CPU Ray Tracing Large Particle Data with Balanced P-k-d Trees
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ata sets. From left to right: CosmicWeb early universe data set from a P3D simulation with

29 billion particles; a 100 million atom molecular dynamics Al,O; — SiC materials fracture simulation; and a 1.3 billion particle Uintah MPM
detonation simulation. Using a quad-socket, 72-core 2.5 GHz Intel®f Xeon®E7-8890 v3 Processor with 3 TB RAM and path-tracing with
progressive refinement at 1 sample per pixel, these far and close images (above and below) are rendered at 1.6 (far) / 1.0 (close) fps (left), 2.0 /
1.2 fps (center), and 1.0/ 0.9 fps (right), respectively, at 4K (3840 x 2160) resolution. All examples use our balanced P-k-d tree, an acceleration

structure which requires little or no memory cost beyond the original data.

ABSTRACT

We present a novel approach to rendering large particle data sets
from molecular dynamics, astrophysics and other sources. We em-
ploy a new data structure adapted from the original balanced k-d
tree, which allows for representation of data with trivial or no over-
head. In the OSPRay visualization framework, we have developed
an efficient CPU algorithm for traversing, classifying and ray trac-
ing these data. Our approach is able to render up to billions of
particles on a typical workstation, purely on the CPU, without any
approximations or level-of-detail techniques, and optionally with
attribute-based color mapping, dynamic range query, and advanced
lighting models such as ambient occlusion and path tracing.

Keywords: Ray tracing, Visualization, Particle Data, k-d Trees

Index Terms: K.6.1 [Management of Computing and Information
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1 INTRODUCTION

With ever increasing compute power, simulations produce increas-
ingly large quantities of data to be visualized. The largest com-
putational codes predominantly generate particle data: molecular
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dynamics materials computations, mesoscale or macroscale atom-
istic simulations, and cosmology and astrophysics n-body codes.
The largest cosmology simulations now generate trillions of par-
ticles at scale; these petabytes of data are seldom even stored, let
alone visualized. Examples of such data are shown in Figure 1.

At such scale, traditional rasterization-based approaches to ren-
dering such data sets become problematic: simply rendering each
particle with a tessellated sphere becomes prohibitive, and even
splatting and impostor techniques are limited by rasterization per-
formance, GPU memory limitations and PCI bandwidth. This be-
comes more challenging if the user desires to interact with multiple
data time steps, apply different attribute color mappings, or per-
form interactive parameter range selection. State-of-the-art GPU
techniques [16] can render up to 10 billion particles on a single
GPU with level-of-detail (LOD). However, LOD approaches must
be specifically tuned to individual data and rendering modalities.
For extremely large datasets from cosmology, showing full-detail
data is challenging but crucial to understanding both structure and
scale of the simulation (Figure 2). Ideally, we wish to visualize data
at full-resolution without LOD. GPU visualization clusters can ren-
der on the order of hundreds of billions of particles with no LOD
in parallel [23]. However, repartitioning and compositing massive
point data can be costly, and requires data-parallel software archi-
tectures and significant compute resources.

With the right algorithms, large-scale visualization is achievable
on single-node CPU hardware. Visualization is a big data prob-
lem — the chief challenge is accessing large memory efficiently and
directly. CPU memory is cheap, plentiful and fast: a laptop CPU
has more memory (16 GB) than even a high-end GPU (12 GB),
and a large-memory workstation with 768 GB can be acquired for
less than $10,000. New vis clusters commonly feature nodes with
256 GB, and “fat” nodes are capable of 1-6 TB. Directly visual-
izing large data on a single resource is attractive, but requires fast
memory-efficient rendering techniques for the CPU. CPU ray trac-
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Figure 2: Half-4K (3840x1080) rendering of the 432 GB Cosmic Web 8> dataset (29 billion particles), rendering at 6.4 frames per second (fps)
with ambient occlusion — 1 sample per pixel (spp) with progressive refinement — on a 72-core 2.5 GHz Xeon E7-8890 v3 with 3 TB RAM.

ing has proven a viable approach for particle data (e.g., [7, 14]),
but previous methods used standard acceleration structures with
high overhead or algorithms specific to older SIMD architectures.
General-purpose ray tracers like Embree [27] offer performance
and portability, but incur high memory cost and lack the ability to
efficiently query data.

In this paper, we describe a novel approach for visualizing large
particle data sets using a ray tracing acceleration data structure
based on the original balanced k-d tree [2]. Our approach rear-
ranges data in-place into an acceleration structure that requires no
additional memory footprint. Balanced k-d trees are different from
the spatial k-d trees (BSP trees) commonly used in ray tracing, and
to the best of our knowledge we are the first to employ this structure
in directly ray tracing particle data at this scale. Our technical con-
tribution is augmenting the balanced k-d tree into a P-k-d tree sup-
porting additional range queries and efficient traversal and classifi-
cation in a packet ray tracer. We achieve performance competitive
with existing BVH ray tracing approaches, while requiring signif-
icantly less memory. We implement our approach in the OSPRay
visualization framework [19], and use it to ray trace billion-particle
data sets (Figures 1 and 2) on commodity workstations.

2 BACKGROUND
2.1 Particle and Point Visualization

Efficient rendering of point data has been a popular topic in graph-
ics (see, e.g., [8]). In this paper, we are principally interested in
visualizing volumetric particle data from molecular dynamics and
other Lagrangian simulations. Points fill interior space as opposed
to defining a surface, and have one or more attributes, e.g. atom
type, temperature, etc. Approaches for rendering such data vary,
but can roughly be categorized into glyph, volumetric and implicit
surface approaches.

