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Figure 1: A zoomed-in region of the Yeti model (153M hair segments) from the DreamWorks Animation movie "Rise of the
Guardians". Our technique exploits similarity in the orientation of neighboring hairs to enable efficient ray traversal of complex
hair structure such as in this model.

Abstract
Hair and fur typically consist of a large number of thin, curved, and densely packed strands which are difficult to
ray trace efficiently. A tight fitting spatial data structure, such as a bounding volume hierarchy (BVH), is needed
to quickly determine which hair a ray hits. However, the large number of hairs can yield a BVH with a large
memory footprint (particularly when hairs are pre-tessellated), and curved or diagonal hairs cannot be tightly
bounded within axis aligned bounding boxes. In this paper, we describe an approach to ray tracing hair and fur
with improved efficiency, by combining parametrically defined hairs with a BVH that uses both axis-aligned and
oriented bounding boxes. This BVH exploits similarity in the orientation of neighboring hairs to increase ray
culling efficiency compared to purely axis-aligned BVHs. Our approach achieves about 2× the performance of
ray tracing pre-tessellated hair models, while requiring significantly less memory.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Raytracing

1. Introduction

Hair and fur are fundamental to the realistic appearance of
rendered characters. However, rendering high quality hair
in which strands are modeled individually, is computation-
ally and memory intensive due to the number of hairs in
a given model and the intrinsic geometric properties of a
strand. For example, a typical character can contain 150K
hairs in the case of a human, or millions in the case of a furry
animal (Figure 1). Each hair may be tessellated into many
triangles, with finer tessellation required to accurately repre-
sent strands with greater curvature. Further, hairs are often
thinner than a pixel and shiny, resulting in high frequency
changes in depth, surface normals, and shading across neigh-

boring pixels in space and time. As a result, high sampling
rates are needed to avoid aliasing and noise.

In a ray tracer, high sampling rates require a large number of
rays to be traced per pixel. Worse, the computational cost of
tracing a given ray through hair is itself high. The large num-
ber of primitives produced by tessellating hair models leads
to correspondingly large spatial index structures, which are
both memory intensive and costly to traverse. As an alter-
native, rays can be intersected directly with a parametric
representation (e.g. cubic Bézier splines) of the individual
hairs [SN90,NSK90,NO02]. Fewer primitives are needed to
accurately capture hair curvature resulting in smaller spatial
index structures. However, ray-spline intersection is more
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expensive than ray-triangle intersection. Moreover, it is diffi-
cult to tightly bound long hair segments within axis-aligned
spatial index structures (Figure 2a), resulting in many inter-
section tests for relatively few hits. Intersection efficiency
is further reduced in regions with nearby hairs, where axis-
aligned bounding boxes may overlap (Figure 2b).

The focus of this paper is on reducing the per-ray cost of in-
tersection with a hair model in a general-purpose ray tracer
or path tracer, rather than on sampling techniques to reduce
the number of rays traced. Our approach is informed by two
observations. First, it is possible to achieve tight bounds for
parametric hair segments using one (or a small number) of
bounding boxes locally oriented to the primary axis of the
segment (Figure 2d and 2e), enabling individual hairs and
their bounds to be represented compactly. Second, neigh-
boring hairs typically exhibit a natural similarity in orien-
tation. As a result, the oriented bounding boxes (OBBs) of
nearby hairs overlap minimally (Figure 2f), enabling an ef-
ficient spatial index structure to be built over the full hair
model. We show that this approach achieves higher perfor-
mance with less memory than methods using pre-tessellated
hair geometry, in production quality scenes with millions of
separate hairs.

For brevity, we largely restrict our discussion to nearest-hit
ray traversal of static hair models. However, our approach
can easily be extended to handle shadow rays or cone trac-
ing [QCH∗13]. The data structures and kernels described
here are built on top of the open source Embree ray trac-
ing kernel framework, for which we direct the reader to
[WWB∗14] for more detail.

2. Hair Segment Intersection

Our approach combines a highly optimized ray-hair inter-
section test (described here), with a specialized spatial index
structure that yields tight bounds for hair-like geometry and
which exploits similarity in the orientation of neighboring
hairs to increase ray culling efficiency (Section 3). This tech-
nique is intended to enable efficient ray traversal in produc-
tion quality scenes composed of millions of individual hairs
(Figure 1, 4). We assume that non-hair geometry is handled
separately using conventional spatial index structures and in-
tersection methods.

