
Journal of Computer Graphics Techniques Vol. 4, No. 4, 2015 http://jcgt.org

An Evaluation of Multi-Hit Ray Traversal in a BVH
Using Existing First-Hit/Any-Hit Kernels

Jefferson Amstutz
Intel Corporation

Christiaan Gribble
Applied Technology Operation

SURVICE Engineering

Johannes Günther
Intel Corporation

Ingo Wald
Intel Corporation

high

low

reference image progressive post-traversal progressive post-traversal
swaps divergence (SoA)

heatmap
scale

Figure 1. Efficient multi-hit ray tracing using existing BVH traversal algorithms. Many
ray-tracing applications in optical and non-optical domains require multiple intersections
along each ray, or so-called multi-hit ray traversal. Sorting hit points efficiently in light
of memory bandwidth limitations has a major impact on multi-hit ray-tracing performance in
a BVH. Here, heatmap visualizations depicting the number of swaps imposed by sorting, as
well as SIMD utilization of the sorting process, reveal the increased efficiency of our post-
traversal selection sort technique.

Abstract

We explore techniques for multi-hit ray tracing in a bounding volume hierarchy (BVH) using
existing ray traversal kernels and intersection callbacks. BVHs are problematic for imple-
menting multi-hit ray traversal correctly due to the potential for spatially overlapping leaf
nodes. We demonstrate that the intersection callback feature of modern, high performance
ray-tracing APIs enable correct and efficient implementation of multi-hit ray tracing despite
this concern. Moreover, the callback-based approach enables multi-hit ray tracing using exist-
ing, highly optimized BVH data structures, mitigating maintenance issues imposed by hand-
tuned multi-hit traversal kernels across various hardware architectures. Results show that
memory-bandwidth limitations and SIMD vector width of the target hardware platform dic-
tate ideal hit-point memory layout, as well as the point at which sorting should occur, in order
to maximize performance with existing BVH traversal algorithms.

72 ISSN 2331-7418

http://jcgt.org

Journal of Computer Graphics Techniques
An Evaluation of Multi-Hit Ray Traversal in a BVH

Vol. 4, No. 4, 2015
http://jcgt.org

1. Introduction

Ray tracing is an important technique in many optical and non-optical rendering ap-
plications. Research over the past 30 years has addressed performance of both ray
traversal and acceleration structure construction. For example, first-hit ray traversal is
used for visibility [Appel 1968] and, when applied recursively [Whitted 1980; Kajiya
1986], for advanced effects including direct and indirect illumination in traditional
optical-rendering (image synthesis) applications. Likewise, any-hit ray traversal can
be used for efficient occlusion queries when computing shadows or ambient occlu-
sion. Many applications in non-optical rendering—our particular area of interest—
also benefit from fast first-hit and any-hit traversal.

However, some applications require more than one intersection along each ray, or
so-called multi-hit ray traversal. In these instances, simply using first-hit traversal to
collect multiple hit points is an enticing approach: at each valid intersection, a new
ray is traced using the recently-generated hit point, adjusted by a small ε term, as its
origin.

Unfortunately, an approach to multi-hit traversal based on first-hit traversal with
ε-offsets is not usable in practice, since intersections may be erroneously repeated or
missed entirely, leading to incorrect results [Gribble et al. 2014]. An operation that
correctly and efficiently solves the multiple intersection problem, even in numerically
difficult situations, is required.

A multi-hit ray traversal algorithm is one that returns information concerning the
N -closest ray/primitive intersections in ray order. Multi-hit traversal generalizes both
first-hit traversal (where N = 1) and all-hit traversal, a scheme in which ray queries
return information concerning every intersected primitive (where N = ∞), while
accommodating arbitrary values of N between these extremes.

A correct multi-hit ray traversal algorithm is a necessary, but insufficient, con-
dition for modern applications, however; performance is also critical for both inter-
activity and fidelity in many scenarios. For example, interactivity is often limited
by performance of ray traversal or the rate at which acceleration structures for dy-
namic geometry can be updated. Likewise, performance directly impacts accuracy
of ray-based Monte Carlo simulations that converge to the correct solution by tracing
large numbers of rays. Unfortunately, satisfying multi-hit traversal constraints has
contributed to the inability of many existing multi-hit applications to employ modern,
fast ray-tracing APIs, and thus, to their dismal performance.

Modern ray-tracing engines address performance concerns by hiding complicated,
highly optimized ray-tracing kernels behind clean, well-designed APIs. Embree [Wald
et al. 2014] implements a highly optimized ray-tracing engine for x86-based CPUs
and Intel R© Xeon Phi

TM
coprocessors. Similarly, OptiX1 [Parker et al. 2010] is a

1OpitX is a trademark of the NVIDIA Corporation.

73

http://jcgt.org

Journal of Computer Graphics Techniques
An Evaluation of Multi-Hit Ray Traversal in a BVH

Vol. 4, No. 4, 2015
http://jcgt.org

highly optimized ray-tracing engine designed for NVIDIA2 GPUs. To accelerate ray
queries, Embree and OptiX utilize numerous bounding volume hierarchy (BVH) vari-
ants based on application characteristics provided to the engine by the user. These en-
gines provide fast first-hit and any-hit ray traversal operations for use in applications
across optical and non-optical domains.

Previous work on multi-hit ray traversal [Gribble et al. 2014] assumes an accelera-
tion structure based on spatial subdivision, in which leaf nodes of the structure do not
overlap. With such structures, ordered traversal—and therefore generating ordered
hit points—is straightforward: sorting is required only within, not across, leaf nodes.
However, ordered traversal in a structure based on object partitioning, such as a BVH,
is not achieved so easily; in fact, ordered ray traversal is at odds with the BVH struc-
tures employed by modern, high performance ray-tracing engines. At first glance,
then, it is unclear that a BVH can provide reasonable multi-hit performance. Surpris-
ingly, however, we demonstrate several techniques to implement multi-hit traversal in
a BVH efficiently.