Glyph techniques have long been explored on both GPU and
CPU. Most relevant to our work, Gribble et al. [7] employ coherent
ray tracing algorithms on the CPU to efficiently render millions of
opaque sphere glyphs. Knoll et al. [15] employed BVHs in a prede-
cessor of OSPRay for ray tracing megascale ball-and-stick models
on CPU and Xeon Phi architectures. Megamol [10, 9] uses a com-
bination of GPU rasterization, ray casting of sphere impostors, and
image-space filtering to efficiently render millions of atoms. More
recently, Le Muzic et al. [16] demonstrated a dynamic LOD sys-
tem for rendering up to 10 billion atoms at 10 fps. With LOD, the
system effectively renders on the order of 107 primitives on-device.
They used this approach for real-time molecular animation, proce-
durally deformed with Brownian motion and user interaction. This
approach works principally because the GPU controls both level-
of-detail and movement of particles; it would likely face IO chal-
lenges if applied to large-scale, time-varying simulation data. In
our work, we propose a CPU-based solution to rendering full-scale
data, without LOD.

Volumetric approaches to rendering large point-based data vary
widely. With LOD, systems have proven capable of rendering bil-

lions of particles; Fraedrich et al. [5] implemented an extremely fast
out-of-core LOD particle renderer for real-time rendering of astro-
physics data. However, image-space reconstruction is insufficient
to reconstruct smooth surfaces classified from volume data. For
that, one generally has the choice of resampling particle data onto
a grid, or employing direct SPH/RBF volume rendering. Kéhler
et al. [13] demonstrate the former, using an octree to simultane-
ously splat particle data (simplified using LOD) and volume-render
approximated data on a structured grid. Fraedrich et al. [4] dynam-
ically resample from an octree into perspective-space uniform grids
of predetermined size, and achieve nearly interactive performance
on an NVIDIA 280 GTX for up to 42M particles (0.1 fps). Or-
thomann et al. [18] describe a similar system traversing an octree,
using “packets” of rays computed on the GPU. Reda et al. [22] use
the GPU to efficiently volume ray cast ball-and-stick glyphs, struc-
tured volumes, and RBF volume data. Knoll et al. [14] demonstrate
fast direct RBF volume rendering on the CPU and Xeon Phi, using
a BVH which incurs significant memory overhead.

The astrophysics and cosmology communities have several tools
for parallel batch visualization of particles [21, 3, 24, 1]. Gener-
ally, these do not take advantage of SIMD, have limited if any GPU
acceleration, and are not designed for interactive rendering. Irre-
spective of the type of data, rendering large numbers of particles
can also be seen as a special case of more general large-model ren-
dering techniques, for which we refer interested readers to state-
of-the-art papers on CPU [27] and GPU [6] approaches, as well as
more recent work involving large-model ray tracing on GPUs [17].
2.2 Ray Tracing Acceleration Structures
Ray tracing describes an entire family of algorithms that solve for
the intersection of rays with geometric primitives, and the transport
of light (or other properties) across a spatial media. At its core, ray
tracing relies on spatial data structures, or acceleration structures,
such as grids, binary space partitioning (BSP), (spatial) k-d trees,
or bounding volume hierarchies (BVHs) (see Figure 3a-b).
Bounding Volume Hierarchies (BVHs, Figure 3a) are object hier-
archies that store the bounds of all enclosed primitives in each node.
Inner nodes specify tree topology; leaf nodes store primitives. Each
primitive is referenced in exactly one leaf node, and nodes can spa-
tially overlap. BVH trees are generally highly unbalanced.
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Figure 3: BVHs (left) and k-d trees (center) as used in ray tracing
to hierarchically organize geometric primitives. Right: Balanced point
k-d trees (such as our P-k-d tree) encode k-dimensional points. Point
k-d trees (right) and ray tracing k-d trees (center) share similarities,
but also have important differences (see Section 3).




Spatial k-d trees, in contrast (see Figure 3b), rely on hierarchical
space partitioning. Spatial (subdivision) k-d trees are just a spe-
cial case of more general binary space partitioning (BSP) trees, in
which split planes are axis-aligned but may be placed anywhere in
space. Inner nodes of a spatial k-d tree specify axis-aligned par-
titioning planes that recursively subdivide space; leaf nodes store
references to geometric primitives. Nearly all “k-d trees” in ray
tracing, collision and graphics are of this variety.

Range Trees BVHs, spatial k-d trees, etc can all be augmented with
additional information to store, for each node, the min/max ranges
of the attribute values associated with primitives in this sub-tree;
this can then be used to, interactively reject sub-trees outside of a
given parameter range (see, e.g., [25, 7]) These structures are often
called min-max trees or interval trees.

2.3 Balanced k-d Trees

In contrast to spatial k-d trees used in ray tracing, in this paper we
build upon the original balanced k-d trees of Bentley [2], illustrated
in Figure 3(c). Spatial k-d trees and balanced k-d trees sound sim-
ilar, and both subdivide space via axis-aligned split planes. How-
ever, they are fundamentally different data structures with very dif-
ferent properties. In particular, balanced k-d trees are explicitly de-
signed to store points (not geometric primitives), which make them
not immediately applicable to ray tracing. They do, however, have
some interesting properties, specifically that a balanced k-d tree is:

(i) complete: all but the lowest levels of the tree are filled,
(ii) left-balanced: all nodes are on the left side of the tree, and
(iii) pointer-less: children of node i live at 2i 4 1 and 2i + 2

These allow balanced k-d trees to encode a spatial hierarchy simply
by reordering the original data, requiring no memory at all other
than for the particle positions themselves [2]. We discuss the prop-
erties of k-d trees, and our variant the p-k-d tree, in greater detail in
Section 3.