2.1. Hair Representation and Intersection Test

In our system, hairs are modeled individually using a small
number of connected cubic Bézier segments, which we re-
fer to as hair segments in the remainder of the paper. Each
Bézier control point has a 3D position and an associated ra-
dius. Thus the thickness of a hair can vary along its length.
Specifically, the thickness of a hair at any given point is inter-
polated from the radii at the control points of the respective
segment.

(a) (b) (c)

(d) (f )

hair
segment

(e)

Figure 2: An axis-aligned bounding box (AABB) does not
efficiently bound a curved hair (a), resulting in many ray-
box intersection tests with few ray-hair hits. Worse, where
hairs are densely packed (b), rays must be tested against
many overlapping boxes. Somewhat tighter bounds can be
achieved by using multiple AABBs for a single hair (c). A
bounding box oriented to the primary axis of the hair (d)
yields tighter bounds than a single AABB in the general case,
and very tight bounds (e) can be achieved using multiple ori-
ented bounding boxes (OBBs). In cases where nearby hairs
are similarly oriented (f) the OBBs (and OBBs of OBBs)
overlap minimally.

The intersection of a ray and a hair segment is performed
using the test described by Nakamaru and Ohno [NO02],
extended to support hair segments with variable thickness.
In this test, a Bézier curve is approximated with a number of
line segments obtained by recursively subdividing the curve.
For each line segment, the test computes the point P along
the segment that is nearest the ray, and determines if this dis-
tance is less than the thickness of the segment. To efficiently
calculate P, the Nakamaru method projects the Bézier curve
into a coordinate space in which the ray starts at the origin
and runs parallel to the Z axis. Distance and culling tests are
performed relative to the origin in this space, yielding sim-
pler arithmetic and fewer operations.

This intersection test is approximate. Rather than finding the
ray entry and exit points on the hair, the test yields only the
nearest distance between a ray and a line segment. This dis-
tance is typically less than the interpolated radius, and con-
sequently most ray "hit" points lie inside the hair. As a result,
the origin of secondary rays produced during shading must
be pushed outward from the line segment to the hair surface.
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2.2. Vectorization of the Intersection Kernel

In principle, it is possible to vectorize the intersection kernel
by testing multiple rays in parallel with a given hair. How-
ever in practice, rays lack the spatial coherence needed to
achieve high vector utilization when rendering fine hair ge-
ometry. For this reason, we vectorize the intersection of a
single ray with a single Bézier segment. This process is de-
scribed in pseudocode in Figure 3 in terms of 8-wide AVX
instructions found in modern CPUs.

void intersect(Ray ray, BezierCurve3D curve_in) {

/* transform Bezier curve into ray space */
BezierCurve3D curve = transform(ray.space, curve_in);

/* directly evaluate 8 line segments (P0, P1) */
avx3f P0, P1; curve.eval(P0, P1);

/* project ray origin (0, 0) onto 8 line segments */
avx3f A = -P0;
avx3f B = P1 - P0;
avxf d0 = A.x * B.x + A.y * B.y;
avxf d1 = B.x * B.x + B.y * B.y;

/* calculate closest points P on line segments */
avxf u = clamp(d0 * rcp(d1), 1.0f, 0.0f);
avx3f P = P0 + u * B;

/* the z-component holds hit distance */
avxf t = P.z;

/* the w-component interpolates the curve radius */
avxf r = P.w;

/* if distance to nearest point P <= curve radius ... */
avxf r2 = r * r;
avxf d2 = P.x * P.x + P.y * P.y;
avxb mask = d2 <= r2 & ray.tnear < t & t < ray.tfar;

/* find closest hit along ray by horizontal reduction */
if (any(mask)) {

size_t i = select_horizontal_min(mask, t);
...

}

}

Figure 3: Pseudocode for our ray-hair segment intersection
test using C++ wrapper classes for the 8-wide AVX instruc-
tions. The hair segment is approximated using 8 cones which
are tested for intersection against the ray in parallel.

The four control points of the Bézier curve are first projected
into ray space. This projection can be formulated as four
SIMD matrix-vector multiplications. Once in ray space, the
Bézier curve is divided into 8 line segments (extension to
16 or more segments is straightforward), rather than recur-
sively subdividing the curve. The start and end points (and
radii) of each line segment are evaluated in parallel from pre-
computed Bézier coefficients. The ray is then tested for inter-
section against the 8 line segments in parallel. In the case of
multiple hit points, the nearest is selected using a horizontal
reduction operation. This kernel achieves 1.3× to 1.6× the
total rendering performance of a naïve vectorized reference
implementation of the Nakamaru and Ohno kernel, for the
Tighten and Sophie models (Figure 4).