Specifically, we explore multi-hit ray tracing and its performance characteristics
in Embree and OptiX. We are motivated by an API feature we call intersection call-
backs, which allow clients to inject application-specific ray/primitive intersection pro-
cessing into traversal. In Embree, intersection-filter functions enable users to express
per-hit processing, while in OptiX, user-defined any-hit programs implement this
feature.

Intersection-filter functions are a recent addition to the Embree API. If a fil-
ter function is defined, it is invoked whenever a triangle is successfully intersected,
irrespective of distance along the ray. Intersection filters are intended to inject
user-defined ray/primitive rejection tests into traversal. For example, an otherwise
valid intersection could be rejected based on the primitive’s material properties
(an alpha texture, for example); in this case, traversal continues until either another
candidate intersection is found (and accepted) or when the ray exits the
structure.

We observe that intersection rejection is not the only operation that can be imple-
mented using intersection filters; when viewed more generally, this feature enables
client applications to inject arbitrary logic, executed whenever a valid ray/primitive
intersection is found, and continue or terminate ray traversal.

Like intersection-filter functions, any-hit programs in OptiX are invoked at any
ray/primitive intersection, irrespective of distance along the ray. Occlusion queries
are a common application of any-hit programs: in the case of shadow or ambient
occlusion rays, the distance at which the ray encounters a valid intersection is not of
concern, only that it does, in fact, encounter such an intersection. Combined with
OptiX’s rtTerminateRay function, occlusion rays can be terminated as soon as any

2NVIDIA is a trademark of the NVIDIA Corporation.

74

http://jcgt.org

Journal of Computer Graphics Techniques
An Evaluation of Multi-Hit Ray Traversal in a BVH

Vol. 4, No. 4, 2015
http://jcgt.org

primitive generates a valid intersection. In a similar manner, we combine any-hit
programs with OptiX’s rtIgnoreIntersection function to continue, rather than
terminate, ray traversal.

Though we recognize the diversity of applications using multi-hit ray traversal—
for example, optical and non-optical domains may impose very different ray-tracing
requirements—we investigate multi-hit traversal within a set of constraints that char-
acterize many, but not all, applications of multi-hit ray tracing. In particular, we
assume:

1. Existing traversal kernels are used without modification. Embree and OptiX al-
ready provide highly tuned traversal kernels for first-hit and any-hit queries. We
are motivated by non-optical rendering in production environments and, there-
fore, seek to avoid additional maintenance burden imposed by unique multi-
hit traversal kernels. Moreover, a ray-tracing engine may not support user-
defined kernels, as in the case of OptiX. We therefore use existing traversal
kernels without modification.

2. Rays are coherent. Vectorization of ray traversal and hit-point sorting is crit-
ical to good performance. We focus on spatially coherent rays, which are
more likely to be traversed and intersected coherently, and which are, there-
fore, amenable to vector processing.

3. Hit-point buffers are pre-allocated. The number of gathered hit points varies
among rays, but using a large, pre-allocated buffer for collecting hit points al-
leviates the need for memory allocation during traversal. Though we believe
better strategies for managing hit-point buffers may be possible—particularly
when guided by application-specific constraints—we opt for simplicity and use
a large, pre-allocated buffer in this work.

BVH traversal algorithms specific to the multiple intersection problem, incoherent
ray distributions, and clever memory management strategies are beyond the scope of
this work and represent areas of future work.

With these assumptions in mind, we show that correct and efficient multi-hit traver-
sal can be implemented using intersection callbacks and state-of-the-art, finely-tuned
BVHs with performance competitive to that achieved with algorithms specific to
multi-hit ray traversal in structures based on spatial subdivision [Gribble et al. 2014].
Importantly, this callback-based approach integrates multi-hit traversal into existing
APIs in a maintainable way: intersection-callback logic belongs to the client, so
leveraging this approach does not require custom, hand-coded kernels that further
compound the already numerous maintenance tasks necessary to support production
ray-tracing applications.

75

http://jcgt.org

Journal of Computer Graphics Techniques
An Evaluation of Multi-Hit Ray Traversal in a BVH

Vol. 4, No. 4, 2015
http://jcgt.org

Valid hit points must be sorted to meet the ray-order criterion imposed by multi-
hit traversal, so we also examine two factors that impact sorting performance: in-
memory hit-point structure layout and the point at which sorting occurs. We show
that hardware platforms with high memory bandwidth per-ray benefit from vector-
ized post-traversal sort, while lower memory bandwidth platforms benefit from scalar
progressive sort during traversal.

2. Methodology

Multi-hit ray traversal is a class of ray traversal algorithms that finds one or more,
and possibly all, primitives intersected by a ray, ordered by point of intersection.
Gribble et al. [2014] introduce two algorithms for multi-hit traversal in acceleration
structures based on spatial subdivision: a naive algorithm that essentially implements
all-hit traversal but returns (at most) the closest-N hit points, and a buffered algo-
rithm with early-exit, which exploits ordered traversal to terminate after (at least) the
closest-N hit points have been found.

2.1. Naive vs. Buffered Multi-Hit Traversal

In the naive algorithm, rays iteratively traverse the acceleration structure, recording
information about each intersection in sorted order. Once traversal is complete, a per-
hit user-level callback is invoked to process each hit point. The return value of this
callback indicates whether or not additional intersections should be processed.

The naive algorithm is simple and effective: it imposes very few constraints on
an actual implementation, it does not assume a particular acceleration structure, and
it allows the user to process as many intersections as desired.

However, the naive algorithm is potentially very slow: it essentially implements
the all-hit traversal scheme, as opportunities for early-exit occur during intersection
processing, only after all intersections have been found, and not during traversal.