2.4 ISPC, Embree, and OSPRay
Our implementation make use of several open-source projects that
influence how exactly our technique was implemented.

The Intel®SPMD Program Compiler (ISPC) [20, http://
ispc.github.io] is an open-source Single-Program Multiple Data
(SPMD) compiler that performs vectorization by mapping different
instances of a scalar program to different vector lanes. ISPC is sim-
ilar in spirit to other SPMD languages like OpenCL or OpenMP
4.0, but is designed to better allow for using CPU-like program-
ming models. ISPC supports all major CPU instruction set architec-
tures (ISAs), including Intel® Streaming SIMD Extensions (SSSE),
Intel® Advanced Vector Instructions (AVX, AVX2, and AVX-512),
and the Intel®Many Core Instructions (IMCI) used by the current

. . ™
version of Intel ®Xeon Phi processors.

Embree [27, http://embree.github.io] is a high-performance
kernel framework for efficient CPU ray tracing. It offers a set of
low-level kernels for building and traversing ray tracing data struc-
tures that are particularly optimized to exploit modern CPUs’ vector
instruction sets through highly optimized, hand-tuned kernels. Em-
bree allows for using user-defined primitive types (e.g., spheres),
but handles all acceleration structure kernels (e.g., type of BVH)
internally and opaquely.

OSPRay (ospray.github.io) is a ray tracing based rendering en-
gine for high-fidelity visualization. OSPRay builds on both Em-
bree and ISPC, using Embree for everything related to tracing rays,
and ISPC for everything involving rendering and shading. OSPRay
generally achieves interactive performance even on a single laptop
or workstation (depending on the number of rays traced per pixel)
and supports effects such as shadows, reflections, transparency, or
ambient occlusion. Improving on Embree, OSPRay allows for new
shading models and user-defined data representations and accelera-
tion structures.

2.5 Challenges in Ray Tracing Large Particle Models

Initially, when we set out applying ray tracing to particle visual-
ization we did not expect this would require anything new; we ini-
tially took the OSPRay ray tracing engine (which internally builds
on Embree), used Embree’s user defined geometry functionality to
add a sphere primitive to OSPRay. This enabled us to render com-
plex models with many millions of particles, but soon revealed two
major issues.

The first issue is the desire to interactively color-map and discard
(i.e. query) particle data based on range or other attributes. This is
impossible with the standard Embree BVH. Simply discarding de-
activated particles during traversal is performance-prohibitive when
large regions of particles are inactive; they are traversed but never
actually intersected. One solution is to use min-max trees [25, 14];
but these cannot easily be realized within the Embree framework.
We required a new data structure supporting efficient query.

The second problem is the memory overhead required to han-
dle the ray tracing acceleration structures, in particular if the mem-
ory required for each primitive itself is relatively small. For ex-
ample, using sphere glyphs in Embree’s user-defined geometry re-
quires 16 bytes for the primitive and 32 bytes per BVH leaf, lead-
ing to an overhead of up to 7x for leaves with one primitive each.
While copious CPU memory encourages waste if performance can
be gained, in many cases inefficiency can mean the difference be-
tween being able to handle a data set or not. Also, in an in sifu
visualization context, the memory overhead required for rendering
would leave only a fraction of memory for the actual simulation.

3 RAY TRACING USING BALANCED P-K-D TREES

In this paper, we propose a novel approach to efficiently handle
large particle data in a ray tracer—in particular taking into ac-
count memory consumption and construction time of the acceler-
ation structure. We apply this technique to interactive visualization
of large particle data sets using the OSPRay CPU ray tracing frame-
work. Given the challenges outlined in Section 2.5, we need a way
of ray tracing large numbers of particles that:

e allows large numbers of particles to be rendered, scaling log-
arithmically with number of particles

e has significantly lower overhead than 7x; and
e achieves competitive, interactive performance.

We take an approach based on balanced k-d trees which achieves
these goals. Our method works by representing each primitive i via
a single representative point x; (in the case of spheres, their centers),
and computing the maximum spatial extent Ry,,4 that any primitive
deviates from this point (in the case of spheres, the maximum ra-
dius of any sphere). We then organize these points in a balanced
“point”-k-d tree which has several nice properties for our particu-
lar application — in particular memory consumption — and devise a
novel ray traversal scheme that, given the point-k-d tree and R,y
can efficiently ray trace the primitives encoded in this tree. Our
P-k-d tree is thus a balanced k-d tree with several modifications to
enable efficient rendering of particle data, namely:

e we use maximum extent [12] instead of round robin [2] to pick

split planes, we encode the split axis in the tree data itself

e we re-arrange particle attributes into separate balanced trees,

so they may be queried separately

e we preprocess attributes into (optional) min-max trees for

faster query, incurring only modest extra cost of 1-2 bytes
per particle.

3.1 Balanced vs. Spatial k-d tree Traversal
As discussed in Section 3, balanced kd-trees are quite different from
spatial k-d trees commonly used in ray tracing. This has important
consequences for ray traversal.