For our models we have found 8 line segments to provide

sufficient geometric accuracy. However, for very curved hair
segments a higher level of subdivision is needed. As these
cases are rare, we recommend pre-subdividing problematic
hairs using a flatness criteria. This approach provides high
geometric accuracy and allows the use of our fast ray-hair
intersection kernel, at the cost of a small increase in memory.

3. A Spatial Index Structure for Hair Geometry

One advantage of rendering tessellated hair primitives rather
than directly rendering Bézier segments, is that the tessel-
lation process breaks long, thin hairs into smaller (and less
thin) triangles. These triangles can be more tightly bounded
in an axis-aligned spatial index structure compared to the
longer Bézier segments (a similar observation has moti-
vated the development of spatial split techniques for general-
purpose geometric primitives [EG07,SFD09]). However, ac-
curately capturing the curvature of a hair may require 50 to
100 triangles per Bézier segment. For scenes containing mil-
lions of hairs, the memory occupied by these primitives and
the associated data structure may be prohibitive.

What is needed is a spatial index structure which tightly
bounds long and thin Bézier segments, enabling efficient ray
traversal and culling with reduced memory consumption. A
BVH consisting only of axis-aligned bounding boxes is in-
sufficient, since the boxes of neighboring hairs frequently
overlap (Figure 2b). As a result, these hairs are often not
separated during BVH construction when using the surface-
area heuristic (SAH). Even when the build kernel is coerced
into separating hairs, the neighboring regions still overlap
and must be tested during ray traversal.

3.1. Local Orientation Similarity

Our extends previous work on acceleration structures using
oriented bounding volumes [AK89, GLM96, LAM01]. We
note that a BVH of oriented bounding boxes can efficiently
bound and separate hair segments. A single hair segment that
is almost straight can be bounded very effectively using an
OBB (Figure 2d). An OBB is also more effective at bound-
ing a curly hair than an AABB (keep in mind that we build
a BVH over hair segments, not entire hair curves). Further,
the orientation of individual hairs is typically not random but
is locally similar, minimizing overlap in the OBBs of neigh-
boring hairs (Figure 2f). However, OBBs are generally more
expensive to store and traverse than AABBs.

For this reason, we utilize a bounding volume hierarchy that
combines both axis-aligned and oriented bounding boxes,
and spatial and object splits. This mixed BVH is able to
adapt to the local orientation of individual hairs, and exploit
similarity in the orientation of neighboring hairs to mini-
mize overlap between bounding boxes, while reducing the
memory and compute overhead associated with a BVH built
solely from OBBs.
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The choice of where to use an AABB or OBB is decided at
run time in the BVH construction kernel (Section 3.3) based
on local geometric properties of the scene. Generally speak-
ing, AABBs are better suited for bounding relatively short
hair segments, and for the upper nodes of the BVH where
they are faster to traverse than OBBs. In contrast, OBBs are
used in nodes lower in the BVH where they bound tufts or
strands of hair in which local orientation similarity can be
maximally exploited.

It may happen that no single well-defined major hair direc-
tion exists, but two or more (e.g. two hair strands cross at
some location). This happens less frequently for real-world
models, but can happen for synthetic models. We address
this issue by binning hair segments into sets of similar ori-
entation during the BVH build process.

Oriented bounding boxes do not efficiently bound groups of
hairs that are not only long and densely packed, but also
highly curved. We address these cases by performing spatial
splits during BVH construction [SFD09, PGDS09]. Spatial
splits shorten very curved hair segments and reduce the cur-
vature per sub-segment, improving the bounding efficiency
of OBBs.

A case we cannot handle efficiently is densely grouped hairs
where each hair fiber points in a random direction. In princi-
ple, the use of spatial splits in our BVH build kernel enables
such random hair fibers to be split into smaller segments
which can be more tightly bounded. However, in practice
this approach increases memory consumption, reducing the
comparative benefit of a hybrid AABB / OBB BVH relative
to a BVH consisting only of AABBs.

3.2. SIMD-Friendly Data Layout

The goal of our data structure is to achieve significant
speedups by reducing the number of traversal steps and
primitive intersection tests. On the other hand, these savings
could easily be lost if traversal was considerably more costly
than for a regular BVH: if our data structure was limited to
scalar traversal codes, the savings would have to be immense
to even compete with the SIMD-optimized traversal kernels
available for regular BVHs.