The buffered multi-hit traversal algorithm addresses these issues. As in the naive
algorithm, this version maintains a per-ray data structure to record valid intersec-
tions. However, rather than allow the list to grow without bound, an ordered buffer
of a fixed size is used. This algorithm also exploits opportunities for early-exit when
N < ∞: as before, the per-hit callback indicates whether or not additional intersec-
tions are desired. For cases in which they are not, ray traversal—not just intersection
processing—ends; otherwise, processing continues with the next node.

In acceleration structures based on spatial subdivision, buffered multi-hit traversal
is straightforward: leaf nodes do not overlap and are easily traversed in front-to-back
order.

These properties are illustrated in the left panel of Figure 2. In this example, the
ray traverses the near node first and computes a hit point with the blue triangle, but

76

http://jcgt.org

Journal of Computer Graphics Techniques
An Evaluation of Multi-Hit Ray Traversal in a BVH

Vol. 4, No. 4, 2015
http://jcgt.org

near

far

near

far

Figure 2. The problem of overlapping nodes. Ordered traversal in acceleration structures
based on spatial subdivision is straightforward (left). Though primitives spanning a split plane
must be handled appropriately, spatial subdivision simplifies the problem of returning multiple
intersections in ray-order. In contrast, structures based on object subdivision complicate this
situation (right). Here, a valid intersection is identified in the near node, though the hit point
is clearly second in ray-order. Generally, all nodes must be traversed before the hit points are
correctly ordered.

does not yet consider the red triangle in the far node. At this point, the computed hit
point is inserted into the local buffer in ray-order. Importantly, as the ray exits the
near node, the hit points gathered thus far can be returned to the application, enabling
the client to request more hit points and continue traversal or to terminate.

In this manner, acceleration structures based on spatial subdivision provide op-
portunities for improved multi-hit performance: the number of hit points—and thus
the size of the buffer used to retain these data—can be bounded to optimize traversal
performance and memory requirements, and opportunities to terminate traversal after
processing each node can be exploited because they are processed in ray-order.

Unfortunately, these same properties are not true for a BVH. Though at any level
primitives belong to only one node in the tree, the nodes themselves may overlap, so
strict front-to-back traversal cannot be easily resolved. This characteristic, in turn,
implies that hit points may be generated out of order.

This issue is illustrated in the right panel of Figure 2. Here, the ray computes
a valid intersection with the red triangle in the near node, though the hit point is
clearly second in ray-order. However, the ray will not intersect the blue triangle until
it traverses the far node. To address this issue, both nodes must be traversed before the
hit points are correctly resolved—there is no opportunity for early exit when nodes
overlap.

A buffered multi-hit traversal algorithm for a BVH must, therefore, store and sort
hit points across leaf nodes until at least the point at which the set of already-traversed
nodes contains none that overlap untraversed nodes. Techniques to satisfy this con-
straint would impose significant burden on BVH construction (to enumerate and store
data about overlapping nodes for use during traversal) and ray traversal itself (to cor-
rectly determine when the no-overlap constraint is satisfied). In this case, existing

77

http://jcgt.org

Journal of Computer Graphics Techniques
An Evaluation of Multi-Hit Ray Traversal in a BVH

Vol. 4, No. 4, 2015
http://jcgt.org

BVH data structures, construction algorithms, and ray traversal kernels cannot be used
as is to implement the buffered multi-hit algorithm described by Gribble et al. [2014].

Specifically, in a multi-hit implementation that is based on intersection callbacks
and that utilizes unmodified first-hit or any-hit BVH traversal kernels, the interval
over which intersections are considered valid is [ε, t-near = t-max], where t-max ≥ t-
exit, the distance at which the ray exits the root-level bounding volume. This interval
is required to ensure that all nodes are visited during traversal and, as a result, that all
hit points are gathered.

Once initialized, this interval does not—and cannot—change during traversal due
to restrictions on intersection callbacks imposed by current ray-tracing APIs. For
example, the multi-hit traversal intersection callback for Embree simply saves data
corresponding to each valid hit point in a per-ray data structure and rejects the in-
tersection to continue traversal. In this reject-intersection case, the original value
of t-near—that is, t-max—is restored by a routine that is automatically invoked by
Embree after the intersection callback and that is inaccessible to the client.

We are thus forced to use naive multi-hit traversal. This approach is not without
merit, however: ray traversal remains simple—we need only traverse rays all the way
through the structure. More importantly, the multiple intersection problem is solved
correctly using existing BVH structures and traversal algorithms—the effort required
to optimize BVH traversal for various hardware architectures and SIMD vector widths
remains intact. We therefore focus on techniques to maximize efficiency of gathering
and sorting hit points using the existing, highly optimized BVH acceleration struc-
tures provided by Embree and OptiX.

2.2. Hit-Point Data and Memory Layout

The contents of the hit-point data structure have important performance implications,
but depend heavily on application-level requirements. Smaller hit-point data struc-
tures increase cache density and reduce the cost of memory transactions imposed by
hit-point processing, whereas larger structures have the opposite effect. We store a
minimally complete set of data for each valid hit point: intersection distance, geomet-
ric normal, and primitive/object identifiers.

Effective SIMD programming on both CPUs and GPUs requires careful atten-
tion to memory layouts to maximize bandwidth performance. Typically, arrays-of-
structures (AoS) result in poor access patterns, as operations involving individual
members of the structure cannot be coalesced and thus incur expensive scatter/gather
memory operations.