In spatial k-d trees, splitting planes are used to separate different
primitives that all have a spatial extent. Different sub trees’ spatial
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extends do not overlap, and primitives will often be referenced in
multiple leaf nodes. In the spatial k-d tree, inner nodes correspond
to splitting planes and store a plane description; leaf nodes corre-
spond to regions of space and store (references to) primitives. Be-
ing able to place partitioning planes at arbitrary locations allows the
spatial k-d tree a wide variety of construction options [11]. Properly
built spatial k-d trees can enclose their geometric primitives quite
well, but require significant memory overhead for interior nodes,
and pointers for both tree topology and primitives.

Balanced k-d trees, in contrast, always and exclusively encode
points (not 3D primitives), and place planes always right through
the data points. When building the k-d tree such that the resulting
tree is binary, complete, and left-balanced, balanced k-d trees can
be encoded in completely pointerless fashion: the children for the
node n; are always np;41 and np;4 2, respectively, and a child exists
if and only if its index i is less than the number of points N. In each
node n;, the partitioning plane’s dimension d; is defined implicitly
through the node’s tree level L; = floor(log(i)) (as di = L; % k,
where k is the number of dimensions), and the plane’s position—
going through n; then is x;,d, where x;,i € [0..k) are the k coordi-
nates of point i. Stored in that way, a balanced k-d tree can encode
N k-dimensional points with exactly zero memory other than for the
points themselves.

The drawback of the balanced k-d tree is that a node does not
partition its primitives into exclusively left and right sides, but in-
stead also contains a primitive at each inner node itself. These inner
nodes must be intersected by every ray entering this sub-tree, usu-
ally unsuccessfully. The root node, for example, is guaranteed to be
intersected by almost every ray traversing the data structure (though
early termination may avoid its traversal). This data structure would
be impractical for geometry whose intersection tests are expensive.
However, for visualization of spheres, the cost of unnecessary in-
tersection is low.

3.2 Naive Balanced P-k-d Tree Traversal

In order to efficiently allow 3D object queries such as ray traversal
a data structure has must allow for recursive traversal that quickly
rejects sub-trees that do not intersect the query (e.g., a ray, frustum,
range, etc). A spatial k-d tree style traversal does not easily work for
the P-k-d tree data structure; the balanced k-d tree is in fact closer
to an object hierarchy (like a BVH), where each node partitions its
objects into disjoint sets of those objects on the left, those on the
right, and the root node—and even though the representative point
of an object may lie to the left of the root node’s plane it is not
guaranteed that the entire object is exclusively on that side.

Given a maximum radius R, We can compute conservative
bounding boxes for its two children as depicted in Figure 4. Oft-
setting the node x’s plane P, into +R;4x and —R,,4x yields two im-
plicit planes P, ;, and P ;; that, when clipped against the bounding
box for the given sub-tree, yields two bounding boxes that can eas-
ily be guaranteed to conservatively bound all the primitives in that
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Figure 4: Recursive traversal of a balanced k-d tree assuming each
primitive is represented by a point, and bounded by a sphere with a
radius of, at most, R, . Given a bounding box known to enclose all
the primitives in a sub-tree, the plane P, associated with the subtree’s
root node x implicitly defined two planes P, and P, ;. Clipping the
subtree’s bounds against those two planes gives two (conservative)
bounding boxes for the left and right child trees, allowing for recursive
traversal.

sub-tree. This then leads to the simple recursive traversal depicted
in Algorithm 1.
function recurse (Object Q, Node n, box aabb)
if (Q does not intersect aabb)
return;
Q.process(n);
box aabb_1l = aabb.clip(n.Plane + Rmax);
box aabb_r = aabb.clip(n.Plane - Rmax);
if (has left child)
recurse (Q, leftChild, aabb_1);
if (has right child)
recurse (Q, rightChild, aabb_r) ;

function traverse(Object Q, K-D tree tree)
box aabb_root = tree.bounds () .extend(Rmax);
recurse (Q, tree.root,aabb_root) ;

Algorithm 1: A naive recursive traversal algorithm applicable for
3D object query (ray, frustum, range, etc.).

3.3 Optimized Ray Traversal

Several optimizations to such a naive algorithm can significantly
improve performance. In particular, for ray traversal we want to
traverse as much as possible in front-to-back order, in order to max-
imize the likelihood of skipping entire subtrees once a close hit is
found. Like in a spatial k-d tree, we can actually guarantee a front-
to-back traversal using only local traversal decisions. However, un-
like in a spatial k-d tree, we can not early-terminate a ray upon the
first found intersection: since sub-trees can overlap, our data struc-
ture and traversal are actually closer to a BVH, and other sub-trees
may still contain a possibly closer intersection.

Another important observation to make is that when traversing
from one node to any of its children, only one of the six box sides
will actually change. Thus, performing full ray-box intersection
tests would redundantly re-compute 5 of 6 values every time. In-
stead, we can adopt an idea from spatial k-d tree traversal that,
rather than tracking the bounding box itself, instead tracks only
the ray interval that overlaps the current box, and incrementally
changes that based on the distance to the respective plane(s). We
do not employ actual recursion, but emulate the recursion using a
manually-maintained node stack as commonly done for both BVHs
and spatial k-d trees. In addition, we add some logic for traversal
of the min-max range trees, optionally computed for each particle
attribute we wish to query (described in Section 3.6). The final
pseudo-code is given in Algorithm 2.

function traverse (Ray R, K-D tree tree) {

box aabb_root = tree.bounds().extend(Rmax);
(t_in,t_out) = clip R to aabb_root;
if (t_out >= t_in) return DONE;
Node n = tree.root;
while (true)
while (true)
if (node is leaf)
intersect particle n; break;
// particle range culling:
if (n out of valid range)
break;
// compute dist to near and far plane
t_lo,t_hi = distance to P_lo,P_hi
// node IDs for near/far child
k = split_dim(n)

s = sign(R.dir[k]);
(n_nr,n_£fr) = (2n+2-s,2n+l+s)