BVH Data Layout. To eventually allow for fast single-ray
SIMD traversal we follow the data layouts of the original
Embree kernels as closely as possible. In particular, we use
a BVH with a branching factor of four that will allow for al-
ways intersecting four child-bounds in parallel (Section 3.4).
This data-parallel intersection in particular requires that ev-
ery group of four sibling nodes have to be of the same type:
If only one prefers OBBs, all four nodes have to be OBB
nodes. However, as argued above the distribution of AABB
vs. OBB nodes is not random, but closely correlated to their
depth in the hierarchy, so this in practice is not a major limi-
tation.

Node References. A node stores 64-bit node references to
point to its children. These node references are decorated
pointers, where we use the lower 4 bits to encode the type of
inner node we reference (AABB node or OBB node) or the
number of hair segments pointed to by a leaf node. During
traversal we can use simple bit operations to separate the
node type information from the aligned pointer.

AABB nodes. For nodes with axis aligned bounds, we store
four bounding boxes in a SIMD friendly structure-of-array
layout (SOA). In addition to the single-precision floating
point coordinates for the four AABBs this node also stores
the four 64-bit node references, making a total of 128 bytes
(exactly two 64-byte cache lines).

OBB nodes. For nodes with non-axis aligned bounds
we store, for each node, the affine transformation ma-
trix that transforms the respective OBB to the unit AABB
((0,0,0),(1,1,1)). This transformation allows for a very ef-
ficient ray-OBB intersection test, by first transforming the
ray with this matrix, and then intersecting the transformed
ray with the unit AABB (in which case many terms become
simpler). The four OBB nodes’ transformations are stored in
a SIMD friendly SOA layout, requiring a total of 192 bytes.
Together with the 4 node references this makes a total of 224
bytes for an OBB node, or roughly twice as much as for an
AABB node.

Leaf Nodes specify a list of references to Bézier segments
contained in this leaf. For each Bézier segment reference we
store a 64-bit pointer to the Bézier-segment’s first control
point, which allows us to share the first and last control point
of neighboring hair segments. Additionally we store two 32-
bit integers to encode some group ID and hair ID, which
allow a shader to look up per-hair shading data (as done in
the case of the Yeti in Figure 1) and can be used for mail-
boxing in case spatial splits are enabled.

Bézier Segments are stored in one or more groups as spec-
ified by the application, where each Bézier segment is spec-
ified as a list of 4 control points. The arrays of Bézier seg-
ments are stored with the application, and no separate copy
of this data is required, as our leaf representation can di-
rectly point into these arrays. We also experimented with a
version where the Bézier segment references are replaced
with copies of the actual four control points. This saves a
pointer indirection and allows more efficient prefetching,
which translated to roughly 5% higher performance; how-
ever, due to the higher memory consumption this mode is
currently not being used.

3.3. Spatial Index Construction

Though our combination of AABBs and OBBs can, in the-
ory, better enclose geometry, how well it will do so in prac-
tice will depend on how exactly the data structure is built; in
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(a) Tighten (b) Tiger (c) Sophie
2.2M hair segments, 420K triangles 6.5M hair segments, 83K triangles 13.3M hair segments, 75K triangles

Figure 4: Three reference models from the DreamWorks Animation movies "Megamind" (a), "The Croods" (b), and "Rise of
the Guardians" (c) featuring greatly varying complexity and style of the hair geometry.

particular, which orientations will be chosen for the OBBs,
and how the builder will decide which node types to choose.

3.3.1. Determining Hair Space

Non-axis aligned partitioning strategies are performed in a
special coordinate frame which we call the hair space, that is
well aligned to a set of hair segments. To calculate this space
we randomly pick a small set of candidate hair segments. For
each such candidate we compute a dominant axis spanning
from the first to the last vertex and a randomized orientation
around this dominant axis, to obtain an orthogonal candidate
space.

For each such candidate space, we compute how well it is
aligned with the given hair segments by transforming each
hair segment into the candidate space, and computing the
surface area of the transformed segment’s bounding boxes.
We then select the candidate space with the smallest sum of
surface areas.

If most of the hair segments are oriented into a similar di-
rection, picking a single candidate segment will very likely
already yield a suitable candidate space. To reduce the like-
lihood of selecting a misaligned candidate hair segment we
pick 4 random candidates.