Conventional wisdom suggests that wide SIMD architectures benefit more from
the structures-of-arrays (SoA) layout, which is used to coalesce member accesses
and minimize incoherent memory reads and writes. However, when presented with
incoherent sorting operations among rays, scatter/gather operations occur per-element

78

http://jcgt.org

Journal of Computer Graphics Techniques
An Evaluation of Multi-Hit Ray Traversal in a BVH

Vol. 4, No. 4, 2015
http://jcgt.org

of the SoA hit-point structure. Each member of the structure is significantly smaller
than a SIMD vector, resulting in vast underutilization. Alternatively, with the AoS
data layout, vector memory operations read or write entire hit-point structures, which
uses each operation more efficiently during sorting.

In order to better understand the effect of these factors on multi-hit ray-tracing
performance, we examine both AoS and SoA data layouts for hit-point buffers in
Section 3.

2.3. Hit Point Sorting

Gathering all hit points along a ray requires the ability to continue BVH traversal after
a hit point has been found. As noted above, we leverage Embree’s intersection filters
and OptiX’s any-hit programs to accomplish this task. In each implementation, these
callbacks simply store hit-point data in a local buffer and unconditionally continue
traversal.

Hit points must be sorted to meet the ordering constraint of multi-hit ray traversal,
so we explore two sorting methods: progressive insertion sort during traversal and
post-traversal selection sort.

Progressive insertion sort. In this first approach, intersections are sorted as they are
inserted into the local buffer. Importantly, this approach follows the general form of
standard BVH traversal. However, when a valid intersection is found, it is interserted
into the hit list in ray-order. This algorithm flows naturally from a direct application
of naive multi-hit traversal, under the constraints imposed by a BVH.

This technique strives to maximize cache locality—hit points are likely already in
cache during traversal. Specifically, if a hit point needs to be swapped, it will most
often swap with its closest neighboring hit points. Thus, when a valid intersection
is found, adjacent hit points will likely be valid in cache and can thus be swapped
without the penalty of global memory latency.

Post-traversal selection sort. In the second approach, intersections are gathered into
the local buffer without regard for proper front-to-back ordering. In this case, the
traversal process is nearly identical to the previous approach. However, a valid hit
point is simply appended to the local buffer, and the entire collection is sorted after
traversal is complete but before returning to the client.

This approach strives to keep both traversal and sorting operations amenable to
SIMD processing. During traversal, rays within a SIMD vector may stall because of
neighboring rays that must find and store additional hit points. The stall period is di-
rectly proportional to the time required to insert hit-point data into the local buffer. If
sorting is postponed until after traversal, the potential stall period is reduced. Further-
more, divergence among rays during traversal negatively impacts sorting coherence.
As shown in Section 3, the actual sorting process is significantly more coherent when

79

http://jcgt.org

Journal of Computer Graphics Techniques
An Evaluation of Multi-Hit Ray Traversal in a BVH

Vol. 4, No. 4, 2015
http://jcgt.org

the set of intersection points to be sorted is well-known and bounded (after ray traver-
sal) than when this information is unknown (during ray traversal).

3. Results

We implemented each technique described in Section 2 using the eight scenes and
viewpoints depicted in Figure 3. For CPU and Intel Xeon Phi coprocessor results, we
build on the OSPRay rendering framework [Intel Corporation 2014], which provides
a flexible mechanism to execute Embree kernels in various hardware and software
configurations. For GPU results, we use OptiX SDK examples as the basis for our im-
plementation. We also compare against Rayforce3, the open source GPU ray-tracing
engine used in previous work [Gribble et al. 2014]. Rayforce employs an acceleration
structure—most aptly characterized as a graph—that is based on spatial subdivision;
these comparisons characterize the impact of naive multi-hit ray traversal, which is
required when using existing BVH traversal algorithms, as discussed above.

For each scene, we render a series of 100 frames at 1024× 1024 pixel resolution.
Each image is generated using visibility rays from a pinhole camera, with a single
sample per pixel. The Embree results are collected on dual 18-core Intel R© Xeon R© E5-
2699 v3 processors or a single Intel Xeon Phi 7120A coprocessor. The OptiX results
are collected on a single NVIDIA GTX Titan GPU.

Figure 3. Scenes used for performance evaluation. Eight scenes of varying geometric and
depth complexity are used to evaluate the performance of our multi-hit ray traversal schemes.
The first-hit visible surfaces in many of these scenes hide significant internal complexity,
making them particularly useful as tests of multi-hit traversal.

3Rayforce: Exceptional performance through non-traditional means. Source code is available via
http://rayforce.survice.com.

80

http://jcgt.org
http://rayforce.survice.com

Journal of Computer Graphics Techniques
An Evaluation of Multi-Hit Ray Traversal in a BVH

Vol. 4, No. 4, 2015
http://jcgt.org

3.1. First-hit vs. Unsorted All-hit

As a baseline, we compare first-hit traversal performance to the performance of gath-
ering all hit points without sorting. This comparison is instructive in two ways. First,
first-hit performance is a well-understood quantity for measuring ray traversal costs
and, therefore, provides insight into the relative impact of gathering all hit points us-
ing existing BVH traversal algorithms. Second, unsorted all-hit traversal performance
provides an upper bound for naive multi-hit traversal: we cannot possibly gather and
sort all hit points any faster than we can gather, but not sort, the same points. Perfor-
mance is reported in terms of millions of rays per second (Mrps); the results are shown
in Figure 4. We observe a significant performance penalty—about 44% for our test
scenes—when gathering all unsorted hit points, particularly for scenes of high depth
complexity, or those with a larger average number of hit points per ray.

0	

50	

100	

150	

200	

250	

300	

sibe	 fair	 conf	 truck	 tank	 hball	 sanm	 pplant	 Mrps	
first-‐hit	 unsorted	 all-‐hit	

Figure 4. First-hit vs. unsorted all-hit. Here, the graph compares performance (in Mrps)
between first-hit traversal and unsorted all-hit traversal. Gathering all hit points along a ray
clearly impacts performance (about 44% for our test scenes) and provides an upper bound on
performance for naive multi-hit traversal.