// entry/exit dist for nr/fr child
t_fr_in = max(t_in,min(t_lo,t_hi))
t_nr_out = min(t_out,max (t_lo,t_hi))

if (t_in > t_near_out)
// entire [t_in,t_out] on far side
n = t_far; continue;
if (t_fr < t_far_in)
// entire [t_in,t_out] on near side
n = t_near; continue;
push (n,n_far,t_far_in, t_out)
(n,t_out) = (n_nr,t_nr,out)

// pop from stack:

while (true)
if (stack is empty) return;
(n,n_far,t_in,t_out) = pop();
if (ray.t_hit < t_in) continue;
intersectPrim(n);
break; // go on traversing

Algorithm 2: Optimized algorithm for traversing rays through a
P-k-d tree, including attribute range selection. The algorithm is a
hybrid between spatial k-d-tree and BVH traversal.



3.4 Handling Particles With Different Radii

Though all our data sets use a fixed radii for all particles, it would
be possible to also support different radii (for example, by stor-
ing a radius per particle, or by deriving a particle from a mapped
attribute), and even non-spherical shapes such as balls-and-sticks,
triangles, etc. All the P-k-d tree needs to guarantee correctness is a
conservative R4 value that, when used to shift a subtree’s planes,
properly bounds all primitives in that subtree. The tightness of the
bounding primitive (i.e., how tightly the sphere with radius Ry
bounds the actual primitive) will impact traversal performance. In
cases where a handful of large particles are mixed with many tiny
particles, performance will suffer. There are ways of addressing
this (e.g., storing a maximum radius per sub-tree); we leave them
outside the scope of this paper.

3.5 Ray Tracing and Shading

By implementing the P-k-d traversal routine within OSPRay [19],
we are automatically able to use the material, rendering and shad-
ing pipeline of that ray tracing engine. When a ray terminates in
traversal, the OSPRay renderer is given a geometry ID (a pointer
to the particle), from which it can look up the material via the cho-
sen attribute and transfer function. This material is then passed
to the chosen OSPRay renderer (ray cast, ambient occlusion, path
tracing, etc.), which integrates the color accordingly and generates
secondary rays as necessary. Like Embree [27], OSPRay allows for
progressive refinement an option, ensuring consistent interactivity
and allowing path-traced images to converge to production-quality
renderings. Examples of diffuse-only ray casting, ambient occlu-
sion and path tracing are shown in Figure 5.

Figure 5: Rendering modalities, illustrated on a 3500-atom zeolite
structure. Left to right: ray casting (106 fps), ambient occlusion (5
fps at 16 spp; 45 fps at 1 spp with progressive refinement) and path
tracing (0.041 fps at 512 spp; 18 fps with progressive refinement).

3.6 Tree Construction

Generally, balanced k-d trees rely on a dimensional sort, and pick
the literal median element as the pivot point. Unlike spatial k-d
trees [11], they offer no flexibility in placing split planes: once the
split dimension has been chosen, the balance of the tree dictates
exactly which particle along that axis has to be the root node. Nev-
ertheless, there are a variety of choices in particular with respect to
data layout that we want to briefly discuss.

Round-Robin vs Maximum-Extent Partitioning

Traditional balanced k-d trees [2] chose the partitioning dimension
in a round-robin (RR) manner, in which case each node’s dimension
is implicit in the node’s depth in the tree. As shown by Jensen [12],
it is often advantageous to instead partition along the axis of the
current subtree’s maximum extent, and since such a maximum ex-
tent (ME) splitting scheme will minimize the surface area of the two
child nodes, this will also be advantageous for ray traversal. Gener-
ally, we found that ME splitting gave a 30% performance advantage
over round robin.

Maximum-extent partitioning also simplifies our algorithm, as
we no longer have to track the tree depth on the stack. However,
we now must store the chosen split axis. We currently squeeze this
two-bit information into the particle position, i.e. the lowest two
bits of the x, etc. Alternately, one could employ unused bits of the
min-max tree, or of the atom type attribute, etc. In the worse case,
one could store these bit explicitly in an separate array, requiring
two additional bits per particle.
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Figure 6: Attribute-based query, based on atom type, in the Al,O3-
SiC fissure data set. Left to right: full data set; silica carbide particles
only; indentations in the alumina.

Range Trees, Queries and Multi-Attribute Data

The balanced P-k-d tree is different from standard balanced k-
d trees in that it is designed for volumetric particle data with
queryable attributes. Our goal is to efficiently traverse the tree and
cull unwanted branches based on a transfer function or other range
query. This is useful, for example, in materials science when iso-
lating atoms of one or more types, or in cosmology to filter out
low-density particles to better reveal structure (Figure 6).

In the P-k-d tree, each attribute is its own array of attribute val-
ues. Attributes are ordered in the same way as particles, i.e. for
given attributes M, D, and V, the V value for particle i is stored at
pkd.attribute[ V].value[i]. Range trees are built on top of attributes,
and traversed alongside the P-k-d tree as in Algorithm 2. To build
the range tree, we first build the P-k-d tree, then simply compute
min-max information of the component attributes. To store the min-
max tree, we currently use one integer per inner node of the tree,
which gives us a 32-bit mask of which attribute values are present
in the given sub-tree. While this adds some overhead, it is typi-
cally small compared to the size of the attribute data in the inner
nodes; moreover one mask suffices for multi-attribute data. This
mask is computed as a pre-process every time the transfer func-
tion changes. While the added cost of the mask is relatively small
(13%), it is purely optional; the user can traverse all data without
culling sub-trees.