3.3.2. Partitioning Strategies

To construct the tree we use a top-down surface area heuris-
tic (SAH) based approach that automatically selects the
proper node type based on the lowest cost. In particular,
the cost function we use has different cost factors for both
AABB and OBB splits to properly reflect the higher cost of
traversing OBB nodes.

At any time during the construction process, we first com-
pute a suitable hair space for the given hair segments as out-
lined previously, and then compute the expected SAH cost
for the following five techniques:

i Traditional AABB object partitioning in world space

ii Spatial splits in world space

iii Object partitioning in hair space (producing OBBs)

iv Spatial splits in hair space (producing OBBs)

v A similar orientation clustering step that partitions a
set of hair segments into two distinct clusters with dif-
ferent dominant orientation.

Object Partitioning. For the partitioning strategies (’i’ and
’iii”) we use a binning approach using 16 “bins” as described
in [Wal07] to compute the SAH cost using the proper cost
factors for AABBs vs. OBBs. Binning is performed in world
space and in hair space and bounding boxes are always cal-
culated in the space the partitioning happens.

Spatial Splits. For the spatial splits (’ii’ and ’iv’) we use an
approach similar to Stich et al. [SFD09], except that we did
not implement their “un-splitting” optimization. We again
use 16 “bins” (meaning 15 candidate split planes), and again
perform spatial split testing in both world and the same hair
space as used for object partitioning.

Spatial splits improve performance, but also produce a large
number of additional nodes and primitive references, poten-
tially leading to excessive memory consumption. To con-
trol memory consumption we use a predetermined threshold
value that tells the builder how many additional references it
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is allowed to produce; once this threshold is reached spatial
splits become automatically disabled.

To prevent a single “bad” subtree from consuming all the
limited number of spatial splits (and thus, having none left
for other regions of the scene) we use a breadth-first builder
higher up in the tree. However, since depth-first construction
generally results in better locality of the generated nodes and
primitive references we eventually switch to depth-first con-
struction as soon as a subtree’s primitive count falls below a
given value (currently 128).

Similar orientation clustering is an additional technique
(strategy ’v’) we developed to better handle cases where
two or more differently-oriented strands intersect with each
other—which happens in particular for curly hair. In this
case, both hair strands by themselves have local orientation
similarity and could be well handled by OBBs, but neither
spatial splits nor binned object partitioning would be able to
partition these strands.

To handle such cases we first pick a random hair segment,
and then determine the segment that is most misaligned to
this initial hair (i.e., whose orientation spans the widest an-
gle). We then iterate over all other hair segments, and cluster
them into two distinct clusters depending on which of those
two hairs they are most aligned with.

As the orientation of the separated hair strands can differ
much, we use the OBBs calculated in separate hair spaces of
each of the two strands to calculate the SAH cost. This way
the bounds used to calculate the SAH are well aligned with
each of the two strands. This is different to the object parti-
tioning and spatial splitting approach, that always calculate
bounds in the space the binning operations were performed.

3.3.3. Tree Construction

Using these 5 strategies we could easily build a binary tree
in a top-down manner. To actually build a 4-wide BVH we
proceed as follows: We start by putting all hair segments into
a single set, and partition that set using the strategy (i)-(v)
with lowest SAH cost into two sets. We then iteratively pick
the set with largest surface area and split it until a total of
four such sets are obtained.

If any of these four sets was created with an OBB split we
create a quad-node of OBBs (even for those nodes that did
not require any) and store the OBB calculated in the hair
spaces of each of these sets. Else we create a quad-node that
stores world space AABBs. We then proceed with all non-
leaf nodes in an obvious manner until the entire tree is con-
structed.

3.4. SIMD-Enabled Traversal

Given the combination of very high geometric detail and
likely incoherence of the ray distributions we decided not to

pursue any packetization, and instead opted for a pure single-
ray SIMD approach.

Our single ray traversal algorithm is heavily inspired by
the corresponding single-ray BVH4 kernel found in Em-
bree [WWB∗14], except that the leaves contain Bézier seg-
ments, and in that some of our nodes are OBB nodes.

AABB and OBB tests. Given that the majority of traversal
steps will operate on AABB nodes (as they are located at the
top of the tree) we first test if a node is indeed an AABB
node (checking some bits in its node reference), and if so,
use exactly Embree’s code for this case. If not, we test if
the node is a leaf or an OBB node; in the latter case we use
the respective node’s four affine transformation matrices—
already stored in SIMD-friendly structure-of-array layout—
and use SIMD instructions to transform the ray’s origin and
direction into the respective four spaces (in parallel).