3.2. Observed Efficiency

We next examine the impact of SIMD hardware on multi-hit traversal. SIMD effi-
ciency correlates directly to throughput, so we measure SIMD utilization to under-
stand how sorting operations disrupt coherence in the SoA layout.

We observe that SIMD utilization is improved by deferring the sort until after
traversal. Divergence of neighboring rays is an issue even with first-hit ray traversal;

81

http://jcgt.org

Journal of Computer Graphics Techniques
An Evaluation of Multi-Hit Ray Traversal in a BVH

Vol. 4, No. 4, 2015
http://jcgt.org

0.00	

0.50	

1.00	

1.50	

2.00	

2.50	

3.00	

sibe	 fair	 conf	 truck	 tank	 hball	 sanm	 pplant	

4-‐wide	 (SSE)	 8-‐wide	 (AVX)	 16-‐wide	 (Xeon	 Phi)	

Figure 5. SIMD utilization improvement across vector widths. Here, the graph depicts
SIMD utilization improvement across 4-, 8-, and 16-wide SIMD vector units when defer-
ring hit-point sorting until after traversal. On average, post-traversal sorting improves SIMD
utilization by a factor of about 1.41 for our test scenes.

sorting intersections during traversal only increases the probability that rays and the
corresponding sorting operations will diverge because the number of intersections
along each ray may differ. Post-traversal sort alleviates this issue and, as noted in
Section 2, exploits a priori knowledge of the number of hit points to sort. As can be
seen in Figure 5, SIMD utilization is improved over all vector widths tested and, once
again, the benefit is higher for dense scenes and wider vector units.

In particular, we see an overall SIMD utilization improvement by a factor of about
1.41 when sorting occurs after traversal. A breakdown of specific values for 8-wide
vectors is shown in Table 1. Here, we see that triangle density also impacts sorting ef-
ficiency. For example, we observe that sanm renders with 60% more SIMD efficiency
in sorting than does hball, despite having nearly four times the number of triangles.
Dense geometry not only has a higher total intersection count, but the underlying
BVH is more likely to have a larger number of overlapping leaf nodes, which incurs
a higher sorting burden during traversal.

We also observe that data layout impacts measurements of SIMD divergence
when sorting hit points. When using the SoA memory layout, these measurements
are a direct indicator of sorting coherence, as characterized by the results by Table 1.
However, AoS hit points are sorted with scalar instructions, so SIMD vectors are no
longer used across multiple rays and hit points; instead, entire hit-point structures
are accessed via vector memory instructions. As a result, the AoS layout actually
improves performance on wider SIMD hardware, as discussed below.

82

http://jcgt.org

Journal of Computer Graphics Techniques
An Evaluation of Multi-Hit Ray Traversal in a BVH

Vol. 4, No. 4, 2015
http://jcgt.org

avg % fewer util
scene hits/ray # swaps % util swaps improve

sibe 2.4
0.3 78.7

0.00 1.1×
0.3 89.4

fair 2.9
1.0 84.7

40.0 1.1×
0.6 94.1

conf 2.0
0.4 83.0

0.0 1.1×
0.4 90.9

truck 18.0
22.3 86.3

64.7 1.0×
7.9 88.0

tank 10.2
5.7 68.3

45.6 1.3×
3.1 87.6

hball 21.3
24.1 33.5

64.7 1.9×
8.5 64.7

sanm 6.5
4.1 66.7

56.1 1.2×
1.8 77.2

pplant 14.5
29.0 48.1

72.4 1.6×
8.0 78.3

Table 1. Observed efficiency of our multi-hit ray traversal techniques in Embree. Here,
the data compare important performance characteristics for progressive insertion sort (top
row, columns 3 and 4) and post-traversal selection sort (bottom row, columns 3 and 4) using
two AVX/AVX2-enabled Intel R© Xeon R© processors.

Finally, we see that swap counts are reduced when using post-traversal selection
sort. Dense scenes, in particular, benefit the most, as more hit points are likely to be
out of order. While swap counts do not significantly impact overall performance, we
nevertheless observe a reduction in the amount of work imposed by sorting.

3.3. Observed Performance

Multi-hit ray-tracing performance reveals that different factors determine the runtime
characteristics on each of the hardware platforms considered here. The two largest
factors contributing to overall performance are memory bandwidth and throughput.
As discussed above, SIMD utilization improves throughput, but results show that
memory bandwidth becomes increasingly important with wider SIMD vectors and
more in-flight rays. We report performance in terms of millions of hits per second, or
Mhps, throughout this section.

CPU performance. The CPU results shown in Figure 6 reveal a noticeable speedup
across all scenes when using coherent progressive sort with SoA hit-point buffers, par-
ticularly for scenes with high depth-complexity. In this case, the 8-wide SIMD vectors

83

http://jcgt.org

Journal of Computer Graphics Techniques
An Evaluation of Multi-Hit Ray Traversal in a BVH

Vol. 4, No. 4, 2015
http://jcgt.org

0.0	

50.0	

100.0	

150.0	

200.0	

250.0	

300.0	

350.0	

400.0	

450.0	

500.0	

550.0	

sibe	 fair	 conf	 truck	 tank	 hball	 sanm	 pplant	 Mips	
AoS,	 progressive	 AoS,	 post-‐traversal	 SoA,	 progressive	 SoA,	 post-‐traversal	

Figure 6. Performance on two Intel R© Xeon R© E5-2699 v3 processors. Here, the graph
depicts performance (in Mhps) of our sorting techniques and hit-point data layouts on the
CPU. On average, coherent progressive sort with SoA hit-point data performs best for our test
scenes.

are able to maintain better coherence and thus benefit from sorting during traversal.
Moreover, of the hardware platforms tested, the CPUs have the best available cache

0.0	

50.0	

100.0	

150.0	

200.0	

sibe	 fair	 conf	 truck	 tank	 hball	 sanm	 pplant	 Mips	
AoS,	 progressive	 AoS,	 post-‐traversal	 SoA,	 progressive	 SoA,	 post-‐traversal	

Figure 7. Performance on a single Intel R© Xeon Phi
TM

7120A coprocessor. Here, the
graph depicts performance (in Mhps) of our sorting techniques and hit-point data layouts on
the coprocessor. On average, coherent post-traversal sort with AoS hit-point data performs
best, despite the observed limitation of OSPRay’s frame-compositing bottleneck.