Construction Algorithm . o
For actual tree construction we use an in-place partitioning scheme

inspired by the well-known quick-sort algorithm. The method pro-
ceeds as follows: first, using either round-robin or maximum extent,
we pick the axis on which to sort. Then, using the current root par-
ticle as a pivot we iterate through left and right sub-trees (in heap
indexing), to find “wrong” particles in the left and right sub-tree;
i.e., a particle on the left that is larger than, and a particle on the
right that is smaller than, that pivot. If these exist (at, say, positions
i and j) we swap these two particles, and continue scanning at i + 1
and j+1.

If a wrong particle could only be found on one side—say, i on the
left—then i becomes the new pivot by swapping with the root, and
we again search for wrong nodes in both subtrees (but noting that
from now on, we will no longer have to scan any earlier than i on
the left); the right-side case is analogous. If no wrong particle could
be found on either side, then the current root is the proper pivot, the
tree is properly partitioned in that node, and we can recursively
build its children.

For thread parallelization, we fork a new thread to handle the left
sub-tree when sub-trees contain more than a certain number of (cur-
rently, 16K) elements. Though this strategy does not achieve per-
fect scalability, it works reasonably well for larger data for which
scalability is needed most, e.g., delivering around 70% scalability
to 16 threads on a 16-core 2.7 GHz SandyBridge CPU (Table 4).

The P-k-d tree is currently built in a pre-processing step when
we convert from the external input file formats to OSPRay’s internal
XML-based binary data format; this saves re-building the tree every
time a model is loaded, and since our data structure is very compact
there was no obvious reason not to store readily built trees.

3.7 OSPRay Implementation

We implemented our P-k-d method in the OSPRay [19] framework.
With its object-oriented design, all ray-intersectable geometric ob-




jects are derived from a common, abstract Geometry type. All
other components of OSPRay—camera, materials, renderers, par-
allel rendering mode, etc. — to work “out of the box”, requiring no
new implementation.

OSPRay internally implements all objects in a hybrid C++/ISPC
fashion, where components that aren’t performance critical (book-
keeping, reference counting, etc) are implemented in C++, while
performance-critical traversal routines are implemented in ISPC;
the interface to all such functions—ray generation, traversal, inter-
section, shading, etc—is based on varying rays (i.e., they internally
operate on N rays in parallel, one per vector lane, where N is the ar-
chitecture’s vector width). A naive implementation of Algorithm 2
in ISPC would—ijust like in other SPMD languages like OpenCL
or CUDA—Iead to each lane simply executing its own independent
traversal, with each lane having (and maintaining) its own stack,
traversing its own path through the tree, typically traversing dif-
ferent nodes and intersecting different particles, etc. However, as
ISPC allows a programmer to explicitly specify which data is uni-
form (i.e., scalar) vs which is varying (i.e., once per vector lane) it is
relatively easy to also implement a “packet” traversal in which the
different rays remain ganged together (see e.g., [26]), and either all
rays skip a sub-tree, or the entire packet enters this sub-tree (even
those rays that would not have needed to). Despite worse SIMD
utilization, packet traversal is consistently faster: The naive SPMD
implementation is limited by the the efficiency of gathering of up to
N different particles (in general very different memory locations) in
each traversal step. Moreover, stack operations and masked traver-
sal logic, executed in uniform, are far simpler for the packet code.
For the 180 million atom Uintah data set, for example, the packet
code is roughly 2x faster than the naive SPMD method for primary
rays, and even 3 faster for ambient occlusion rays. We thus use
the packet variant in all our experiments.

4 RESULTS

We evaluate our implementation on several different hardware plat-
forms enumerated in Table 1. These cover a wide range of machines
from personal laptops to high-end workstations and HPC nodes.
In all cases, we only use the systems’ CPUs, the GPUs (where
available) are only used to display the final rendered image. Un-
less otherwise noted, all benchmarks are performed at 1024 x 1024
(1 megapixel) resolution, on the 72-core Intel®Xeon®E7-8890 v3
workstation with 3 TB RAM, using ambient occlusion with 1 sam-
ple per pixel and progressive refinement.

name #CPUs cores
Laptop (Macbook Pro) Core i7 4 x2.7GHz 16GB
Workstation (CPU) 2x Xeon E5-2650 16 x 2.7 GHz 64GB
Workstation (Phi) Xeon Phi SE7110P 61 x 1.24 GHz 16GB
E7-8890 v3 Workstation | 4x Xeon E7-8890 v3 72 x 2.5 GHz 3TB

Table 1: Hardware used to evaluate P-k-d performance.

4.1 Overall Performance

In Tables 2 and 3, we evaluate our technique by comparing a range
of data sets from 740 thousand atoms to 29 billion particles on the
72-core Xeon E7-8890 v3 workstation. Overall, we achieve solidly
interactive results for ray casting (29-135 fps) and both ambient oc-
clusion (24-90 fps) and path tracing (5-33 fps) at 1 sample per pixel
with progressive refinement rendering. More expensive ray tracing
modalities (ambient occlusion at 16 spp, path tracing at 64 spp)
perform non-interactively, but at rates suitable for efficient batch
rendering.

