor) developed by Tim Sandstrom at NASA; visualization of complex neuron geometries (on a display wall),

developed by Cyrille Favreau at EPFL as part of Blue Brain Project; a first adoption of OSPRay outside of visualization, showing EasternGraphics’ integration of

the OSPRay path tracer into their pCon.planner interior space planning software, commonly run on consumer-grade Windows PCs.

from RIVL [31] in adopting a general-purpose SPMD language. As
discussed in Sec. 5.2, OSPRay builds on top of ISPC, which has the ad-
vantage of being a separately maintained, open-source software prod-
uct, while still providing the user low-level control over SIMD con-
trol flow. Due to ISPC’s generality and easy interfacing to external
C++, we can build large parts of the system in it without a single
line of intrinsics code. This will undoubtedly incur some performance
penalty relative to low-level intrinsics code, but enables OSPRay to
achieve a level of portability and extensibility—and ultimately, sup-
ported features—than neither Manta nor OpenRT could achieve.

Features. Particularly in comparison to Manta and Embree, OSPRay
puts a much bigger focus on efficiently supporting volume data as a
first-class citizen. Though not yet reflected in the API, OSPRay also
supports MPI-parallel (and data-parallel) rendering. Compared to Mit-
suba [25] which also supports distributed-parallel rendering, OSPRay
is less feature-rich, but more oriented towards performance in HPC
visualization settings. Another area where OSPRay differs from previ-
ous systems such as OpenRT is the focus on interactive usage scenar-
ios with fast acceleration builds that do not impede interactive usage
of dynamic data, offering build times of hundreds of millions of prim-
itives per second – a common limitation of previous systems. Finally,
OSPRay is different in its breadth of scope: Whereas Manta, OpenRT,
and OSPRay were primarily academic (and often experimental) sys-
tems with specific use cases, OSPRay is intended to be a turn-key sys-
tem for general end-user visualization rendering across a wide range of
applications and hardware platforms – providing a fast CPU-based al-
ternative to Mesa and OpenGL visualization. Whereas each individual
one of OSPRay’s many features may previously have been supported
by any one of the previous ray tracing frameworks, OSPRay aims at
supporting all of them in a single framework.

8.2 Remaining Issues and Future Work

OSPRay addresses many rendering needs of scientific visualization
software: support for large geometry, volume data, non-polygonal ge-
ometry, and direct implicit isosurface rendering, with both simple and
advanced illumination. However, much remains to be done: our imple-
mentation does not yet support general unstructured and AMR data,
though early work has ventured in that direction [42]. Our volume
renderer currently defines volumes as sampled objects, which lim-
its the renderer to a single volume integration algorithm (ray march-
ing) that may not always be the best choice for tetrahedral meshes
or AMR. Volume rendering optimizations such as adaptive sampling
or pre-integration would further improve quality and performance. In
addition, while OSPRay supports a wide variety of rendering modali-
ties for polygonal data, its volume renderer is currently limited to di-
rect illumination. Extending that to support global illumination, in the
fashion of [32], would require new implementation though few (if any)
changes to the API. Precomputed solutions for global illumination (i.e.,
[2]) or illustrative rendering techniques (i.e., [22]) fall outside the
scope of the core OSPRay system and API, but could be explored by
its users in implementations similar to those in OpenGL/GLSL.

The ability to run on compute resources is interesting for in situ and
computational steering use cases. However, the API does not com-
prehensively support data-parallel use. Current distributed parallel im-

plementations use either application-side sort-last rendering, or OSP-
Ray’s data-parallel MPIDevice renderer invoked from a single pro-
cess. Generalizing these capabilities to support data-distributed path
tracing will require extensions to both the API and rendering internals.

ISPC has proven indispensable for our implementation, but a sim-
pler and more extensible system could be built if ISPC supported
C++ constructs, or if C++ compilers provided the capabilities of ISPC.
OSPRay and ISPC are already motivating such language extensions.
CPU-based visualization is also needed on supercomputers with nei-
ther GPUs nor Xeon-family CPUs, such as Sequoia and Mira (IBM
BlueGene) and the K Computer (SPARC64). ISPC can be used on
such platforms, but Embree currently cannot. Ultimately, we would
like to map the OSPRay API to other platforms such as GPUs, inte-
grated graphics, and dedicated ray tracing hardware.

Lastly, the OSPRay API offers a well-defined interface for visual-
ization applications to interact with a ray tracer, and our implementa-
tion allows applications to experiment with this new paradigm. Wider
adoption will ultimately require a process of standardizing the actors,
shading models, etc, that different applications require. OpenGL has
succeeded thanks to its widespread adoption beyond its original use
cases, and both its API and applications using it have co-evolved. This
process has only just started for OSPRay, and will require significant
and ongoing future efforts. OSPRay is intentionally designed as an
API for visualization, but ultimately raises the question whether and
how similar features can be adopted into standard graphics APIs such
as OpenGL or Vulkan [27].

9 SUMMARY AND CONCLUSION

We have presented OSPRay, a framework for ray traced visualiza-
tion rendering that advances ray tracing as a solution to some of to-
day’s key rendering challenges in scientific visualization. In particular,
we demonstrate OSPRay’s suitability to drive real-world visualization
through integration into ParaView, VisIt, and VMD.

We have also described an implementation of that API for multi-
core and many-core CPU architectures that runs well on hardware
ranging from commodity laptops to large-scale HPC resources. Our
implementation supports both polygonal and non-polygonal data, vol-
ume rendering, advanced shading, and, in particular, can make full
use of available memory. Integration into common visualization tools
shows that our framework delivers performance that is at least compet-
itive with existing GPU pipelines. In particular, OSPRay provides a vi-
able alternative to Mesa rendering for current and upcoming supercom-
puters without GPUs. Even where GPUs are available, OSPRay can
be a compelling alternative by providing access to larger CPU memory,
performance for large data, and options for high-fidelity rendering.

We emphatically do not claim that ray tracing is always better than
rasterization, nor that CPUs are always better than GPUs. GPUs and
rasterization have many use cases for which they work very well, and
neither CPU ray tracing nor OSPRay will be an exclusive solution for
visualization any time soon. In perspective, we note that the film indus-
try has taken decades to move from exclusively Reyes-based “shade-
and-dice” [12] to now almost-exclusive use of ray tracing as in Ren-
derMan RIS [46] (as well as others). However, our results indicate that
ray tracing is already an interesting addition to software and hardware

9



rasterization, and we believe that OSPRay is an important step towards
more ubiquitous use of ray tracing in visualization rendering.
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