84

http://jcgt.org

Journal of Computer Graphics Techniques
An Evaluation of Multi-Hit Ray Traversal in a BVH

Vol. 4, No. 4, 2015
http://jcgt.org

capacity per ray at any given time. Thus, when rays encounter intersections, neigh-
boring hit points that may require swapping are likely in the cache already.

Xeon Phi coprocessor performance. The Xeon Phi coprocessor results shown in
Figure 7 reveal that post-traversal sort with AoS hit-point data layout generally per-
forms best for our test scenes. The expected trend is that wider SIMD vectors benefit
more from careful data layout and attention to coherence. On the contrary, we observe
that memory bandwidth has a larger impact on performance in this context. Xeon Phi
has less available cache per ray during traversal, which introduces shared memory
bandwidth as the primary factor influencing performance. However, enough cache is
available so that sorting coherently after traversal generally maximizes overall per-
formance. We also observe that OSPRay’s Xeon Phi frame-compositing operations
become the limiting factor when measuring performance for the smaller test scenes.

NVIDIA GPU performance. The GPU results shown in Figure 8 reveal that the best
performing technique is progressive sort with AoS hit-point data layout. On the GPU,
huge numbers of rays are traced concurrently, which requires a large buffer for per-
ray hit-point data. This requirement causes almost all hit-point manipulations to incur
expensive cache misses, so efficient memory operations have the greatest impact on
overall performance. Similar to the Intel Xeon Phi coprocessor, sorting AoS data is

0.0	

50.0	

100.0	

150.0	

200.0	

250.0	

300.0	

350.0	

400.0	

450.0	

500.0	

sibe	 fair	 conf	 truck	 tank	 hball	 sanm	 pplant	 Mips	
Rayforce	 AoS,	 progressive	 AoS,	 post-‐traversal	 SoA	 progressive	 SoA,	 post-‐traversal	

Figure 8. Performance on a single NVIDIA GTX Titan. Here, the graph depicts perfor-
mance (in Mhps) of our sorting techniques and hit-point data layouts on the GPU. For com-
parison to multi-hit traversal in structures based on spatial subdivision, results for Rayforce
are also shown. On average, progressive sort with AoS hit-point data performs best among
our BVH techniques for these scenes.

85

http://jcgt.org

Journal of Computer Graphics Techniques
An Evaluation of Multi-Hit Ray Traversal in a BVH

Vol. 4, No. 4, 2015
http://jcgt.org

more bandwidth-efficient on this platform. The 32-wide SIMD vectors make it more
likely to store and sort incoherent hit points, which further justifies optimizing for
memory bandwidth. Lastly, progressive sorting is generally the faster technique be-
cause the likelihood of neighboring hit points being in cache is highest during traver-
sal.

Figure 8 also shows that we achieve performance competitive with multi-hit traver-
sal in Rayforce, the GPU ray-tracing engine used in previous work [Gribble et al.
2014]. In fact, using OptiX, we achieve about 86% (on average) of performance in
Rayforce for the sorted all-hit case on a single NVIDIA GTX Titan GPU. We are mo-
tivated by non-optical rendering in production environments, so we are pleased with
these results, particularly given the conflict between ordered ray traversal and BVHs.
Moreover, the maintenance issues alleviated by our ability to utilize existing—and
continually improving—ray-tracing engines significantly outweighs the difference in
absolute performance: our production rendering applications are sufficiently interac-
tive to exceed our users’ needs.

4. Conclusions and Future Work

We explore techniques for multi-hit ray traversal in a BVH, an acceleration structure
common to modern, high performance ray-tracing APIs. We demonstrate a novel
use of intersection callbacks in Embree and OptiX to enable correct and efficient im-
plementation of multi-hit traversal, despite complications arising due to overlapping
nodes. Importantly, intersection callbacks enable implementation of multi-hit ray
traversal using finely-tuned BVH data structures, construction algorithms, and ray
traversal kernels that already exist in these engines.

Specifically, we examine the various combinations of hit-point data layout and the
point at which sorting occurs. Results show that deferring sort until after traversal im-
proves efficiency by reducing memory swaps and increasing SIMD vector utilization.
However, post-traversal sort does not necessarily guarantee maximum performance:
memory bandwidth constraints on current hardware also impact sorting performance
and can be justification alone for preferring an AoS or SoA hit-point data layout,
regardless of efficiency.

We examine only the cost of multi-hit ray traversal and hit-point sorting in this
work. However, production multi-hit applications in both optical and non-optical
domains will also shade or otherwise process the returned hit points; these opera-
tions further complicate the problem of maintaining high SIMD utilization through-
out rendering. Future work will investigate techniques to handle these operations effi-
ciently, particularly in physics-based simulation applications. Any high performance
approach will likely benefit from a wavefront formulation [Laine et al. 2013], in which
shading operations are sorted by type and grouped to maximize SIMD utilization—

86

http://jcgt.org

Journal of Computer Graphics Techniques
An Evaluation of Multi-Hit Ray Traversal in a BVH

Vol. 4, No. 4, 2015
http://jcgt.org

implying the use of SoA data. However, specific applications should carefully observe
memory bandwidth, as it has a significant impact on multi-hit ray traversal.