4.2 Comparison to the Embree BVH

With an Embree quad-BVH at default (i.e., performance-optimal)
settings (1 primitive per leaf), the total memory overhead is over 5
x; however performance is on average 1.48 x faster than our P-k-d
tree. For far views, this difference is not as great as for close views
(7% slower vs 43% slower); and in some cases the P-k-d traversal
is actually faster. This is particularly interesting given that Em-
bree uses hand-tuned, low-level SIMD routines for BVH traversal

memory

data set H # particles 1 core ‘ 16 cores H scalability

nanosphere 740K 220ms 50ms 28%
Si0, M 1.75s 330ms 33%
CosmicWeb 13 5IM 41.6s 3.6s 72%
Al O03-SiC 100M 80.4s 7.2s 70%

Table 4: Build time, and scalability up to 16 cores, for select data
sets measured on the 2.7 GHz 16-core E5-2650 workstation.

(the ray-sphere intersection is the same in both variants), while our
traversal is, so far, coded exclusively in ISPC, thus leaving potential
for low-level optimizations. Uing a shallower BVH (e.g., with up to
8 primitives per leaf) can indeed cut Embree’s memory overhead by
half, but it is still 2.7 x larger than the P-k-d tree’s. Even shallower
BVHs would reduce this overhead further, but we already achieve
performance parity at a leaf threshold of 8. We note that the Em-
bree BVH is built only around raw particles; it does not encode any
range information. Prior to implementation of the P-k-d tree, we
experimented with standard range trees in a binary BVH, both per-
formance and memory proved worse with this approach than with
the P-k-d tree; generally by about 2x and 3 X, respectively.

4.3 Range Tree and Query Costs

From Table 2, we see that range trees cost a relatively minor 13%
of the original data size. However, the time to compute the range
tree is O(N), which is interactive for megascale data but can take
on the order of minutes for 29 billion CosmicWeb dataset. Once
computed, the range tree accelerates traversal of a subsets of data
by skipping entire P-k-d subtrees. Frame rate is generally slower
when performing these queries than when rendering full data, due
to the extra branching and worse overall cache behavior. When
changing the transfer function, in addition to the time required to
rebuild the range tree, one may see temporary performance hits of
2x, which recover quickly as cache is filled appropriately. This
behavior varies with data set and chosen classification. While it
falls outside the scope of our work in this paper, it would be worth
further investigation.

4.4 Build time

Table 4 shows scalability for several data sets, and Table 3 shows
construction time for our reference data sets. We achieve roughly
70% scalability up to 16 threads; while we did not explicitly mea-
sure the time to build larger data sets we anticipate their scalability
would be comparable. Overall, P-k-d construction times are small
compared to the time to read from disk. Surprisingly, for the data
we tested all build times were slightly lower than those of the Em-
bree BVH.

4.5 Scalability to Data and Image Size
In Figure 8 (left), we examine the scalability of our algorithm to
data size, rendering varying subsets of the CosmicWeb data from
13 (51 million particles) up to 8% (29 billion particles) on the 4-
socket, 72-core Xeon E7-8890 v3 workstation. We used default
camera positions that render the full extents of the particle volume
into a full-screen window. As expected, performance varies linearly
with logarithm of data size, with notable drops due to NUMA.

In Figure 8 (right), considering performance with respect to
frame buffer size, we plot number of pixels against the square root
of frame rate, and find a mostly linear curve, rendering the 51M
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Figure 8: Top: CosmicWeb subsets from 13 to 83. Left: frame rate
vs logo(data size). Right: square root of frame rate vs pixels.



Figure 7: Reference scenes (ambient occlusion, 16 spp). Left to right: nanosphere (740K), SiO, fissure (5M), Al,03 — SiC fissure (105M atoms),
Uintah detonation (180M particles), large Uintah (1G particles), CosmicWeb 63 (12.2G particles), CosmicWeb 8> (29G particles).

Dataset nanosphere SiO, ALO3-SiC | Uintah180M | UintahlB | CosmicWeb6® | CosmicWeb8>
#particles 740K 5M 105M 180M 97G 122G 29.0G
#time steps 1 121 400 188 72 - -
P-k-d = raw data size 11.3MB 73 MB 1.58 GB 2.67GB 144 GB 182 GB 432 GB
Range tree (optional) 1.4 MB 9.1 MB 20 GB 336 GB 1.8 GB 23 GB 54 GB
P-k-d build time 220 ms 575 ms 6.6s 10.2 s 110s 1700 s 3900 s
ray cast fps 1 spp 125790 135770 111/95 80/75 46 /29 37/55 35/54
AO fps 1 spp 67/49 90/49 75/ 44 53/37 26/24 28715 26/28
16 spp 14/6.6 21/6.9 20/6.0 13.1/5.12 | 3.70/2.56 59/62 52/4.6
path tracing fps 1 spp 20/10.2 28/9.1 33/9.4 193/9.0 7.45/5.0 11.5/10.9 10.2/6.0
16 spp 1.46/7.690 | 2.37/.622 | 3.0/.642 1.50/.638 | .520/.222 945/ .905 .830/.505
64 spp 3771174 | 591/.157 | 811/.162 | .385/.160 | .130/.052 220/ 215 .191/.120

Table 2: Memory cost and frame rate for (far / close) views, on the 72-core Xeon E7-8890 v3 workstation, rendered at 1024x1024 pixels. We
report numbers for ray casting, ambient occlusion (AO), and path tracing (PT, using a diffuse-metal material), at 1-64 samples per pixel (spp).