Since the transformation changes the ray’s direction we can
no longer use precomputed reciprocal values for the ray
direction; however, computing the four inverse directions
again maps to straightforward and very efficient vector code.
Once the ray is in the proper space, intersection with the unit
box is trivial, and is actually somewhat cheaper than inter-
secting with a non-unit box. Altogether, performing an OBB
test in our implementation is roughly 50% more expensive
than an AABB node test.

Mailboxing. When using spatial splits, the resulting repli-
cation of references can lead to the same primitive being en-
countered multiple times during traversal. For highly opti-
mized triangle tests this is often ok, and the cost and com-
plexity of potentially adding mailboxing often outweighs its
savings. However, even with our vectorized intersection test
from Section 2, a hair segment intersection is significantly
more expensive than a ray-triangle test.

To avoid these costly intersection tests we use a simple mail-
boxing technique that tracks the IDs of the last 8 primitives
encountered during traversal; we obviously use an 8-wide
vector intrinsic to test if this list contains a primitive in ques-
tion, and simply skip it if this is the case.

3.5. OBB Node Quantization

Production-rendering models are generally large, and while
our method has significantly lower memory consumption
compared to tessellating the model the amount of mem-
ory required can still be high, in particular when using spa-
tial splits. To reduce memory consumption we extended our
technique to (optionally) store the OBB nodes in a com-
pressed form using quantization of OBB coordinates.

In difference to normal OBB nodes, compressed OBB nodes
require a common orientation for all 4 OBB bounds to
enable efficient compression. This common orientation is
stored as an orthonormal linear transformation that gets
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scaled with 127 and quantized using signed chars. In this
common quantized space we store 4 AABB for the 4 chil-
dren, each quantized using unsigned chars relative to the
merged bounding box of all children. For decompression we
store the lower bounds and extend of the merged bounding
box as floating point values.

Each quad-OBB node requires only 96 bytes, which is less
than half that of an uncompressed OBB node, and even 25%
less than a regular AABB node. The common orientation
requires some changes to the construction algorithm, in par-
ticular to use the same hair space for all splits of a single
node. We only use quantization for the OBB nodes: for those
the savings are greater, and since they are traversed less of-
ten the decoding overhead is low. The traversal code itself
hardly changes at all—except for the node de-quantization,
which in SIMD is straightforward, and cheap (Section 4.3).

4. Results

With all components of our method together we can now
evaluate its performance. In particular, we are interested in
how our method compares to the two alternative approaches
an existing production renderer would have had access to
without our method: tessellation into triangles on one side,
and a traditional axis aligned BVH over hair segments on the
other.

4.1. Comparison Methodology

For all our experiments we use actual movie-content charac-
ters graciously provided for testing by DreamWorks Anima-
tion: Tighten from “Megamind”, Tiger from “The Croods”,
and Sophie and Yeti from “Rise of the Guardians” (Figures 1
and 4). To render these images and for all evaluations, we
wrote a path tracer that uses the hair scattering model and
importance sampling described by Ou et al. [OXKP12]. All
of the non-hair base geometry uses triangle meshes with a
simple lambertian diffuse material. The renderer also sup-
ports texturing, which is used to control the surface diffuse
and hair internal color in Figures 1 and 4b).

All tests were run on a workstation with 64 GBs of memory
and two Intel R© E5-2697 CPUs (12 cores at 2.7 GHz each),
using 1 sample path (up to 10 bounces) per pixel per frame,
at a resolution of 1024 × 1024. All performance results are
given in frames per second and measure total render time
including shading, texturing and the surface and hair scat-
tering model (R, TRT and TT lobes [OXKP12]). Our data
structures (and all reference codes) have been integrated into
a modified version of Embree. All experiments are run on
Linux, using Intel R© Compiler version 14.0.2.

As a reference solution for an axis-aligned BVH built over
Bézier curves we employ Embree’s high-quality BVH4 and
use our Bézier curve intersector for primitive intersection.
For spatial splits, we use a threshold that allows at most 2×
as many primitive references to be generated than the num-
ber of hair segments in the scene.

For triangular geometry we use Embree’s default kernels.
With both our technique and with the reference curve imple-
mentation the triangles are handled in a separate acceleration
structure; for the tessellation reference all triangles—both
tessellated hair and base mesh—end up in a single BVH.