We consider the performance of multi-hit traversal only in a BVH, and previous
work did not consider SIMD utilization in spatial subdivision structures. Beyond
the implications for multi-hit traversal in a BVH, the results of this work will also
be instructive in any future exploration of multi-hit SIMD utilization in acceleration
structures based on spatial subdivision.

Currently, our formulation in OptiX has an overly burdensome memory require-
ment. Because OptiX maintains a large number of in-flight rays, hit-point buffers
must be very large. Future work will investigate techniques to reduce the memory
requirement when tracing multi-hit rays using a BVH on the GPU.

An initial comparison of each Embree filter-based technique to hand-coded kernel
versions shows that kernel-based implementations perform 25% better (on average)
than intersection filters. We observe that hand-coded traversal kernels avoid unneces-
sary function call overhead and storage of temporary data that is not actually neces-
sary for multi-hit ray traversal. Future work will explore the benefit of implementing
unique BVH multi-hit traversal kernels for improved performance.

Additionally, an implementation using index-based storage and sorting of hit-
point data has little impact on performance beyond the results presented in Section 3.
Similar to linked-list fragment buffers in depth peeling [Carpenter 1984; Crassin
2010; Yang et al. 2010], the index-based technique stores full hit-point data in an
unordered buffer and sorts only indices into that buffer. On average, progressive and
post-traversal index sorting using each of AoS and SoA data layouts improves per-
formance by less than one percent, and no one combination is uniformly faster across
all of our test scenes. Moreover, accessing unordered hit-point data is generally less
coherent than corresponding access in direct-sorting techniques, a property that may
negatively impact shading or other downstream operations, particularly when com-
bined with the additional level of indirection imposed by indexing. However, spe-
cific applications should consider hit-point data requirements in this case, as relative
performance of the index-based technique may depend on this application-level con-
straint.

Finally, we examine only coherent multi-hit rays. Understanding the performance
impact of incoherent ray distributions on multi-hit traversal should also be examined.
Future work will investigate incoherent ray distributions across various multi-hit ray-
tracing applications to identify techniques that maximize performance in this context.

References

APPEL, A. 1968. Some techniques for shading machine renderings of solids. In Proceedings
of the April 30–May 2, 1968, Spring Joint Computer Conference, ACM, New York, NY,

87

http://jcgt.org

Journal of Computer Graphics Techniques
An Evaluation of Multi-Hit Ray Traversal in a BVH

Vol. 4, No. 4, 2015
http://jcgt.org

AFIPS ’68 (Spring), 37–45. URL: http://doi.acm.org/10.1145/1468075.
1468082. 73

CARPENTER, L. 1984. The A-Buffer, an antialiased hidden surface method. SIG-
GRAPH Computer Graphics 18, 3, 103–108. URL: http://doi.acm.org/10.
1145/964965.808585. 87

CRASSIN, C., 2010. Icare3D Blog: Linked lists of fragment pages. Avail-
able at http://blog.icare3d.org/2010/07/opengl-40-abuffer-v20-

linked-lists-of.html. 87

GRIBBLE, C., NAVEROS, A., AND KERZNER, E. 2014. Multi-hit ray traversal. Journal of
Computer Graphics Techniques 3, 1, 1–17. 73, 74, 75, 76, 78, 80, 86

INTEL CORPORATION, 2014. OSPRay: A ray tracing based rendering engine for high-fidelity
visualization. Available at http://ospray.github.io. 80

KAJIYA, J. T. 1986. The rendering equation. In Proceedings of the 13th Annual Conference
on Computer Graphics and Interactive Techniques, ACM, New York, NY, 143–150. URL:
http://doi.acm.org/10.1145/15922.15902. 73

LAINE, S., KARRAS, T., AND AILA, T. 2013. Megakernels considered harmful: wave-
front path tracing on GPUs. In Proceedings of the 5th High-Performance Graphics Con-
ference, ACM, New York, NY, 137–143. URL: http://doi.acm.org/10.1145/
2492045.2492060. 86

PARKER, S. G., BIGLER, J., DIETRICH, A., FRIEDRICH, K., HOBEROCK, J., LUEBKE,
D., MCALLISTER, D., MCGRUIRE, M., MORLEY, K., ROBISON, A., AND STICH, M.
2010. OptiX: a general purpose ray tracing engine. ACM Transactions on Graphics (Pro-
ceedings of ACM SIGGRAPH 2010) 29, 4, 66:1–66:13. URL: http://doi.acm.org/
10.1145/1778765.1778803. 73

WALD, I., WOOP, S., BENTHIN, C., JOHNSON, G. S., AND ERNST, M. 2014. Embree -
a kernel framework for efficient CPU ray tracing. ACM Transactions on Graphics 33, 4
(July), 143:1–143:8. URL: http://dl.acm.org/citation.cfm?id=2601199.
73

WHITTED, T. 1980. An improved illumination model for shaded display. Communica-
tions of the ACM 23, 6, 343–349. URL: http://doi.acm.org/10.1145/358876.
358882. 73

YANG, J. C., HENSLEY, J., GRÜN, H., AND THIBIEROZ, N. 2010. Real-time con-
current linked list construction on the GPU. Computer Graphics Forum 29, 4, 1297–
1304. URL: http://onlinelibrary.wiley.com/doi/10.1111/j.1467-
8659.2010.01725.x/abstract. 87

Index of Supplemental Materials

We provide algorithm listings for multi-hit ray traversal using both progressive insertion sort
and post-traversal selection sort, as well as performance visualizations similar to those in
Figure 1 for all eight scenes, in extra.pdf available online at http://jcgt.org/
published/0004/04/04/extra.pdf.