Data Set nanosphere Si0, Al,O 3-SiC | Uintah180M | UintahlB
#particles 740K SM 105M 180M .96B
data/P-k-d size 11 MB 73 MB 1.7 GB 2.7 GB 36 GB
Xeon E7-8890 v3 (2.5 GHz, 72 cores, 3 TB) 67 /49 90 /49 751744 53/37 26/24
IvyBridge laptop (2.7 GHz, 4 cores, 16 GB) 6.4/4.3 10.3/3.6 9.6/3.5 27714 -/-
SandyBridge 2.7 GHz (2.7 GHz, 16 cores, 64 GB) 18/13 30/ 12 271/ 11 15/9.1 55/5.1
Xeon Phi 7110P (1.33 GHz, 61 cores, 16 GB) 14.3/12.5 27/13.5 20/10.1 14.5/8.3 -/-

Table 3: Performance for (far / close) views, in frames per second at 1024x1024 resolution for the reference data sets shown in Figure 7, on
different CPU and Xeon Phi coprocessors. All results shown for ambient occlusion, 1 sample per pixel.

Cosmic 13 subset. Effective throughput increases as we process
larger frame buffers, likely due to improved memory coherency.

4.6 Comparison to GPU Techniques

There is no readily-available GPU ray tracer for large molecular
and particle data with which to compare. State-of-the-art GPU
methods [9] employing OpenGL-rasterized impostors are capable
of real-time performance — for kiloscale or megascale data these
would be faster than our ray tracing approach, particularly on lap-
top or tablet CPUs. To render gigascale and larger particle data
on the GPU, one must use simplification, out-of-core approaches,
or distributed-parallel rendering. Geometric simplification meth-
ods on the GPU [16] have handled up to 10 billion (simplified to
200 million) atoms at 10 fps at 2 MP, combining illustrative ren-
dering with screen-space ambient occlusion; the p-k-d technique
on our workstation exhibits roughly comparable performance (10—
20 MRays/sec) on the full, unsimplified data. Out-of-core LOD
methods (e.g., [5]) are capable of even greater performance, but
more are difficult to explicitly compare to. In more recent work in-
volving parallel compositing on the GPU [23], the authors render
32 billion particle imposters without LOD on a 128-GPU cluster in
roughly 3 seconds for an 18 MP image (6 million primary rays/ sec-
ond). With a LOD strategy picking 10% of the full number of parti-
cles, they achieve linearly better performance (60 MRays/second).
While comparison between splatting transparent imposters and ray
tracing (mostly opaque) sphere glyphs is not completely fair, we are
able to achieve comparable performance for primary rays on our

single 72-core workstation. Moreover, though current GPUs sup-
port up to 12 GB RAM per device (750 million particles), Rizzi et
al. [23] suggest rasterization performance would drop below inter-
active rates at 50-200 million particles depending on the GPU and
technique used. Though outside the scope of this work, ray trac-
ing with the P-k-d structure may prove useful on future distributed-
memory GPU architectures.

5 SUMMARY AND DISCUSSION

We have presented a method for fast ray tracing of massive parti-
cle data on CPU architectures, with virtually no memory overhead.
With this approach, a suitably fast CPU with enough memory can
handle extremely large particle data, with no level-of-detail. Data
size has relatively little impact on rendering performance: kilo-
scale and giga-scale particle data exhibit similar frame rates. The
data chosen in our experiments include some of the largest molecu-
lar and materials simulations data, and significant subsets of cos-
mology simulation runs. With the balanced P-k-d structure, we
are able to handle 5 larger data than BVH methods, with perfor-
mance (using a naive ISPC implementation for our P-k-d tree) on
average 67% that of state-of-the-art BVH ray tracing (using hand-
tuned kernels). Our performance is competitive with state-of-the-
art distributed-parallel, out-of-core and LOD-based GPU methods.
Thanks to its implementation in OSPRay and ISPC, it can be de-
ployed on a wide range of CPUs.

Some remaining problems merit discussion. Balanced k-d tree
addressing leads to huge jumps in memory address when travers-



ing up and down the tree (in particular close to the leaves), posing
a challenge for any memory system. A hybrid structure, such as
a separate grid or BVH containing P-k-d trees, may greatly im-
prove performance at some small memory cost. At large scale, the
time to read and write from disk remains the main bottleneck for
both interactive and batch visualization. The time to build a P-k-
d tree on a single machine is also non-trivial. While it would be
possible to improve on our thread-parallel build, a better strategy
might be a data-parallel approach in which different nodes build P-
k-d trees over their own data, thus enabling distributed-parallel 1O,
distributed build of the acceleration structure, and interactive ray
tracing — offline, in coprocessing or in situ. Alternately, one could
pursue true in-memory in situ rendering, i.e., distributed parallel
ray tracing on the compute resource.

Rendering up to billions of particles on millions of pixels means
that thousands of particles can project to a single pixel. Though a
ray tracer can handle this cost-wise, it creates challenges in terms of
aliasing, and ultimately one must question whether glyph represen-
tation is the best way of visualizing such data. We believe the capa-
bility to visualize full particle data at high resolution (Figure 2) is
compelling, particularly for production-quality still images. How-
ever, antialiasing solutions borrowing from LOD techniques would
be desirable to remove artifacts and improve overall image quality,
particularly during rapid camera movement and animation.

Lastly, the balanced P-k-d structure’s optional range trees en-
able fast query and classification of multi-attribute data. Simula-
tions such as Uintah or CosmicWeb may have tens to hundreds of
attributes. Choosing how to efficiently traverse and classify multi-
field particle data, e.g., detecting halos or correlating combustion
variables, could be of interest from an applications standpoint.
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