(a) Original View (b) Intersection Tests (c) Intersection Tests
AABB BVH AABB / OBB BVH

Figure 5: The number of ray-hair segment intersection tests
per pixel is shown for a zoomed-in region of the Tighten
model (a), for a traditional axis-aligned BVH4 (b), and our
hybrid AABB / OBB BVH (c). Blue indicates 0 to 10 tests,
green 10 to 40, yellow 40 to 70, and red greater than 70.

4.2. Culling Efficiency

The key rationale of our technique is its ability to better
adapt to long, thin, and diagonal geometry to reduce the
number of costly ray-hair segment intersections. To quan-
tify the degree to which this is the case we have annotated
our code and measured both traversal tests and hair seg-
ment intersections for a closeup of the Tighten model. For
this configuration, Figure 5 visualizes the number of ray-
hair segment intersections performed per pixel. For some
areas of the model (where hair is diagonally oriented) the
reference axis-aligned BVH4 has to perform a large number
of hair segment intersections, while our approach performs
well for all parts of the model. Our approach traverses on
average only 110 nodes and intersects 5.7 hair segments per
ray, while the BVH4 traverses on average 174 nodes (1.5×
more) and intersects 47.2 hair segments (8.2× more). Thus
our approach achieves more than an 8× reduction in hair
segment intersection tests by performing even less traversal
steps.

4.3. Memory Consumption vs. Performance

Though overall fully automatic, our method has two knobs
that allow for trading off performance vs. memory consump-
tion: Spatial splits generally lead to better culling, but re-
quire more memory; and OBB quantization saves memory,
but comes with some run-time overhead. To quantify these
effects, we have run both combinations, and measured their
respective performance and (total) memory consumption.

According to Table 1, spatial splits are always beneficial to
rendering performance, and can yield speedups of over 30%
(for the Tiger) at the expense of an 2.5x slower build. Even
with our memory usage threshold in some cases spatial splits
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almost double total memory consumption. OBB compres-
sion can somewhat counter that, and reduces memory con-
sumption by about 30%. In the case of the Yeti model, using
compressed OBB nodes is actually fastest, likely due to im-
proved cache behavior.

spatial splits: no no yes yes
compression: no yes no yes

Tighten perf 6.6fps 6.2fps 7.5fps 7.3fps
mem 387MB 267MB 633MB 404MB
build 6.4s 5.3s 15s 13.7s

Tiger perf 2.1fps 1.8fps 2.7fps 2.5fps
mem 1.1GB 761MB 1.8GB 1.1GB
build 19.7s 16.3s 41.0s 38.6s

Sophie perf 7.1fps 7fps 7.3fps 7.1fps
mem 2.1GB 1.4GB 3.3GB 2.7GB
build 42.4s 33.9s 64.8s 59.3s

Yeti perf 2.6fps 2.6fps 3.1fps 3.2fps
mem 21.7GB 17.7GB 34.4GB 24.9GB
build 393.7s 373.7s 880.6s 834.0s

Table 1: The impact of spatial splits and node compres-
sion on memory consumption and performance (in frames
per second) for our hybrid AABB / OBB BVH.

Tuning these parameters allows an animator some control of
memory consumption vs. render time, and it is likely that
different applications would pick different configurations.
However, to simplify the evaluations done in the remain-
der of this paper we will from now on assume a “standard”
configuration that we believe makes a good trade-off be-
tween performance and memory consumption, and assume
that spatial splits and OBB compression are both enabled.

4.4. Comparison to Tessellation Reference

To compare against tessellation we tessellate each hair seg-
ment into 8 triangles. Even with this extremely low tessel-
lation rate, tessellation requires 2− 3× more memory than
our technique (Table 2), which causes the Yeti model to ex-
ceeded available memory when tessellated. In terms of per-
formance, all models perform about 2× faster with our tech-
nique than with tessellation. Even though the BVH of the
tesselated version is build over 8x as many primitives, its
build times are about 5x faster than ours. This is mainly due
to the default Embree builder being very optimized and our
approach tests multiple heuristics, of which unaligned parti-
tionings and spatial splits are quite expensive.