88

http://jcgt.org
http://doi.acm.org/10.1145/1468075.1468082
http://doi.acm.org/10.1145/1468075.1468082
http://doi.acm.org/10.1145/964965.808585
http://doi.acm.org/10.1145/964965.808585
http://blog.icare3d.org/2010/07/opengl-40-abuffer-v20-linked-lists-of.html
http://blog.icare3d.org/2010/07/opengl-40-abuffer-v20-linked-lists-of.html
http://ospray.github.io
http://doi.acm.org/10.1145/15922.15902
http://doi.acm.org/10.1145/2492045.2492060
http://doi.acm.org/10.1145/2492045.2492060
http://doi.acm.org/10.1145/1778765.1778803
http://doi.acm.org/10.1145/1778765.1778803
http://dl.acm.org/citation.cfm?id=2601199
http://doi.acm.org/10.1145/358876.358882
http://doi.acm.org/10.1145/358876.358882
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-8659.2010.01725.x/abstract
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-8659.2010.01725.x/abstract
http://jcgt.org/published/0004/04/04/extra.pdf
http://jcgt.org/published/0004/04/04/extra.pdf

Journal of Computer Graphics Techniques
An Evaluation of Multi-Hit Ray Traversal in a BVH

Vol. 4, No. 4, 2015
http://jcgt.org

We provide the OSPRay module for our Embree multi-hit implementations targeting
CPUs and Xeon Phi coprocessors. The module implements naive multi-hit traversal using
Embree’s intersection-filter functions and can be configured to visualize efficiency metrics as
heatmaps. The various sorting techniques and data layouts are selected via flags found at the
top of the ispc renderer source file.

Similarly, we provide some of the important source files for our OptiX multi-hit imple-
mentation. We use an OptiX SDK example as the basis of our implementation, so we cannot
distribute the entire project due to license restrictions. However, we provide source files im-
plementing the key elements required to solve the multi-hit problem with OptiX.

The material is organized as follows:

• ospray mh module/ contains code implementing the full OSPRay multi-hit mod-
ule. To build and run this module, simply copy its contents to the modules directory
within the OSPRay source tree.

– CMakeLists.txt provides boilerplate build-system content for compiling
OSPRay modules.

– mhtk.dox provides Doxygen content.

– multihit kernel.ih provides data structure definitions for the multi-hit mod-
ule.

– xray renderer.{h,cpp} provides boilerplate renderer code for creating the
OSPRay multi-hit module.

– xray renderer.ispc implements our multi-hit techniques. As noted above,
the various sorting techniques and data layouts are enabled via compile-time
flags defined at the top of this file.

• optix snippets/ contains our OptiX implementation code fragments.

– Flags.h contains the compile-time flags controlling which sorting techniques
and data layouts are used at runtime, similar to the flags found at the top of
ospray mh module/xray renderer.ispc.

– multihit.cu implements the OptiX any-hit program, similar to the intersection-
filter implementation in ospray mh module/xray renderer.ispc.

– pinhole camera mh.cu implements ray generation and intersection, as well
as hit-point post-processing (as required).

– RayPayload.h provides data structure definitions for hit point and per-ray
multi-hit data.

Additionally, the OSPRay implementation can be found on GitHub at:

https://github.com/jeffamstutz/jcgt_multihit_2015.git

89

http://jcgt.org
https://github.com/jeffamstutz/jcgt_multihit_2015.git

Journal of Computer Graphics Techniques
An Evaluation of Multi-Hit Ray Traversal in a BVH

Vol. 4, No. 4, 2015
http://jcgt.org

Author Contact Information

Jefferson Amstutz
Intel Corporation
1300 South Mopac Expressway
Austin, TX 78746
jefferson.d.amstutz@intel.com
https://www.linkedin.com/pub/jefferson-
amstutz/22/547/4ba/

Christiaan Gribble
Applied Technology Operation
SURVICE Engineering Company
6101 Penn Avenue
Pittsburgh, PA 15206
christiaan.gribble@survice.com
http://www.rtvtk.org/˜cgribble/

Johannes Günther
Intel Corporation
Dornacher Strasse 1
Munich, BY, D-8016
GERMANY
johannes.guenther@intel.com
http://www.johannes-guenther.net/

Ingo Wald
Intel Corporation
1300 South Mopac Expressway
Austin, TX 78746
ingo.wald@intel.com
http://www.sci.utah.edu/˜wald/

Jefferson Amstutz, Christiaan Gribble, Johannes Günther, Ingo Wald, An Evaluation of Multi-
Hit Ray Traversal in a BVH, Journal of Computer Graphics Techniques (JCGT), vol. 4, no.
4, 72–90, 2015
http://jcgt.org/published/0004/04/03/

Received: 2015-08-10
Recommended: 2015-10-07 Corresponding Editor: Ulf Assarsson
Published: 2015-12-16 Editor-in-Chief: Marc Olano

c© 2015 Jefferson Amstutz, Christiaan Gribble, Johannes Günther, Ingo Wald (the Authors).
The Authors provide this document (the Work) under the Creative Commons CC BY-ND
3.0 license available online at http://creativecommons.org/licenses/by-nd/3.0/. The Authors
further grant permission for reuse of images and text from the first page of the Work, provided
that the reuse is for the purpose of promoting and/or summarizing the Work in scholarly
venues and that any reuse is accompanied by a scientific citation to the Work.

90

http://jcgt.org
mailto:jefferson.d.amstutz@intel.com
https://www.linkedin.com/pub/jefferson-amstutz/22/547/4ba/
https://www.linkedin.com/pub/jefferson-amstutz/22/547/4ba/
mailto:christiaan.gribble@survice.com
http://www.rtvtk.org/~cgribble
mailto:johannes.guenther@intel.com
http://www.johannes-guenther.net/
mailto:ingo.wald@intel.com
http://www.sci.utah.edu/~wald/
http://jcgt.org/published/0004/04/03/
http://creativecommons.org/licenses/by-nd/3.0/