4.5. Comparison to Curve Reference

Table 2 also allows for comparing our method to the refer-
ence implementation using an axis-aligned BVH4 over hair
segments (see Section 4.1), which we consider to be the state

reference BVH4 ours reference BVH4
triangles hair segments

Tighten perf 3.5fps 0.48x 7.3fps 3.7fps 0.51x
mem 1.1GB 2.72x 404MB 289MB 0.72x
build 2.6s 0.19x 13.7s 0.28s 0.02x

Tiger perf 1.44fps 0.58x 2.5fps 1.0fps 0.40x
mem 3.5GB 3.18x 1.1GB 816MB 0.74x
build 8.4s 0.21x 38.6s 1.1s 0.028x

Sophie perf 4.2fps 0.59x 7.1fps 3.5fps 0.49x
mem 6.8GB 2.51x 2.7GB 1.6GB 0.59x
build 16.9s 0.28x 59.3s 2.0s 0.033x

Yeti perf — — 3.2fps 1.8fps 0.56x
mem — — 24.9GB 18.6GB 0.75x
build — — 833s 75.7s 0.09x

Table 2: Performance and memory consumption for our
method (with spatial splits and compression enabled) versus
both a reference BVH4 (using object binning) over tessel-
lated hair segments, and a reference BVH4 over hair seg-
ments using our SIMD-optimized ray-hair segment intersec-
tion test.

of the art for somebody building a production renderer for
hair.

Compared to this reference our method requires 1.3−1.6×
more memory. This is not due to OBB nodes being big-
ger than AABB nodes—this is amply counteracted by the
OBB compression—but as mentioned previously, by the fact
that our method can better separate different hair segments
and consequently produces more nodes—plus the additional
node and reference count due to spatial splits. In particular,
when used in its memory conservative mode—with spatial
splits disabled and OBB compression enabled—our method
actually needs slightly less memory than the reference im-
plementation (Table 1). In terms of performance, our method
handily outperforms the reference implementation for all
models (even without spatial splits), and in the case of the
Tiger is actually 2.5× as fast.

Our build performance is about 10x - 50x slower com-
pared to the curve reference, which uses the fast Embree
BVH builders. This performance discrepancy comes from
two sources: First, we test additional heuristics (such as un-
aligned partitionings and spatial splits), and second we did
not yet fully optimize our implementation. Some additional
optimizations, like fully parallelizing our build procedure,
and enabling expensive splitting strategies, such as non-axis
aligned partitionings and spatial splits, only if cheap axis
aligned object partitioning was not successfull will improve
performance of our build procedure.

For all models we spend about 50% of the total render-
ing time tracing rays through hair geometry: Sophie 47.9%,
Tiger 62.5%, Tighten 50.3% and Yeti 48.7%. The remaining
time is spent in ray generation, ray tracing triangular geom-
etry, and shading. Consequently, the speedup of our method
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when measuring the pure ray tracing time for hair geometry
is even higher.

4.6. Comparison to Multilayer Shadow Maps

We have also attempted to compare tracing shadow rays
using our approach with epipolar ray-tracing of multilayer
shadow maps, as described in Xie et al. [XTP07]. Memory
considerations put aside and although the comparison is not
straightforward, the general sense is that our approach com-
pares very favorably in terms of ray traversal performance.

5. Conclusion

Our approach is designed to enable efficient ray traversal of
production quality hair models with potentially millions of
individual strands. To do so, we use a new spatial data struc-
ture which incorporates axis-aligned and oriented bounding
boxes. The use of oriented bounding boxes enables long,
parametrically defined hair segments to be tightly bounded,
and minimizes overlap in the bounding boxes of neighboring
hairs which improves ray culling efficiency. We pair this data
structure with a vectorized ray-hair intersection kernel to
achieve higher performance than ray tracing pre-tessellated
models while using significantly less memory.

Though our method is intended for use in production render-
ing, more work is needed, notably support for motion blur. In
addition, it is unclear how best to scale the 8-wide single-ray
SIMD intersection kernel described in Section 2 to 16-wide
SIMD as is available in the Xeon Phi architecture. Doubling
the line segments per hair segment to 16, may not substan-
tially improve image quality in all cases. Finally, we antici-
pate that total rendering performance could be improved by
modifying our data structure to allow both triangle and hair
geometry to be handled in a single hierarchy.

Elements of this work are potentially useful beyond hair ren-
dering. For example, the hybrid AABB / OBB data structure
we described may be applicable to other rendering work-
loads in which the geometric primitives are not otherwise
well bounded by axis-aligned spatial partitions, and which
exhibit local orientation similarity (e.g. stream lines in sci-
entific visualization applications).
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